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Oriol Barbany Mayor

In partial fulfillment of the requirements for the degree in Telecommunications
Technologies and Services Engineering

Advisor: Dr. Antonio Bonafonte

Barcelona, June 2018

http://etsetb.upc.edu/en?set_language=en
http://etsetb.upc.edu/en?set_language=en
http://www.upc.edu/en?set_language=en
mailto:oriolbm96@gmail.com
http://etsetb.upc.edu/en/study-programs/degrees/bachelors-degree-in-telecommunications-technologies-and-services-engineering
http://etsetb.upc.edu/en/study-programs/degrees/bachelors-degree-in-telecommunications-technologies-and-services-engineering


ii

Abstract
Deep learning has revolutionized almost every engineering branch over the past decades

and have also been successfully applied to text-to-speech, where it yields state-of-the-art per-
formance and overcomes classical approaches.

This work focuses in the implementation of a speech synthesis system based in Recurrent
Neural Networks (RNNs) that holds many speakers with a unique model. Despite the fact that
other systems only share some layers across speakers but maintain independent blocks for every
identity, this dissertation explore the possibilities of implementing an adaptation of the end-to-
end model SampleRNN conditioned to both speech parameters and speaker identity that allow
an entire shared framework.

Speech parameters, which in this thesis are extracted with Ahocoder, are proofed to be
intrinsically dependent of the speaker. This allows to use the simplest presented adaptation
of the SampleRNN as a low-rate vocoder that significantly reduces the bit-rate given that
only acoustic parameters have to be sent instead of the whole waveform in order to decode
an utterance. This behavior proof the efficiency of the proposed shared structure, but hinders
other tasks such as voice conversion due to the futility of speaker identity in the model. Some
experiments regarding the model parameters have been conducted to optimize the results and
a novel approach of non-causality named as look ahead is proposed.

With the aim of tackling the voice conversion problem given the speaker dependencies, a
bottle neck approach inspired by the VQ-VAE model and an adversarial framework are proposed
to obtain latent speaker-independent representations from speech parameters. This also allows
a new kind of speaker interpolation named as eigen-voice representation that aims to mimic a
new and unknown speaker given a short utterance. Promising results arise from this proposal
as it could be used to tackle one of the only inconveniences of deep learning, which is the huge
amount of data that the models demand to learn the structure of an input signal, and could
also be used for other tasks like hardening the security of speech-based biometric systems.



iii

Resum
Durant les últimes dècades, l’aprenentatge profund o deep learning ha revolucionat pràcticament

totes les branques de l’enginyeria i ha estat aplicat amb èxit en la śıntesi de veu, on obté els
millors resultats sobrepassant amb diferència els anteriors assolits amb sistemes clàssics.

Aquest treball se centra en la implementació d’un sistema de śıntesi de veu basat en
xarxes neuronals recurrents amb un únic model per varis locutors. Encara que altres sistemes
únicament comparteixen algunes capes entre parlants però mantenen blocs independents per
a cada locutor, aquesta tesis explora les possibilitats d’implementar una adaptació del model
SampleRNN condicionant tant a paràmetres propis de la parla com a la identitat del parlant
que permet una estructura compartida.

Es demostra que els paràmetres de la parla, extrets mitjançant l’Ahocoder en aquesta tesis,
són intŕınsecament dependents del locutor. Aquest fet permet usar l’adaptació més simple
presentada del SampleRNN com un vocoder de baixa velocitat que redueix significativament
la taxa de bits transmesa ja que només es necessita enviar els paràmetres propis de la parla
per descodificar un senyal de veu. Aquest comportament demostra l’eficiència de l’estructura
compartida proposada, però dificulta altres tasques com la conversió de veu per la futilitat
de la identitat del locutor en el model. S’han portat a terme varis experiments pel que fa a
paràmetres del model per tal d’optimitzar els resultats i es proposa un nou enfocament de no
causalitat anomenat look ahead.

Amb l’objectiu d’abordar el problema de la conversió de veu donat les dependències amb el
locutor, es proposa una estratègia de coll d’ampolla inspirada pel VQ-VAE i una arquitectura
adversativa per tal d’obtenir representacions latents dels paràmetres de la parla sense informació
del parlant. Això també permet un nou tipus d’interpolació de locutors anomenada representació
eigen-voice que pretén imitar la veu d’un locutor nou i desconegut amb un petit fragment de
senyal de veu. Aquesta proposta aporta resultats prometedors ja que es podria fer servir per
afrontar un dels únics desavantatges de l’aprenentatge profund, que és l’enorme quantitat de
dades que es necessiten perquè un model aprengui l’estructura del senyal d’entrada, i també
per altres tasques com la millora de la seguretat en sistemes biomètrics basats en la veu.
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Resumen
Durante las últimas décadas, el aprendizaje profundo o deep learning ha revolucionado

prácticamente todas las ramas de la ingenieŕıa y ha estado aplicado con éxito en la śıntesis de
voz, donde obtiene los mejores resultados sobrepasando con diferencia los anteriores obtenidos
con sistemas clásicos.

Éste trabajo se centra en el desarrollo de un sistema de śıntesis de voz basado en re-
des neuronales recurrentes con un único modelo para varios locutores. Aunque otros sistemas
únicamente comparten algunas capas entre hablantes pero mantienen bloques independientes
para cada locutor, ésta tesis explora las posibilidades de implementar una adaptación del mod-
elo SampleRNN condicionado a parámetros propios del hable y a la identidad del locutor que
permite una estructura compartida.

Se demuestra que los parámetros del habla, extráıdos mediante Ahocoder en ésta tesis, son
intŕınsecamente dependientes del locutor. Éste hecho permite usar la adaptación más simple
presentada de SampleRNN como un vocoder de baja velocidad que reduce significativamente la
tasa de bits transmitida puesto que solo necesita enviar los parámetros del habla para decodificar
una señal de voz. Éste comportamiento demuestra la eficiencia de la estructura compartida
propuesta, pero dificulta otras tareas como la conversión de voz por la futilidad de la identidad
del locutor en el modelo. Se realizaron varios experimentos referentes a los parámetros del
modelo con la intención de optimizar los resultados y se propone un nuevo enfoque de no
causalidad al que se refiere como look ahead.

Con el objetivo de abordar el problema de la conversión de voz dadas las dependencias
con el locutor, se propone una estrategia de cuello de botella inspirada por VQ-VAE y una
arquitectura adversativa para obtener representaciones latentes de los parámetros del hable sin
información del hablante. Esto también permite un nuevo tipo de interpolación de locutores
llamada representación eigen-voice que pretende imitar la voz de un locutor nuevo y desconocido
con un pequeño fragmento de señal de voz. Esta propuesta aporta resultados prometedores
porque se podŕıa usar para combatir uno de los únicos inconvenientes del aprendizaje profundo,
que es la enorme cantidad de datos que se necesitan para que un modelo aprenda la estructura
de una señal de entrada, tanto como para otras tareas como la mejora de la seguridad en
sistemas biométricos basados en voz.
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“The study is to proceed on the basis of the conjecture that every
aspect of learning or any other feature of intelligence can in
principle be so precisely described that a machine can be made to
simulate it. An attempt will be made to find how to make machines
use language, form abstractions and concepts, solve kinds of
problems now reserved for humans, and improve themselves.”

Dartmouth Artificial Intelligence Conference, 1955
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1 Introduction
This project was carried out at the Speech Processing Group (VEU) which belongs to the

Signal Theory Department of the Universitat Politècnica de Catalunya (UPC) and works on
language engineering and speech processing. Its main areas of research are speech coding, ro-
bust speech features extraction, text-to-speech conversion, speech recognition, speech-to-speech
translation and spoken language. Its main objective is to develop verbal communication systems
with the aim of overcoming linguistic barriers and enhancing the accessibility of information
systems.

The purpose of this project is to take advantage of the state-of-the-art technologies of speech
synthesis, in particular of the SampleRNN, an unconditional end-to-end neural audio generation
model. During the development of this thesis, SampleRNN was rearrange in a way that output
utterances were conditioned and therefore could be used as a Text-to-Speech (TTS) system,
and speaker identity could be chosen. With that model, several applications including voice
synthesis, a low-rate vocoder, voice conversion and mimicking of previously unknown voices
could be achieved.

1.1 Statement of purpose

This work aims to develop a vocoder, which is the second stage of a TTS system as the one
depicted in figure 1.1. The mission of the vocoder therefore is to synthesize speech given some
parameters extracted either from raw text or from other speech signals in case of voice coding.
The classical approach for vocoder is the so-called Statistical Parametric Speech Synthesis
(SPSS), but new approaches based on deep learning have outperformed these results. Deep
learning is based in learning very complex functions that model the distribution of the training
data in such a way that it can generalize to unseen data. When referring to speech synthesis,
a particular architecture called Recurrent Neural Network (RNN) is normally used in order to
model the temporal evolution of the input signals. Initially, each model was trained with only
one speaker, but recent studies showed the advantage of holding many speakers with a same
shared structure. This allows to achieve better results because speech signals from different
speakers have a common behavior that is exploited with a Deep Neural Network (DNN).

Raw text Parametric TTS Vocoder Synthetic
speech

Figure 1.1: Block diagram of a two-stage Text-To-Speech system

The main project initial idea was provided by the advisor of this work, Antonio Bonafonte,
who was first contacted by the author with the aim of supervising the development of alternative
projects that also involved deep learning although that the applications were mainly centered
on the music field. At the beginning of this project, two proposals were considered, including
both an speaker dependent and independent vocoder.

In the first option, the speaker was conceived as one of the inputs of the vocoder and
therefore the content of the acoustic conditioners was thought as not to be enough to describe

http://www.tsc.upc.edu/en/research/veu
http://www.upc.edu/en


2 1.2. Project requirements and specifications

its identity. The second option, which was focused on speech coding, bandwidth expansion and
speech enhancement, was about considering the opposite case where speaker is not relevant.
Despite the thesis was oriented to the speaker dependent vocoder proposal, results found during
this dissertation showed that acoustic parameters that are normally used to condition a model
in a TTS system such as Mel-Frequency Cepstral Coefficients (MFCCs) and the fundamental
frequency or pitch are very related to the intrinsic characteristics of its generator. This is
why in the first stage of the work, results could be used for a low-rate vocoder instead of its
original purpose which included voice conversion. Nevertheless, new deep learning architectures
developed during this dissertation got latent representations without speaker information that
allowed to achieve the main objectives of the chosen proposal.

1.2 Project requirements and specifications

The main requirement of this project is to implement a multi-speaker vocoder based on
Deep Learning and able to generate voice from speech parameters interfered from an input
signal using a system like Ahocoder (Erro et al., 2014). This vocoder is able to generate voices
attributed to different speakers within the training database with a unique model to hold them
all. Once the speech parameters are independent from the speaker, it can also change the speaker
identity and therefore perform voice conversion. Moreover, the final step of the thesis consists
on being able to mimic any voice that could be expressed using the known speakers from the
corpus and to synthesize voice from this representation. Some parallel work was derived from
each of that proposals involving applications like speech coding and some new architectures
were developed to achieve the project requirements.

Project specifications at first glance were set as a TTS system with a score of 3.5 or more
in the subjective 5-scale Mean Opinion Score (MOS) test in naturalness. State of the art
vocoders have recently outperformed baseline statistical parametric and concatenative speech
synthesizers reducing the gap between natural speech and best previous model by more than
50% and reaching scores around 4.2 in North American English1. It is so justified to set an
achievable target based on the order of magnitude of the current vocoders.

1.3 Methods and procedures

This project was conceived as the continuation of the work published in the SampleRNN
paper, which provides an open-source code2 and therefore promotes advances in the speech
synthesis fields as it avoids start replicating the paper from scratch. The original implementation
was in Theano, a Python library for fast numerical computation that can be run on the Central
Processing Unit (CPU) or Graphics Processing Unit (GPU) but an implementation in the deep
learning library Pytorch was preferred as a baseline model3. Moreover, this code created by
Kozakowski and Michalak (2017) allows training the model with an arbitrary number of tiers,
whereas the original implementation allows maximum 3 tiers, and use Gated Recurrent Units
(GRUs) as recurrent layers.

1Results presented on Wavenet: A generative model for raw audio (Kleijn et al., 2017)
2https://github.com/soroushmehr/sampleRNN_ICLR2017
3https://github.com/deepsound-project/samplernn-pytorch

https://github.com/soroushmehr/sampleRNN_ICLR2017
https://github.com/deepsound-project/samplernn-pytorch
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From the beginning, this dissertation was conceived as a continuation of a previous bache-
lor’s thesis carried by Dorca Saez (2018) and supervised by Antonio Bonafonte. The generated
code was therefore recycled and used as starting point since some adaptations and improve-
ments have been added on the baseline Pytorch model. The code is written in Python 3 as the
programming language and it uses the previously mentioned library Pytorch, which is a deep
learning framework that provides Tensors and Dynamic neural networks in Python with strong
GPU acceleration. Additionally, some Bash scripting has been used to start the pertinent ex-
periments and generate samples with the desired models, which all have been run with GPUs
at the computer cluster CALCULA pf VEU group.

1.4 Work Plan

The project was structured in the Work Packages exposed below. The breakdown of each one
and the Gantt diagram with the planned schedule were presented as an independent document
and are included in appendix B.

WP1 Environment familiarization
WP2 Theoretical learning
WP3 Multi-speaker Neural Vocoder
WP4 Voice Conversion
WP5 Eigen-voice representation
WP6 Documentation

1.5 Incidences

The major incidence was related to data preparation. This step took more long than expected
and some troubles in the training process arose. Modifications on PyTorch parameters such as
learning rate, weight normalization or scheduler were applied and results became as expected.

Moreover, models have been training between 3 and 6 days, which sometimes delay the
modifications as some of the evaluations cannot be done in early stages of the experiments
were output is basically random noise. The huge amount of required memory due to the large
database needed for this project also lagged the resource allocation on the CALCULA servers.
Some of the hypothesis were wrong at first glance, which made the project found non-desired
yet interesting and usable solutions as explained in section 1.1.

