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Abstract

Data prefetching has long been used as a technique to improve access times to persistent

data. It is based on predicting which data records are relevant to future requests and

retrieving them from persistent storage to main memory before they are needed. Data

prefetching has been applied to a wide variety of persistent storage systems, from �le

systems to Relational Database Management Systems and NoSQL databases, with the

aim of reducing access times to the data maintained by the system and thus improve

the execution times of the applications using this data.

However, most existing solutions to data prefetching have applied predictions based

on information that can be retrieved from the storage system itself, whether in the form

of heuristics based on the data schema or data access patterns detected by monitoring

access to the system. There are multiple disadvantages of these approaches in terms of

the rigidity of the heuristics they use, the accuracy of the predictions they make and /

or the time they need to make these predictions, a process often performed while the

applications are accessing the data and causing considerable overhead.

In light of the above, this thesis proposes two novel approaches to data prefetch-

ing based on predictions made by analyzing the instructions and statements of the

computer languages used to access persistent data. The proposed approaches take

into consideration how the data is accessed by the higher-level applications, make ac-

curate predictions and are performed without causing any additional overhead. The

�rst of the proposed approaches aims at analyzing instructions of applications written

in object-oriented languages in order to prefetch data from Persistent Object Stores.

On the other hand, the second approach analyzes statements and historic logs of the

declarative query languageSPARQL in order to prefetch data from RDF Triplestores.

Keywords: Data Prefetching, Persistent Object Stores, Object-Oriented Languages,

RDF Triplestore, SPARQL
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Chapter 1

Introduction

In spite of the recent technological advances in computer science, access to disk is still

the bottleneck in many computer applications that require persistent data. Between

1980 and 2000, microprocessor performance has improved at an average rate of 60%

per year. By contrast, disk access speeds have only experienced a 10% improvement

per year over the same period [69, 83]. This growing gap between processing speed

and the speed of access to the data needed by the applications has produced signi�cant

amount of research in methods to minimize data access times.

In the �eld of databases and data storage systems, two methods to improve this

access time have prevailed. The �rst of these methods is caching, which is based on

the idea of keeping recently retrieved data in memory cache for faster access with sub-

sequent requests. However, this solution only works if the exact same data is accessed

multiple times. In reality, it is more common to have consecutive requests that access

several di�erent, albeit related, data records [26, 72].

The second method that was proposed in order to deal with this issue is data

prefetching. Data Prefetching is de�ned as retrieving data records from per-

sistent storage to main memory in anticipation of later use. Unlike caching,

prefetching aims to predict additional data records that are likely to be accessed by

subsequent requests and retrieve them before they are needed. In order to predict

which data records should be prefetched, several approaches have been studied.

The �rst such approach is based onthe schema of the data . This approach

analyzes the schema of the data being manipulated and predicts which data records

should be prefetched based on the relations found in the schema. Given that the data
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schema is prede�ned in most database applications, the schema analysis is simple, is

only performed once and does not need to be modi�ed. However, this also means

that this type of approaches does not take into consideration the di�erent applications

accessing the data nor the actual values of the data records.

Another approach to data prefetching was put forward based on monitoringaccess

to the data records and detecting recurring access patterns. The detected patterns

are then used to predict which data records should be prefetched. However, this moni-

toring process needs to take place while applications are being executed and accessing

data. Thus, it can add a non-negligible overhead to application execution time and/or

consume a considerable amount of memory.

The third and least-studied approach tries to tackle these limitations by basing

the predictions on the computer language instructions and statements used

to access the data. The reasoning behind this approach is that it can lead to more

accurate prediction, given that it takes into account how the data is accessed by the

higher-level program code. Moreover, if needed, the prediction can be improved by

studying historical executions and trying to detect repeated execution patterns, which

in turn indicate which data records are going to be accessed.

In view of the above, this thesis investigates approaches to data prefetching based

on predictions obtained from analyzing the instructions and statements of computer

languages. In particular, we develop two such approaches using two di�erent types of

languages: object-oriented programming languages and declarative query languages.

First, we develop an approach that analyzes the code of applications written in

object-oriented languages, de�ned in Section 1.1.1, and predicts which data objects

are accessed by the application. The approach is based on static code analysis that

is done prior to the application execution and hence does not add any overhead. We

also propose various strategies to deal with cases that require runtime information

unavailable prior to the execution of the application. Moreover, we integrate this code

analysis approach into a Persistent Object Store, de�ned in Section 1.1.3, to perform

data prefetching based on the predictions made by the approach.
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Afterwards, we propose a second approach that analyzes the statements of declar-

ative query languages, de�ned in Section 1.1.2. We use as a case study the query

languageSPARQL and develop an approach to predict data to be prefetched by analyz-

ing historic SPARQL query logs and detecting recurring query patterns. Furthermore,

we design a prefetching and caching system to be integrated intoRDF Triplestores,

de�ned in Section 1.1.4, in order to prefetch the predicted data.

1.1 Background

This thesis draws concepts from various areas in the �elds of Computer Languages

and Persistent Storage. As such, we present in this section an overview of object-

oriented Languages (Section 1.1.1), Declarative Query Languages, Persistent Object

Stores (Section 1.1.3) andRDF Triplestores (Section 1.1.4).

1.1.1 Object-Oriented Programming Languages

Object-Oriented Programming (OOP) is a programming paradigm based on the con-

cept of "objects", which may contain data, in the form of attributes; and code, in the

form of methods [49]. The object's methods can access and modify the object's data

attributes. OOP languages are class-based, meaning that objects in those languages

are instances of classes, which also determine their type.

For example, Figure 1.1 shows the program code of an application written in Java,

an OOP language. In this example, we can see the di�erent classes, i.e. object types,

de�ned by the application, such as the classTransaction or the classEmployee. We can

also distinguish two types of attributes in these classes: attributes of primitive types

and attributes of user-de�ned types.

Attributes of primitive types, such as Integer, String or Date, contain the data of

each object of the class. For instance, the classEmployee in Figure 1.1 has the �eld

salary of the primitive type Integer and the �eld dateOfBirth of the primitive type Date.

