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Abstract 

 

As a continuation of the work done by the QSE (Electrical Supply Quality) research group at the 

UPC (Polytechnic University of Catalonia) on harmonic load flow in electric power networks, 

this thesis aims to study existing harmonic load flow formulations, as well as the numerical 

resolution of the nonlinear equation systems derived from these formulations, in order to propose 

improvements for the former and compare performances of numerical methods for the latter. The 

improvements in the harmonic load flow formulations are related to a reduction in the number of 

iterations, for which an improved formulation is proposed. The comparison of numerical 

resolution methods is focused on analysing harmonic load flow formulation convergences and 

accuracies. 

The specific goals of the thesis are: 

(1) To propose an improved formulation for the harmonic load flow problem. This formulation 

should be applicable to electrical networks with highly distorted voltages. 

(2) To analyse the numerical resolution of all the considered harmonic load flow formulations 

(existing and improved) in terms of convergence and accuracy, by using a well-known numerical 

method (Newton-Raphson) and an alternative numerical method (Levenberg-Marquardt). 
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1. Introduction 

 

1.1. State of the art  

 

1.1.1. Fundamental load flow 

 

The calculation of steady state voltages at fundamental frequency from the given power 

constraints in order to know about the static operation of an electric power system is known as 

fundamental load flow (FLF). 

FLF formulation is important in planning, operation, control and calculating the performance of 

an electrical power system. The studies in relation to FLF are covered exclusively in 

bibliography [1 - 3]. The objective of FLF is the resolution of an electric network to find the 

steady state fundamental bus voltages. Table 1.1 summarises the unknowns for FLF if an AC 

network of n buses is considered ( 1,2, , )i n : a Slack bus ( 1)i   and a number of PQ buses 

( 2, , )i n . The absence of PV buses is assumed without loss of generality. 

 

Stage Bus Data Unknowns 

FLF 

Slack 
1

1V  --- 

PQ ,i iP Q  (injected) 1

iV  

Table 1.1: FLF formulation data and unknowns 

The nonlinear equation system for FLF is as follows: 

 

where Y
1

ij are the ij
th

 elements of the network fundamental admittance matrix Y
1

B.
 
The numerical 

resolution of the equation system (1.1) provides the fundamental voltages 1

iV  

 

The fundamental currents injected at network buses can be given as 

 

*

1 1 1

1

( 2, , )
n

iji i j
j

S V Y V i n


 
  

 
 
  (1.1) 

1 1 1 ( 2, , ).i i iV V i n   (1.2) 

1 11 1 1 1

1

( 1, , ).
n

i ij j

j

I Y V i n


     bus bus bus
I Y V  (1.3) 
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1.1.2. Harmonics in power systems 

 

The average value of a periodic signal  x t  is the average of all the values taken by that signal 

over one period. 

0

1
( )

T

averageX x t dt
T

   (1.4) 

If the periodic signal is sinusoidal, its average value is zero.  

 

The root mean square (rms) value of a periodic signal  x t  is the square root of the average value 

of the square of that signal over one period. 

2

0

1
( )

T

rmsX X x t dt
T

     (1.5) 

If the periodic signal is sinusoidal, its rms value is max 2X .  

 

The Fourier theorem states that under certain conditions (which are usually fulfilled in practice 

for a large number of functions) a periodic non-sinusoidal function can be decomposed into an 

infinite sum of functions (Fourier series) consisting of: 

 a constant function (continuous component). 

 a sinusoidal function of frequency f (fundamental component). 

 infinite sinusoidal integer multi-frequency functions of f (harmonic components, or 

simply harmonics), the sinusoidal component whose frequency is k times the frequency 

of the fundamental component being called the harmonic k or k-th harmonic.  

This decomposition is expressed mathematically by equation 

   0

1

2 cos
kk X

k

x t X X k t 




      (1.6) 

where: 

  x t  is the periodic function object of the decomposition. 

 0X  is the continuous component, which corresponds to the average value of  x t . 

  2 cos
kk XX k t     are the sinusoidal components (fundamental and harmonics), each 

characterized by: 
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 kX   rms value of the k-th sinusoidal component. 

 k   angular frequency (pulsation) of the k-th sinusoidal component, the order of said 

component being k. 

 
kX   phase of the k-th sinusoidal component. 

Thus, in the case of Fourier series decomposition of a non-sinusoidal periodic function, the rms 

value of said function can be calculated by using an alternative procedure derived from the 

mathematical expression (1.5) and which is discussed below (also in form of a mathematical 

expression): 

2

0

rms k

k

X X X




    (1.7) 

 

Figure 1.1: Example of a periodic signal of current of rms value I with harmonic content. Decomposition of said 

signal in its fundamental component and its harmonics of rms values Ik. 
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The continuous component and the harmonic sinusoidal components of a periodic signal 

constitute the distortion of its fundamental sinusoidal component. The part of that distortion due 

to harmonic sinusoidal components is called harmonic distortion. Figure 1.1 shows an example 

of a sinusoidal current wave affected only by harmonic distortion, resulting in a periodic signal 

of zero average current (without continuous component). 

