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Abstract

Multidimensional nucleosynthesis studies with hundreds of nuclei linked through
thousands of nuclear processes are still computationally prohibitive. To date,
most nucleosynthesis studies rely either on hydrostatic/hydrodynamic simulations
in spherical symmetry, or on post-processing simulations using temperature and
density versus time profiles directly linked to huge nuclear reaction networks.
Parallel computing has been regarded as the main permitting factor of

computationally intensive simulations. This paper explores the different pros and
cons in the parallelization of stellar codes, providing recommendations on when
and how parallelization may help in improving the performance of a code for
astrophysical applications.
We report on different parallelization strategies succesfully applied to the

spherically symmetric, Lagrangian, implicit hydrodynamic code SHIVA,
extensively used in the modeling of classical novae and type I X-ray bursts.
When only matrix build-up and inversion processes in the nucleosynthesis

subroutines are parallelized (a suitable approach for post-processing calculations),
the huge amount of time spent on communications between cores, together with
the small problem size (limited by the number of isotopes of the nuclear
network), result in a much worse performance of the parallel application than the
1-core, sequential version of the code. Parallelization of the matrix build-up and
inversion processes in the nucleosynthesis subroutines is not recommended unless
the number of isotopes adopted largely exceeds 10,000.
In sharp contrast, speed-up factors of 26 and 35 have been obtained with a

parallelized version of SHIVA, in a 200-shell simulation of a type I X-ray burst
carried out with two nuclear reaction networks: a reduced one, consisting of 324
isotopes and 1392 reactions, and a more extended network with 606 nuclides and
3551 nuclear interactions. Maximum speed-ups of ∼41 (324-isotope network) and
∼85 (606-isotope network), are also predicted for 200 cores, stressing that the
number of shells of the computational domain constitutes an effective upper limit
for the maximum number of cores that could be used in a parallel application.

Keywords: Numerical methods; Hydrodynamics; Parallel computing; Nuclear
reactions, nucleosynthesis, abundances; Stellar evolution; Stellar explosions:
classical novae; Stellar explosions: X-ray bursts

Main text

1 Introduction

Computational astrophysics has revolutionized our knowledge of the physics of stars.

Simultaneously to the progress achieved in observational astrophysics (through

high-resolution spectroscopy and photometry, sometimes including multiwavelength

observations with space-borne and ground-based observatories), cosmochemistry

(isotopic abundance determinations in presolar meteoritic grains) and nuclear

physics (determination of nuclear cross sections at or close to stellar energies), com-
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puters have provided astrophysicists with the appropriate arena in which complex

physical processes operating in stars (e.g., rotation, convection and mixing, mass

loss...) can be properly modeled (see, e.g., Ref. [1]).

Stellar evolution models are becoming increasingly sophisticated and complex.

The dawn of supercomputing and multi-core machines has allowed to (partially)

overcome the limitations imposed by the assumption of spherical symmetry. The

pay-off, however, is still very expensive. Two-, and specially three-dimensional sim-

ulations are so computationally demanding that other simplifications, such as the

use of truncated nuclear reaction networks, large enough to account for the ener-

getics of the star, must be adopted. Multidimensional nucleosynthesis studies with

hundreds of nuclear species linked through thousands of nuclear processes are still

prohibitive. Accordingly, most of our understanding of element synthesis in stars

relies either on hydrostatic/hydrodynamic simulations in spherical symmetry (1D),

or on post-processing simulations using temperature and density versus time pro-

files extracted from stellar evolution models, and directly linked to huge nuclear

reaction networks. Even such post-processing calculations can sometimes become

computationally very intensive: for instance, the sensitivity study of the effect of

nuclear uncertainties in X-ray bursts nucleosynthesis performed by Parikh et al. [2],

requiring 50,000 post-processing calculations, with a network containing 600 species

(from H to 113Xe), and more than 3500 nuclear reactions, took about 9 CPU months

in a single-core computer.

In the 1D codes used in the modeling of a wide range of astrophysical scenarios,

such as classical novae, X-ray bursts, supernovae, or AGB stars (e.g., FRANEC [3, 4],

MESA [5, 6], SHIVA [7, 8]), stars are divided into ∼ 100s - 1000s of concentric shells.

They also incorporate a similar number of nuclear processes, which link hundreds of

nuclear species. The subroutines that handle the suite of different nuclear processes

and the associated nucleosynthesis are often the most time-consuming components

of a stellar evolution code (unless very small nuclear reaction networks are used).