On the other hand, a class may also have attributes of complex types that represent

relationships between two di�erent types. A relationship from type t to type t' is

represented by an attribute of type t' de�ned in type t. For instance, the relationship
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1 public class Transaction {
2 private Account account ;
3 private Employee emp;
4 private TransactionType type ;
5 ...
6 }
7

8 public class Employee {
9 private Company company ;

10 private String name;
11 private Integer salary,
12 private Date dateOfBirth;
13 ...
14 }
15

16 public class BankManagement {
17 private ArrayList<Transaction> transactions ;
18 private Customer manager ;
19

20 public void setAllTransCustomers() {
21 for (Transaction trans : this . transactions ) {
22 trans.getAccount().setCustomer( this . manager );
23 }
24 }
25 }
26

27 ...

Figure 1.1: Example of program code written in an object-oriented language (Java).

from the type Transaction to the type Account is implemented in Figure 1.1 by an

attribute of type Account de�ned inside the type Transaction.

Finally, Figure 1.1 also contains the methodsetAllTransCustomers() de�ned in the

classBankManagement. This method can access, and manipulate, the attributes of the

object to which it belongs. Furthermore, it can invoke other methods on the objects

related to its owning object.

1.1.2 Declarative Query Languages

Query languages are computer languages used to make queries in database and infor-

mation systems. Most modern query languages follow the Declarative Programming

(DP) paradigm, which means that they express the logic of a computation without

describing the exact instructions to be executed. That is, DP languages describewhat
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1 PREFIX dbr: <http://dbpedia.org/resource/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3 SELECT * WHERE{
4 dbr:Iker_Casillas dbo:formerTeam ?team .
5 }

Figure 1.2: Example code written in a declarative query language (SPARQL).

the program must accomplish in terms of the problem domain, rather thanhow to

accomplish it as a sequence of explicit steps.

Some examples of database query languages that follow the DP paradigm include

SQL, XQuery and SPARQL. Figure 1.2 shows an example query written inSPARQL

query language. SPARQL is a high-level query language used to access data stored in

the RDF format (explained in detail in Section 1.1.4). In the example in Figure 1.2,

the query asks for entities related to the entitydbr:Iker_Casillas through the property

dbo:formerTeam.

Regardless of the details of the language, this example shows that declarative query

languages do not use speci�c statements or steps that should be followed, but rather

describe what should be done. In the case of the query in Figure 1.2, the query asks

for the former teams ofIker Casillas.

1.1.3 Persistent Object Stores

Persistent Object Stores (POSs) are data storage systems that record and retrieve

persistent data in the form of complete objects [13]. In this context, anobject is

de�ned as an instance of a particular type de�ned by the schema of the POS. The

object consists of a combination of �elds, which can either be of primitive types (e.g.

String, Integer, Float ), or of another type de�ned by the schema, in which case they

represent a relationship between two objects.

POSs were developed to avoid the impedance mismatch that occurs when develop-

ing object-oriented applications on top of Relational Database Management Systems

(RDBMSs). This impedance mismatch is caused by the conceptual and technical dif-

�culties in mapping application data, in the form of objects, to persistent data stored
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Figure 1.3: Structure of a generic Persistent Object Store (POS). The used storage mechanism
depicted in the storage layer depends on the type of the POS.

in the RDBMS in the form of tables. By contrast, using a POS the application objects

can be directly mapped to objects stored in the POS.

Figure 1.3 shows the architecture of a generic POS and how it can be used by

an OO application to solve this impedance mismatch. The top layer in the �gure

shows the objects manipulated by the OO application. In order to store or retrieve the

objects, the application communicates with thepresentation layer of the POS, without

the need to perform any type of transformation on the objects. Inside the POS, this

layer then communicates with the transformation layer, which proceeds to transform

the objects into a format suitable for persistent storage (e.g. serializing the objects,

converting them to relational tables, etc). Finally, the transformation layer sends the
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transformed objects to the storage layer, which stores the objects in one of various

storage mechanisms, depending on the type of the POS.

The underlying storage mechanism of a POS varies from simple binary serializa-

tion of objects to complex Object-Oriented Databases (OODB), which store objects

directly onto disk, and Object-Relational Mapping Systems (ORM), which internally

transform objects into tables and store them in an RDBMS. The most popular OODBs

include Caché and Versant1, while some of the most used ORMs include Hibernate,

Apache OpenJPA and Data Nucleus2. The rise of NoSQL databases has also led to the

development of object mapping systems for other types of databases such as Neo4J's

Object-Graph Mapping (OGM) 3.

Regardless of their internal storage mechanism, POSs provide a conceptual ab-

straction for mapping database records to objects in object-oriented languages. This

abstraction avoids the impedance mismatch that occurs with other types of databases

and makes it easier to access persistent data without having to worry about database

access and query details, which amount to 30% of the total code of an application

according to previous studies [4] [20].Moreover, this symmetry between OOP

programming languages and the underlying storage opens the door to new

approaches when it comes to detecting data access patterns.

1.1.4 RDF Triplestores

The Resource Description Framework (RDF) is a simple, extensible graph data

model for representing information on the web [81]. Its main structure consists oftriples

that link two resources; called thesubject and object of the triple, through a property;

called the predicate of the triple.

Figure 1.4 shows an exampleRDF data graph. In this graph, we can identify four

di�erent resources: Iker Casillas, Real Madrid, Zinedine Zidane and Spain and three

di�erent properties: was born in, played for and is managed by. The triples present in

1Caché: http://www.intersystems.com/our-products/cache/cache-overview/ , Ver-
sant: http://www.actian.com/products/operational-databases/versant/

2Hibernate: http://hibernate.org/ , Apache Open JPA: http://openjpa.apache.org/ ,
Data Nucleus: http://www.datanucleus.org/

3Neo4J OGM: https://neo4j.com/docs/ogm-manual/current/
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Figure 1.4: RDF data graph containing resources (blue circles) and properties (yellow rectangles).

this RDF graph are the ones resulting from a property linking two di�erent resources.

For example in the triple Iker Casillas played for Real Madrid, we have the predicate

played for linking the object of the triple Iker Casillas to the subject Real Madrid.

The importance of RDF comes from this triple-based structure, which gives it

great �exibility in representing semantic information in a machine-understandable way.

Moreover, RDF graphs do not follow a �xed, prede�ned schema and hence are easily

extensible with new information. These advantages madeRDF the de facto standard

for publishing data within the Linked Data project [7].