Of all the existing indicators for quantifying and evaluating the harmonic distortion of sinusoidal 

waves, the ones detailed below will be those used throughout this document. 

The rms value, for the case of sinusoidal waves affected only by harmonic distortion, is defined 

from (1.7) adopting 1k   

2

1

rms k

k

X X X




    (1.8) 

The individual harmonic distortion of order k is defined as the quotient between the rms value of 

the harmonic component k and the rms value of the fundamental component (in percent). 

1

100 [%]
k

k

X

X
HD

X
   (1.9) 

The harmonic spectrum is defined as the graphic representation of the individual harmonic 

distortion values as a function of the harmonic order. This graphical representation usually 

incorporates the individual "harmonic" distortion (= 100%) of the fundamental component (as if 

it were one more harmonic) whenever it does not give rise to scaling problems. 

 

The harmonic spectra associated with periodic non-sinusoidal functions are discrete or in 

discontinuous form. Thus, for the presence of such spectra to be more attractive, bar graphs are 

often used to represent them. An example is shown in Figure 1.2, which corresponds to that of a 

square wave signal. 

 

Figure 1.2: Signal of the square wave type and its harmonic spectrum (the highest individual harmonic distortions 

have been represented in it). 
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Total harmonic distortion is defined as the square root of the summation of the squares of 

individual harmonic distortions in percent. 

2

22

2 1

100 [%]
k

k

k

X X

k

X

THD HD
X








  


  

 (1.10) 

The usual non-sinusoidal periodic regimes in Electrotechnics usually have negligible or no 

continuous component value. Thus, let it be a load (linear or nonlinear) excited with a voltage 

   
1

2 cos
kk U

k

u t U k t 




     (1.11) 

and crossed by a current 

   
1

2 cos .
kk I

k

i t I k t 




      (1.12) 

Active power is defined as 

 
1

cos
k kk k U I

k

P U I  




      (1.13) 

and, adopting one of the multiple definitions found in the literature, reactive power as 

 
1

sin .
k kk k U I

k

Q U I  




     (1.14) 

In addition, the product of the rms values of voltage and current is called apparent power 

2 2 2 2

1 1 1 1

k k k k

k k k k

S U I U I U I
   

   

           (1.15) 

In view of (1.13), (1.14) and (1.15) it is easy to verify that equality 

2 2 2 ,P Q S   (1.16) 

typical of periodic sinusoidal regimes, is not met. In fact, for non-sinusoidal periodic regimes,  

2 2 2P Q S   (1.17) 

and the distortion power is defined as 

2 2 2 .D S P Q    (1.18) 

Since the existence of a continuous component is not being considered, it may be called 

harmonic distortion power itself. 

 

Harmonics are generally caused by the distortion of the sinusoidal current waveform transmitted 

by nonlinear loads. Switch-mode power supplies (SMPSs), variable speed motors and drives, 

photocopiers, personal computers, laser printers, fax machines, battery chargers and 

uninterruptible power supplies (UPSs) are examples of nonlinear loads. In the last decade, there 
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were an increasing number of nonlinear loads connected to distribution systems. Unfortunately, 

these loads inject harmonic currents leading to problematic voltage distortion levels which may 

damage power quality. The effects of harmonics on power systems and their acceptable limits 

are well known [4 - 11]. For this reason, there are different studies in the literature that attempt to 

predict harmonic currents injected by nonlinear loads [9, 10] and determine harmonic voltages 

[10, 11, 12].  

Controlling and reducing the harmonic distortion in power system is one of the main challenges 

of power engineer. The phenomena of harmonics are based on high frequencies usually the 

frequencies ranging from 50/60 Hz to 2.5 kHz. It is very important to keep in view the device 

characteristics at the harmonic frequency range. Some examples of harmonic producing loads are 

converters, transformers, discharge lamps, electrical machines and arc furnaces. In order to set a 

maximum limit to voltage distortion caused by harmonics and to have high quality power 

supplies, IEEE has set harmonic limits on power consumer so that the magnitude of harmonic 

distortions in power system remains reasonable. IEEE standard 519-2014 [6] puts limits on the 

allowable total harmonic distortion for “Low Voltage, General Distribution, General Sub-

transmission, and High Voltage Systems and Dispersed Generation and Cogeneration".  

 

1.1.3. Harmonic load flow analysis 

 

In recent years, harmonic study and harmonic load analysis have become an integral component 

of electric power system design and analysis. It is estimated that in the next few years more than 

50 percent electric loads in AC networks will be of nonlinear nature resulting in degradation and 

distortion of voltages and current waveforms in electric power systems. Harmonic studies are 

important because they are used to quantify the distorted voltages and current waveforms at 

various points in a power system and to determine whether dangerous resonant conditions exist 

and how they might be mitigated. The propagation of harmonics in the power system results in 

loss of life of equipment, power losses and also interfere with control and communication 

equipment in transmission system [11]. 

Procedures for analysing the steady state harmonic problem can be divided into time domain and 

frequency domain [14, 15, 16, 17]. The former, such as Electromagnetic Transients Program 

(EMTP), are based on the numerical resolution of electric power system differential equations. 