Different strategies have been adopted to reduce the computational cost of such

simulations, therefore improving the performance of a code. One possibility relies

on the use of more efficient numerical techniques to handle integration of large

nuclear networks [9, 10]. Another possibility involves parallelization of the stellar

code, so that the high computational cost can be split and handled by different

cores working cooperatively.

Parallel computing has been regarded as the main permitting factor of more pre-

cise, computationally intensive simulations. Indeed, most of the existing multidi-

mensional stellar codes have been parallelized. Naively, parallelization simply relies

on applying several cores to the solution of a single problem, so that speed-ups are

accomplished by executing independent, non-sequentional portions of the code. In

practice, however, parallelization comes with a high cost in both engineering and

programming efforts. And on top of that, it may turn out that parallelization does

not pay off altogether, for specific applications. Therefore, the main goal of this pa-

per is to explore the advantages (and disadvantages) associated with the paralleliza-

tion of stellar codes, outlining recommendations on when and how parallelization

may help in improving the performance of a code for astrophysical applications. We

discuss significant speed-ups that allow the execution of hydrodynamic simulations

coupled to large nuclear reaction networks in affordable times.
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The structure of this paper is as follows: different strategies in the parallelization of

a stellar evolution code (and of the matrix build-up and inversion processes in the

nucleosynthesis subroutines) are described in Sections 2 and 3. Special emphasis

is devoted to the expected speed-ups obtained as a function of the size of the

nuclear reaction network and the number of cores involved in the simulation. The

performance of the parallelized version of SHIVA code is qualitatively compared with

other codes, with similar or different architectures, in Section 4. The main results

and conclusions of this work, together with a list of open issues, are summarized as

well in Section 4.

2 Parallelization of a Stellar Code with a Decoupled,

Time-Explicit Treatment of the Nucleosynthesis Subroutines

The different strategies in the parallelization of a stellar evolution code described

in this paper rely on the Message Passing Interface (MPI) communication protocol,

and have been directly applied to SHIVA, a one-dimensional (spherically symmetric),

hydrodynamic code, in Lagrangian formulation, built originally to model classical

nova outbursts (see Refs. [7, 8], for details). The code uses a co-moving (Lagrangian)

coordinate system, such that all physical variables (i.e., luminosity, L, velocity, u,

distance to the stellar center, r, density, ρ, and temperature, T ) are evaluated in a

number of grid points directly attached to the fluid. In essence, this corresponds to

a system of 5N variables (unknowns), where N is the overall number of shells of

the computational domain. SHIVA’s computational flow is depicted in Fig. 1.

At each time-step, the set of 5N unknowns is determined from a system of 5N

linearized equations (i.e., conservation of mass, momentum and energy, the defini-

tion of the Lagrangian velocity and an equation that accounts for energy transport),

which is solved by means of an iterative technique—Henyey’s method [11]. The ba-

sic set of stellar structure equations, supplemented by a suitable equation of state

(EOS, that includes radiation, ions, and electrons with different degrees of degen-

eracy), opacities and a nuclear reaction network, constitute the building blocks of

any stellar evolution code. In SHIVA, convection and nuclear energy production

are decoupled from the set of hydrodynamic equations, and handled by means of a

time-explicit scheme. In general, partial differential equations involving time deriva-

tives can be discretized in terms of variables evaluated (i.e., known) at the previous

time-step (explicit schemes) or at the current time-step (implicit schemes). Explicit

schemes are usually easier to implement than implicit schemes. However, in ex-

plicit schemes the time-step is limited by the Courant–Friedrichs–Levy condition

that prevents any disturbance traveling at the sonic speed from traversing more

than one numerical cell, thus leading to unphysical results. Implicit schemes allow

larger time-steps than explicit schemes, with no precondition on the time-step, but

they require an iterative procedure to solve the system at each step. In SHIVA, all

compositional changes driven by nuclear processes or convective transport are eval-

uated at the end of the iterative procedure[1], once the temperature, density and

[1]As for the nuclear energy production and nucleosynthesis, neutrino losses are also

implemented explicitly in the SHIVA code. However, as they do not require intense

computation efforts, subroutines handling neutrino losses have not been parallelized

in this work.
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the other physical variables have been determined at each computational shell. In

particular, SHIVA implements a two-step, time-explicit scheme to calculate the new

chemical composition at each time-step (see Ref. [19]). While such decoupling of the

nucleosynthesis subroutines from the hydrodynamic equations has a minor effect on

the results, it has a huge impact on the speed-up factors that can be obtained after

parallelization (see Section 4, for a more detailed discussion).