An RDF Triplestore is a purpose-build database for the storage and retrieval of

RDF data graphs through semantic queries.RDF triplestores are a cornerstone of Linked

Data, the standard for publishing structured data on the Semantic Web [7], which has

grown to provide a wealth of publicly-available data, with some repositories containing

millions of concepts described byRDF triples (e.g. DBpedia4, FOAF 5, GeoNames6).

Figure 1.5 shows the structure of anRDF triplestore. An application can access

the data in these triplestores by issuing semantic queries usingSPARQL , the standard,

high-level, declarative query language forRDF stores. TheSPARQL queries are received

by the triplestore's SPARQL Endpoint , which proceeds to execute the queries on the

triplestore's data and returns the corresponding results inRDF format.

For instance, in the previous section Figure 1.2 shows an exampleSPARQL query

that asks for the former teams of the playerIker Casillas. If we evaluate this query

against the data graph shown in Figure 1.4, it would return the resourceReal Madrid.

4DBpedia: https://wiki.dbpedia.org/
5FOAF: http://www.foaf-project.org/
6GeoNames: http://www.geonames.org/
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Figure 1.5: Structure of anRDF Triplestore and itsSPARQL endpoint.

SPARQL endpoints of popular Linked Data repositories, such as DBpedia, often need

to execute a big number of queries coming at high-frequency from multiple clients.

The increasing workload that theseSPARQL endpoints face can result in high query

response times which negatively in�uence the user experience when accessing the data

of the triplestore [54, 84]. However,SPARQL endpoints also tend to keep a log of

all the queries received from clients, which can be used to detect repetitive

access patterns to the triplestore's data.

1.2 Problem Statement

In general, regardless of the used computer language and persistent storage system,

access times to data dominate the execution time of applications. This is due to the

fact that access to persistent storage is orders of magnitude slower than CPU execution

time. The exact latency of this access depends on the type of medium used to store the

persistent data. For instance, accessing data on HDD is107 slower than executing a

CPU instruction while for SSD this number stands at 105 and for NVM (Non-Volatile

Memory) it is estimated to be around 102 times slower [83].
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This latency can be mitigated by keeping the data that is likely to be accessed by an

application in the near future in main memory (i.e. RAM). Reading data from RAM

is 103 to 105 times faster than reading data from persistent storage, due in part to the

fact that RAMs allow data items to be read or written in almost the same amount of

time irrespective of the physical location of data inside the memory. However, main

memory is usually smaller in size than persistent storage and can only hold a fraction of

the data kept on persistent storage. Moreover, main memory is volatile and cannot be

used to maintain persistent copies of data after the execution of applications is �nished.

While keeping a copy of the data previously accessed by an application in main

memory might help when the same data is repeatedly accessed, a more e�ective solu-

tion would be to predict which data an application is going to access and prefetch this

data from persistent storage before it is needed by the application. Prefetching has long

been studied as an important approach to improve access times to data.However,

current approaches to prefetching do not always take full advantage of the

information that can be retrieved from the di�erent layers of the techno-

logical stack to make predictions on which data should be prefetched.

For instance, previous approaches to prefetching in Persistent Object Stores either

use �xed heuristics based on the schema of the data or try to detect data access patterns

by monitoring application execution. These approaches are based on a most-common

case scenario, which does not always provide accurate prediction, and are done dur-

ing application execution, which might cause overhead and / or consume additional

memory. Other approaches base the prefetching on predictions made by analyzing the

code of the OO applications that access the POS, but these have been largely theo-

retical without any in-depth analysis of the prediction accuracy or the improvement

that can be achieved in application execution time [8, 43]. Section 2.3 details previous

approaches to prefetching in POSs and highlights their shortcomings.

On the other hand, given that RDF is a �exible, schema-less data format, there has

been a limited amount of research into prefetching based on schema analysis ofRDF

Triplestores. By contrast, previous prefetching techniques in this area have been based

on data retrieved from the triplestore, which is not always available across triplestores,



1.3. Hypothesis and Proposed Solution 27

while others aimed at using prefetching to reduce data access latency in speci�c graph

traversal problems only. While there has been some work on prefetching data based

on analysis ofSPARQL queries, these approaches have been limited to prefetching the

results of the most frequent previous queries or applying query augmentation based on

data found in the RDF Triplestore [54, 55, 84]. A detailed overview of the related work

in prefetching in RDF Triplestores is provided in Section 2.4.

1.3 Hypothesis and Proposed Solution

Based on the technologies described in Section 1.1 and the problems stated in Section

1.2, this thesis presents the following hypothesis:

In a technological setting where applications need access to persistent

data, it is possible to perform data prefetching based on predictions made

by analyzing the instructions and statements of the used computer language,

without involving the underlying data storage system.

Figure 1.6 shows an abstraction of how this hypothesis can be tested on an appli-

cation using a persistent data system. The �gure indicates that, regardless of the used

computer language and data store, the application communicates with the store using

a set of prede�ned calls to store and retrieve data. Our proposed solution, shown in

the blue rectangles in Figure 1.6, takes as input the computer language statements of

the application, which it utilizes to perform a prediction process that generates pre-

dictions of which data should be prefetched. Afterwards, the predictions are used by a

prefetching process to retrieve the data from the persistent data store into a memory

cache, where it can be found by the application when it is needed. The implementation

of how this process is performed depends on the used technologies.

In the case of Persistent Object Stores, the objects are retrieved by the object-

oriented application directly from the store through a set of instructions that automat-

ically convert the persistent objects to the corresponding object type de�ned by the

application, as explained in Section 1.1.3. Thus, our proposed solution in this setting

consists of applying static code analysis on the object-oriented application to predict

which persistent objects are accessed. We then prefetch the predicted objects into the
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Figure 1.6: Abstraction of our proposed solution.

memory cache of the system, and thus the application retrieves them from the cache

when they are needed.

As for RDF Triplestores, data is retrieved from the store throughSPARQL queries

which return data in RDF format. Unlike the case with object-oriented languages

where the entire application code is known beforehand, theSPARQL queries are received

consecutively and are not known in advance. Thus, instead of performing the prediction

statically we needed to adopt another approach that can predict upcoming queries. We

achieve this by analyzing historic query logs ofSPARQL queries to detect recurring query

patterns and predict which data should be prefetched.

