Abstract—This paper proposes a novel timer-based demodulator for low-frequency amplitude-modulated (AM) sensor signals with a rail-to-rail operating range. The demodulator extracts the amplitude of the AM signal by measuring the period of a reference signal that is altered by the AM signal itself, as already suggested in a previous paper. The rail-to-rail operation, which is the main contribution of the novel circuit, is achieved by simply but cleverly incorporating a multiplexer that enables the comparison between the two signals (reference and AM) just at the beginning and at the end of the period measurement. This new topology offers an operating range that is up to more than four times wider than that reported in the literature. The input-output characteristic in such a wider operating range is not linear, but it can be accurately modelled by a second-degree polynomial.

Index Terms—AM signal, demodulator, digital timer, rail-to-rail circuit, sensor interface electronics.

I. INTRODUCTION

Reading sensors through a time-to-digital converter (TDC) instead of an analog-to-digital converter (ADC) has several advantages, for instance: (1) in microcontroller-based designs, the current consumption of an embedded TDC is clearly lower than that of an ADC; and (2) in integrated designs, the layout area occupied by a TDC is one or two orders of magnitude smaller than that required by an ADC. Accordingly, timer-based circuits for resistive [1]-[3], capacitive [4], [5], inductive [6], [7], and voltage-output [8], [9] sensors have been extensively analyzed and developed in the last decade. For the case of voltage-output sensors, usually it is assumed that the sensor provides a quasi-static analog output voltage [8], [9]. The only attempt to measure AM sensor signals with a carrier frequency in the range of kilohertz through a digital timer was suggested in [10].

However, the proposed circuit had limitations in terms of operating range. Under certain operating conditions, the supply voltage \(V_{DD}\) of the circuit.

Based on the concept introduced in [10], this paper proposes a novel timer-based demodulator for AM sensor signals with a wider operating range. The proposed circuit is able to demodulate signals with an amplitude that can swing all the way between the supply voltage levels and, for this reason, it is called rail-to-rail timer-based demodulator. As in [10], the demodulation is carried out without using a rectifier, a mixer, a low-pass filter, or an analog-to-digital converter, thus resulting in a low-cost design solution.

II. PREVIOUS TOPOLOGY

The timer-based demodulator presented in [10] extracts the amplitude of the AM sinusoidal signal by measuring the period of a reference triangular signal that suffers from interference effects [11] caused by the AM signal itself. This period measurement undergoes a deviation that carries information about the amplitude of the AM signal whenever an appropriate relation between the carrier frequency \(f_c\) of the AM signal and the frequency of the triangular signal \(f_0\) is chosen. The amplitude of the deviation is zero when \(f_c / f_0 = m\), whereas it is maximum when \(f_c / f_0 = m + 0.5\), \(m\) being any positive integer including the zero. In order to have the highest effects of the AM signal on the period measurement, the case \(f_c / f_0 = m + 0.5\) should be selected. However, if \(f_c / f_0\) is exactly equal to \(m + 0.5\), the set of period measurements shows an alias component at 0 Hz, which means that the same value of period is repeatedly measured. This can be avoided using \(f_c / f_0 = (m + 0.5)(1 + \Delta)\) with \(|\Delta| \ll 1\), thus generating a low-frequency alias component at \(f_c |\Delta|\). In such conditions, the amplitude \(A_s\) of the AM signal can be estimated by computing the standard deviation (STD) of the set of period measurements carried out, at least, during one period of the alias component.

The models in [10] were developed by analyzing the voltage crossings between the triangular signal and the AM signal, the latter being superimposed on the dc level of \(V_{DD}/2\).

Two models were proposed: a small-signal (SS) model that is valid for low values of \(A_s\) and predicts a linear relation between \(A_s\) and STD, and a large-signal (LS) model that is useful for higher values of \(A_s\) and suggests a non-linear relationship. These models assume that in a single period of the triangular signal we only have: 1) a first positive crossing that starts the period measurement, 2) a negative crossing, and 3) a second positive crossing that ends the measurement, where a positive (negative) crossing is when the triangular signal becomes higher (lower) than the AM signal. The previous assumption, however, cannot be ensured for high values of both \(A_s\) and \(f_c / f_0\), thus causing aberrant period measurements that cannot be employed in the calculation of STD. For example, at \(V_{DD} = 5\) V, the maximum \(A_s\) that can be demodulated without having aberrant measurements is 6.37 V, 2.12 V, and 1.27 V for \(f_c / f_0 \approx 0.5\), 1.5, and 2.5, respectively.
III. NOVEL TOPOLOGY

Fig. 1 shows the novel topology of the timer-based demodulator, which is composed of: 1) an oscillator providing a triangular-wave voltage (V_1) with an amplitude of V_{DD}; 2) a shifting and AC-coupled circuit that generates a voltage V_2 equal to $V_{DD}/2$ plus the AM signal; 3) a voltage divider made by R_2 and R_3 yielding a low voltage (V_3); 4) a 2:1 analog multiplexer (MUX) that provides an output voltage (V_4) equal to either V_2 or V_3; 5) a comparator (CMP) that compares V_1 and V_4 and offers a square-wave output voltage (V_5) whose period equals T; and 6) a digital timer that measures T from rising to rising edge. In addition, the position of the MUX depends on the logic level of V_5: position “0” when V_5 is low, and position “1” when V_5 is high.