2.1 Parallelization Strategy

The maximum theoretical speed-up accomplished by a parallel application is defined

as the ratio of the total execution times of the serial application, TS, and the parallel

application, TP:

TS/TP = TS/(Tin+Tpp/NP+Tcomm+Tout) = 1/((1−p)+p/NP+Tcomm/TS)(1)

where NP is the number of processes participating in the parallel computation,

Tcomm the time devoted to communications and message passing amongst cores,

Tin and Tout are the initialization and output times, and p = Tpp/TS is the so-called

parallel content, or ratio of the serial execution times of the overall application, TS,

and the potentially parallel portion of the code (e.g., a subroutine), Tpp. The max-

imum attainable speed-up[2] is, therefore, determined by the ratio between Tcomm

and TS. For Tcomm = 0, Eq. 1 results in the well-known Amdahl’s law, which pro-

vides an estimate of the theoretical speed-up as a function of the parallel content

and the number of cores used [12]. If the processes need to communicate frequently,

the cost of communication will take a heavy toll on the total execution time. In this

situation, speed-ups below unity are even possible (i.e., the parallel application will

run slower than its sequential counterpart), and therefore, must be avoided.

A first analysis of SHIVA’s architecture suggests two main points where paralleliza-

tion might be exploited: the solution of the linearized system of equations for the

determination of the physical variables (i.e., Henyey’s method), and the multizone

calculation of the nuclear energy generation rate and nucleosynthesis. The first one

relies on the parallel solution of a system of 5N linear equations, where N is the

number of shells adopted in the simulation. For a typical astrophysical application,

N ∼ 100 - 1,000. However, as will be discussed later (see Sect. 3.3), such a parallel

approach only achieves acceptable performance for ≥ 10,000 equations. Very modest

speed-up factors are obtained otherwise (i.e., less than a factor of 2), which do not

justify the effort. In contrast, the multizone calculation of nuclear energy generation

and nucleosynthesis is computed independently at each shell, and can result in large

speed-up factors if parallelized. This is the specific parallelization strategy adopted

hereafter, and presented in this Section. Each core goes redundantly through almost

all processing stages. However, with regard to the nucleosynthesis part, each core

performs the computation on a non-overlapping subset of shells. After this, each

core broadcasts its (partial) results, and from this stage onward, the simulation pro-

ceeds again on all cores redundantly. In this parallelization strategy adopted, there

are only two points of communication: at the beginning of the simulation (where the

root process broadcasts all the initial information and parameters to the rest of the

[2]Note that TS ≡ Tin + Tpp + Tout and TP ≡ Tin + Tpp/NP + Tcomm + Tout.
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processes), and repeatedly at each (successful) iteration, after the distributed com-

putation of the nucleosynthesis has been performed. This choice maximizes parallel

performance by keeping communication points to a minimum or, in other words,

by maximizing the computation to communication ratio [13].

In order to obtain equivalent workloads on all cores, the total number of shells

of the computational domain must be split up into approximately equally sized

groups. The shells assigned to each core are consecutive, so that the different cores

compute energy and nucleosynthesis for shells 1 . . . j, j + 1 . . . i, i+ 1 . . .m, and so

on. The last core will have assigned shells m+ 1 to N .

2.2 Performance Prediction

At each iteration, each core broadcasts the new abundances obtained in the com-

putation of their assigned shells. This represents an ALLGATHER communication

procedure [14], where all processes get the data sent by the other processing cores.

The information is thereafter distributed by means of a ring algorithm where, in the

first step, each core i sends its contribution to core i+ 1 and receives the contribu-

tion from core i− 1 (with wrap-around). Subsequently, each core i forwards to core

i+1 the data received from core i−1 in the previous step [15]. The communication

time taken by this algorithm is given by [16]:

Tcomm = (NP − 1)α+ (NP − 1)nβ/NP (2)

where n is the total data size received by any core from all other cores, α is the

latency or start-up time per message (which is independent of the message size), and

β is the transfer time per byte. Actual values for α and β obtained in the simulations

performed with the SHIVA code are given in Sect. 2.3. Note that both the latency

and the transfer time depend specifically on the speed of the network and of the

communications of the computer cluster (or multi-core computer) where the parallel

application is being executed. It will also depend on the heterogeneity of the cores

(e.g. workstations with different processing power, or different Operating Systems),

and ultimately on how finely the cluster has been tuned to optimize data transfer

and communications. Such quantities are difficult to estimate analytically, and are

frequently measured using real data and extrapolating communication times from

observations [17].