They treat nonlinear load (NLL) equations directly, but require a high calculation effort to obtain 

steady state solutions and difficult management of power consumption loads. The latter, known 

as harmonic load flow (HLF) formulations, are reformulations of FLF which consider harmonic 

voltages and NLL state variables as additional unknowns to the fundamental voltages. Their 

main drawback is that NLL equations must be adapted to the frequency domain formulation. 

These frequency domain procedures pose nonlinear equation systems which must be numerically 

solved to directly obtain the fundamental and harmonic voltages of the network and the variables 
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characterising the NLL state. There are also hybrid procedures which work in both domains by 

using their respective advantages [18]. The procedures in the frequency domain are the most 

widely used in the literature, and Newton-Raphson is the most commonly employed numerical 

method to solve their nonlinear equation systems. Nevertheless, the numerical resolution of these 

equation systems has several difficulties such as long execution time, convergence problems and 

large computer memory requirements due to the significant number of involved unknowns. 

There are three important steps which must be considered when applying frequency domain 

methods to an AC network. These steps are: 

 

 Modelling of power system elements: The elements connected in the network must be 

modelled in order to perform harmonic load flow studies. These elements can be 

decomposed in linear and nonlinear devices. Linear load modelling is a well-known topic 

but this is not true for nonlinear load topic which is still being studied [13, 19, 20]. The latter 

is very important in harmonic load flow because nonlinear loads are the network distorting 

devices and they exhibit a particular behaviour. 

 

 Formulation of the harmonic problem: The problem formulation aims to pose the 

necessary equations to determine the fundamental and harmonic voltage and the variables 

which define nonlinear load behaviour. The great number of unknowns to solve in the 

harmonic load flow formulations leads authors to tackle the problem in several ways in order 

to reach a compromise between the simplicity and reliability of the formulation [21]. The 

simplest way is the harmonic penetration analysis which assumes no harmonic interaction 

between network and nonlinear loads [14, 21, 22]. The iterative harmonic analysis is the first 

modification of the harmonic penetration studies when considering harmonic voltage 

influence on the non–linear device behaviour. In particular, simplified harmonic load flow 

formulation is the most basic HLF formulation which takes into consideration the harmonic 

interaction in nonlinear load behaviour and improves the iterative harmonic analysis [23 - 

27]. Complete harmonic load flow formulations are reformulations of the fundamental load 

flow in order to include nonlinear loads. This formulation is a natural modification of the 

fundamental load flow where the nonlinear device treatment and the harmonic voltage 

calculation have been included and are calculated simultaneously [28 - 31]. In this 

formulation, it can be assumed that power consumption is only due to fundamental voltages 

and currents or that power consumption is due to fundamental and harmonic voltages and 

currents [21]. The latter is the most complicated harmonic problem formulation but it 

provides the most accurate results. The other formulations can be used depending on the 

harmonic voltage level because all of them assume that harmonic voltage influence can be 

neglected in some part of the formulation equations. Another available HLF formulation is 

the unified harmonic load flow formulation [48, 49]. It is a modification of the complete 

harmonic load flow formulation which takes into account the approach used in the 

simplified harmonic load flow formulation. 
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1.1.4. Load flow numerical resolution 

 

Newton-Raphson method is the numerical method most generally used in the literature for 

solving the nonlinear set of equations of the harmonic load flow formulation [14, 28, 35]. This 

method has the advantages of a relative simplicity and an excellent execution time, but for 

networks with high harmonic distortion and presence of nonlinear loads it can be divergent or 

convergent to a false solution [14, 40, 41]. Thus, there are different methods in the bibliography 

to improve the convergence of Newton-Raphson method, called, in general, modified Newton-

Raphson methods [33, 36, 37, 38, 39]. These methods improve the convergence of Newton-

Raphson method using a damping factor in the Newton-Raphson algorithm but do not ensure the 

global convergence because they can converge to a local minimum. 

Newton-Raphson method suffers from convergence problems if starting points being proposed 

are not close to the solution. Therefore, need arises to explore other numerical methods for the 

numerical resolution of the HLF problem. The alternative method employed in this thesis for the 

numerical resolution of the HLF problem is the Levenberg-Marquardt method, which is based on 

the least-squares approach [44 - 47]. The optimization toolbox in MATLAB provides us with a 

built-in command ´fsolve´ [44] to apply this numerical method for our HLF problem without 

going into hustle of developing the code of the algorithm by oneself. 

 

1.2. Objectives of the thesis 

 

The thesis aims to study existing HLF formulations, as well as the numerical resolution of the 

nonlinear equation systems derived from these formulations, in order to propose improvements 

for the former and compare performances of numerical methods for the latter. The improvements 

in the HLF formulations are related to a reduction in the number of iterations, for which an 

improved formulation is proposed. The comparison of numerical resolution methods is focused 

on analysing HLF formulation convergences and accuracies. The specific goals of the thesis are 

presented below: 

 To propose an improved formulation for the HLF problem. This formulation should be 

applicable to electrical networks with highly distorted voltages. 

 To analyse the numerical resolution of all the considered HLF formulations (existing and 

improved) in terms of convergence and accuracy, by using a well-known numerical 

method (Newton-Raphson) and an alternative numerical method (Levenberg-Marquardt). 