Overall, this obstacles made the project move forward slowly than predicted, which excluded
the integration of a parametric speech synthesis model acting as the first stage of the TTS
system from the desired results and reduced the time scheduled for some other work packages
such as the eigen-voice representation. This is further justified in chapter 6, where a future
work section is presented with the desired evolution of this work including the aforementioned
integration.
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2 State of the art
Speech synthesis, also known as TTS, is defined as the artificial production of human voice.

The aim is therefore to generate an audio signal that utters an input text with as naturalness
and intelligibility as possible. Naturalness describes how closely the output sounds like human
speech, while intelligibility is the ease with which the output is understood. In this chapter,
some of the current approaches will be discussed and differentiated under the umbrellas of
classical and deep learning-based approaches. The aim is to give a brief introduction to the
background of this project making special emphasis on the deep learning papers that inspired
the methodology explained in chapter 3.

2.1 Classical approaches

Despite deep learning-based speech synthesizers have yield the state-of-the-art performance,
the yet most widely used system called concatenative units (section 2.1.1) differ from these and
will be reviewed. In addition, SPSS, which has leveraged the speech synthesis research during
the last decade will be analyzed (section 2.1.2). With these two methods, a trade-off intrinsic
to the nature of each one shows up. On the one hand, concatenative synthesis offer high-quality
results, but on the other hand they are not as robust neither they offer as much flexibility when
dealing with voice characteristics as SPSS.

2.1.1 Concatenative synthesis

The large popularity of this system and the reason why it has been operating during many
years, lies in the fact that it uses real speech, which is recorded in a variety of prosodic contexts
to fit as many usage cases as possible, and thus it has an unquestionably high level of natural-
ness. In one of the most well-known approaches of concatenative synthesis (Hunt and Black,
1996), it is proposed to segment signals from a large speech database by phonemes (although
some other works segment by diphones1). Then, those segments, also known as units, are con-
catenated with the aim of generating the desired utterance given a target phoneme sequence
extracted from text.

When concatenating units to generate quality speech, it is important to take into account the
discontinuities of e.g. phase and pitch as well as the differences in prosody between those units.
As it was mentioned before, the same units are usually recorded with different expressiveness
to adapt the target prosody on every context. Although that having a large database means a
high probability of founding a matching unit, some processing tools are often needed to smooth
discontinuities and force the prosody to match. These transformations degrade the quality but
offer a higher flexibility without needing a huge database.

The selection of units is therefore performed by minimizing a mixture of a target cost Ct

and a concatenation cost Cc that are pondered by the weight ρ as in equation (2.1). The
1A diphone is a voice unit with the length of a phoneme but defined in between of two phonemes as it is the

more stable point and the less influenced by co-articulation, which is the effect of neighboring phonemes.
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Figure 2.1: Illustration of the unit selection method based on target and concatenation costs
from Deep Learning for Siri’s Voice (Apple)

minimization of this total cost aims to find the pre-recorded unit or segment from the database
ui that best matches a set of targets ti derived from the text using the system front-end.
For instance, this target could contain the desired duration, prosodic information, identity of
speaker, etc. Optimal unit selection can be performed with the Viterbi algorithm (J. Viterbi,
1967). However, to obtain near real-time synthesis on large speech databases, containing tens
of thousands of units, a pruned version is used.

ûN1 = arg min
uN

1

ρ
N∑
i=1

Ct(ui, ti) + (1− ρ)
N∑
i=2

Cc(ui−1, ui) (2.1)

The target cost Ct measures the perceptual similarity between a unit from the database ui
and a target unit ti, i.e. the worthiness of getting a certain unit to match the desired prosody.
It is defined as a sum of p−weighted differences between the target elements and the features
of ui, which are extracted from the source sounds, and usually consist of a prosodic feature
vector with the pitch and duration of the phonemes.

On the other hand, the concatenation cost takes into account the discontinuities between
successive units ui and ui−1. Thus, it is defined zero when evaluating the concatenation cost of
consecutive units that have been segmented from a single speech signal of the database. These
two costs are depicted in figure 2.1.

Overall, concatenative synthesis offer quality results but demands a large database to fit all
prosodic contexts.

https://machinelearning.apple.com/2017/08/06/siri-voices.html
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Figure 2.2: HMM-based speech synthesis system from Black et al. (2009)

2.1.2 Statistical Parametric Speech Synthesis

A different approach is SPSS, being the most popular variation the Hidden Markov Model
(HMM)-based generation synthesis, which offers more customization since it is based on choos-
ing the desired speaker characteristics (such as the duration of phonemes, expressiveness, iden-
tity, etc.) and synthesizing the artificial utterance with mathematical models, i.e. not directly
dealing with real data once models are trained. This means that the same database used in
Concatenative Synthesis could be used to train the models, but the system could be imple-
mented without that data, as the needed parameters are already learned. This happens again
with all the DNN-based approaches, and therefore this is also considered a machine learning
technique. SPSS popularity lies in its flexibility to change prosodic and spectral content of the
generated voice. Another highlight of this technique is its low memory footprint once the model
is trained due to the lack of an intrinsic speech database like in concatenative synthesis, even
though that quality is not as high than with real speech segments.

Other milestone of this technique is the so-called speaker adaptation, which allows to in-
corporate new speakers despite a hypothetic low amount of data by fulfilling the model by
adapting or combining those corresponding to other speakers (Black et al., 2009). SPSS also
allows speaker interpolation, which is based in combining the characteristics of the already
trained speakers to synthesize new voices. This concept will be further reviewed and a new
proposal based on it, is exposed in section 3.3.

In a first stage, the speech signal is represented in a parameterized way, meaning that it gets
encoded in a vocoder that creates an acoustic feature vector in a windowed frame. The linguistic
parameters of each phoneme in a given phonetic and prosodic context are then represented by a
stochastic generative model, usually a HMMs, and finally parametric representation is followed
and some speech parameters of both types spectral like MFCCs and excitation such as pitch
are extracted (as depicted in figure 2.2).
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2.2 Deep Neural Network-based Speech Synthesis

Over the past decades, deep learning has revolutionized almost every engineering branch
such as that of interest which is Natural Language Processing (NLP), that includes but is not
limited to speech synthesis, machine translation, information retrieval and speech recognition.
Although the idea of simulating the behavior of neurons was presented 75 years ago (McCulloch
and Pitts, 1943), it hasn’t really been large-scale applied since last years, when the symbiosis
of new algorithms, the availability of huge amounts of data to handle and an increase of com-
putation power enhanced by GPUs has allowed to implement functional DNNs that operate
in reasonably short times. With the deep learning approach, speech synthesis has surpassed
the trade-off that was briefly exposed in section 2.1 by providing high quality speech as unit
selection synthesis does with the flexibility and robustness of SPSS.

In those problems called time series, which are basically about forecasting sequential dis-
crete data with a natural order, there are two major deep learning architectures: RNNs and
Convolutional Neural Networks (CNNs). The predicted values are based on the previously ob-
served ones and in a DNN this is achieved by either having temporal connections that provide
memory to the network or by taking a time span of sample as inputs respectively. Raw audio
signals are challenging to model because they have correlations at both neighboring samples
and between ones thousand of samples apart.

For those readers who are not familiarized with neural networks and their mentioned ar-
chitectures, please refer to appendix A before continuing with this section as some previous
knowledge is assumed.

In this appendix, first the basic concept of Artifitial Neural Networks (ANNs) and the
Multi-Layer Perceptron (MLP) are introduced. Also some fundamental concepts that will be
mentioned during this work such as classification and regression, parameter optimization, back-
propagation, stochastic gradient descent, mini-batch, or overfitting are explained in there. Then,
the appendix introduce advanced architectures that will be used in a variety of experiments
such as RNNs, that allow to model temporal series, and their deep variants such as the well-
known GRU and Long Short-Term Memory (LSTM). CNNs are also explained and their use
in both its original purpose which is image processing and as a substitute of RNNs is detailed.
Finally, the concept of embeddings to represent categorical features is also discussed. All these
concepts are the fundamentals of all the architectures proposed for speech synthesis and that
are explained in this chapter and in the proposal.

An unintuitive improvement to DNN-based speech synthesis had been driving by focusing
the problem as it was about classification instead of regression even when data is implicitly
continuous. Categorical or Multinoulli distribution is more flexible and can more easily model
arbitrary distributions because it doesn’t assume any distribution of the data. This implies that
output is no longer a real value but a discrete one represented by a class. In case of having 8-bit
integer values to quantize the signal, this means that there are 256 possible discrete values and
thus 256 classes. Reconstructed speech signals achieve less quality degrading when non-linear
instead of uniform quantization is applied. Therefore, a previous µ−law companding transfor-
mation (ITU-T. Recommendation G. 711, 1988) is used before classifying into the hypothetic
256 classes.

A model to hold many speakers out of the same shared DNN structure also achieve better
results than learning the parameters of a single isolated speaker Fan et al. (2015). In Pascual de
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la Puente (2016) it is proposed to have some common layers to exploit the linguistic information
shared by all speakers, with a multi-output architecture with isolated paths for each of the
speakers. This suggests that internal representation is shared among multiple speakers. In this
case, the learning of the base shared structure can be transferred for a new speaker to achieve
speaker adaptation like in SPSS (see section 2.1.2) with limited training data, achieving good
results in naturalness and similarity to the original speaker.

Voice conversion is another NLP problem which consists in changing the speaker given a
signal uttered by another subject. It could be though that adding an input with the speaker ID
would be enough to train the network to synthesize with another speaker given some speech
parameters. Nevertheless, these speech parameters are not independent from the speaker and
this is the latent representation that is used to train the network. This means that the speaker
label can be obviated and no effective voice conversion is achieved with this approach. This
conclusion was stated by Chou et al. (2018), who introduced the idea of training like in a
Generative Adversarial Network (GAN). This concept will be further reviewed in section 3.2.2.

Some relevant works regarding DNN-based speech synthesis have been already exposed,
but the most relevant papers for the development of this thesis are exposed in the following
sections. First of all, Wavenet and their parallel variant are exposed for being this approach
the one that yet achieves better quality metrics. After this, the baseline model for this project
is more extensively exposed as chapter 3 is entirely based on it. Therefore, some equations of
the model and the reason of multi-level architecture with modules running at different clock
rates is argued. The following paper is VQ-VAE, which inspired the bottle-neck experiment
exposed in section 3.2.1 and presents an interesting topic called as voice-style transfer. The last
paper was included for the techniques that were proposed on it for adapting the state of the
art models for a real-time TTS that could be implemented on a mobile CPU. This was a great
milestone due to the good results obtained despite of the huge compression of the model and
the parallelization in generation.

2.2.1 WaveNet

WaveNet (van den Oord et al., 2016) is a DNN for generating raw audio waveforms. The
model is fully probabilistic and autoregressive, with the predictive distribution for each audio
sample conditioned on all previous ones. A single WaveNet can capture the characteristics of
many different speakers with equal fidelity, and can switch between them by conditioning on
the speaker identity.

The joint probability of a waveform x = {x1, . . . , xT} is factorized as a product of conditional
probabilities (equation (2.2)), which distribution is modeled by a stack of convolutional layers.
There are no pooling layers as the output of the model has the same dimensionality as the
input, which is formed using the previously predicted samples. The use of causal convolutions,
ensures that the model cannot depend on any future steps, and the dilation allows to increase
the receptive field by orders of magnitude without needing many layers or large filters that
would greatly increase computational cost. The result of this combination are the so-called
causal dilated convolutions, which are depicted in figure 2.3.

p(x) =
T∏
t=1

p(xt|x1, . . . , xt−1) (2.2)
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Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1×1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt−1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)

ln (1 + µ)
,

3

Figure 2.3: Visualization of a stack of dilated causal convolutional layers from van den Oord
et al. (2016)

WaveNet doubles the dilation for every layer up to a limit and then repeats it by stacking
one or more of the same blocks like the one shown in figure 2.3. Exponentially increasing the
dilation factor translates into exponential growth of the receptive field with depth, meaning that
with 32 layers 1024 samples can be encompassed. Note that this is done by only considering
two inputs for each convolution.

WaveNet can be conditioned in order to produce speech with the required characteristics
given a desired utterance. In a multi-speaker setting, the speaker could be chosen by feeding
its identity as an extra input and, in the same manner, linguistic features about the text would
be feed for TTS. In this case, the joint probability of the waveform x is conditioned by an
additional input h and can be expressed as in equation (2.3).

p(x|h) =
T∏
t=1

p(xt|x1, . . . , xt−1,h) (2.3)

The model can be conditioned on other inputs with both global and local conditioning.
On the one hand, global conditioning is characterized by a single latent representation h that
influences the output distribution across all timesteps, e.g. a speaker embedding in a multi-
speaker setting. On the other hand, local conditioning is a second time-series ht with a lower
sampling frequency than the audio signal, e.g. linguistic features in a TTS. The time-series has
to be transformed using a learned up-sampling that maps it to a new time-series with the same
resolution as the audio signal. This concept of global and local conditioners will be further and
deeper reviewed in chapter 3.

The achieved receptive field of WaveNet is of 240 milliseconds, which encompasses a lot of
audio samples, e.g. with a typical sampling frequency of 16kHz this would mean a scope of 3840
samples. Nevertheless, WaveNet was found to sometimes have unnatural prosody by stressing
wrong words in a sentence, which could be due to the long-term dependency of fundamental
frequency (F0) contours. This was solved by also taking into account other linguistic features to
condition the model as the F0, which was predicted with an external model at a lower frequency
(200 Hz) and thus allowed to learn long-range dependencies.
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Parallel WaveNet

Training a WaveNet is quite fast, as the CNN architecture allows to parallelize all time steps
as they outputs and inputs are known. This approach take ground truth x as input samples,
following thus what is called as professor forcing (Lamb et al., 2016). When generating samples,
however, each input sample must be drawn from the output distribution before it can be fed in
as input at the next time step. Therefore, WaveNet is poorly suited to parallel processing and
hard to deploy in a real-time production setting. The resulting update called parallel WaveNet,
is capable of generating high-fidelity speech samples with 1000× speed-up relative to original
WaveNet. This translates to more than 20 times faster than real-time (van den Oord et al.,
2017a).