2.3 Results

Fig. 2 shows the excellent speed-up factors accomplished in a parallel simulation of

a type I X-ray burst performed with SHIVA, with N=200 shells. Parallel execution

times have been compared with respect to a serial execution time obtained with a

single core. Simulations have been carried out with two different nuclear reaction

networks: a reduced one, consisting of 324 isotopes and 1392 reactions (hereafter,

Model 1), and a more extended network with 606 nuclides and 3551 nuclear interac-

tions (Model 2; see Ref. [18]). Speed-up factors of 26 and 35 are achieved in Models

1 and 2, respectively, when 42 cores are used in parallel to execute the application.

Fig. 2 also highlights the nonlinear scaling of the speed-up factor with the number

of cores adopted in the parallel execution. Both Tcomm and the overhead time vary
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with the number of cores adopted. This variation depends critically on the type of

communication (e.g., all to all, broadcast, point to point sends and receives, gather,

all gather, etc.[3]), but at any rate both Tcomm and the overhead time increase

monotonically with the number of cores adopted, with a much more pronounced

dependence of Tcomm on NP [16].

The results obtained are so good that approach the performance of a perfect par-

allel application; this means that the computation to communication ratio is large

enough so that processing work can be distributed in an extremely efficient way

amongst cores. Accordingly, larger speed-ups are expected if the number of cores

used in the parallel execution is increased. Fig. 2 displays as well the theoretical

speed-ups expected for both simulations, as given by Eq. 1. Such theoretical esti-

mates do not take into account the communication or synchronization times, and as

a result, the observed performance always falls short compared to the theoretical,

ideal speed-up.

As expected, higher speed-ups are obtained when we increase the problem size by

using a nuclear reaction network with 606 isotopes and 3551 reactions (e.g., Model

2). The speed-up accomplished in this simulation exceeds in approximately 34%

the performance of the execution with a reduced nuclear network (i.e., 26 versus 35

speed-up factors, respectively). This is a direct consequence of increasing the prob-

lem size, which is essentially equivalent to increasing the amount of parallelizable

computation (that is, the nucleosynthesis calculation), and therefore the potential

parallel content also increases (p = 0.99127 for Model 1, whereas p = 0.99738 for

the simulation with a larger nuclear reaction network, i.e. Model 2). This, in turn,

improves the curve of the modelled, theoretical speed-up, hence diminishing the gap

from an ideal speed-up.

The theoretical performance of the parallelized SHIVA code, based on Eq. 1 and

Eq. 2, taking into account the communication time between cores, can be expressed

as:

Speed− up ≈ [(1− p) + p/NP + ((NP − 1)α+ (NP − 1)nβ/NP)/TS]
−1 (3)

where n and TS are specific of the simulation being executed, and the latency α and

the transfer time per byte β depend solely on the communications infrastructure.

Numerical experiments[4] yield α = 1 × 10−5 s and β = 5 × 10−8 s. At the end of

each iteration, all cores gather the nucleosynthesis results, together with the overall

nuclear energy released and the values predicted for the new time-step, ∆t (e.g.,

based on the variation of the most abundant isotopes, as in Wagoner’s method), from

all shells. Taking all this into account, the total amount of bytes being transmitted

works out as:

200 shells× (324 nuc.× 8 bytes/nuc.+

+8 bytes/shell(energy) + 8 bytes/shell(∆t)) = 521.6 kbytes

[3]See, e.g., https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.
[4]All simulations reported in this paper have been executed in the 42-core Hyperion

cluster of the Astronomy and Astrophysics Group at UPC.
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200 shells× (606 nuc.× 8 bytes/nuc.+

+8 bytes/shell(energy) + 8 bytes/shell(∆t)) = 972.8 kbytes

(4)

for Models 1 and 2, respectively. The expected performance of the parallel SHIVA

code (Eq. 3) for up to 200 cores is shown in Fig. 3, together with the experimental

values obtained up to NP=42 cores in the Hyperion cluster. It is interesting to

note that there is still way for improvement. Indeed, maximum speed-ups of ∼41

and ∼85 are predicted when using 200 cores, for Models 1 and 2, respectively. The

scaling efficiency (i.e., the ratio of actual scaling to ideal scaling) is 21% for Model

1 (41 on 200 cores) and 43% for Model 2 (85 on 200 cores). At this point, it is

important to stress that as a result of the parallelization strategy adopted, the

number of shells of the computational domain constitute an effective upper limit

for the maximum number of cores that could be used in the parallel application.