The above objectives have contributed along the following research lines: 
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 Study of existing HLF formulations and their numerical resolution. 

 Practical implementation of programs which includes the main HLF formulations and 

their numerical resolution applied to AC networks. 

 Comparison of the performances of both HLF formulations and numerical resolution 

methods. The comparison will be based on computational complexity, convergence 

properties and accuracy of results. 

 Analysis of AC networks where the harmonic voltage distortion of nonlinear buses is 

increased. 

 Study of an improved HLF formulation and its comparison with existing formulations. 

 Study of numerical procedures for HLF resolution and their convergence properties. 

 

1.3. Structure of the thesis 
 

The structure of this thesis is described as follows: 

Chapter 1 starts with state of the art explaining the basic concepts and theory behind HLF 

analysis. The concepts and theory underlying the FLF formulation and its associated set of 

equations are explained in detail. A description of harmonics in power systems and the main 

factors which introduce harmonics in AC networks are given. HLF and how it is different from 

FLF is introduced. Important methods found in literature to approach HLF analysis are also 

discussed. The chapter ends by discussing the load flow numerical resolution. 

Chapter 2 discusses the main HLF formulations found in literature. The first is the harmonic 

penetration (HP), which is the simplest HLF formulation requiring a fewer number of equations 

but with some limitations in terms of accuracy if harmonics in AC networks exceed a certain 

level. Simplified harmonic load flow (SHLF) is described in detail, which is another important 

formulation where Thévenin equivalent circuits are employed to reduce the number of equations 

and hence the number of unknowns to be solved, but faces convergence problems since two 

numerical procedures linked by a Gauss-Seidel method to reach the solution. It is also presented 

the HLF formulation with the most number of equations and unknowns, which is the complete 

harmonic load flow (CHLF). This formulation faces convergence problems in its numerical 

resolution if the harmonic voltage distortion is increased in the system. It has two variants, one 

with power consideration at fundamental frequency (CHLFF) and the other with power 

consideration at fundamental and harmonic frequencies (CHLFH). CHLFF has the advantage of 

giving more accurate results than HP, same accurate results as SHLF, and less accurate results 

than CHLFH. In fact, CHLFH is considered the most computational extensive HLF formulation as 

compared to the other HLF formulations. Regarding the unified harmonic load flow (UHLF), on 

which the improved formulation proposed in this thesis for the HLF problem will be based, is 

described in Chapter 4 for didactic reasons. 
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Chapter 3 discusses the numerical resolution of HLF formulations in detail. Different numerical 

methods being used in literature for obtaining the numerical solution of HLF problems are 

presented. The Newton-Raphson method is explored in HLF problems and some comments 

about its shortcomings are made. The fixed-point iteration method and its underlying basic 

concepts are described. In addition, some light is shed on using fixed-point iteration method with 

SHLF. Numerical methods which imply a nonlinear least-squares approach for function 

minimization are considered, such as the Gauss-Newton method and the Levenberg-Marquardt 

method. 

Chapter 4 proposes an improved HLF formulation called improved unified harmonic load flow 

(IUHLF). This formulation is a derivation of the existing UHLF formulation and, as such, uses 

Thévenin equivalent circuits to reduce the number of equations and unknowns associated to an 

AC network. The main set of equations being used and associated unknowns for each bus (Slack, 

PQ and NL) are illustrated. The performance of IUHLF is compared with other known 

formulations. The comparison is done by evaluating properties such as convergence (number of 

iterations taken by each formulation) and accuracy in presence of harmonic voltage distortion. 

Chapter 5 compares the Newton-Raphson method versus the nonlinear least-squares methods for 

the numerical resolution of HLF problems. A three-bus AC network is considered and the 

numerical solution of its associated HLF problem is obtained by applying the different HLF 

formulations separately and by using both the Newton-Raphson method and the nonlinear least-

squares methods separately too. The comparison is done by evaluating properties such as 

convergence (number of iterations taken by each formulation) and accuracy in presence of 

harmonic voltage distortion. 

Chapter 6 is based on the conclusions drawn on the study of the research topic and is followed by 

suggestions for future work in Chapter 7. Finally, Chapter 8 constitutes the bibliography listing 

all the literature being consulted and produced during the completion of this thesis. 
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2. Harmonic load flow formulation 
 

HLF formulation is a modification of FLF formulation which includes the harmonic voltages and 

the NLL state variables [14, 15]. Many HLF formulations in the literature strive to find a 

compromise between simplicity (to reduce numerical convergence problems) and reliability (to 

provide accurate results) [21]. In order to analyse the harmonic problem, the following variables 

must be included in harmonic load flow: 

 Fundamental bus voltages 

 Harmonic bus voltages 

 Variables which define the nonlinear load state. 

 

This chapter presents the main formulations, from the simplest to the most complicated, when in 

electric power systems only the following types of buses are considered: Slack bus (i = 1), power 

consumption buses (PQ buses) (i = 2,…,c) and buses feeding NLLs (NL buses) (i = c + 1,…,n). 