Inverse Autoregressive Flows (IAFs) are stochastic generative models whose latent vari-
ables are arranged so that all elements of a high dimensional observable sample have a known
distribution and therefore can be generated in parallel. The goal of this work was to marry
the best features of both models: the efficient training of the original WaveNet and the time-
saving sampling of IAF networks. This is achieved with what they refer as Probability Density
Distillation.

The procedure was to use a fully-trained WaveNet model as a teacher to train the IAF,
also called as the student in this particular framework. The IAF is smaller than the original
WaveNet and, although the architecture is also based in dilated convolutions, the generation
of each sample does not depend on any of the previous generated samples. This means that
generation can be done in parallel and therefore is better suited to modern computational
hardware.

The student network is randomly initialized and is fed random white noise and speaker
conditioners as an input with the aim of generating a continuous audio waveform as output once
trained. Therefore, to generate the correct distribution for timestep xt, the IAF can implicitly
infer what it would have output at previous timesteps x1, . . . , xt−1 based on the noise inputs
z1, . . . , zt−1 and the known speech conditioners, which allows it to output all xt in parallel
given zt. Transforming uncorrelated noise into structured samples requires more training time
compared to CNNs but the inference is much faster as required in production environments.

During training, the waveforms generated by the student network are then fed to the teacher,
which scores each sample based on the similarity of original WaveNet’s outputs. The loss func-
tion to backpropagate is the Kullback-Leiber(KL) between the teacher’s and the student’s
distribution. Some extra loss functions are added, including perceptual loss to avoid bad pro-
nunciations, contrastive loss to reduce the noise, and a power loss to help match the energy of
real human speech.

2.2.2 SampleRNN

SampleRNN (Mehri et al., 2017) is a model for generating unconditional audio sample by
sample. It combines memory-less modules with RNNs in a hierarchical structure as depicted in
image 2.4, where the lowest tier processes individual samples and each higher module operates
on an increasingly longer timescale and at a lower temporal resolution. This is done to tackle
the dependencies that raw audio signals have both with neighboring samples and over very long
time spans.
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Figure 1: Snapshot of the unrolled model at timestep i with K = 3 tiers. As a simplification only
one RNN and up-sampling ratio r = 4 is used for all tiers.

Here we are formalizing the frame-level module in tier k. Note that following equations are exclusive
to tier k and timestep t for that specific tier. To increase the readability, unless necessary superscript
(k) is not shown for t, inp(k), W (k)

x , h(k),H(k), W (k)
j , and r(k).

inpt =

{
Wxf

(k)
t + c

(k+1)
t ; 1 < k < K

f
(k=K)
t ; k = K

(4)

ht = H(ht−1, inpt) (5)

c
(k)
(t−1)∗r+j =Wjht; 1 ≤ j ≤ r (6)

Our approach of upsampling with r(k) linear projections is exactly equivalent to upsampling by
adding zeros and then applying a linear convolution. This is sometimes called “perforated” upsam-
pling in the context of convolutional neural networks (CNNs). It was first demonstrated to work
well in Dosovitskiy et al. (2016) and is a fairly common upsampling technique.

2.2 SAMPLE-LEVEL MODULE

The lowest module (tier k = 1; Eqs. 7–9) in the SampleRNN hierarchy outputs a distribution over
a sample xi+1, conditioned on the FS(1) preceding samples as well as a vector c(k=2)

i from the
next higher module which encodes information about the sequence prior to that frame. As FS(1) is
usually a small value and correlations in nearby samples are easy to model by a simple memoryless
module, we implement it with a multilayer perceptron (MLP) rather than RNN which slightly speeds
up the training. Assuming ei represents xi after passing through embedding layer (section 2.2.1),
conditional distribution in Eq. 1 can be achieved by following and for further clarity two consecutive
sample-level frames are shown. In addition, Wx in Eq. 8 is simply used to linearly combine a frame
and conditioning vector from above.

f
(1)
i−1 = flatten([ei−FS(1) , . . . , ei−1]) (7)

f
(1)
i = flatten([ei−FS(1)+1, . . . , ei])

inp
(1)
i =W (1)

x f
(1)
i + c

(2)
i (8)

p(xi+1|x1, . . . , xi) = Softmax(MLP (inp
(1)
i )) (9)

We use a Softmax because we found that better results were obtained by discretizing the audio
signals (also see van den Oord et al. (2016)) and outputting a Multinoulli distribution rather than
using a Gaussian or Gaussian mixture to represent the conditional density of the original real-valued
signal. When processing an audio sequence, the MLP is convolved over the sequence, processing

3

Figure 2.4: Unrolled model at timestep i with K = 3 tiers Mehri et al. (2017). As a simplifica-
tion, only one RNN and up-sampling ratio r = 4 was used for all tiers.

Due to the unconditional nature of SampleRNN, its outputs are basically random audio that
maintain the structure of the input, being this speech or music in the author’s proposal. This
means that it cannot be considered a vocoder that could be used for TTS. The conditioning of
this model to speech and speaker parameters was done during this dissertation and the process
is explained in chapter 3.

As mentioned before and in contrast to WaveNet, SampleRNN has different modules oper-
ating at different clock-rates and thus have more flexibility in allocating the amount of compu-
tational resources in modeling different levels of abstraction. This can be used to allocate very
limited resources to the module responsible for sample level alignments and more resources to
model long dependencies which vary slowly, e.g. identity of phoneme being spoken. The entire
hierarchy is able to model the joint probability of a waveform (equation (2.2)) and is jointly
trained end-to-end by back-propagation.

The frame-level modules, i.e. all tiers excluding the first one with k = 1, are deep RNNs that
operate on non-overlapping frames of different frame sizes FS(k) and summarize the history of
its inputs into a fixed-length conditioning vector h

(k)
t with t related to the clock-rate of that

tier for the next module downward. This hidden state is a function H, representing one of the
known memory cells reviewed in section A.3, that depend on the previous hidden state and an
input (equation (2.4)).

h
(k)
t = H

(
h

(k)
t−1, inp

(k)
t

)
(2.4)

For the top tier k = K, inp(K)
t is the input frame, i.e. the previously predicted samples,

and for intermediate modules (1 < k < K) it is a linear combination of the conditioning vector
from the higher tier and the current input frame with a learned up-sampling done with either a
fully-connected layer or an equivalent 1D-convolution with a unit size kernel2 (equation (2.5)).
The purpose of the up-sampling is to map the vector c into a series of r(k) vectors (equation

21D-convolutions with kernel size 1 are popular in deep learning literature because they are equivalent to
fully-connected linear layers but accept inputs with three dimensions, being this the number of filters also named
as channels. The inconvenient of linear layers is that, by definition, they have an input shape of (Nbatch, L) and
don’t accept extra dimensions.
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(2.6)), being r(k) the ratio between temporal resolutions of the modules.

inp
(k)
t =

W (k)
x f

(k)
t + c

(k+1)
t ; 1 ≤ k < K

f
(k=K)
t ; k = K

(2.5)

c
(k)
(t−1)∗r+j = W

(k)
j h

(k)
t ; 1 ≤ j ≤ r (2.6)

The sample-level module at time t outputs a distribution over a sample xt+1 conditioned
on the FS(1) preceding samples and the conditioning vector from the upper tier c

(k=2)
t . The

first tier has a small associated frame size and, given that no memory is needed for considering
correlations to nearby samples, a MLP with a softmax output is used to speed up the training
(equation (2.7)).

p(xt+1|x1, . . . , xt) = Softmax(MLP (inp1
t )) (2.7)

The input vector is computed with equation 2.5 as in the other tiers. Nevertheless, the
frame used in the first tier f (1)

t is not formed by raw audio but with samples such as et, which
represent the raw audio sample xt after passing through an embedding layer of FS(1) outputs
of q different discrete values, e.g. q = 256 for an 8-bit quantization (equation 2.8).

f
(1)
t = flatten([et−FS(1)+1, . . . , et]) (2.8)

In order to tackle the computation charge of training RNNs and thus improve the efficiency of
this process, Truncated Back-Propagation Through Time (TBPTT) is used. It basically consists
in splitting each sequence into short subsequences (best results were reported to be obtained
with a length of 512 samples) with the aim of propagating gradients only to the beginning of
each subsequence instead of the whole sequence. Despite TBPTT is used, SampleRNN can still
mimic the existing long-term structure of the data because of the hierarchical architecture.

2.2.3 VQ-VAE

VQ-VAE stands for Vector Quantized-Variational AutoEncoder (VAE), and it was presented
within the paper titled Discrete Neural Representation Learning (van den Oord et al., 2017b). A
VAE is a two-stage network which first stage encodes a given input into a latent representation
of smaller dimension with a known distribution, typically a unit Gaussian. The second stage,
decodes the latents to obtain a reconstruction as similar to the input as possible.

This architecture therefore have a bottle-neck that provokes a feature compression followed
by an inverse structure that achieve the input size. VQ-VAE has been successfully tested in
different types of data such as audio, image and video.

Unlike VAE, VQ-VAE has discrete instead of continuous latent codes and the samples drawn
from these index an embedding table; that is why they reference the Vector Quantifier in the
naming. These latent embeddings plus a one-hot embedding for the speaker, are then used to
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Figure 2.5: Framework of a VQ-VAE applied to speech synthesis with independent speaker
conditioner to allow voice conversion from Aäron van den Oord’s (principal author of VQ-
VAE) webpage

condition a the decoder network in training, which in the case of audio synthesis has a dilated
convolutional architecture similar to WaveNet decoder as depicted in figure 2.5.

The reconstruction has the same text contents, but the waveform is quite different and
prosody in the voice is altered. This means that the VQ-VAE learns a high-level abstract
space that is invariant to low-level features and only encodes the content of the speech. This
experiment confirms that important features are often those that span many dimensions in the
input data space (in this case phoneme and other high-level content in waveform).

The main interests in this work lie in the voice-style transfer, which is in line with one
of the main purposes of this dissertation. It consists in conditioning the decoder of the VQ-
VAE on a speaker embedding which is different that the one who generated the latents, and
therefore allowing voice conversion. The success of VQ-VAE in this task suggests that the
encoder factors out speaker-specific information in the encoded representation as they have
same meaning across different voice characteristics. This behavior arises naturally because the
decoder gets the speaker-id for free so the limited bandwidth of latent codes gets used for other
speaker-independent phonetic information. In fact, the latent codes discovered by the VQ-VAE
were shown to actually be very close related to the human-designed alphabet of phonemes. This
was confirmed as the accuracy of mapping every of the 128 possible latent values to one of the
41 possible phoneme values by taking the conditionally most likely phoneme, took a value of
49,3% with an unsupervised classifier, while a random latent space would result in an accuracy
of 7,2% (prior most likely phoneme).

2.2.4 Efficient Neural Audio Synthesis

The work proposed by Kalchbrenner et al. (2018), describe a set of techniques aimed to
reduce the sampling time and computational complexity to implement a real-time TTS system
on a mobile CPU. On the one hand, the computation time attributed to each layer is reduced by

https://avdnoord.github.io/homepage/vqvae/
https://avdnoord.github.io/homepage/vqvae/
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Figure 2.6: In this model, there are B = 8 sub-tensors expressed by a triangle that represents
the conditioning on the already generated samples in the row below. The delay is τ = 8, and the
darker samples represent the first column of each row of the 2-D shape of sub-tensors. Image
extracted from an animation created by DeepMind

sparsifying the model during training, i.e. deleting parameters in the network. It is demonstrated
that large models with sparsity of up to 96% work better and faster that small dense models.

On the other hand, also better CUDA kernel implementations3 are done making use of
persistent memory, which reduces the cost when transferring weights and updates from memory
to GPU to perform hardware accelerated computations. Moreover, the number of layers is
also directly reduced by changing the architecture of WaveNet layers from CNNs to RNNs
(WaveRNN), which can deliver highly non-linear transformations with a single layer.

These methods also allow an increase of the resolution of WaveNet from 8 to 16 bits and
their sampling frequency from 16 to 24 kHz that compensates the quality degradation attributed
to the model simplification. If the same methodology of outputting a categorical distribution
of 256 classes in the case of using 8-bit quantization was applied to the 16 bit case, more
than 65000 classes would be needed. To handle this increase in resolution, a dual softmax
layer is used, which means that the output is split into Most Significant Byte (MSB) and Less
Significant Byte (LSB), thus requiring only 256 classes for each byte, i.e. a total of 512 classes.
This architecture also allow weight and computation sharing across both parts of the output
giving more importance to MSB, which is predicted before LSB and conditions it.

The number of generated samples is also reduced by pipelining in generation. This approach
is named as Subscale WaveRNN and consists in expressing the output tensor u into B sub-
tensors of sample rate B times smaller. These are arranged as a 2-dimensional signal with a
certain delay between them. The samples are then generated in parallel across the B sub-tensors
without following the natural order of the original tensor u and filling the gaps determined by
the delay hyper-parameter, which determines how much future is seen. This behavior is depicted
in figure 2.6.

3The CUDA platform is a software layer that gives direct access to the GPU’s virtual instruction set and
parallel computational elements for the execution of compute kernels, which are functions executed by many
GPU threads in parallel.

http://slides.com/smerity/reading-group-efficient-neural-audio-synthesis#/15
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3 Methodology
With the purpose of building a model for audio generation, SampleRNN is adapted to

output coherent utterances by conditioning the input under some speech parameters obtained
with Ahocoder (Erro et al., 2014). The baseline model was also conditioned on features extracted
with Ahocoder, but the model was only trained with one speaker. Therefore, the model is first
adapted to hold many speakers by adding an extra input to define its identity and changing
the database. This implementation is detailed in section 3.1.

This architecture was aimed to perform the tasks of both speech synthesis and voice conver-
sion. Nevertheless, results found with the first implementation showed the intrinsic relationship
between the speech characteristics and its generator. This is why results obtained with the first
model could be used for a low-rate vocoder but not for voice conversion due to the futility
of the speaker identity. This means that the parameters that condition the model, could be
transmitted and used in reception to synthesize the desired speech signal. The advantage of
using a similar system to the one presented here, is that different rates could be achieved when
generating, thus achieving what is known as bandwidth extension.