Moreover, it is also worth mentioning that the expected performance of the parallel

SHIVA code, and in general, of any stellar evolution code, is limited by the number

of shells adopted and also by the potentially parallel portion of the code.

It is also important to note that the model of performance presented here is valid

for the execution environment discussed, and cannot be extrapolated to other clus-

ters which may have different latencies and communication bandwidths. That said,

this model can be taken as a reference for the capabilities of a parallelized appli-

cation, and can be used to decide whether access time at some supercomputing

facility, where latencies and transmission bandwidths are highly optimized for par-

allel executions, must be requested. In those platforms, even better speed-up factors

must be expected.

3 Parallelization of the Nuclear Energy Generation and

Nucleosynthesis Subroutines

In this section, we report on the expected speed-ups resulting from parallelization

of the matrix build-up and inversion processes in the nucleosynthesis subroutines,

for different sizes of the adopted nuclear reaction networks. This is a completely

different parallelization approach compared to the one described in Section 2. In

the strategy described for SHIVA, the method of solving the system of equations was

not modified, but executed in parallel on a subset of non-overlapping shells. Now,

it is the build-up and inversion of the matrix containing the rates of the different

nuclear interactions (i.e., the solution of the system of equations) what is being

parallelized. The strategy adopted in this section is of interest for stellar evolution

models that rely on reasonably large nuclear reaction networks, and also for post-

processing nucleosynthesis calculations, in which temperature and density versus

time profiles (frequently extracted from stellar models) are directly coupled to huge

nuclear networks.

3.1 Numerical Treatment of Nuclear Abundances

The time-evolution of the chemical composition of a star relies on a set of differential

equations that take into account all possible creation and destruction channels for
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the species included in the network. After linearization (e.g., finite-differences), the

overall system of equations can be written in matrix form as:

A ·X = X0 (5)

where X0 is the matrix containing the set of abundances of the previous (or initial)

step, A is the matrix containing the rates of the different nuclear inteactions, and

X is the matrix with the new (unknown) abundances.

Different methods have been reported to solve Eq. 5, such as Wagoner’s two-

step linearization technique [19], Bader-Deuflehard’s semi-implicit method [20], or

Gear’s backward differentiation technique [21]. The performance of these different

integration methods for stellar nucleosynthesis calculations has been been analyzed

in a number of studies (see Refs. [9, 10], and references therein). Here, we will

explore the gain in performance driven by parallelization od one particular method:

Wagoner’s. As described in Ref. [22], Wagoner’s two-step linearization procedure

exploits the special properties of matrix A, which consists of an upper left square

matrix, an upper horizontal band, a left vertical band, and a diagonal band. The

sparse nature of matrix A results from the fact that the different isotopes, when

ordered in terms of increasing atomic number, are only linked with close neighbors

through nuclear interactions that usually involve light particles[5] (e.g., n, p, α).

3.2 Parallelization Strategy

A typical nucleosynthesis calculation consists of the following main processing steps:

1 Interpolation (calculation) of reaction rates from tables (analytic fits), for the

specific temperature and density of each shell, at a given time.

2 Assembly of matrices X0 and A.

3 Solution of Eq. 5, for the new abundances of all chemical species at each shell.

4 Convergence check; determination of the new time-step, ∆t.

5 Determination of the overall nuclear energy released at each shell.

Stages 2 and 3 are by far the most time-consuming parts of a simulation (97%

of the execution time in the simulations reported in Sect. 3.3). Consequently, the

parallelization strategy adopted in this work focused on providing the most efficient

partitioning of matrix A, as required by the parallel solution of the system of

equations performed by the parallel solver.