Another di�erence between the implementation of the two solutions is the fact

that RDF Triplestores do not have an integrated memory cache. Hence, an external

memory cache should be constructed into which the predicted data is prefetched. This

di�erence is depicted in Figure 1.6 by situating the cache in between the borders of the

store, indicating that the cache could be either internal or external depending on which

technological setting is used. While the approach developed in this thesis focuses on

the prediction of which data should be prefetched from theRDF Triplestore, we also

detail the design of a caching and prefetching system in Chapter 5 to be integrated into

a Triplestore as part of the future work of the thesis.
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1.4 Research Questions

We evaluated the hypothesis and solution proposed in Section 1.3 by answering the

following set of research questions:

(1) In the case of Persistent Object Stores and object-oriented applications:

RQ1: What is the percentage of applications for which static code analysis can

predict access to persistent objects?

RQ2: Can the proposed static code analysis be performed within a reasonable

amount of time?

RQ3: What is the prediction accuracy of the proposed static code analysis?

RQ4: How much in advance can the proposed static code analysis predict access

to persistent objects?

RQ5: Does the proposed prefetching approach improve application execution

times?

RQ6: What is the object hit rate of the prefetching approach?

(2) In the case ofRDF Triplestores and the declarative query languageSPARQL :

RQ7: What is the prediction accuracy of the proposed query-log analysis ap-

proach?

RQ8: Can the predictions be made within a reasonable amount of time?

RQ9: What is the cache hit rate of the proposed prefetching approach?

1.5 Contributions

This thesis presents three novel contributions to the scienti�c community that aim to

prove the hypothesis formulated in Section 1.3:

C1 - An approach to predict access to persistent objects by statically an-

alyzing the source code of object-oriented applications.
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In this contribution, we develop an approach that analyzes the source code of

object-oriented applications that access data stored in a POS in order to predict

access to persistent objects. Our approach takes advantage of the symmetry be-

tween application objects and persistent objects to perform the prediction pro-

cess before the application is executed and hence does not cause any overhead.

The predictions made by our approach can then be used to apply a variety of

techniques that aim to improve access to persistent data, such as prefetching,

cache replacement policies and dynamic data placement.

This contribution aims to answer the research questionsRQ1 , RQ2 , RQ3 and

RQ4 .

C2 - An approach to data prefetching for Persistent Object Stores.

We developed this contribution by integrating our static code analysis approach

into an existing POS in order to prefetch the predicted persistent objects. We

also optimize the prefetching approach with automatic parallelization in order

to take advantage of data distribution and maximize the bene�ts obtained from

prefetching. Moreover, we demonstrate in this contribution that prefetching

data based on our approach reduces the times spent by applications waiting for

data to be accessed, thus improving the overall application execution time.

This contribution aims to answer the research questionsRQ5 and RQ6 .

C3 - A query-log analysis approach to prefetch data in RDF Triplestores.

In this contribution, we present an approach to prefetching inRDF Triplestores

based on analysis of historic query logs of theSPARQL declarative query lan-

guage. The approach detects recurring query patterns in previous queries and

uses the detected patterns to prefetch data relevant to subsequent queries. The

novelty of our approach is that we measure two independent types of similar-

ity between queries: structural similarity and triple-pattern similarity. Using

these two similarities, we apply machine learning algorithms to detect recurring

patterns in the query logs and prefetch data relevant to subsequent queries.

This contribution aims to answer the research questionsRQ7 , RQ8 and RQ9 .
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1.6 Thesis Structure

The rest of this thesis is structured as follows. Chapter 2 discusses previous approaches

to prefetching in the two domains to which this thesis belongs:(1) Persistent Object

Stores (POSs), and(2) RDF Triplestores, underlining their shortcomings and highlight-

ing how our proposed approach tackles these problems.

Afterwards, Chapter 3 presents the �rst contribution of this thesis (C1) by detailing

the theoretical background and formalization of the �rst of our proposed approaches

to prefetching; static code analysis of object-oriented applications. The chapter also

validates our proposed approach by analyzing the source code of a representative sample

of Java applications.

Chapter 4 then presents the second contribution(C2) by discussing how the pro-

posed static code analysis approach was implemented indataClay, a Persistent Object

Store. The chapter also o�ers an evaluation of performance using two benchmarks, one

standard benchmark for POSs and one benchmark commonly used for Big Data appli-

cations. The experimental results demonstrate that our proposed approach can indeed

improve data access times, and thus application execution times, when compared to

other approaches to prefetching.

We then present the last contribution of the thesis(C3) in Chapter 5, which exposes

our approach to prefetch data fromRDF Triplestores by analyzing SPARQL query logs.

The chapter also validates the proposed approach on real-world query logs and shows

that it can achieve a higher cache-hit rate than previous approaches.

Finally, Chapter 6 outlines the conclusions achieved with this thesis and highlights

future directions to be taken.
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Chapter 2

State of the Art

Data Prefetching is de�ned as retrieving objects from persistent storage to main mem-

ory in anticipation of later use. Prefetching techniques are usually split into two broad

categories: hardware-based and software-based [14]. In this section, we �rst expose

a summary of the most important prefetching techniques in each of these categories

before giving a detailed overview of approaches in the two domains to which this thesis

belongs: (1) Persistent Object Stores in Section 2.3, and(2) RDF Triplestores in Sec-

tion 2.4. We also discuss the limitations of previous approaches in both domains and

highlight the bene�ts of our proposed approach.

2.1 Hardware-Based Prefetching

The �rst approaches to prefetching were based solely on computer hardware, with the

aim of prefetching data from the hard disk into the embedded memory bu�er of the

disk. These approaches do not take into consideration any higher-level information,

such as that produced by analyzing the data stores or program code.

The most basic such technique is the One Block Look-Ahead (OBL) and its variants.

This technique is based on the memory addresses of the data and prefetches the block

adjacent to the one currently accessed. A popular variant of this technique is the N-

Blocks Look-Ahead which allows to prefetch theN blocks adjacent to the current block

[67]. Another variant is presented by Baer and Chen who propose a "hardware support

unit" that looks ahead in the instructions to be executed and prefetches the data from

the memory addresses associated with the load and store instructions [5].
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Combined caching and prefetching policies are more sophisticated hardware-based

techniques that take both caching and prefetching into consideration. Several ap-

proaches have been proposed in this category, such as dividing the cache into various

parts, some for accessed blocks and others for prefetched blocks and managing each

part separately [45, 70]. Other proposals suggest multi-layered prefetching to manage

global memory in multi-machine distributed systems [80]. For more information on

combined caching and prefetching approaches, Caoet al. provide an extensive study

on this type of techniques [16].