New deep learning architectures exposed in section 3.2, got other features by combining
the existing ones extracted with Ahocoder to get an independent representation named as
latent. These latents, will ideally not have speaker information but the linguistic content of the
original features will be conserved after the transformation. This allow to generate speech that
synthesize the same text with the same intonation and phoneme length but with a speaker
identity that could be swapped as desired. This is known as voice conversion. Last section of
this chapter presents a novel kind of speaker interpolation titled as eigen-voice representation
that aims to imitate a new and unknown speaker given a short recording of it.

3.1 Multi-speaker Neural Vocoder

The baseline model is not the one implemented by Mehri et al. (2017), authors of the orig-
inal paper. Instead of this implementation, which was done using Theano, a Python library
for fast numerical computation that can be run on the CPU or GPU, an implementation in
the deep learning library Pytorch was preferred. This code created by Kozakowski and Micha-
lak (2017) allows training the model with an arbitrary number of tiers, whereas the original
implementation allows maximum 3 tiers, and use GRUs as recurrent layers. Nevertheless, the
optimal distribution of the model was found to be of K = 3 tiers as suggested in SampleRNN.

The idea of substituting the supposedly real-valued outputs with a Multinoulli distribution is
preserved because results obtained in the original paper shows that it outperforms the regression
approach, which is told to be almost indistinguishable from random noise. The loss function
used to compare the targets with outputs is the Negative Log-Likelihood (NLL), also known as
multi-class cross-entropy, which is typical for M−class classification problems. Concretely, the
used variant is called size average, which is based in averaging the losses for each mini-batch
of batch size N , and its expression is shown in equation (3.1). Note that in this configuration,
the output of the network is not only computed by mini-batches but also by sequences. This
means that in the case of SampleRNN and its variants, N = batch size× sequence length.
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L = 1
N

N∑
n=1

yn log(Softmax(fθ(xn))) = 1
N

N∑
n=1

ynln (3.1)

NLL evaluates the likelihood between a target yc, which is one-hot encoded, and the log-
probabilities ln obtained at the output of the model fθ(xn) with a Log-Softmax layer, which is
basically applying a softmax layer to get the probability distribution followed by a logarithm
operation. From now on, when referring to the output of the network, the softmax layer will
be considered within the model and not an external layer but before. Equation (3.1) is an
exception to emphasize the importance of applying a softmax function (equation (A.3)) at the
outputs of the network. Its use is mandatory before computing the NLL because it assures
that the probabilities inside the logarithm never reach an absolute zero. Unlike in frame-level
modules, the input of previously predicted samples of the sample-level module is quantified
after a µ−law companding transformation as recommended in ITU-T. Recommendation G.
711 (1988) because reconstructed speech signals achieve less quality degrading when non-linear
instead of uniform quantization is applied. The audio is quantified with b = 8 bits, which means
that there are 256 classes at the output of the q−way Softmax of SampleRNN.

The optimizer in charge of training SampleRNN using TBPTT is the so-called Adaptive
Moment Estimation (ADAM) (Kingma and Ba, 2014). ADAM is a stochastic gradient descent
algorithm with adaptive learning rate that not only changes the weights following the direction
based on the gradient of the loss function with respect to the parameters, but also based on
the values of the previous updates. This implies a certain inertia or moment on the update of
parameters, which is determined by the betas that apply on both the updates of biased first and
second moment estimations. Regarding the learning rate of this optimizer, this value diminish
proportionally to the variation of gradients between batches.

The gradients computed are clipped before the TBPTT in order to avoid the exploding
gradient problem (refer to section A.3 for more details). The trade-off between batch size and
learning rate was tested based on some works like L. Smith et al. (2018). In Masters and Luschi
(2018) it is confirmed that the use of small batch sizes achieve the best training stability and
generalization performance for a given computational cost in a wide range of experiments.
Based on this works, the batch size used in the model is 128.

3.1.1 Data structure

As mentioned in the explanation of SampleRNN (section 2.2.2), frame-level modules are
deep RNNs that operate on non-overlapping frames of different frame sizes of size FS. In the
current implementation, FS(2) = 20 and FS(3) = 4. The number of input samples on each level
is calculated as the cumulative product of the frame sizes, which means that for level 2 and 3
there are respectively 20 and 80 samples at the entry of each tier. The sample-level module,
i.e. the tier k = 1, have a frame size of FS(1) = 20, which is the same as in the upper module
k = 2. The reason why the parameters exposed above take this values lies in the fact that,
when conditioning the input samples with the acoustic characteristics, it is mandatory that
the window size of the input is multiple of the one used in the extraction of characteristics.
Ahocoder computes the speech parameters every 5ms, which is equivalent to 80 samples as the
sample rate of the audio is 16kHz. The sequence length, which determines how many samples
are included in each TBPTT pass is set to 1040, which means that there will be 13 sequences of
80 samples for every pass on the tier 3 and 52 sequences of 20 samples in the tier 2. Regarding
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the number of hidden units used for all GRUs, it was set to 1024 as best results were found
with this value in the original paper (Mehri et al., 2017).

These numbers as well as the batch size, which has a size of 128 as explained above, are
shown in red in figure C.1 to ease the reading. In the same picture, the numbers of a single
sequence are specified, but it has to be considered that in a single pass not only one sequence
is processed. Note that speaker have also 13 values for every sample in a batch because audios
have different lengths and when rearranging data to fit the desired shape, it happens that
different speakers are in the same sample of a batch. In this case, the most repeated speaker is
assumed to be in the whole sample because the ending and starting samples of an audio, where
the change of speaker identity happens, is composed of silence. As well as with the conditioners,
speaker is checked every 5 ms, which make the assumption of silence coherent and let the model
be simpler without compromising output quality. The speaker ID is then passed through an
embedding layer with 6 dimensions and 6 different values. This approach was chosen instead
of a one-hot encoding vector, which would offer similar results, to ease the incorporation of
a speaker recognition system for purposes like the one explained in section 3.3. Nevertheless,
both options are valid and others like deciding the speaker with a picture of him and a CNN
to recognize it could also be implemented.

Every audio of the speech dataset is fed to Ahocoder (Erro et al., 2014), which uses a sliding
window of 5 ms and extracts some features from it. These parameters are aimed to represent
the nature of the windowed segment of speech signal in such a manner that it could be decoded
with them. For every window, which translates to 80 samples as the audio files are sampled at
16 kHz, Ahocoder computes the following features:

• MFCCs of order p = 40. These represent the short-term power spectrum and are the result
of taking the inverse Fourier transform of the logarithm of the estimated spectrum in the
Mel frequency scale, which considers the critical bands of the human hearing system.

• The logarithm of the fundamental frequency (lf0) also named as pitch contour.

• The maximum voiced frequency (mvf), which is used in various speech models as the
spectral boundary separating periodic and aperiodic components during the production of
voiced sounds. Recent studies (Drugman and Stylianou, 2014) have shown that its proper
estimation and modeling enhance the quality of statistical parametric speech synthesizers.

The pitch contour signal behaves very different for voiced and unvoiced signals. In the first
case, it is a continuous signal and in the second case, it does not exist and Ahocoder represents
it as −∞. To tackle this non-linearity, the output of Ahocoder is post-processed and the pitch
contour is interpolated to be log-linear in the unvoiced segments. With the aim of allowing the
model to learn the real distribution of the pitch, a flag indicating whether the 5 ms sequence is
voiced or unvoiced (uv) is added to the conditioner vector, which looks as illustrated in figure
3.1. This vector of conditioners is denoted as condi = [cc1, . . . , cc40, lf0,mvf, uv] in figure C.1,
where the conditioner dimension is substituted by its value: 43.

The last layer of the frame level tiers is a transposed 1D convolution. It is also known as
a fractionally-strided convolution or a deconvolution even if it is not an actual deconvolution
operation. It is used to learn an optimal up-sampling and therefore not have to choose between
predefined interpolation methods like the bi-cubic or the bi-linear one. To sum up, the trans-
posed convolution operation forms the same connectivity as the normal convolution but in the
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MFCCs log(f0) MVF U/V

0 . . . 39 40 41 42
Figure 3.1: Structure of the conditioner vector

backward direction. In the presented model an external parameter of bias was also introduced
and added to the output of the transposed convolution which is set to not have an own bias.

The output of the frame level layers is used by the lower tier in a number of sub-sequences
determined by the up-sampling ratio, which takes the value of 4 as in the SampleRNN imple-
mentation. This is the so-called upper conditioning and would be used by 4 different modules,
which are illustrated as a concatenation in the dimensions shown in red.

The first tier, also called as sample-level module, have an embedding layer that was intro-
duced by the authors of SampleRNN and showed to improve the results of the model. The
input sequence have samples quantized with 8 bits, which means that it can take 256 different
values. The dimensionality is preserved but the activations is not one-hot encoded but is a
vector with learned values. A fully-connected layer, implemented with an equivalent 1-D con-
volution with kernel size 1, follows the embedding layer to increase the dimensionality to 1024
(number of hidden units used for all GRUs) and then add its output to the conditioner of the
upper tier which now match the dimension. After that, two more fully-connected layers followed
by a softmax layer with a logarithm applied at the end of it, is added to output the desired
Multinoulli distribution of the sample at a given timestep conditioned on the previous ones.
The architecture of the sample-level module is depicted in figure C.2.

It is important to highlight the structure of the audio samples in each of the modules of
the model. The data is arranged in a matrix of two dimensions to have as much columns as
the batch size. This matrix is then stored in memory to avoid loading the data from disk every
time that Dataloder, the Pytorch function in charge of asking for data to use it as inputs of
the network, asks for it. For every sample in the batch, 1040 samples being this the sequence
length are taken to perform TBPTT. Data is overlapped 80 samples, being this the samples
in a frame of the tier 3. The overlap in the first batch will be a vector of zeros, which will be
preceded by 1039 samples as depicted in image 3.2. Note that the sequence length is 1040 but
the last sample is the one to be predicted. A reset flag is added to initialize the hidden states
when there is no data of the same files that would be useful to predict the following samples.
This will be active only in the first batch where the overlap are zeros.

This data can be denoted as stateful, which means that the first vector of the second batch
will be the continuation of the last vector in the first batch and allows to exploit the memory
capabilities of the RNNs. In case that the total number of samples per file is not multiple of 80,
which would mean that the last vector of acoustic characteristics was not computed with 80
samples and therefore is not aligned with data, the last condi vector as well as the last window
of data will be discarded if there are less than 60 remaining samples. Otherwise, these will be
padded with zeros to fulfill the 80 samples and align with the conditioners.

Note that the number of input samples of this module is now expressed as a flat vector with
size 1059 for every index of the batch.

Once the data is arranged as in 3.2 inside the dataset function, the data-loader from Pytorch
gets both sequences of inputs and targets. Each of the frame level modules then take the samples
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Figure 3.2: Structure of the audio data

from index fsamples[3] − fsamples[i], to 1119 − fsamples[i], where fsamples[3] = 80 and
fsamples[2] = 20. This means that only 1040 samples are taken of the 1120 (from index 0 to
1119 for the first batch) but starting on different points for every frame level module. Regarding
the first tier, the samples from index fsamples[3]− fsamples[1] with fsamples[1] = 20 to the
end are taken, resulting in the number exposed above: 1059 = 1119− (80− 20).

3.1.2 Normalization

The speech parameters extracted with Ahocoder are normalized before feeding them to
the model with the aim of controlling the magnitude of the gradients in training. The chosen
normalization function was a simple feature scaling, which bounds each of the conditioners from
0 to 1 and is computed with equation (3.2). Note that each element of the conditioner vector
is independently normalized.

x̂ = x− xmin

xmax − xmin
(3.2)

With the hypothesis of having speaker-dependent conditioners, a normalization for each
speaker was proposed as a derivate experiment to isolate the speech features to the source.
This supposition can be clearer by thinking about the pitch of each speaker. In human speech,
this value varies from 50 to 500 Hz, and adult males use to have lower fundamental frequencies
than females or children. The pitch varies to give intonation to a phrase but if normalized by
speaker it have similar profiles for same level of expressiveness. Some plots illustrating the effect
of this normalization are shown in chapter 4 for some of the other speech parameters whose
behavior is not so evident as in the pitch case.

In both cases, maximum and minimum values for each of the parameters were found for
the training partition of the speech dataset, so it could happen that some features of the other
partitions overpass the bounds.
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3.1.3 Look ahead

The main difference between a vocoder that is decoding a live conversation that is remotely
encoded and the one that generates speech in a TTS system is that in the second case, the
complete sequence of speech parameters that will be fed to the vocoder are known. This means
that in contrast with a possible phone call were both ends are talking at real time, after
synthesizing a speech signal, all parameters that will condition the model are already extracted
either from raw text or from another speech signal like in Ahocoder. Note that by using deep
learning and more concretely architectures derived from RNNs, the model has memory and thus
to provide context only the current and following frames are needed because all the previous ones
are remembered and stored as the hidden states. This contrast with other classical approaches
were this kind of context would need a window centered on the sample of interest.

With this idea in mind, the causality that speech synthesizers inherited from the vocoders
used in decoding is questioned and another experiment is derived from it. The proposal is then
to not only use the 43 parameters extracted from the current 80 samples but also the ones
computed with the following window. This means that in this experiment there will be 86
features conditioning the output, being these the ones corresponding to the current and future
frames except from the last 5 ms segment of audio which will have the same features twice.