Reaction-rate determinations are partitioned amongst cores, such that at each

iteration step each core performs the interpolation (calculation) of only those re-

actions rates that are strictly needed for the construction of the local partition of

matrix A (Eq. 5). Given a typical nuclear reaction, of the form i(j, k)l, there are

8 possible combinations contributing to matrix A: A(i, i), A(i, j), A(j, j), A(j, i),

A(k, i), A(k, j), A(l, i), and A(l, j), according to the linearization technique de-

scribed in Ref. [19]. The parallel solution of the system of equations is obtained

[5]A few exceptions involve reactions such as 12C + 12C, 16O + 16O, 20Ne + 20Ne,

that take place during some stages of the evolution of stars. See Refs. [23, 8], for

details.
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using MUMPS[6] [24, 25], a widely used software for the solution of large sparse sys-

tems of linear algebraic equations, of the form Ax = b, on distributed-memory

(parallel) computers.

The right hand side of Eq. 5 is centralized in the root process. This requires that

the complete solution from the previous iteration has to be gathered by the root

process at some time during the simulation. In contrast, the solution of the system

of equations is kept distributed, so that after solving the system of equations each

of the cores holds a non-overlapping subset of elements of the solution (i.e., a subset

of the new abundances). At this point, the solution must be exploited in its dis-

tributed form, which requires that subsequent processing stages (e.g., convergence

and accuracy) must be executed independently between cores.

After solving Eq. 5, each core checks convergence and accuracy[7] of its part of

the solution. Finally, the overall nuclear energy released at the specific time-step

is obtained by summing the energy generated by all interactions. This stage is

parallelized by having each core compute the partial nuclear energy released by

a subset of reactions. The above parallelization strategy requires that the cores

communicate at four specific steps during the simulation:

1 During the parallel solution of the system of equations (MUMPS).

2 Once the system of equations is solved; the distributed solution is shared

amongst all cores.

3 To check convergence and accuracy of the solution.

4 To sum up energy contributions from the distributed reactions; every core

computes only the energy released by a subset of reactions.

The above communication requirements are considerably high, as shown by the

performance results reported in the following section.

3.3 Results

The fact that parallelization of the nucleosynthesis subroutines demands much

communication between cores makes the parallel application actually take longer

to complete than its 1-core counterpart (see Fig. 4, where the reference value—

sequential version—corresponds to NP = 1 and the total execution time is depicted

as the ratio between parallel and sequential execution times, t(NP)/t(1)).

The execution time increases significantly when cores physically separated (i.e.,

on different workstations) participate in the simulation. In sharp contrast, when

the parallel application is run using cores within the same machine, the execution

time is kept at bay with respect to the sequential version, and even small speed-ups

are obtained when using a quad core machine, for two, three and four cores. Fig. 5

shows the partial execution times spent on the determination of reaction rates (panel

a), matrix assembly (b), convergence check (c), and determination of the overall

nuclear energy released (d). It is clear that the parallelization strategy adopted for

these different stages is excellent and that significant speed-ups are obtained in all

cases when executed in parallel. For instance, the matrix assembly runs almost 5

[6]See http://mumps.enseeiht.fr/.
[7]The SHIVA code uses a number of convergence and accuracy criteria to guaran-

tee, for instance, that the new solution satisfies the mass, momentum and energy

conservation equations.
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times faster than the sequential version when using 5 cores and almost 7 times

faster when using 10 cores. The convergence and accuracy check and nuclear energy

computation times also yield increases in performance, both running consistently

faster in the parallel version than in the sequential application. Performance results

for the matrix build-up and inversion time are also shown in Panel e. It reveals

that the solution of the system of equations takes consistently longer if executed

in parallel, for any number of cores used in the computation. Note that for the

matrix inversion, we do not even get the small improvements when cores physically

located on the same machine are used. Even though the execution time is more or

less controlled up to four cores (for a simulation run on a quad-core machine), the

performance plummets dramatically with a larger number of cores. The dramatic

loss in performance is therefore provoked by the parallel solution of the system

of equations. The relative time spent on communications is depicted in Panel f.

It clearly exhibits the same pattern underlined for the matrix inversion and total

execution times. While the communication time increases slightly from one to four

cores, it soars rapidly whenever physically separated cores are incorporated into the

parallel execution. We conclude that the high communication costs, together with a

relatively limited computation time, are responsible for the loss in performance.

One final aspect that deserves further discussion is the reason why the gains in

performance found in the other stages (see Fig. 5) do not make up for the increase

in communication times. Fig. 6 shows the percentage of the total simulation time

devoted to initialization, global communications (not including MUMPS internal

communications during the solution of the system of equations), reaction rate cal-

culations, matrix assembly, convergence check, determination of the nuclear energy

released, and matrix inversion (i.e., solver). The sequential execution spends most

of the time inverting the matrix (82%) and building the system of equations (15%).