Most other approaches simply o�er improvements on these traditional techniques,

such as arranging the blocks to prefetch in order of storage on disk to reduce disk-seek

times [79], or associating each access request with the ID of a "logical context", such

as thread IDs, to provide context-aware prefetching [76].

2.2 Software-Based Prefetching

Software-based prefetching techniques are newer than their hardware-based counter-

parts and allow the programmer or compiler to insert prefetch instructions into pro-

grams. The motivation behind these strategies is the higher possibility of a compiler or

developer having better knowledge of the application's data requirements, which makes

it more promising in terms of prefetching accuracy [14]. Given that these approaches

are performed at a higher level, they do not prefetch data into the disk bu�er but rather

into the database's memory cache.

The �rst type of software-based prefetching techniques ishistory-based ; these

techniques analyze the execution traces of the program in order to �nd data access

patterns that can be used to prefetch data in subsequent executions. For instance,

some approaches detect access patterns by monitoring miss addresses of the program

instructions and prefetch data in future executions from these addresses [24, 65].

Another type of software-based prefetching usesquery rewriting techniques. This

type is particularly popular when dealing with relational databases, with several pro-

posals on how relational queries can be statically moved forward in the program code

or combined to prefetch the query results before they are accessed [10, 11, 73].
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Several prefetching approachestargeting speci�c data structures have also been

developed. These approaches try to tackle the limitations of generic prefetching ap-

proaches by o�ering speci�c improvements for the data structures that they address,

such as DNA sequences [61], hash structures [19], linked list structures [18, 15, 47],

pointer-based structures [56, 78] or dense matrices [63].

Similarly, while most of the prefetching techniques presented so far can be applied

independently of the database type, researchers have developed other approaches that

take advantage of the properties ofa speci�c type of databases . Examples include

prefetching techniques for in-memory key-value stores [85], graph databases [66] and

document stores [41].

All of the approaches discussed in the rest of this chapter fall into this last category,

they are software-based approaches designed to prefetch data from a speci�c type of

database; either Persistent Object Stores orRDF Triplestores. For a more re�ned

analysis, we further divide the approaches in both �elds into the following categories:

� Techniques based on schema analysis,

� Techniques based on analysis of the data in the store, and

� Techniques based on analysis of the computer language used to access the data.

2.3 Prefetching in Persistent Object Stores

Perhaps the most-studied type of NoSQL databases when it comes to prefetching is

Persistent Object Stores (POSs). This is due to the fact that POSs precede other

NoSQL databases and that the structure in which they expose data, in the form of

objects and relations between these objects, is rich in semantics that can produce

detailed information and patterns about how the data is accessed.

2.3.1 Schema-Based Prefetching

The only technique to predict access to persistent objects that falls into this category is

the Referenced-Objects Predictor (ROP) . This approach is based on the following

heuristic: each time an object is accessed, all the objects referenced from it are likely to
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be accessed as well [21]. The technique can be applied by using di�erentfetch depths,

which indicate the number of object relations that should be crossed when performing

the prefetching. For instance, using afetch depthof 1 would only prefetch the objects

directly referenced from an objecto while a fetch depth of 2 would also prefetch the

objects referenced from these objects as well, and so on.

While this approach does not always provide accurate prediction of which data

should be prefetched, it is widely used in commercial POSs because it does not involve

a complex and costly prediction process. Hibernate [21], Data Nucleus [23], Neo4JOGM

[64] and Spring Data JPA [33] all support this technique through speci�c con�guration

settings with varying degrees of �exibility (e.g. apply the prefetching on system level

or only to speci�c object types).

On the other hand, Han et al. tackle a major drawback of previous prefetching

approaches in [36]; they have been usually done on object or page level meaning that

they only work when the exact same object or page is repeatedly accessed. However,

real-world applications tend to be repetitive on the level of the types of objects accessed.

In other words, applications have patterns of the form "each time an object of typeA

is accessed, the referenced objects of typesB and C are accessed along with it".

The authors of [36] exploit this repetitiveness by analyzing access patterns at the

type-level instead of the object or page level. They apply machine-learning techniques

in order to detect type-level access patterns at runtime and use the discovered patterns

to prefetch objects that are predicted to be accessed next.

In an optimization of their work, Han et al. propose constructing a materialized

database view for each detected access pattern [34]. According to the authors, this has

the bene�t of reducing the number of disk accesses and improves the overall performance

when compared with the original type-level access patterns approach.

2.3.2 Data-Based Prefetching

The vast majority of research done in prefetching in POSs has been based on analyzing

access patterns to the persistent objects. Kna�a presents the �rst such work by using

the additional information obtained through analyzing objects and their relationships
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with each other [50]. His approach is based on the idea that when an objecta references

an object b which resides in a di�erent page thana, then this page becomes a candidate

for prefetching. The approach also includes an optimization to improve the accuracy

of the prefetching prediction by delaying the prefetch when an object has more than

two outgoing references to objects residing in other pages.

The same author presents an extension of his work by modeling object relationships

as a Discrete-Time Markov Chain and calculating the probability that a certain page

will be accessed [51]. The decision to prefetch a page is based on several cost metrics

that compare the bene�ts of a correct prefetch with the costs of an incorrect one.

Curewtiz et al. propose a novel approach to prefetching in POSs by using common

compression algorithms [22]. In particular, the authors use three di�erent compres-

sion algorithms, the Lempel-Zev, Prediction-by-Partial-Match and Markov-Predictor

compressors, to model relations between object and predict which objects should be

prefetched. They conclude that the Prediction-by-Partial-Match algorithm o�ers the

best prefetching accuracy.

He and Marquez present a prefetching technique based on the concepts of cache

and path consciousness in [39]. Their approach is based on two main ideas: dividing

pages into "memory resident" and "memory non-resident" pages (cache consciousness),

and storing features in the object trace during training, these features are then used to

identify the current path of navigation (path consciousness).