3.2 Voice Conversion

Voice conversion is a technique to modify a speech waveform which freely converts non-para-
linguistic information while preserving linguistic information (Toda et al., 2016). This means
that the changes in intonation, pauses and the spoken text is exactly the same but the speaker
changes. To develop this technique, a deep understanding of how to effectively factorize speech
acoustics into its individual components such as linguistic, non-linguistic, and para-linguistic
information using various technologies, such as machine learning, is needed. Moreover, voice
conversion has great potential to develop various applications not only for flexible control of
speaker identity of synthetic speech in TTS systems but also as a speaking aid for vocally
handicapped people such as dysarthric and laryngectomees patients, as a voice changer to
flexibly generate various types of emotional and expressive speech, for vocal effects to produce
more varieties of singing voices, for enhanced mobile speech communication using wide-band
speech, accent conversion for computer assisted language learning, and so on. Therefore, it is
worthwhile to study this technique for both scientific purposes and industrial applications.

Although a simple conversion function, such as a global linear transformation or frequency
warping with a constant warping rate for modifying the spectral envelope, is capable of changing
speaker identity, it is insufficient to convert a specific source speaker’s voice into another specific
target speaker’s voice. A more sophisticated conversion function to effectively model a nonlinear
mapping between source and target voices needs to be developed to convert speaker identity.
This is why some approaches using deep learning have been derived from this challenge by
assuming that the linear transformation explained in section 3.1.2 would not be enough, but a
neural network could learn a non-linear function capable of freeing the linguistic parameters of
the speaker information.

The objective is therefore to design a network capable of learning this complex non-linear
function that could take the acoustic features extracted with Ahocoder and output a trans-
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formation of them without speaker information. The identity of the speaker will be fed as an
extra input as in the previous case, but this time the network will not be able to guess the
speaker solely based on the acoustic features. This means that the model will be forced to give
importance to the speaker identity that previously was meaningless to achieve good results
in synthesis. Once this differentiation is done and the network is fully trained by feeding the
identity of the speakers that and its correspondent features, this identity could be swapped in
generation to obtain the desired voice.

3.2.1 Bottle-Neck approach

This approach to tackle voice conversion is inspired by VQ-VAE (section 2.2.3) and can be
seen as the first stage of an auto-encoder. The purpose is to compress the speech features into
a lower dimension called latent representation or code as in figure 3.3.

Figure 3.3: Schematic of an auto-encoder with 3 hidden layers from Wikipedia

By forcing a bottle-neck, the conditioners will ideally only preserve the linguistic information
as the speaker identity is independently fit as in the SampleRNN model. Therefore, the unique
difference with the baseline adapted model depicted in figure C.1 is that the output of Ahocoder
will not only be applied one linear layer that expands it to the proper dimension that fit the
number of hidden units og the GRUs. Different experiments have been run with a variety of
values for the independent conditioner dimension, the lower number of channels before the
expansion to 1024. An example with a narrower dimension of 10 is depicted in figure 3.4.

Bottle-neck

Tier 3

Speaker-dependent
conditioners

(128× 13× 43)

Conv1D
Channels: 43→40

Kernel size: 1

Conv1D
Channels: 40→30

Kernel size: 1

Conv1D
Channels: 30→20

Kernel size: 1

Conv1D
Channels: 20→10

Kernel size: 1

Speaker-independent
conditioners

(128× 13× 10)

Conv1D
Channels: 10→1024

Kernel size: 1

Figure 3.4: Example of a bottle-neck with independent dimension 10

https://en.wikipedia.org/wiki/Autoencoder
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3.2.2 Adversarial training

Another approach for voice conversion that was already introduced by the advisor of this
thesis in the project proposal, is based in transforming the speech features to be independent of
the speaker like in the bottle-neck approach but not necessarily with the same architecture. This
new features are then used by SampleRNN and by a network that tries to guess the speaker
from them. During the development of this thesis, a similar work was presented by Chou
et al. (2018) and the architecture proposed for the discriminator was adapted to the needs
of SampleRNN. The concept of adversarial training was in both cases inspired by Generative
Adversarial Networks (GANs).

GANs were introduced by Goodfellow et al. (2014) and they are formed by a pair of simul-
taneously trained networks called generator and discriminator. On the one hand, the purpose
of the discriminator is to assign a probability that tells if the inputs of that network are fake or
not. On the other hand, the generator tries to fool the discriminator by synthesizing outputs
from noise inputs that seem real. Once the loss of the discriminant is backpropagated, the
gradients of the input are used to update the weights of the generative network and thus tell
which parts of the generated object to change in order to yield a greater probability in being
real as seen by the discriminator.

In the proposed formulation, the so-called discriminator is a classifier that tries to guess
the speaker solely based on the latent representation of the conditioners which ideally are
independent from the speaker once the network is trained. Note that the concept differs from
the original GAN formulation as there is no fooling with fake data but with a transformation
of it.

With the architecture of discriminant depicted in figure 3.5, Chou et al. (2018) reported a
drop of verification accuracy from 0.916 to 0.451, which demonstrates that the desired inde-
pendence between the linguistic information and the speaker is achieved. The conditionerCNN
module was changed in a variety of experiments, where bottle-necks with different narrower
dimensions and other approaches were the number of channels was not reduced were tried.

In order to train an adversarial model, two optimizers are needed to independently train both
the discriminant to classify better and the rest of the network to, in this case, generate speech
similar to the target with the premise of using the speaker-independent speech parameters. Both
optimizers use ADAM and minimize the losses computed with the NLL function. One of the
optimizers only applies back-propagates on the parameters of the discriminant and minimizes
the classification loss L2. The other optimizer, applies on the rest of the model parameters, i.e.
the ones belonging to SampleRNN and the conditionerCNN. The loss to minimize in this case
is not only L1, which is determined by the likelihood of the output distribution and the target,
but also on L2 with inverted sign to avoid the discriminant from guessing the speaker from the
latents. The expression of the total loss minimized by the second optimizer follows equation
(3.3), where λ is a hyper-parameter.

L = L1 − λL2 (3.3)

The discriminant depicted in figure 3.5 includes some modules that have not yet been intro-
duced. First of all and differing from all the previous diagrams of architectures, the activation
functions are shown in the discriminant network because there are not Rectified Linear Units
(ReLUs) between layers like in the other cases. They are Leaky ReLUs and, as it can be seen
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Figure 3.5: Diagram of the adversarial training architecture

in figure A.1, it is almost the same as the ReLU but a identity function with a slope of 0.01
for negative outputs instead of a constant 0. Also note that in this case convolutions are 2-
dimensional. This was done to explode the temporal redundancy of speech conditioners. In
order to do so, the latents are rearranged into a spectra-like representation with an extra di-
mension of 1 channel like if it was a gray-scale image. Before the convolutional layer, there is
a reflection padding of size 2× 2 that enlarges the input. A reflection padding example of the
same size applied to a 3× 3 matrix is shown below.

1 2 3
4 5 6
7 8 9

 −→ 2× 2 Reflection Padding −→



9 8 7 8 9 8 7
6 5 4 5 6 5 4
3 2 1 2 3 2 1
6 5 4 5 6 5 4
9 8 7 8 9 8 7
6 5 4 5 6 5 4
3 2 1 2 3 2 1



The padding is needed because in this case the kernel size is 5×5 and the output dimensions
of the spectra-like representation would decrease in 5 units for every convolutional layer. In
general, the output size after a convolution of kernel size K and padding P both symmetric
in width and height dimensions, is given by the following expression, where the input has a
structure of (batch size× channels×W1×H1). In the case of wanting the same dimensions in
both input and output of a convolutional layer with kernel size K = 5, a padding of size P = 2
is needed.

W2 = W1 −K + 2P + 1 ; H2 = H1 −K + 2P + 1
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Within the discriminant, there is a pattern of stacking 2 convolutional layers with the
respective paddings and activation functions that is repeated four times. Each output of these
pseudo-modules is added to the result of the previous one except for the first case which is
directly summed to the input. This is know as residual connections and was recently introduced
by Wu et al. (2015). With network depth increasing, accuracy gets saturated and then degrades
rapidly. Unexpectedly, such degradation is not caused by overfitting, and adding more layers to a
suitably deep model leads to higher training error. Residual learning eases the training of DNNs
and enables them to be substantially deeper without saturating the accuracy by copying the
layers from the learned shallower model and then adding the input with an identity mapping.
Moreover, the use of residual connections allows to perform iterative refinement of features
(Jastrzȩbski et al., 2018).

Just before summing up the inputs and outputs of each residual connection module, an
instance normalization is applied. This concept was introduced by Ulyanov et al. (2016) and
was originally oriented to train high-performance architectures for real-time image generation.
The normalization function is shown in equation (3.4).

Y = X − E[X]√
V ar[X] + ε

(3.4)

For this project, ε = 1 · 10−5 as it is the default value of the instance normalization function
implemented within the Pytorch library. Mean and standard deviation are calculated per-
dimension separately for each object in a mini-batch and have a momentum of η = 0.1 that
defines an update rule which follows the expression shown below, where x̂ is the estimated
statistic and xt is the new observed value.

x̂new = (1− η) · x̂ + η · xt

3.3 Eigen-voice representation

Deep learning achieves state-of-the-art results in speech synthesis and is able to generate
different voices from the same model. Nevertheless, one of the only inconveniences of these
methods is the huge amount of data that the models demand to learn the structure of an input
signal for each of the speakers. For this work, a minimum of 14 minutes of speech signal is
used to learn the representation of a single speaker for a multi-speaker model (see table 4.1).
By achieving voice conversion, this model could read an input text with as many voices as the
model have been trained with, but would not be able to speak with new voices.

In works like Pascual de la Puente (2016), experiments regarding speaker interpolation were
tried with the aim of synthesizing new speakers. With a model which feeds the speaker identity
as a one-hot vector, this would be as easy as putting various values into the input vector that
would act as probabilities of belonging to each of the trained speakers. Inspired by a similar
solution presented to a problem for facial recognition by Turk and Pentland (1991), the idea of
this section is to create a basis of speakers that could ideally represent any new voice.

With the speaker embeddings computed on the tier 3 of SampleRNN and using the dis-
criminant network depicted in figure 3.5 to predict the values of this embedding, the predicted
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speaker vector could be feed directly to the 1D-convolution as if it was the speaker embed-
ding. A dimension of 6 could not be enough to represent the characteristics of many speakers,
but some experiments to find the appropriate one are derived from this proposal. When the
proper number of dimensions of the embedding is achieved, with a large enough database every
speaker identity could be represented. The mapping of the speakers of the training database
should be orthogonal vectors forming the basis or at least as much independent embeddings as
the dimension of it. This idea could theoretically replicate any voice with a very short dura-
tion audio of the target speaker if the conditions exposed above are satisfied. For the current
implementation, embeddings have a rank of 6, meaning that they are all linearly independent.
This indicates that a higher dimension of embedding would be needed as some voices of teen
speakers are not well modeled as it is exposed in section 4.3. The projections of the embedding
obtained with the SampleRNN model can be seen in figure 3.6.

(a) (b)

(c)

Figure 3.6: 2D (a) and 3D (b) and (c) embedding projections obtained with Principal Compo-
nent Analysis dimensionality reduction technique visualized with Tensorflow Projector

http://projector.tensorflow.org/
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4 Results
The results obtained for each of the experiments presented in chapter 3 as well as the value of

the parameters that were fine-tuned in each of them are exposed below. Moreover, the database
used in the development of this thesis will also be exposed. The results are presented under two
big umbrellas of objective and subjective metrics. On the one hand, the comparison is done by
analyzing the evolution of the loss function during the training and the mathematical similarity
between target and generated signals. On the other hand, subjective metrics were acquired by
performing perceptual tests to human listeners that rated the quality of the generated audio.

4.1 Speech dataset

The speech dataset used to train the model was formed by six voices from the TC-STAR
project (Bonafonte et al., 2006), where half of them are males and the other half are females.
TC-STAR project, is financed by European Commission and envisaged as a long-term effort to
advance research in all core technologies for Speech-to-Speech Translation (SST). SST technol-
ogy is a combination of automatic speech recognition, spoken language translation and TTS).
The objectives of the project are ambitious: making a breakthrough in SST that significantly
reduces the gap between human and machine translation performance. The project targets a
selection of unconstrained conversational speech domains—speeches and broadcast news—and
three languages: European English, European Spanish, and Mandarin Chinese. Accurate trans-
lation of unrestricted speech is well beyond the capability of today’s state-of-the-art research
systems. Therefore, advances are needed to improve the state-of the-art technologies for speech
recognition and speech translation.

In some works like in Pascual de la Puente (2016), it is recommended to balanced the data
per user so all of them have approximately the same amount of samples to train. Nevertheless,
all the available database was used to investigate if it is really necessary to compensate the input
data or there is no observable preference and thus a larger database can be used. Moreover,
the approach of not balanced data was also taken to avoid the few length restricted by speaker
denoted with the identifier 76, which barely have a quarter of the others.

Table 4.1 shows a summary of the used database, which is, as the union of corpus 11 and 33.
The first one contains audios were transcriptions of the European Parliament are read and thus
are based in spoken language while the second one contains the reading of news and therefore
is based in written language. Each speaker is denoted by a numeric identifier and its sex either
male (M) or female (F) is specified. It is also specified if the main purpose of each speaker was
focused on baseline voices for TTS (B) or for voice conversion (V). In this work, all voices have
been used for both purposes.

Speech recordings were originally sampled at 96 kHz with a resolution of 24 bits per sample.
Nevertheless, with the aim of conserving the audio format specifications of SampleRNN, the
database was down-sampled to 16 kHz and non-linearly quantified with µ−law using 8 bits. The
whole speech dataset was split into three subsets of 80%, 10% and 10% for training, validation
and test respectively. Each audio was pseudo-randomly taken with the premise of approximately
having the same proportion of speakers in every partition to avoid unseen identities.

http://www.tcstar.org/
http://www.tcstar.org/
http://www.tcstar.org/
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72 (F;B) 73 (M;B) 75 (F;V) 76 (F;V) 79 (M;V) 80 (M;V)
Whole database 07:58:18 07:29:47 02:01:16 01:09:55 01:50:34 01:56:06

Corpus 11 01:03:56 01:00:07 00:53:47 00:02:23 00:45:26 00:54:55
Corpus 33 00:00:00 00:00:00 00:11:51 00:11:41 00:11:28 00:12:09

Used database 01:03:56 01:00:07 01:05:38 00:14:04 00:56:53 01:07:04

Table 4.1: Table with database length broken down for each speaker and corpus

4.2 Learning strategy

As explained in chapter 3, all models were trained with stochastic gradient descent using a
mini-batch size of 128 and minimizing the NLL with ADAM optimizer. The decay rates, which
determine the inertia on the update of the biased first and second moment estimations, take
the default values recommended by Pytorch library of β1 = 0.9 and β1 = 0.999. Learning rate
is set to an initial value of lr0 = 10−4, as it was found to offer the best results. With a value of
10−3, seemingly overfitting was reached at early stages and the generated samples didn’t satisfy
the requirements. By decaying the learning rate to a value of 10−5, training was better than in
the last case as it didn’t collapse, but the evolution of the loss was very irregular.