The absence of PV buses in electric power systems is assumed without loss of generality. The 

usual assumption that power consumption is mainly due to the fundamental voltage and current 

components, i.e., Si  V
1

i·(I
1

i)
*
, is made. Even harmonics are not taken into account in the study 

as they are negligible due to the voltage and current half-wave symmetry. 

It must be noted that one of the main formulations, which is known as unified harmonic load 

flow and only focuses on HVDC converters, will be presented in Chapter 4 for didactic reasons. 

 

2.1. Harmonic penetration 
 

Harmonic penetration (HP) is the simplest frequency domain procedure [21], [22], [23]. This 

formulation considers that NLL behaviour depends only on the fundamental voltages and their 

own state variables (i.e., no harmonic interaction is assumed in NLL behaviour). This allows 

NLL equations which define NLL behaviour to be incorporated into FLF. Thus, the nonlinear 

equation system of the modified FLF (FLFm) is derived from the FLF equations, where NLLs are 

treated as PQ loads by adding the NLL equations. 

Let it be a network with n buses ( 1,2, , )i n : a Slack bus ( 1)i  , a number of PQ buses 

( 2, , )i c  and a number of NL buses ( 1, , )i c n  . HP is illustrated in Figure 2.1 and its data 

and unknowns are summarised in Table 2.1. 
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VN 

                   (2.3) 

 FLFm    

                                (2.1) 

                   

             

 

V1
i  i = 2,…,n 

 r
i, i = c + 1,…,n 

 

Vh
i  i = 1,…,n 

 
Figure 2.1: HP formulation flowchart 

Stage Bus Data Unknowns 

FLFm 

Slack 
1

1V  --- 

PQ ,i iP Q  (injected) 1

iV  

NL 
m

iD  1
, r

i iV 
 

VN 

Slack 
1

1X
 1

h
V

 

PQ 
1( )

ii Y

h h

iY f V  h

iV
 

NL 
h

iI
 

h

iV  

Table 2.1: HP formulation data and unknowns 

The superscripts r and m are the indices of the NLL state variables and NLL data which define 

the NLL behaviour, respectively. Distorted voltages and currents will be expressed in terms of 

the summation of 1,3,5,k   components: 1 is the fundamental component and 3,5,7,h   are 

the harmonic components. The nonlinear equation system of the FLFm stage is  

where Y
1

ij are the ij
th

 elements of the network fundamental admittance matrix Y
1

B, and nl
 r

i(·) = 0 

represents the NLL equations. These equations depend on m
iD  (NLL data) and r

i  (NLL state 

variables). The NLL injected fundamental currents are expressed as 

*

1 1 1

1

*

1 1 1 1 1*

1

1

max max

( 2, , )

( ) ( 1, , )

( , , ) 0

( 1, , ; 1, , ; 1, , ),

n

iji i j
j

n

i iji i j
j

r r m
i i ii

S V Y V i c

V I V Y V i c n

nl V D

i c n r r m m







 
  

 
 

 
   

 
 



   



  (2.1) 
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The numerical resolution of the equation system (2.1) provides the fundamental voltages V
1

i and 

the NLL state variables  r
i which are used to obtain the harmonic voltages V

h
i by the voltage 

node (VN) method. This method is based on the resolution of the linear system
 

where the NLL injected harmonic currents I
h

i (i = c + 1,…,n) and the Slack and PQ bus harmonic 

admittances Y
h

i (i = 1,…,c) must be incorporated into the current vector I
h

B and the network 

admittance matrix Y
h

B, respectively, and are determined as 

 

It must be noted that an X / R ratio equal to 20 is assumed in (2.4) for the Slack bus fundamental 

impedance. 

 

This formulation allows the HLF problem to be tackled in a simple way, as with the FLF 

problem, but NLL sensitiveness to harmonic voltages could result in overestimation of the NLL 

polluting effect if harmonic voltage distortion is high.  

 

2.2. Simplified harmonic load flow 

Simplified harmonic load flow (SHLF) performs a fixed-point iteration method on a set of two 

nonlinear equation systems (labelled as N1 and N2) which are solved separately and in sequence 

by applying some iterative numerical method to each of them (see Figure 2.2) [21], [26], [27]. 

In a first stage, FLFm is performed to obtain the fundamental voltages at all network buses and 

the NLL state variables. In order to integrate nonlinear loads into FLFm, they are introduced as 

PQ loads. Subsequently, in a second stage, Harmonic Analysis (HA) is applied to obtain the 

fundamental and harmonic voltages at nonlinear buses and the NLL state variables. In HA stage, 

the network is reduced to nonlinear buses by using the Thévenin equivalent circuit at these buses. 

This enables to consider the harmonic interaction in nonlinear load behaviour. 