The notion of an object's "context" was �rst suggested by Bernstein in [6] where an

object is loaded as a predictor of future accesses. A context in this case can be a stored

collection of relationships, a query result or a complex object with compositions. This

context is then used when a new access to the main object is made and, for instance,

if some attribute a of an object is accessed, the system prefetches attributea for all

objects in the accessed object's context.

Garbatov et al. use stochastic methods to analyze the runtime behavior of object-

oriented applications in order to predict object accesses of future executions in [31].

The approach automatically modi�es the Java bytecode of the applications in order to

mark the start and end of each context (in this case, a class method).
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2.3.3 Computer Language-Based Prefetching

Using static code analysis to prefetch persistent objects was �rst suggested by Blair

et al. The approach analyzes the program code of OO applications at compile-time

in order to model object relations and detect when the invocation of a method causes

access to a di�erent page [8]. This information is then used at runtime in order to

prefetch the page once the execution of the method starts.

Ibrahim and Cook [43] propose AutoFetch, a tool that automatically pro�les the

traversals resulting from queries made to a POS, and uses this information to calculate

a traversal pro�le. This pro�le is then used to predict future traversals and augment

queries with the prefetch speci�cation. The pro�le is generated at runtime and the

queries are classi�ed using their call-stack and the query string.

2.3.4 Other Types of Approaches

Ahn et al. present an interesting approach based on prefetching objects from a set of

selected candidate pages [1]. The main distinctive feature of this approach is that, while

being oriented towards POSs, it only prefetches objects from selected candidate pages

without using any object semantics. The authors argue that this technique is easier to

implement and less intrusive than keeping track of object semantics and relationships,

which is followed by most other approaches. The algorithm is explained in detail in [2].

Finally, some commercial POSs, such as Django [27], allow the developer to man-

ually supply prefetching hints by using prede�ned prefetching instructions that the

developer needs to explicitly invoke with each access to the POS. This manual speci�-

cation might result in more accurate prefetching, given that the developer has better

knowledge of the data accesses of the application, but it is a tedious task that requires

manual inspection of the entire application code. Moreover, correct prefetching hints

are di�cult to determine and incorrect ones are hard to detect [43].

For more information, [52] includes an extensive, albeit outdated, survey of dif-

ferent prefetching techniques while both [32] and [8] present taxonomies categorizing

prefetching techniques in object-oriented databases.
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Table 2.1: Taxonomy of prefetching techniques in Persistent Object Stores

Ref.
Prediction
Technique

Prediction
Time

Prediction
Level

Prefetching
Granularity

[21] Schema-based Compile-time Type Object
[36] Schema-Based Runtime Type Object
[34] Schema-Based Runtime Type Object
[50] Data-Based Runtime Object Page
[51] Data-Based Runtime Object Page
[22] Data-Based Runtime Object Page
[6] Data-Based Runtime Object Object, Attribute
[39] Data-Based Runtime Object Page
[31] Data-Based Runtime Object Page

[8]
Computer

Language-Based
Compile-time Type Page

[43]
Computer

Language-Based
Runtime Object Page

[2] Other Runtime Type Page

2.3.5 Taxonomy

This section presents a taxonomy of prefetching approaches targeted towards POSs. We

based the categorization on the taxonomies included in [32] and [8], modifying them to

accommodate new techniques and approaches that were not considered. Moreover, we

added a new dimension that includes the categories discussed in Section 2.2.

Table 2.1 shows the taxonomy including the approaches previously discussed in this

section. The dimensions according to which the approaches were categorized are:

� Prediction technique: indicates whether the prediction is schema-based, data-

based or computer language-based.

� Prediction time: indicates whether the prediction is done before application

execution (i.e. compile-time) or during application execution (i.e. runtime).

� Prediction level: indicates whether the prediction is made at the object-level or

type-level. While all schema-based techniques do the prediction at the type-level,

computer language-based techniques may use either object-level prediction (e.g.

[43]) or type-level prediction (e.g. [8]).

� Prefetching granularity: indicates whether the approach prefetches objects or

entire pages of objects from persistent storage. In a minority of cases, speci�c

attributes of an object can be prefetched separately.
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2.3.6 Discussion

Following the taxonomy presented in Table 2.1, our approach would fall into the cate-

gories of computer language-based, compile-time, type-level prediction, with an object-

level prefetching granularity. The bene�ts of using computer language-based pre-

diction for prefetching are highlighted by Gerlhof et al., who provide a quantitative

comparison between a runtime predictor and a computer language-based technique and

conclude that static computer language-based techniques are a promising alternative

to expensive monitoring-based predictors [32].

Moreover, using computer language-based prediction allows us to take into account

information about how applications access the data without needing runtime monitor-

ing of application execution, which is not possible to do at the store-level. Finally, in

the cases where various applications access the same store, computer language-based

techniques also allow to provide more accurate, application-speci�c prediction on which

objects should be prefetched.

The advantage of performing the prediction process atcompile-time is the absence

of overhead present in techniques which need information gathered at runtime, which

can amount to roughly 10% of the execution time [31]. Similarly, performing the

prediction at the type-level has more advantages than doing the process at the object-

level since it does not store the information for each individual object, thus reducing

the amount of memory needed [36]. Moreover, it can capture access patterns occurring

even when di�erent objects of the same type are accessed [35]. Finally, prefetching

individual objects instead of entire pages of objects reduces the amount of memory

occupied by other objects in the same page that will not necessarily be accessed.

Table 2.1 shows that the most similar work to the approach proposed in this thesis

is the approach presented in [8], which uses static code analysis to perform the predic-

tion process at compile-time. However, this work does not o�er any in-depth analysis

of common code constructs, such as loop and branching statements. Moreover, the

authors do not provide any implementation or evaluation of the proposed approach.

Finally, the proposal in [8] prefetches entire pages of objects at once, which is far less

accurate than our approach of prefetching individual objects.
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2.4 Prefetching in RDF Triplestores

RDF Triplestores are a much newer technology than POSs and hence there has been less

research in prefetching in this domain. Given the structure of theRDF data graph and

the fact it is a schema-�exible data format, most previous approaches have been data-

based, analyzing the access patterns to the resources in the triplestore and modeling

the relationships between them.