An external learning rate controller called scheduler was also used to force decrease its value
after some milestones because it was find that the output curves made a sudden change in the
first epochs. This is why the scheduler was set two milestones at epochs 15 and 35 with γ = 0.1,
which means that the supposedly fixed learning rate evolves as shown in the expression below.
Note that ADAM changes the learning rate and thus the scheduler reduces it by a factor γ in
every milestone but it will not take the values shown in the example.

lr =


lr0 = 10−4 epoch < 15
lr0 · γ = 10−5 15 ≤ epoch < 35
lr0 · γ2 = 10−6 epoch ≥ 35

Weight normalization (Salimans and Kingma, 2016), which consists in decoupling the length
and the direction of each weights, was also used to speed-up the convergence. It was applied
to the 1-D Convolutional layers, where each weight w was re-parametrized into an scalar g
representing the gain and a vector v as shown in equation (4.1). When the weight is decoupled,
the gradient descent is applied on the loss functions computed with respect to these two new
parameters ∇vL, ∇gL. Weight normalization speeds-up the training and it is computationally
cheaper in front of other approaches such as batch normalization.

w = g

||v||
v (4.1)
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4.3 Objective evaluation

Although the samples generated with models trained with around a hundred epochs sounded
natural and were very similar to the targets after the incorporation of the learning controllers
exposed above, some of the samples saturated. Normally this saturation ended up corrupting
the audio from the start of this unwanted high energy noise to the end. Nevertheless, some
of the corrupted signals obtained with the look ahead approach (see section 3.1.3), showed a
saturation of only around 9500 samples (0.6s at a sample rate of 16kHz) that ended up with
a normal behavior. This temporal saturation is depicted in figure 4.1. The plots of the output
distribution and their corresponding generated waveforms for two audios representing normal
behavior and saturation are included in section D.1.

Figure 4.1: Waveform (below) and its spectrogram (above) of a generated signal that saturated
on the middle samples

In order to tackle this instability, some research of this topic started but no similar works
were found. The only idea was to change the approach referring the initial states of the RNN.
This parameter derived in two experiments were its value was either learned during the training
like in the default situation, i.e. like in all the other experiments, or a null tensor. Nevertheless,
the saturation still prompted on some of the generated files and the only alternative was to
select the non-corrupted audios for the perceptual test.

Regarding the experiment related to conditioners’ normalization (section 3.1.2), it was first
found that only the pitch feature, which inspired this approach to independently normalize with
the aim of giving importance to the speaker identity, had the predicted behavior. Some plots
of the feature evolution are included in section D.2, where the exact same sentence is uttered
by the speakers from the voice conversion speech subset (see table 4.1).

As it can be seen in figure D.3, the independent normalization of the logarithmic pitch
contour is very similar in all the audios of the different speakers, whilst the joint normalization
would be enough to identify the speaker and thus no extra input parameter would be needed. For
instance, note that in the joint normalization, it is very easy to distinguish between females (75,
76) and males (79, 80). This means that it would be impossible to change the speaker because
the network doesn’t need its identity for being this information included in the features. This
is why this redundancy implies the futility of this input observed in the results.

Virtually all the other features resulted in very similar normalizations for both joint and
independent approaches. The only exception was found with the MFCC of order 4, where the
joint normalization acted as a scale factor for speakers 76, 79 and 80 due to a peak of speaker
75 at about sample 300. This is not an advantage for speaker isolation, but could be useful
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for a possible vocoder where the conditioners are quantized and the joint normalization could
degrade the quality.

Besides the feature scaling, a z-score normalization, which imposes the normalized data to
have zero mean and unitary standard deviation, was also thought to be implemented. Never-
theless, results obtained with the normalizations explained before showed that it wouldn’t be
enough to modify the conditioners to allow voice conversion. This was an impediment for the
purposes of this thesis, but this behavior is useful from the perspective of a vocoder. Knowing
the futility of the speaker identity input of the model, the features generated with Ahocoder
could be used for speech coding. In order to demonstrate the potential of this proposal, some
unknown voices were tested and promising results were found with them. This new speech
database contained one male, on female and one kid. When generating, the speaker identity
fed to the network in each case was the most similar one from the perspective of the pitch.
Obtained results confirmed the hypothesis of the usefulness of the model as a vocoder, but also
showed that a larger database would improve the quality. The major indicator of the need of
extending the dataset was found when generating kid’s voice, as it was not correctly synthesized
due to the lack of similar data on the training dataset.

The bottle-neck approach achieved the desired Gaussian distribution, which is a character-
istic of the latents of a VAE. An histogram obtained with TensorboardX is depicted in 4.2.
This shows the evolution of the outputs between iterations 140000 and 20000, when the loss
evolution was almost stationary.

Figure 4.2: Histogram of features after bottle-neck

Although that the distribution of the outputs seemed to bring the desired results, the linguis-
tic information was lost. This led to speech signals that were very similar to the unconditioned
samples generated with the original SampleRNN implementation. For a dimension of the latents
with a value of 10 and 30, a single voice belonging to speaker 72 could be identified. Neverthe-
less, with a value of 20, other speakers could be spotted in the results. The bottle-neck model
was therefore discarded in a standalone version, meaning that only its use in the adversarial
training framework showed the desired results. The loss of linguistic information due to the
lack of features in the latent space was discarded because some known vocoder standards such
as GSM or MELPe only use 8 to 10 Linear Predictor Coding (LPC) coefficients and yet obtain
quality reconstructions. Nevertheless, the distance between the bottle-neck structure and the
final samples generated with the whole model (see figure C.1), complicated the training of this
new representation.

For the adversarial framework, batch size was reduced from 128 to 64 in order to avoid
running out of GPU memory for the enlargement of the model respect to the other experiments.
This is equivalent to increase the learning rate as exposed by L. Smith et al. (2018). The
ConditionerCNN module (see figure 3.5) was composed of many layers that were aimed to get
independent speakers thanks to the negative loss contribution of the classifier. The structure of

https://github.com/lanpa/tensorboard-pytorch


30 4.3. Objective evaluation

this layers was in a first stage very similar to the bottle-neck, but other experiments were tried
without narrowing the original dimension of 43 to avoid losing linguistic information as in the
previous case.

The value for λ (see equation (3.3)) is taken from the implementation of Chou et al. (2018),
where they suggest to linearly increase it from 0 to 0.01 in the first 50000 iterations to make
sure the latent representation become speaker-independent gradually. This is needed because
adding a the L2 term at the beginning of the training process, ends up causing problems to
reconstruct the signal. Regarding the maximum value reached by λ, it provokes that the L2
term is smaller than L1 while in most cases, these must be comparable for the adversarial
framework to work. Nevertheless, in this specific case, the small value is needed to maintain
the main functionality which is generating quality speech.

In the experiment of the adversarial model where the ConditionerCNN module was the
bottle-neck with latents’ size 10, results obtained showed that the linguistic information was
yet lost supposedly due to the similar argumentation given before. Nevertheless, the loss con-
tribution of the classifier, achieved an unconditioned voice that sounded like another speaker,
achieving thus relatively good results in one of the voice conversion fundamental metrics illus-
trated in figure 4.3. The objective is to also synthesize speech were the linguistic information
is preserved and therefore the naturalness values is near 5 (Excellent), but achieving both is
very difficult as it can be seen in the plot below, where some results for the Voice Conversion
challenge are evaluated.

Figure 4.3: Overall naturalness MOS versus similarity to target speaker.Figure extracted
fromToda et al. (2016)

Given the linguistic information loss of the bottle-neck, ConditionerCNN module was substi-
tuted by some linear layers that would allow to get an independent representation of the input
features without the compression imposed in the previous case. This resulted into results were
output was again conditioned and therefore naturalness was outperformed from the perspective
of the previously described results. Nevertheless, the similarity to the target was lost like in
all the previous experiments, thus showing a trade-off for the current adversarial architecture.
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Overall, it was found that without this GAN inspired training, the speaker characteristics of
the original speaker existing in the speech features inevitably degrades the performance of voice
conversion.

4.4 Subjective Evaluation

The previous chapter compared the architectures and its results, but when analyzing a
speech synthesizer, an unbiased subjective evaluation is also needed. A MOS test was therefore
conducted to get a more in-depth comparison between four of the experiments regarding the
variants of SampleRNN model exposed in section 3.1.2 and 3.1.3. MOS rates the naturalness
in a scale of natural integers from 1 to 5, meaning these bounds bad and excellent quality
respectively. The participants could listen the different recordings as many times as required
to compare the systems to rate them. For each sentence, the transcription of the audio was
provided to ease the listening, and audios of the different systems to compare synthesizing the
same sentence, were disposed side by side as it can be seen in figure 4.4.

In the subjective evaluation there were two differentiated tests explained below:

• 8 audios from 4 males and 4 females generated with the variants of look ahead or not
and joint or independent normalization are compared. All these models were developed
during this thesis.

• 8 audios out of the same speaker are compared. This test is aimed to test the efficiency of
the shared structure and therefore the best model of the previous ones from the perspective
of the author, which is the model independently normalized with look ahead, is compared
with Ahodecoder to have a reference of quality. Ahocoder/Ahodecoder is a high quality
vocoder based on signal processing, where some coefficients necessary to estimate the
original speech signal are estimated by Ahocoder. These coefficients are used in a signal
model which decomposes the speech signal into and harmonic and an stochastic part. The
low frequencies of the spectrum are modeled with the harmonic model, which is based in
adding some sinusoids defined by an amplitude, frequency and phase extracted from the
acoustic features. Regarding the high frequencies, these are modeled with the stochastic
model, which is basically white noise filtered with the envelope of the signal obtained
from the MFCCs provided by Ahocoder. The threshold dividing low and high frequencies
is usually set a value, but in Erro et al. (2014) is a learned parameter. The authors of this
work have above all centered their system in SPSS instead of in speech coding and thus
Ahodecoder can be used as if it was a parametric TTS (see figure 1.1). The idea was to
also compare the conditioned SampleRNN model developed by Dorca Saez (2018) to test
the efficiency of the multi-speaker architecture. However, the final version of the model
was not available and audio could not be synthesized before the deadline.

Figure 4.4: Screenshot of the first experiment of the test

The results exposed in tables 4.2 and 4.3 were obtained by averaging the evaluation of 25
volunteers for every system in each of the two tests. The samples included in the second test
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belonging to the best system developed in this thesis can be downloaded here. Some of the
commentaries written by the volunteers who took the test, highlighted the difference in quality
between males and females. This is why the following table does a separation between genders
that shows that best results are indeed obtained with man voices. This was attributed to the
unbalanced speech database, which contained one female speaker with only 25% of recordings
compared to all other speakers (see table 4.1). Seemingly, this affected in the modeling of female
voices, which had a louder background noise. This show the importance of a balanced database
as stated in Pascual de la Puente (2016).

Normalization: Independent Joint Independent Joint
Look ahead: No No Yes Yes

Female: 3.3 3.3 3.8 3.6
Male: 3.6 3.6 4.0 4.8

Total: 3.5 3.5 3.9 3.8

Table 4.2: Table with subjective results comparing proposed methods

Note that the following table does not distinguish males and females. This was due to the
planned comparison with the single speaker SampleRNN model, which was only trained with a
male speaker that corresponds to the identifier 73. Some other comments also stated that male
voices with lower pitch were worse modeled. In fact, the speaker 73 have the lower pitch of
all the database and thus the results of this comparison could have been deteriorated by only
considering this speaker.

Our system Ahodecoder
3.8 4.2

Table 4.3: Table with subjective results comparing proposed and external state-of-the-art system

Overall, this chapter justified the learning strategy followed in this model and contrasted the
results with both a subjective and an objective evaluation. While the users rate the SampleRNN
system as natural with a high MOS score of 3.9 for the best proposed system, this evaluation
decays when comparing to the Ahodecoder model which is based on signal processing and not
on deep learning like other state-of-the-art vocoders. This high score is justified because the
Ahocoder/Ahodecoder system was jointly optimized to achieve outstanding results with the
own system and therefore not outputting more general features that could be used for other
vocoders. The advantage of the proposed system is that it could be trained with any kind
of parameters able to properly describe a speech signal. In fact, it has been verified that the
features obtained with Ahocoder are not optimal for the system at least for voice conversion
for its intrinsic dependence to the speaker. The planned strategy to find the parameters that
fit the requirements of the system are described in section 6.1.

https://github.com/Barbany/Multi-speaker-Neural-Vocoder/tree/master/samples
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5 Budget
The cost of this project would only be attributed to researchers’ salary as all of the used

programs are open-source and the deployment resources have been provided by the TALP group
of the Universitat Politècnica de Catalunya (UPC). Nevertheless, an estimation of the budget
for this project if it was deployed without the help of an entity with that resources will be made
using the cost of Amazon AWS EC2 servers 1. There are a bunch of options but the cheapest yet
valid GPU instance named p2.xlarge have been selected. Note that this price is expressed in
United States dollars in the cost/hour column of table 5.1. However, the total amount referring
to the server is expressed in euros by considering the upper-bound conversion 1$=0.85€.

Regarding to the salary that should be charged for the engineers, both a Junior and a Senior
engineer were considered with the aim of simulating the author and the advisor of this work
respectively. A total duration of 21 weeks will be considered as depicted in the Gantt diagram.
The average working hours of the Junior engineer have been estimated to 40h/week and referring
the Senior engineer, 1h/week attributed to the weekly meeting have been considered.