1 1 1

max max

( , , )

( 1, , ; 1, , ; 1, , ).

r m
i ii ii

I f V D

i c n r r m m



   
 (2.2) 

,B B BY V I
h h h   (2.3) 

1

max max

1
1

11 1
1 1

*
1 1 11 1

1 2

( , , )

( 1, , ; 1, , ; 1, , )

1
;

20

( ) ; ( ) ( )
( )

( 2, , ).

h h r m
i ii ii

h

h h h hi
i ii i Yi i iYi Yi

i

I f V D

i c n r r m m

X
Y R

R j h X

S
Y f V Y F Y Y f V

V

i c



   

 
  


    



 
(2.4) 
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After the performance of both stages, convergence is checked by comparing the fundamental 

voltages of FLFm and HA at nonlinear buses. If the difference between voltages is smaller than a 

tolerance, the process is stopped and the fundamental voltages at all network buses, the harmonic 

voltages at nonlinear buses and the NLL state variables are those of the current iteration. Finally, 

the harmonic voltages at linear buses are obtained by the VN method (see Figure 2.2). 

Let it be a network with n buses ( 1,2, , )i n : a Slack bus ( 1)i  , a number of PQ buses 

( 2, , )i c  and a number of NL buses ( 1, , )i c n  . SHLF is illustrated in Figure 2.2 and its data 

and unknowns are summarised in Table 2.2. 
 

 

V1
N1, i  i = 2,…,n 

 r
N1, i  i = c + 1,…,n 

Ek
Thi, Z

k
Thij 

 i = c + 1,…,n 
 

V1
N2, i, V

h
N2, i, 

 r
N2, i 

i = c + 1,…,n 

 

 

  FLFm 

             (N1) 
                            (2.5)          
 

 

 

 

      

 

NO 

 

YES 

 

Thévenin equivalent 

                            (2.8) 

 

 

 

 

      

 

HA 

                (N2) 
                            (2.7) 

 

 

 

 

      

 

||V1
N2, i V1

N1, i|| <  
i = c + 1,…,n 

 

              VN 

                        (2.3) 

 

 

 

Vh
i  i = 1,…,c 

 
Figure 2.2: SHLF formulation flowchart 

 

Stage Bus Data Unknowns 

FLFm (N1) 

Slack 
1

1V  --- 

PQ ,i iP Q  (injected) 
1

1

N ,iV  

NL 
2N , ,

h m

i iV D
 1 1

1

N , N ,, r

i iV 
 

HA (N2) 

Slack 
1 1

1 1,V X
 

--- 

PQ 
1

1

N ,( ) 
i

kk

i Y iY f V
 --- 

NL 
m

iD
 2 2 2

1

N , N , N ,, ,
h r

i i iV V 
 

VN 

Slack 
1

1X
 1

h
V

 

PQ 
1

1

N ,( ) 
i

hh

i Y iY f V  h

iV  

NL 
h

iI
 

--- 

Table 2.2: SHLF formulation data and unknowns 
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The superscripts r and m are the indices of the NLL state variables and NLL data which define 

the NLL behaviour, respectively. Distorted voltages and currents will be expressed in terms of 

the summation of 1,3,5,k   components: 1 is the fundamental component and 3,5,7,h   are 

the harmonic components. 

The first nonlinear equation system N1 is the FLFm in HP considering NLL harmonic interaction, 

i.e., 

 

where the NLL injected fundamental currents are expressed as 

Note that, although harmonic interaction is assumed in NLL behaviour, the harmonic voltages 

V
h

N2, i in the NLL functions nl
 r

i(·) = 0 and I
1

i = f
 1

i(·) are data from the second nonlinear equation 

system N2, where these variables are unknowns. Thus, the numerical resolution of (2.5) provides 

the fundamental voltages V
1

N1,i and the NLL state variables  r
N1, i which are used in the second 

nonlinear equation system.
 

Once (2.5) is solved, the linear network with the Slack and PQ buses (linear buses) is represented 

by its generalized Thévenin equivalent circuits “observed” from the NL buses [27]. The second 

nonlinear equation system N2 is built by considering as unknowns only those of the NL buses. Its 

equations are based on Kirchhoff’s second law applied to the fundamental and harmonic 

Thévenin equivalent circuits, and the NLL equations which define the NLL behaviour, i.e.,
 

where the NLL fundamental and harmonic Thévenin equivalent circuit parameters and injected 

currents are expressed as 

1 1

1 1 1

11 2

*

1 1 1
N , N ,

1

*

1 1 1 1 1*
N , N , N ,

1

1
N ,N , N ,

max max

( 2, , )

( ) ( 1, , )

( , , , ) 0

( 1, , ; 1, , ; 1, , ),

n

iji i j
j

n

i iji i j
j

hr r m
i i ii i

S V Y V i c

V I V Y V i c n

nl V V D

i c n r r m m







 
  

 
 

 
   

 
 



   



  (2.5) 

11 2

1 1 1
N ,N , N ,

max max

( , , , )

( 1, , ; 1, , ; 1, , ).

h r m
i ii i ii

I f V V D

i c n r r m m



   
 (2.6) 

2

22 2

N ,
1

1
N ,N , N ,

max max

( 1, , )

( , , , ) 0

( 1, , ; 1, , ; 1, , ),

n
k k k k

Thi Thij ii
j c

hr r m
i i ii i

V E Z I i c n

nl V V D

i c n r r m m



 

   



   



 
(2.7) 
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Note that the PQ bus fundamental voltages V
1