The calculation of the overall nuclear energy released accounts only for 1% of the

total computation time. The relative time spent on the interpolation of reaction

rates is just a 0.44% of the total execution time, whereas only 0.06% is spent on

convergence checks. With an increasing number of cores participating in the simu-

lation, the time spent on global communications and in the solution of the system

of equations gradually tends to account for nearly all the computation time. This is

the reason why improvements in performance in these stages have no major effect

on the overall execution time.

Having such a loss in performance associated with the solution of the system of

equations, it is compulsory to analyze whether the selection of MUMPS as a solver

has been appropriate. MUMPS represents one of the few professional and supported

public domain implementations of the multifrontal method. Amestoy et al. [24] have

shown that the MUMPS solver performance for large matrices is excellent. For

matrices of order ≥100,000, very good speed-ups are accomplished (e.g., between

2.8 and to 3.7, with 4 cores; and between 7.1 and 10.6, with 16 cores). Note that

speed-ups increase with the matrix size as the computation to communication ratio

increases. For matrices of the order between 10,000 and 100,000, moderate speed-ups

are accomplished with MUMPS (e.g., 2.4 - 3.1, with 4 cores, and 7.2 - 8.4, with 16

cores; [26]). Finally, not much data is available for matrices of order ≤10,000. This is

due to the fact that as the problem dimension shrinks, the distributed computation
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time is also reduced, whilst communication time diminishes much less noticeably.

Accordingly, the resulting speed-ups are dramatically reduced. For instance, Fox

[27], in solving a system with 5,535 elements with the MUMPS solver, reports speed-

ups of 1 (i.e., no speed-up at all) with 4 cores, and a speed-up of 1.8 for 16 cores. It

seems clear that the poor performance reported in this work is mostly due to the

size (order) of the nucleosynthesis matrix, too small to maximize the ratio between

computation and communication times. Accordingly, the efficient parallelization of

the matrix build-up and inversion processes in the nucleosynthesis subroutines is

therefore not possible, unless ≥ 10,000 nuclear interactions are included.

4 Conclusions

This paper reports on several parallelization strategies that can be applied to stellar

evolution codes, providing recommendations on when and how parallelization may

help in improving the performance of a code for astrophysical applications. Paral-

lelization frequently forces to think about a program in new ways and may virtually

require partial or total rewriting of the serial code. It is therefore important to un-

derstand the potential benefits and risks beforehand, since sometimes parallelized

codes may perform even worse than their sequential counterparts.

To this end, two different parallelization strategies have been reported in this work.

With regard to the nucleosynthesis part, efforts have focused on the parallelization

of the solution of the system of equations (that is, the build-up and inversion of

the matrix containing the rates of the different nuclear interactions). In Wagoner’s

two-step linearization technique, the integration method for stellar nucleosynthesis

calculations discussed in this work, the iterative procedure places this application in

the worst possible category for parallelization, in which all cores have to participate

throughout the iteration, exchanging intermediate results on a regular basis. The

huge amount ot time spent on communications between cores, together with the

small problem size (limited by the number of isotopes of the nuclear network), result

in a much worse performance of the parallel application than the 1-core, sequential

version of the code. This stems from the fact that the communication and message

passing times between processes largely outgrow the time spent on computation. It

is therefore not advisable to parallelize the nucleosynthesis portion of a stellar code

(or, by extension, a post-processing code) unless the number of isotopes adopted

largely exceeds 10,000.

With regard to the parallelization of a complete stellar evolution code, efforts

have focused on the spherically symmetric, Lagrangian, implicit hydrodynamic code

SHIVA [7, 8], in the framework of a 200-shell simulation of a typical type I X-ray

burst. Two different nuclear reaction networks have been considered: a reduced one,

consisting of 324 isotopes and 1392 reactions; and a more extended network, with

606 nuclides and 3551 nuclear interactions. The performance of the parallelized

version of SHIVA turned out to be excellent: speed-up factors of 26 and 35 have

been obtained, for the reduced (i.e., Model 1) and extended networks (Model 2),

respectively, when 42 cores were used. These results, however, did not match the

maximum expected values for a perfect parallel application (i.e., the computation

to communication ratio was large enough so that processing work could be dis-

tributed in an extremely efficient way amongst processes). To put these results into
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context, in our execution environment, a parallel simulation using 42 cores took

∼ 5.7 hr to compute 200,000 time-steps with a reduced nuclear network (c.f., 6.1

days in its sequential version). The computation time increased to ∼ 20 hr when

the extended network (with 606 nuclides and 3551 nuclear reactions) was used,

for the same number of time-steps (c.f., 28.6 days in its sequential version). Such

excellent results completely justify the time invested in the parallelization of the

code. Moreover, maximum speed-ups of ∼ 41 and ∼ 85 have been predicted by the

performance model when using 200 cores, for the reduced and extended nuclear

networks, respectively.