Concept Amount Cost/hour Dedication Weeks Total
Junior engineer 1 15.00 €/h 40 h/week 21 12 600 €
Senior engineer 1 60.00 €/h 1 h/week 21 1 260 €
Server 1 0.99 $/h 140 h/week 21 2 499 €

Total: 16 395 €

Table 5.1: Estimated budget of the project

1https://aws.amazon.com/es/ec2/purchasing-options/dedicated-instances/

http://www.talp.upc.edu/
http://www.upc.edu/en
https://aws.amazon.com/es/ec2/purchasing-options/dedicated-instances/
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6 Conclusions
In this bachelor’s thesis, a vocoder acting as a second stage of a complete TTS system have

been developed using deep learning techniques applied on a baseline implementation of the
SampleRNN model. This vocoder conditions the output with speech features extracted with
Ahocoder, but could be easily used with other modules that extract those parameters either
from raw text or from other speech signals. The achieved model is capable of holding many
speakers inside the same shared structure, so that every user shares its characteristics with the
others, thus reducing the required number of parameters per speaker and letting them interact
above all in the lower layers, where the linguistic information processing is performed. Although
the unbalanced data, human listeners rate this system with state-of-the-art MOS scores and
prefer the speech generated using the experiment with speaker independent normalization and
look ahead approach. Both of that approaches were novelties introduced in this thesis and
results show that they could be beneficial to other TTS systems. In the use of this model as a
vocoder, promising results have been obtained although that it was known that for this purpose
databases have to be larger and more variate to represent any speaker.

Regarding the speaker characteristics, it has been demonstrated that the original speaker
existing in the speech features inevitably degrades the performance of voice conversion, thus
requiring adversarial frameworks with a negative loss contribution. The architectures proposed
to tackle the difficulties of voice conversion, were not conceived from the very beginning of this
dissertation and thus where not presented on the proposal. Nevertheless, some difficulties arose
referring when trying to change the identity of the generated speech. As this topic introduced in
section 3.2 was really of interest, it was decided to broaden the thesis to include the necessary
tools to achieve it. Inevitably, this reduced the amount of time scheduled for each of the work
packages originally planned but did not narrow the original scope.

Voice conversion have also been treated and partially achieved, with the best results convert-
ing the voice as desired but not conserving the linguistic information lost with the bottle-neck
structure. This was attributed to the depth of the model, and some strategies to tackle it are
exposed in the following section and planned for the next months. Regarding the eigen-voice
representation proposal, the methodology exposed in this thesis have been merely theoretical
due to the difficulty of converting the voice of the generated speech. Nevertheless, it has great
potential and could be applied to a bunch of different fields.

Overall, SampleRNN have been successfully adapted to conditional multi-speaker genera-
tion with results that achieve great quality and naturalness. With the aim of encouraging the
development of similar works and given that the fact that the baseline code was open-sourced,
it was decided to publish the source code developed during this work on the repository located
on the author’s GitHub page.

6.1 Future work

Differing from the vocoder exposed in chapter 3, a great amount of work when designing
an end-to-end speech synthesizer is focused on parameterizing text (figure 1.1). An evolution
of SPSS that uses DNNs for the representation of probability density functions of speech pa-

https://github.com/Barbany/Multi-speaker-Neural-Vocoder
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rameters given text was proposed by Zen et al. (2013). Therefore a next step would be to
extract speech parameters directly from text instead of audio signals like in Ahocoder. The
advantage of using a system based in DNNs is that the model could be jointly trained like
in Tacotron (Wang et al., 2017), an end-to-end generative TTS model that synthesizes speech
directly from characters and train the model from scratch with < text, audio > pairs. With a
similar framework,the optimal parameters mentioned in the closure of chapter 4 could be found.
In fact, in the Neural Discrete Audio Representation paper (van den Oord et al., 2017b), the
latents extracted with VQ-VAE that are then used to condition the Wavenet model to output
the desired speech, are shown to be similar to the human-designed alphabet of phonemes. The
features previously extracted with Ahocoder could be therefore substituted with this new rep-
resentation, which probably is more efficient from the perspective of both voice conversion and
audio synthesis as it achieves what authors call voice-style transfer (see 2.2.3).

The bachelor’s thesis carried by Dorca Saez (2018) integrated MUSA, a parametric TTS
system developed during the master’s thesis of Pascual de la Puente (2016). Although the
integration of both systems allowed to map text into speech parameters and then condition the
SampleRNN model, it significantly degrades the quality. For this reason, the results presented in
this dissertation were only extracted from more reliable parametric TTS modules that allowed
to evaluate the presented model without introducing external errors.

When referring to the use of the SampleRNN model as a vocoder, after incorporating more
speakers to the database to have a wider range of different voices, some experiment such as
alternative representations for low-rate coding, bandwidth extension and speech enhancement
could be derived. The need of a larger database prompts when trying to synthesize voices
that are very different from the ones in the database. This can be first solved by balancing
the data, but some voices more similar to the kid of the vocoder database would be probably
needed. In Kleijn et al. (2017), a similar proposal based in low-rate speech with the Wavenet
model. Regarding to the recurrent units, an option to change from GRUs to Quasi-Recurrent
Neural Networks (QRNNs) could be implemented with the aim of fastening-up the training
and inference. See section A.3 for more details about RNN architectures.

Bottle-neck could be better trained by designing a full VAE. This framework is aimed to
obtain the same features in both the input and the output, with latents of lower dimension
(see figure 3.3). Once this module is independently trained, the first stage of this VAE, i.e. the
bottle-neck previously depicted in figure 3.4, could be incorporated to the model with frozen
coefficients. This means that the latent representation achieved with the training of the VAE
would be preserved and no problems regarding the difficulty of training with the whole model
would arise.

The adversarial training framework inspired by the work of Chou et al. (2018) was only the
first stage of a proposed two-stage system. The second stage was another pair of generator and
discriminator which was trained to create a residual signal to patch the output obtained in the
first stage. This was designed to improve the quality of speech as they reported to obtain blurry
spectra and artifacts. The training of the second stage is done after the first stage is already
trained and their parameters remain frozen. This was nevertheless not implemented because
the problem was in losing linguistic information and not in noisy outputs. The need of using
this two-stage system is not discarded for future results with the adversarial framework model
including the latents of the independently trained bottle-neck.
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A Neural Networks
Artifitial Neural Networks (ANNs) were conceived with the aim of mathematically model

human intellectual abilities by biologically plausible engineering designs and thus bringing the
concept of artificial intelligence. Nevertheless, even the so-called Deep Neural Networks (DNNs),
which are ANNs with many layers, are not as complex as a real neural network as they barely
have hundreds of synapses in front of 1011 neurons with 104 synapses each one on a real brain.

A.1 Multi-Layer Perceptron

An ANN is a set of neurons, which are basic units of the network. The activation of those
is simply a linear combination of an input vector x = {x0, x, 1, . . . , xN}, which is pondered by
a set of weights denoted as w plus a bias term b (equation (A.1)).

a = wTx + b (A.1)

Some neurological studies have already demonstrated that a non-linear behavior is shown
in each neuron given an input stimulus. In order to mimic that, the activation described of
equation (A.1) is applied a non-linear function f . Moreover, this allows to obtain arbitrary
shape decision regions that fit to almost any kind of problem with the proper depth and width.
Note that this functions have to be continuous but at the same time differentiable in order
to optimize the weights. These functions are typically linear for small values and saturate for
large ones. Some common names for non-linear functions used in neural networks are hyperbolic
tangent, Rectified Linear Unit (ReLU) and sigmoid.

y = f(wTx + b) (A.2)

The hooking of many of these basic units creates the Multi-Layer Perceptron (MLP), which
is the simplest type of ANNs as it only have feed-forward connections. Neurons can be stacked
in parallel and also concatenated, i.e. the output of one neuron is the input of the following
giving therefore width and depth to the network respectively. The framework is thus formed by
many layers which don’t necessary have the same number of neurons in each of them as depicted
in figure A.2. The leftmost layer of the network is called input layer while the rightmost is the
output layer. In between layers are named as hidden, because its values are not observed in
the training set as they are not target values neither inputs. As the number of hidden layers
increases, the network can start being denoted as a DNN.

Deep-learning methods are capable of learning multiple levels of representation by compos-
ing non-linear modules. Each one transforms the output of the previous level, or raw input in
case of the first layer, into a more abstract level representation. Therefore, with the composition
of enough of such transformations, very complex functions can be learned.
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Figure A.1: Typical activation functions and their derivatives illustrated with dashed lines
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Figure A.2: Overview of a fully-connected MLP with three hidden layers

A.2 Optimization

There are essentially two types of supervised problems to tackle with DNNs; classification
and regression. These deal with a discrete set of classes and a continuous domain of possible
values respectively.

When classifying, the desired outputs, also called labels or classes, are in a form of a one-hot
encoding vector, which have only one value set to 1, corresponding to the target class, and the 0
elsewhere, e.g. [0, 0, 0, 1, 0]. The loss, which depends on the parameters of the network, evaluates
the difference between the targets and the outputs. Before comparing them, the final layer is
often applied a softmax function (equation (A.3)) to express the probabilities of belonging to
a class.

S(yi) = eyi∑
j e

yj
(A.3)
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Regression aims to model and analyze several variables, when the focus is on the relationship
between an output dependent variable and one or more independent variables which are treated
as the inputs of the network. These outputs are a real value, such as an integer or floating point
value, often representing quantities, like amounts and sizes.

For each of that problems, a loss function to minimize with respect to the parameters of
the network is defined in order to train the model. In the regression case, loss functions depend
on the distance from target to result, whereas in classification problems it only depends on
either if class is well predicted or not, e.g. euclidean loss for regression and cross entropy for
classification (equations (A.4a) and (A.4b) respectively).

L = 1
N

N∑
i=1

(yi − fθ(xi))2 (A.4a)

L = −
N∑
i=1

yi log(S(fθ(xi))) (A.4b)

Virtually in all cases, functions to optimize are not convex and therefore have lots of mini-
mums. Gradient Descent algorithms are used to move the parameters of the network in small
steps which size is determined by the learning rate η in the opposite direction of the derivative
of the loss. The update of the weights is shown in equation (A.5). Nevertheless, this algorithm
does not necessarily achieves a global minima, meaning that suboptimal weights are typically
used, but it is more important to find a minimum that generalizes well.

w = w − η∇wL (A.5)

In order to test if the model works well with unseen data, the whole dataset is usually
chopped in three subsets for the purposes of training, validating and testing.

The first one is used to optimize the model by computing its outputs and then back-
propagating the error to update the weights and biases. In each iteration, the gradient is
computed with either all the training dataset or a fraction of it called batch. There are also two
variants of the algorithm labeled as of Stochastic Gradient Descent, when only one example
is used to update the weights, and as mini-batch Gradient Descent when only a few samples
are considered. These are fast algorithms but have much more variance in the update than the
Gradient Descent algorithm, which means that path to the minimum is not a straight curve
as depicted in figure A.3. An epoch is defined as the pass of the entire training dataset to the
network, which means that in the batch case it will be equivalent to the quotient between the
dataset size and the batch size.

The validation set is used to fine-tune hyper-parameters of the DNN such as the number
of layers or neurons. This data is therefore not explicitly used to train the model but it’s not
really unseen as the parameters are chosen to minimize the loss on it. This is the reason why
a third partition of truly unseen data is needed to test the model.
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Figure A.3: Comparison between Gradient Descent algorithms from Hands-On Machine Learn-
ing with Scikit-Learn and TensorFlow chapter 4
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Figure A.4: Overview of a model with optimal weights reached at epoch 50

As it was stated before, the purpose when optimizing is to find a model that generalizes well
and thus avoid overfitting. This phenomena is the production of an analysis that corresponds
too closely or exactly to the training data, and may therefore fail to fit additional data or
predict future observations reliably. It could be said that the model is too adapted or memorizes
the training dataset, meaning that it doesn’t generalize well. Overfitting can be detected when
training loss keep diminishing while validation loss grow (figure A.4). The best model is therefore
attributed to the parameters which give the best results in the non-trained elements, unless
in those special cases that training dataset compromises all possible occurrences. This can be
solved with early stopping, which make the training stop not only when the maximum number
of iterations is reached, but also when the best model from the perspective of the validation loss
has not been improved in a certain number of iterations. This is a simple yet effective solution
to avoid overfitting but it requires more memory as a copy of the best and last parameters.

https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch04.html
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A.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) and their variants have leveraged completely the se-
quences processing and prediction problem, which makes them lead to interesting results in the
speech synthesis field, where an acoustic signal of variable length has to be generated out of a
set of textual entities. The idea behind RNNs is to make use of sequential information. Hidden
layers have memory cells that condition future outputs. Theoretically, the retention of an RNN
can be of arbitrarily long sequences, but in practice they are limited to looking back only a few
steps. A typical RNN scheme is depicted in figure A.5, where the following notation is used:

• xt: Input at time step t.

• st: Hidden state at time step t. It is calculated as the sum of the multiplication of the
previous hidden state and the current input by a weight matrix respectively (equation
(A.6)). For the computation of the first hidden state, s−1 is usually initialized to all zeros

st = f(Uxt + Wst−1) (A.6)

• ot: Output at time step t. It is calculated solely based on the memory at time t: st.
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Figure A.5: Unfolded RNN representation inspired by Britz (2016)

Because the parameters are shared by all time steps in the network, the gradient at each
output depends not only on the calculations of the current time step, but also the previous time
steps. This is called Back-Propagation Through Time (BPTT) and it basically means that, in
order to compute the gradient at t, t − 1 steps have to be backpropagated and then summed
up. The loss with respect to the weight matrix W can be then computed with the rule chain
based the relation of parameters expressed on equation (A.6):

∂Et
∂W

=
t∑

k=0

∂Et
∂ot

∂ot
∂st

∂st
∂sk

∂sk
∂W

The activation functions have null derivatives at both ends and it turns that the gradient
values shrink exponentially fast, eventually vanishing completely after a few time steps. This
is the so-called vanishing gradient problem and doesn’t allow RNN to have long-range depen-
dencies. All kind of neural networks have the potential of generating this problem, but RNNs
are especially affected because of its dependencies with all past inputs.
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(a)

(b)

Figure A.6: Comparison between a regular RNN (a) and a LSTM (b) (Olah, 2015)

The inverse case is known as the exploding gradient problem, and it basically means that
gradients take enormous values and thus in long sequences taking a value of NaN (not a number).
This problem is therefore obvious to detect and have simpler solutions such as clipping the
gradient at a given threshold.