N1, l in the Thévenin equivalent circuit functions 

E
k
Thi = f

 k
EThi(·) and Z

k
Thij = f

 k
ZThij(·) are data from the first nonlinear equation system N1, where 

these variables are unknowns. The numerical resolution of (2.7) provides the fundamental and 

harmonic voltages V
k
N2, i at NL buses and the NLL state variables  r

N2, i. Convergence of the 

fixed-point iteration algorithm is checked by comparing the fundamental voltages at the NL 

buses obtained from the first and second nonlinear equation systems (i.e., V
1

N1, i and V
1

N2, i). If 

convergence is reached, the VN method (2.3) is applied to determine the harmonic voltages V
h

i 

of the Slack and PQ buses. Otherwise, a new fixed-point iteration is made by using the results of 

(2.7) in the first nonlinear equation system. 

This formulation takes into consideration the harmonic voltage influence on NLL behaviour 

without introducing the harmonic voltages at the Slack and PQ buses as unknowns of the 

nonlinear equations. However, it could pose convergence problems depending on the degree of 

decoupling between the two nonlinear equation systems (2.5) and (2.7).
 

 

2.3. Complete harmonic load flow 

 

Complete harmonic load flow (CHLF) is a natural modification of FLF where NLL treatment 

and harmonic voltage calculation are included considering harmonic interaction in NLL 

behaviour. It is based on the simultaneous resolution of power equations at the PQ buses and 

harmonic current balance at the Slack and PQ buses, together with fundamental and harmonic 

current balance and NLL equations at the NL buses [21], [28 - 30]. 

How power is considered in power equations leads to two possible CHLF formulations. 

2.3.1. Power consideration at fundamental frequency 

 

The resulting CHLF formulation, called CHLFF, allows the resolution of the HLF problem to be 

reached by considering power only at fundamental frequency in power equations. 

Let it be a network with n buses ( 1,2, , )i n : a Slack bus ( 1)i  , a number of PQ buses 

( 2, , )i c  and a number of NL buses ( 1, , )i c n  . CHLFF is illustrated in Figure 2.3 and its 

data and unknowns are summarised in Table 2.3. 

1 1

22 2

1 1
N , N ,

1
N ,N , N ,

max max

( ) ; ( )

( 1, , ; 1, , ; 2, , )

( , , , )

( 1, , ; 1, , ; 1, , ).

k k k k
Thi Thijl lEThi ZThij

k k h r m
i ii i ii

E f V Z f V

i c n j c n l c

I f V V D

i c n r r m m



 

    



   

 (2.8) 
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  CHLFF      

                            (2.9) 

                   

             

 

V1
i  i = 2,…,n 

Vh
i  i = 1,…,n 

 r
i  i = c + 1,…,n 

 

 

 

Figure 2.3: CHLFF formulation flowchart 

Table 2.3: CHLFF formulation data and unknowns 

The superscripts r and m are the indices of the NLL state variables and NLL data which define 

the NLL behaviour, respectively. Distorted voltages and currents will be expressed in terms of 

the summation of 1,3,5,k   components: 1 is the fundamental component and 3,5,7,h   are 

the harmonic components. 

The nonlinear equation system of CHLFF is 

where Y
k
ij are the ij

th
 elements of the network fundamental and harmonic admittance matrix Y

k
B, 

and Y
h

i are the Slack and PQ bus harmonic admittances (2.4). The NLL injected fundamental and 

harmonic currents are expressed as

 

Stage Bus Data Unknowns 

CHLFF 

Slack 
1 1

1 1,V X  1

h
V  

PQ ,i iP Q  (injected) 1
,

h

i iV V  

NL 
m

iD  1
, ,

h r

i i iV V 
 

*

1 1 1

1

1

1

1

max max

( 2, , )

( 1, , )

( 1, , )

( , , , ) 0

( 1, , ; 1, , ; 1, , ),

n

iji i j
j

n
h h h h
i iji j

j

n
k k k
i ij j

j

hr r m
i i ii i

S V Y V i c

Y V Y V i c

I Y V i c n

nl V V D

i c n r r m m









 
  

 
 

  

  



   





  

(2.9) 

1

max max

( , , , )

( 1, , ; 1, , ; 1, , ).

k k h r m
i ii i ii

I f V V D

i c n r r m m



   
 (2.10) 
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This formulation allows the HLF problem to be tackled as a single nonlinear equation system 

where the harmonic voltages at the Slack and PQ buses are also included as unknowns. This 

increases the number of unknowns to be determined significantly, which can result in a 

degradation of the convergence properties characterising numerical resolution methods. 

 

2.3.2. Power consideration at fundamental and harmonic frequencies 

 

The resulting CHLF formulation, called CHLFH, allows the resolution of the HLF problem to be 

reached by considering power at fundamental and harmonic frequencies in power equations. The 

usual assumption that power consumption is mainly due to the fundamental voltage and current 

components is not made. 

Let it be a network with n buses ( 1,2, , )i n : a Slack bus ( 1)i  , a number of PQ buses 

( 2, , )i c  and a number of NL buses ( 1, , )i c n  . CHLFH is illustrated in Figure 2.4 and its 

data and unknowns are summarised in Table 2.4. 