The key element in Fig. 1 to satisfy the assumption indicated in the 2nd paragraph of Section II is the MUX. This is moved to position “1” once the first positive crossing happens, where a positive (negative) crossing is here when V_1 becomes higher (lower) than V_2. Since V_2 is a low-value voltage (e.g. 50 or 100 mV), no extra voltage crossings will appear between V_1 and V_4, thus making the models developed in [10] useful for (almost) any value of A_s within the supply voltage levels. The lower V_3, the higher the maximum amplitude that can be demodulated.

The operating principle of the circuit in Fig. 1 is shown in more detail in Fig. 2. Initially, the MUX is at position “0” so that V_1 is compared to V_5. At instant t_1, V_1 becomes higher than V_2 and, then, V_5 swaps to a high level that implies the start of the period measurement and the change of the position of the MUX. From now on, V_1 is compared to V_3, which is a low value. Afterwards, at instant t_2, V_1 becomes lower than V_3 and, hence, V_5 swaps to a low level. This moves the MUX to position “0”, thus comparing again V_1 and V_5. Then, at instant t_3, there is another crossing between V_1 and V_3, which causes again a low-to-high transition in V_5 that stops the measurement. In Fig. 2, the result is T instead of T_0 due to the interference effects caused by the AM signal. Of course, if $A_s = 0$ then $T = T_0$.

The need of the MUX to avoid aberrant measurements can be better understood through the example shown in Fig. 3, where the AM signal has higher values of both A_s and f_s. In such a case, if the MUX was not moved to position “1” after t_1, the V_1-V_2 comparison would have non-expected crossings (for instance, at instants t_4 and t_5) that would generate an aberrant value of T. Thanks to the MUX, any potential V_1-V_2 crossing from t_1 to t_2 does not affect the measurement.

IV. EXPERIMENTAL RESULTS

The circuit in Fig. 1 has been proven using the following materials. A two-channel waveform generator (Keysight 33510B) provided the triangular and AM sinusoidal signals.
The novel circuit incorporates a simple but practical MUX that facilitates the circuit calibration. In comparison with the state of the art, the second-degree polynomial fitted to the experimental data has the following coefficients: $a_0 = -0.15$, $a_1 = 24.17$, and $a_2 = -0.67$ in Fig. 5(a); $a_0 = -1.45$, $a_1 = 78.51$, and $a_2 = -6.84$ in Fig. 5(b); and $a_0 = 0.71$, $a_1 = 121.20$, and $a_2 = -14.97$ in Fig. 5(c). Applying $f_c / f_0 = (m + 0.5)(1 + \Delta)$ with $\Delta = -0.67\%$ and $m = 0$, 1, and 2. The different ratios were obtained by changing f_0 and keeping f_c constant to 1500 Hz, which is in the range of typical exciting frequencies for inductive sensors [12]. The selected values of Δ and f_c provided an alias component of 10 Hz that involves a measuring time of 100 ms. Two commercial chips (ADG719 and AD8561 from Analog Devices) were employed as MUX and CMP, respectively. A bench-top universal counter (Agilent 53220A) measured the period of the CMP output. The resistors R_2 and R_3 were chosen to have $V_D = 100$ mV at $V_{DD} = 5$ V.

Fig. 4 shows how the STD of the period measurements depended on A, for the different f_c / f_0 under test. The higher A, the higher STD, as expected. Moreover, histograms of 10000 period readings did not show any aberrant measurement, even for values of A almost equal to V_{DD}. This clearly extended the operating range of the timer-based demodulator, as graphically indicated in Fig. 4. To be precise, the operating range was more than two and four times wider than that presented in [10] for $f_c / f_0 \approx 1.5$ and 2.5, respectively. For the case $f_c / f_0 \approx 0.5$, the results were very similar to those shown in [10].

The experimental data in Fig. 4 is separately represented in Fig. 5 on a linear scale and together with the results predicted by the SS and LS models developed in [10]. The SS model satisfactorily predicts the response of the demodulator up to $A = 2$, 1.5, and 1 V for $f_c / f_0 \approx 0.5$, 1.5, and 2.5, respectively. Beyond this value, the input-output characteristic suffers from nonlinearity effects that are well predicted by the LS model. At the worst point (i.e. at $A = V_{DD}$), the difference between the experimental value of STD and that predicted by LS is 4%, 17%, and 14% in Figs. 5(a), (b), and (c), respectively. A second-degree polynomial (i.e. $STD = a_0 + a_1A_1 + a_2A_1^2$) can be accurately fitted to the experimental data shown in Fig. 5 with a coefficient of determination (R^2) higher than 0.999, thus facilitating the circuit calibration.

V. CONCLUSIONS

This paper has proposed a novel timer-based demodulator for AM sensor signals. In comparison with the state of the art, the novel circuit incorporates a simple but practical MUX that avoids aberrant measurements. As a consequence of that, the operating range of the circuit has been extended all the way between the supply voltage levels, which means up to four times wider than that of the previous topology. Experimental results have shown that the input-output characteristic in such a wider operating range is not linear, but it can be accurately modelled by a second-degree polynomial.

REFERENCES