One of the most common solutions to vanishing gradients are the Long Short-Term Memorys
(LSTMs), a version of RNNs. This architecture was introduced by Hochreiter and Schmidhuber
(1997) and uses a gating mechanism to capture long-term dependencies. The chain structure is
the same as in simple RNNs, but the repeating module has a different structure of four layers,
represented by yellow boxes in figure A.6. The cell state (red horizontal line in figure A.6b)
is the key of LSTMs, and it is based on having minor linear interactions with the outputs of
the sigmoid layers, also known as gates. The outputs of these three gates (named forget, input
and output from left to right) are between zero and one, which describes how much of each
component should be discarded or remembered.

A commonly used variation of the LSTM is called Gated Recurrent Unit (GRU) and was
introduced by Cho et al. (2014). Overall, this approach combines the forget and input gates
into a single update gate, while the other is known as the reset gate. Moreover, GRUs merge
the cell and hidden states as they don’t have an output gate. Seeing this, it’s obvious that this
architecture have fewer parameters than LSTMs and this may train faster or need less data to
generalize.

RNNs and their variants exposed above, are a powerful tool for modeling sequential data,
but the dependence of each time-step’s computation on the previous time-step’s output limits
parallelism and makes RNNs unwieldy for very long sequences. Quasi-Recurrent Neural Net-
works (QRNNs) are the state of the art to neural sequence modeling and alternate convolutional
layers (see section A.4), which apply in parallel across time-steps, and a minimalist recurrent
pooling function that applies in parallel across channels. Due to their increased parallelism,
they are up to 16 times faster at train and test time (Bradbury et al., 2016).
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A.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are typically conceived for treating with images
but are also used in time series in front of RNNs to avoid typical problems intrinsic to that
architecture such as the vanishing gradient and the lack of parallelism. Their basic idea is to
deal with very high-dimensional inputs without needing a lot of parameters like a typical neural
network would. In computer vision problems, this means that no features have to be extracted
from images but the full image can be used as an input of the CNN and therefore, the grid-like
topology of the input can be exploited. In order to reduce the number of parameters, each
hidden unit is only connected to a subregion of size the receptive field.

The units that share the same parameters are organized into the same feature map and thus
the same features are extracted at every position making the network translation invariant. This
is a very desirable characteristic on image classification problems as the subject to recognize is
not always located at the same position of the picture. The feature map is computed through
a discrete convolution that gives name to the architecture. This means that a certain learned
kernel slides over the input tensor computing dot products and shifting the stride number of
samples.

Hidden units in the same neighborhood are pooled through a pooling layer that reduces
the number of features. This layers typically take the maximum or the average of the non-
overlapping neighborhoods and thus reduce the dimensionality and provide invariance to small
local changes. Pooling approach is not as aggressive as taking strides larger than 1, i.e. skipping
input samples. It also aims to reduce the dimensionality but on the feature map and there is
no overfitting risk as no parameters are added. Although it yields to better results, the model
is more expensive to compute as convolutions are running with lower stride.

Both convolutional and pooling layers are combined and usually followed by a regular neural
network like in the architecture depicted in figure A.7. The fully connected layer can also be
expressed as a convolution of kernel size 1 as it behaves like a small neural network.

Figure A.7: Structure of a CNN for image classification from Albelwi and Mahmood (2017)

As it can be seen, there is a bunch of possibilities when combining layers and tuning each
of the hyper-parameters that this architecture offer. Some layers can also be combined and
run in parallel building what is known as inception modules. The outputs of these are then
concatenated at the top of the modules and combined.
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A.5 Embeddings

Embedding are mappings from discrete values to dense real value vectors that relate sim-
ilarities to distances in the new feature space. This is a kind of unsupervised learning as the
closeness of objects is interfered by the computer itself, i.e. there are no target values or labels
like in supervised learning. A clear example of the use of embeddings is in machine translation
problems, where words do not have a natural vector representation. Similar words occur in alike
contexts and thus become close vectors. This means that a class for every possible word, which
would be unmanageable, is no longer needed.

The training process is quite simple. Following the example of machine translation, every
word of each sentence would be mapped to an embedding which is initialized randomly. The
aim is to update the model with the premise of predicting the context of a word given a window
around it. The result is that words with semantic and syntactic analogy which are used in similar
contexts are mapped to close vectors in the feature space. When comparing embeddings, the
length of the vector is not relevant, so no euclidean norm is used to check the similarities but
cosine distance (equation (A.7)).

d(v1,v2) = v1 · v2

||v1|| · ||v2||
(A.7)

The resulting feature map can be then projected into a 2-D space in order to study the
learned relationship between inputs as depicted in figure A.8. The distance is taken into account
when doing the projection, so similar inputs can be then analyzed and clustered into categories
in an intuitive way.
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Figure A.8: 2-D projection of the feature map resulting of applying an embedding
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B Work Plan

B.1 Work Packages

Project: Environment familiarization WP ref: WP1

Major constituent: Develop programming skills Sheet 1 of 3

Short description: Familiarize with the PyTorch
Deep Learning framework as well as with the re-
mote deployment environment used to take advan-
tage of VEU group resources.

Planned start date: 22/01/2018
Planned end date: 01/03/2018
Start event: IDL course
End event: Train first model

Internal task T1: Introduction to Deep Learning
(IDL: 230325)
Internal task T2: Udacity Deep Learning course
Internal task T3: Create environment and clone
initial source code to VEU servers
Internal task T4: Run a model with few modifica-
tions to evaluate the first results.

Deliverables:
IDL certificate
Udacity certificate

Dates:
30/01/2018
14/02/2018

Table B.1: Work Package 1 breakdown: Environment familiarization

Project: Theoretical learning WP ref: WP2

Major constituent: Study the theory behind newly
developed vocoders

Sheet 1 of 3

Short description: Research the state of the art
technologies of speech synthesis and understand
both their implementation and the novel ideas that
they brought.

Planned start date: 25/01/2018
Planned end date: 15/04/2018
Start event: Project kick-off
End event: Thesis drafting

Internal task T1: Wavenet
Internal task T2: Parallel Wavenet
Internal task T3: SampleRNN
Internal task T4: Neural Audio Generation for
Speech Synthesis
Internal task T5: Tacotron
Internal task T6: Efficient Neural Audio Synthesis
Internal task T7: Deep learning applied to Speech
Synthesis
Internal task T8: Relevant references of the above
papers

Deliverables:
-

Dates:
-

Table B.2: Work Package 2 breakdown: Theoretical learning
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Project: Multi-speaker Neural Vocoder WP ref: WP3

Major constituent: Adapt model Sheet 2 of 3

Short description: Feed phoneme information and
speaker identity to generate speech. The talker ei-
ther could or not be the same (voice conversion).

Planned start date: 15/03/2018
Planned end date: 15/05/2018
Start event: End of WP2
End event: Start of WP4

Internal task T1: Database preparation
Internal task T2: Adaptation of the model
Internal task T3: System evaluation

Deliverables:
Model outputs

Dates:
15/05/2018

Table B.3: Work Package 3 breakdown: Multi-speaker Neural Vocoder

Project: Voice Conversion WP ref: WP4

Major constituent: Obtain speaker-independent
conditioners

Sheet 2 of 3

Short description: Design an architecture to
achieve voice conversion.

Planned start date: 15/05/2018
Planned end date: 15/06/2018
Start event: End of WP3
End event: Start of WP5

Internal task T1: Design bottleneck and GAN-like
approaches
Internal task T2: Training and optimization
Internal task T3: System evaluation

Deliverables:
Model outputs

Dates:
15/05/2018

Table B.4: Work Package 4 breakdown: Voice Conversion

Project: Eigen-voice representation WP ref: WP5

Major constituent: Mimic new voices Sheet 2 of 3

Short description: Reproduce a voice correspond-
ing to an unseen speaker with few samples by pro-
jecting its voice to the eigen-voice space.

Planned start date: 15/06/2018
Planned end date: 01/07/2018
Start event: End of WP4
End event: Final system evalua-
tion

Internal task T1: Integrate speaker recognition sys-
tem with embeddings as outputs
Internal task T2: Joint training and optimization
Internal task T3: Produce speech in line with WP3
and/or WP4
Internal task T4: Build discriminant network to
enhance voice biometrics

Deliverables:
Model outputs

Dates:
01/07/2018

Table B.5: Work Package 5 breakdown: Eigen-voice representation
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Project: Documentation WP ref: WP6

Major constituent: Deliver all reports Sheet 3 of 3

Short description: Write the different project re-
ports with the correspondent format and review
its redaction and rigorousness. List bibliography
used all along the thesis.

Planned start date: 16/02/2018
Planned end date: 02/07/2018
Start event: Start of WP2
End event: Final Delivery.

Documentation task D1: References repository
Documentation task D2: Proposal and Workplan
Documentation task D3: Project Critical Review
Documentation task D4: Final Report

Deliverables:
PW
PCR
FR

Dates:
15/04/2018
07/05/2018
02/07/2018

Table B.6: Work Package 6 breakdown: Project documentation
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B.2 Gantt diagram

TODAY

WEEKS: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

100% completeWP 1 Environment familiarization

100% completeWP 1 - T1 IDL course

100% completeWP 1 - T2 Udacity course

100% completeWP 1 - T3 VEU environment

100% completeWP 1 - T4 Run first model

100% completeWP 2 Theoretical learning

100% completeWP 2 - T1 Wavenet

100% completeWP 2 - T2 Wavenet 2

100% completeWP 2 - T3 SampleRNN

100% completeWP 2 - T4 Georgina’s Thesis

100% completeWP 2 - T5 Tacotron

100% completeWP 2 - T6 Efficient

100% completeWP 2 - T7 Santi’s thesis

100% completeWP 2 - T8 References

100% completeWP 3 Multi-speaker Neural Vocoder

100% completeWP 3 - T1 Database

100% completeWP 3 - T2 Adaptation

100% completeWP 3 - T3 Evaluation

100% completeWP 3 - T3 Swap IDs

START-TO-START

FINISH-TO-START

FINISH-TO-START
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TODAY

WEEKS: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

100% completeWP 4 Voice Conversion

100% completeWP 4 - T1 Bottleneck+GAN

100% completeWP 4 - T2 Training

100% completeWP 4 - T3 Evaluation

100% completeWP 5 Eigen-voice

100% completeWP 5 - T1 SPK to embedding

100% completeWP 5 - T2 Joint training

100% completeWP 5 - T3 WP3/WP4

100% completeWP 5 - T4 Discriminant

100% completeWP 6 Documentation

100% completeWP 6 - D1 Repository

100% completeWP 6 - D2 PW

100% completeWP 6 - D3 PCR

100% completeWP 6 - D4 FR

FINISH-TO-START

FINISH-TO-FINISH
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C Unfolded structure of SampleRNN modules

Tier 3

Tier 2

Tier 1

Ahocoder

xi+80, . . . , xi+159

condi+1

Frame-Level
Module

Window
80 samples Speaker ID

xi+140, . . . , xi+159(128× 1059) Frame-Level
Module

Take 20
last samples

Embedding
Number of embeddings: 256

Embedding size: 256

Conv1D
Channels: 256→1024

Kernel size: 20

+

Conv1D
Channels: 1024→1024

Kernel size: 1

Conv1D
Channels: 1024→256

Kernel size: 1

Log-Softmax

P (xi+80|x<i+80)

c(3) c(3) c(3) c(3)

c(2)(128× 1040× 1024) c(2) c(2) c(2)

Figure C.2: Unfolded structure of the sample level tier of the adapted model
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Tier 3

Tier 2

Tier 1

Ahocoder

xi, . . . , xi+79(128× 13× 80)condi(128× 13× 43) spki(128× 13)

Conv1D
Channels: 43→1024

Kernel size: 1

Conv1D
Channels: 80→1024

Kernel size: 1

Embedding
Number of embeddings: 6

Embedding size: 6

Conv1D
Channels: 6→1024

Kernel size: 1

+

GRU
Input size: 1024

Hidden size: 1024

GRU
Input size: 1024

Hidden size: 1024

ConvT1D
Channels: 1024→1024

Kernel size: 4

Window
80 samples Speaker ID

xi+60, . . . , xi+79(128× 52× 20)

Conv1D
Channels: 20→1024

Kernel size: 1

Take 20
last samples

+

GRU
Input size: 1024

Hidden size: 1024

GRU
Input size: 1024

Hidden size: 1024

ConvT1D
Channels: 1024→1024

Kernel size: 20

Sample-Level
Module

c(3) c(3) c(3) c(3)

c(2) c(2) c(2) c(2)

Figure C.1: Unfolded structure of the frame level tiers of the adapted model
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D Resulting plots

D.1 Output distributions

(a) Output distribution (b) Waveform

Figure D.1: Correct output distribution behavior during 1000 samples (62.5 ms) and its corre-
spondent waveform rotated to fit the axis of (a)

(a) Output distribution (b) Waveform

Figure D.2: Saturated output distribution behavior during 1000 samples (62.5 ms) and its
correspondent waveform rotated to fit the axis of (a)
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D.2 Normalization plots
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(b) Joint normalization

Figure D.3: Normalized logarithmic pitch contour
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Figure D.4: Evolution of normalized maximum voiced frequency



56 D.2. Normalization plots
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Figure D.5: Evolution of normalized Mel-Frequency Cepstral Coefficient (MFCC) order 3
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Figure D.6: Evolution of normalized MFCC order 4
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Figure D.7: Evolution of normalized MFCC order 19
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