2.4.1 Schema-Based Prefetching

Similarly to Persistent Object Stores, prefetching approaches based on schema analysis

have not received considerable amount of research. An example of a schema-based

approach to prefetching in RDF triplestores is the one presented by Dinget al., which

uses application-speci�c schema design to store largeRDF graphs [25]. The authors

also claim that the discovery of subject-property query sequences aids in the design of

prefetching strategies. However, they do not go into any further details about how the

prefetching approach can be designed or implemented.

2.4.2 Data-Based Prefetching

The �rst approaches to data-based prefetching inRDF Triplestores o�ered simple solu-

tions that aim at improving the execution times of speci�c applications and use cases.

One such approach is presented by Gaoet al., who propose prefetching a predetermined

set of path expressions while solving multi-source multi-destination (MSMD) problems

on RDF graphs [30]. They evaluate their prefetching technique and conclude that a

more optimal prefetching strategy is needed in the future, given that their technique

does not always improve performance.

Hartig et al. propose a more general approach that dereferences resource URIs as

soon as the URI becomes part of a query solution [38]. This is in contrast with the

general practice of only dereferncing URIs at the time when the correspondingRDF

graph is needed. Another approach is proposed by Panet al., who assign weights

to di�erent triple patterns based on the occurrence frequency of each triple pattern
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in previous accesses [68]. TheRDF triples corresponding to the patterns that cross a

speci�ed frequency threshold are then prefetched into memory.

By far the most popular technique used to prefetch data inRDF Triplestores has

been query augmentation. This technique, also called `query relaxation', aims at re-

laxing the conditions of a query in order to prefetch additional data that is potentially

needed for subsequent queries. While query augmentation predatesRDF triplestores, it

has been adapted many times toSPARQL queries as an approach to perform prefetching.

Using this technique, Hurtado et al. suggest relaxingSPARQL queries by logical

relaxation of their triple patterns based on logical entailment and ontological metadata

retrieved from the triplestore [42]. In contrast, Hogan et al. propose an approach to

query augmentation that relies on precomputed similarity tables for attribute values [40]

and evaluate di�erent distance measures to calculate this similarity. Finally, Elbassuoni

et al. utilize a language model derived from the knowledge base to perform query

augmentation [28].

Given that these query augmentation techniques need data from the data source,

they require at least some precomputations to be performed before they can be ap-

plied. Furthermore, they are not readily portable across triplestores since the required

information might not always be available.

2.4.3 Computer Language-Based Prefetching

In the context of RDF Triplestores, computer language-based approaches are based on

analyzing SPARQL queries in order to obtain relevant information in developing more

accurate prefetching. Zhanget al. present such an approach by measuring similarity

betweenSPARQL queries using a Graph Edit Distance (GED) function [84]. The authors

then use previous queries similar to the current query to `suggest' data for prefetching.

A major drawback of this approach is that it only works if the exact same query is

launched several times, making it more similar to caching than prefetching.

In the area of query augmentation, Loreyet al. propose an approach that mea-

sures the similarity between pastSPARQL queries based on a bottom-up graph pattern
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matching algorithm [55]. These measurements are used to cluster similar queries to-

gether and create aquery templatefor each cluster. The authors extend their work by

combining the query templateswith four di�erent query augmentation strategies but

do not reach any conclusive results on which strategy o�ers the best results [54].

2.4.4 Discussion

Our approach belongs to the last category of prefetching techniques, it is a computer

language-based approach that analyzesSPARQL query logs to predict data for prefetch-

ing. It also applies query augmentation in order to prefetch the predicted data.

However, unlike previous approaches that fall into the same category (e.g. [55]),

we do no directly launch an augmented query but use a two-step prediction process

to predict the structure of the augmented query before individually predicting which

triple patterns to use (as discussed in Chapter 5). This separation allows us to take

the query structure into account without performing any graph matching between each

pair of SPARQL queries.

When compared to approaches that use query augmentation based on data found

in the triplestore, our approach is more �exible given that it does not require any

speci�c information that might not be found in the store. Instead, we apply our query

augmentation when needed using the query logs of theSPARQL endpoint.
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Chapter 3

Static Code Analysis of

Object-Oriented Applications

This chapter details the �rst contribution of this thesis (C1) by presenting an approach

that uses static code analysis of object-oriented applications to predict access to data

in Persistent Object Stores (POSs). The analysis is performed before the application

is executed and hence does not cause any overhead. Moreover, the approach is fully

automatic and does not require any manual input from the developer.

We start by introducing a motivating example that shows the limitations of current

approaches to predict access to data in POSs, in Section 3.1, and the type of information

we can retrieve by statically analyzing the source code of an OO application in Section

3.2. Afterwards, we formalize our proposed approach using the concept of type graphs

in Section 3.3. We then implement the proposed static code analysis and discuss the

implementation details in Section 3.4. Afterwards, we move on to study the viability of

the implemented approach in Section 3.5 by answering the following research questions:

RQ1: What is the percentage of applications for which static code analysis can predict

access to persistent objects?

RQ2: Can the proposed static code analysis be performed within a reasonable amount

of time?

RQ3: What is the prediction accuracy of the proposed static code analysis?
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RQ4: How much in advance can the proposed static code analysis predict access to

persistent objects?

Finally, we summarize our �ndings and conclude this chapter in Section 3.6.

3.1 Motivating Example

Figure 3.1 shows the POS schema of a bank management system. In the �gure, we

can see various classes representing the entities of the system, such asTransaction,

Account and Customer. Let's say that we want to update the customers of the accounts

responsible for all the transactions to be in the name of the manager of the bank.

However, as a security measure, the system restricts updates on accounts to customers

of the same company as the customer currently owning the account.

In order to achieve this task, we need to retrieve and iterate through all theTransac-

tion objects. We then navigate to the referencedAccount and Customer until reaching

the Company of each customer. Finally, we need to compare the company of the

customer currently owning the account with the company of the bank manager.

The simplest prediction technique that can be applied in this case is the Referenced-

Objects Predictor (ROP), as de�ned in Section 2.3. Applying ROP to our example

means that, for instance, each time aTransaction object is accessed, the referenced

Transaction Type, Account and Employee objects are predicted to be accessed along

with it.