A key ingredient in achieving the large speed-up factors reported above is the de-

coupling of the nucleosynthesis subroutines from the set of hydrodynamic/structure

equations adopted in SHIVA. This approach, while having a minor effect on the ex-

pected energetics and chemical composition of a star, is essential to justify a par-

allelization effort. In sharp contrast, efforts to parallelize FRANEC (see Refs. [3, 4],

and references therein), another Henyey-type code in which the nucleosynthesis and

structure equations are solved simultaneously by means of a time-implicit scheme[8],

yielded very poor speed-up factors (A. Chieffi, private com.).

In summary, parallelization of a fully coupled, time-implicit code can only result

in large speed-factors if the most time-consuming parts of the code (e.g., the nucle-

osynthesis subroutines) are decoupled from the hydro equations, and therefore, can

be handled in a time-explicit way. Most multidimensional, stellar evolution codes

available to date (e.g., PROMETHEUS [28]; FLASH [29]; DJEHUTY [30, 31]; GADGET2 [32])

are (time) explicit. While, in general, explicit schemes are easier to implement than

implicit schemes, the real pay-off is the huge speed-up factors achievable when par-

allelized, compared with their 1-core, sequential versions.
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1Departament de F́ısica, EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 16, 08930 Barcelona,

Spain. 2Institut d’Estudis Espacials de Catalunya, C. Gran Capità, 2-4, 08034 Barcelona, Spain. 3Department of
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7. José, J., Hernanz, M.: Nucleosynthesis in Classical Novae: CO versus ONe white dwarfs. Astrophys J 494,

680–690 (1998)

8. José, J.: Stellar Explosions: Hydrodynamics and Nucleosynthesis. CRC/Taylor and Francis, Boca Raton (FL),

USA (2016)

9. Timmes, F.X.: Integration of Nuclear Reaction Networks for Stellar Hydrodynamics. Astrophys J 124, 241–263

(1999)
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Figure 1 The SHIVA code workflow. The code uses a co-moving (Lagrangian) coordinate system,
such that all physical variables (luminosity, L, velocity, u, distance to the stellar center, r, density,
ρ, temperature, T , pressure, P , internal energy, E, artificial viscosity, q, mass fractions, X,
opacity, k, and energy generation rate, ǫ) are evaluated in a number of grid points directly
attached to the fluid (see Refs. [7, 8], for details).

Figure 2 Performance (speed-up factor) of the parallel SHIVA code for executions with 324
nuclides (Model 1; p = 0.99127) and 606 nuclides (Model 2, p = 0.99738), for N = 200 shells.
Theoretical speed-ups (thin lines) are compared with real speed-ups obtained with the SHIVA code
(thick lines). The theoretical speed-ups correspond to the maximum values expected in the case of
a perfect parallelization, as given by Eq. 1.

Figure 3 Extrapolated performance model of the parallel SHIVA code, with up to 200 cores. A
parallel content coefficient of p = 0.99127 was used for Model 1 (simulations with a 324-isotope
network), while p = 0.99738 was used for Model 2 (606 isotopes). The theoretical speed-ups
correspond to values predicted for the specific parallelization model discussed in this paper and for
the Hyperion cluster, as given by Eq. 3.

Figure 4 Total execution time as a function of the number of cores. Two different executions are
provided, P2 and P4, in which the first two or four cores, respectively, are physically located on
the same multi-core machine. Execution P2 has been obtained using only dual-core workstations,
whereas execution P4 has been run on one quad-core workstation plus 19 dual-core workstations.

Figure 5 Partial execution times: (a) Rates calculation. (b) Matrix assembly. (c) Convergence
check. (d) Nuclear energy computation. (e) Matrix build-up and inversion time. (f)
Communication time.

Figure 6 Aggregated simulation time (percentage).
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