However, in order to accomplish our task we also need to access theCustomer and

Company objects which will not be prefetched. On the other hand, theTransaction

Type and Employeeobjects will be prefetched with Transaction but in reality are not

needed for the task at hand. To put this in numbers, if we have 100,000Transactions

the ROP would wrongfully predict access to as many as 200,000 objects in the worst

case while missing another 200,000 objects that will be accessed.

The prediction accuracy of ROP can be improved by increasing the "fetch depth",

i.e. the number of levels of referenced objects to predict. For instance, instead of

only predicting access toTransaction Type, Account and Employee, which are directly
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Figure 3.1: Example of a Persistent Object Store (POS) schema. The schema represents a banking
system with 7 entities, each of which corresponds to an object type in the POS.

referenced fromTransaction, having a fetch depth equal to 2 would also predict the

objects referenced from them, which areDepartment and Customer in this example.

Increasing the fetch depth of ROP may help in predicting more relevant objects but

it does not solve the problem of predicting access to objects that are not necessary. As

a matter of fact, the more the fetch depth is increased the more likely it is to predict

irrelevant objects as well. This is due to the fact that the ROP applies a heuristic based

on the schema of the POS that does not take into account the application behavior.

Another more complex approach would be to monitor accesses to the POS and

generate predictions based on the most commonly accessed objects [36, 43, 31]. For

instance, monitoring accesses to the POS shown in Figure 3.1 might tell us that in 80%

of the cases where aTransaction object is accessed, its relatedAccount and Customer

objects are accessed as well.

This would work perfectly for our task, we will only need to load the referenced

Company object and all the other necessary objects will have been already prefetched.

However, in the 20% of cases where a transaction'sAccount and Customer are not

needed, they will still be prefetched despite the fact that they will not be accessed.

Moreover, retrieving the necessary information for this approach requires runtime mon-

itoring of the application which adds overhead to the application execution time [31].

The problem faced in both cases is that sometimes we prefetch objects that are not

needed into memory and at the same time we don't prefetch objects that are actually

accessed. This partially stems from the fact that the prediction heuristics are applied

without taking into consideration the actual applications being used to access the data.
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3.2 Solution: Static Code Analysis

Continuing with the same example, assume that we have an application with the par-

tial implementation shown in Figure 3.2, written in an object-oriented language, to

control access to the POS in Figure 3.1. The task that was described in Section 3.1 is

implemented by the methodsetAllTransCustomers() (lines 30 to 34) in Figure 3.2. By

analyzing the code of this method, we can see that whenever it is executed it accesses:

� the object manager de�ned in BankManagement.

� all of the Transaction objects de�ned in BankManagementby iterating through

them in a for loop.

These objects are accessed directly by the methodsetAllTransCustomers() but the

method also invokes other methods that may access persistent objects themselves. In

particular, we see that setAllTransCustomers() invokes two methods:

� the method getAccount() which accesses the objectsType, Employeeand Account

referenced from aTransaction. Moreover, this method might also access the

Department of the Employeeof a Transaction, depending on which branch of the

conditional statement starting on line 7 is executed.

� the method setCustomer() which accesses the objectsCustomer and Company

referenced from theAccount object returned by the invocation of getAccount().

By combining the information obtained from analyzing the methodsetAllTransCus-

tomers() with that obtained from analyzing its invoked methods, we can get a better

idea of which objects the method will access when executed. Performing this inter-

procedural analysis also permits to predict access to a persistent object with more time

in advance. This is crucial to have su�cient time to prefetch the predicted objects

before they are accessed by the application.

On the other side, performing a static analysis does not always give us certain infor-

mation about which objects are accessed, such as the case with the methodgetAccount()

which may or may not access the objectDepartment depending on which branch of the
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1 public class Transaction {
2 private Account account ;
3 private Employee emp;
4 private TransactionType type ;
5

6 public Account getAccount() {
7 if ( this . type . typeID == 1) {
8 this . emp.doSmth();
9 } else {

10 this . emp. dept .doSmthElse();
11 }
12 return this . account ;
13 }
14 }
15

16 public class Account {
17 private Customer cust ;
18

19 public void setCustomer(Customer newCust ) {
20 if ( this . cust . company == newCust . company ) {
21 this . cust = newCust ;
22 }
23 }
24 }
25

26 public class BankManagement {
27 private ArrayList<Transaction> transactions ;
28 private Customer manager ;
29

30 public void setAllTransCustomers() {
31 for (Transaction trans : this . transactions ) {
32 trans.getAccount().setCustomer( this . manager );
33 }
34 }
35 }
36

37 ...

Figure 3.2: Example application code written in an OOP language.

conditional statement is taken. The branching behavior of an application is dynami-

cally determined during runtime and cannot be fully studied statically. However, we

demonstrate in the approach study in Section 3.5 that the branching behavior of an

application has minimal e�ects on its access patterns to persistent objects.

Using all of this information obtained by statically analyzing the source code of an

application, we can automatically generate method-speci�c access hints that predict

which objects are going to be accessed by a method in the application. The clear
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advantage of this approach is that it is performed statically before the application is

executed and hence does not add any overhead to the application execution time. The

second advantage, which we show in Section 3.5, is that the prediction accuracy of this

approach is higher than other approaches performed at compile-time.

3.3 Proposed Approach

The formalization of our approach is based on the notion ofapplication type graphs

presented in [43]. However, the approach in [43] predicts access to persistent objects

by monitoring application execution while our approach performs the process by stat-

ically analyzing the application's code prior to its execution. To that end, we extend

this formalism by introducing method type graphs, branch-dependent navigationsand

augmented method type graphs. We also formalize howaccess hintsthat predict access

to persistent objects are obtained from a method's augmented type graph.

Let us assume that we have an object-oriented application that uses a POS with

a one-to-one mapping between application objects and POS objects (i.e. each object

in the application is exposed by the POS as an object regardless of how it is stored

internally). Further assume that the application is already checked by a compiler and

does not contain any compile-time errors.

We de�ne T as the set of types (i.e. classes) andF as the set of �elds of the

application. Also, 8t 2 T we de�ne the two following sets:

Ft : the set of member �elds oft

M t : the set of member methods oft

3.3.1 Application Type Graph

An application type graph is a graph that captures the schema of the underlying POS

by statically analyzing the source code of an application. Formally, the type graph of

an application, as de�ned in [43], is a directed graphGT = ( T; A) where:

� T is the set of types de�ned by the application.
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