 

  CHLFH      

                            (2.11) 

                   

             

 

V1
i  i = 2,…,n 

Vh
i  i = 1,…,n 

Yh
i  i = 2,…,c 

 r
i  i = c + 1,…,n 

 

Figure 2.4: CHLFH formulation flowchart 

 

 

 

 

Table 2.4: CHLFH formulation data and unknowns 

The superscripts r and m are the indices of the NLL state variables and NLL data which define 

the NLL behaviour, respectively. Distorted voltages and currents will be expressed in terms of 

the summation of 1,3,5,k   components: 1 is the fundamental component and 3,5,7,h   are 

the harmonic components. 

The nonlinear equation system of CHLFH is 

Stage Bus Data Unknowns 

CHLFH 

Slack 
1 1

1 1,V X  1

h
V  

PQ ,i iP Q  (injected) 1
, ,

h h

ii iV V Y  

NL 
m

iD  1
, ,

h r

i i iV V 
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where Y
k
ij are the ij

th
 elements of the network fundamental and harmonic admittance matrix Y

k
B, 

and Y
h

i are the Slack and PQ bus harmonic admittances (2.4). The NLL injected fundamental and 

harmonic currents are expressed as

 

Similarly to CHLFF, this formulation allows the HLF problem to be tackled as a single nonlinear 

equation system where the harmonic voltages at the Slack and PQ buses are also included as 

unknowns. However, additional unknowns must be determined: the PQ bus harmonic 

admittances. 

  

   

*
3,5,...

1 1

3,5,...
* 2

1

1

1

1

max max

( 2, , )

( 2, , )

( 1, , )

( 1, , )

( , , , ) 0

( 1, , ; 1, , ; 1, , ),

n
k k k

iji i j
k j

k k
i ii

k

n
h h h h
i iji j

j

n
k k k
i ij j

j

hr r m
i i ii i

S V Y V i c

S i cVY

Y V Y V i c

I Y V i c n

nl V V D

i c n r r m m



 







 
  

 
 

   

  

  



   

 







 (2.11) 

1

max max

( , , , )

( 1, , ; 1, , ; 1, , ).

k k h r m
i ii i ii

I f V V D

i c n r r m m



   
 (2.12) 



20 
 

  



21 
 

3. Numerical methods for harmonic load flow resolution 
 

HLF calculation can be regarded as the resolution of a nonlinear equation system formulated as a 

set of q equations in q unknowns F(x) = 0: 

 

The numerical resolution of this system provides the fundamental and harmonic bus voltages and 

the NLL state variables. Multiple solutions are mathematically possible for the above nonlinear 

equation system, but usually only one is physically admissible. Several numerical methods can 

solve this system, among which Newton-Raphson is the most widely used in the bibliography. 

Fixed-point iteration methods, such as the Gauss-Seidel method, can also be used but have 

poorer convergence properties. The SHLF formulation is an example of these iterative 

approaches. 

 

 1 

 

FN2(u,v,w) ≡ FN2(u,w) FN1(u,v,w) ≡ FN1(u,v) 

(uN2
(β+1))(S) 

x(02) x(US) x(01) x 

G(x) 

x(02) x 

F(x) 

x(US) x(01) 

x(FS) 

x(03) 

det(DF(x(α))) = 0 (divergence) 

x(FS): Feasible Solution    x(US): Unfeasible Solution 

(a) 

(v(β+1))(0) 

v w 

u u 

(uN1
(β+1))(S) 

(c) 

x(FS) x(03) 

||DG+(x(FS))|| > 1 

(divergence) 

(uN2
(β+1))(0) 

(v(β+1))(S) (w(β+1))(0) (w(β+1))(S) 
(uN1

(β+1))(0) 

(b) 

 
Figure 3.1: Numerical methods: (a) Newton-Raphson method. (b) Fixed-point iteration method. (c) Iteration β+1 of 

SHLF fixed-point iteration method. 

 

  1 2, , , 0 ( 1,..., ).i qf x x x i q   (3.1) 
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3.1. Newton-Raphson method 

 

The Newton-Raphson method can be algorithmically expressed as 

which is applied from the initial value x
 (0) 

to the problem solution x
 (S)

, with DF(x) being the 

Jacobian matrix of the nonlinear equation system and α+1 the Newton-Raphson iteration. The 

Jacobian matrix is called true Jacobian matrix if it is calculated for all iterations, whereas it is 

called constant Jacobian matrix if it is only calculated for the first iteration, remaining unchanged 

for the rest of iterations. Algorithm convergence can be checked from the conditions 

||F(x
 (α+1)

)|| <  or ||x
 (α+1)

x
 (α)

|| <  , where  is a fixed error. The main drawback of this method is 

that convergence to the problem solution is only assured if the initial value is close to the 

solution and det(DF(x
 (α)

)) ≠ 0 for all x
 (α)

. Otherwise (more likely in HLF than in FLF due to 

initial values of harmonic voltages far from the solution), it can lead to divergence or an 

unfeasible solution. This is illustrated in Figure 3.1(a). If the initial value is x
 (01)

, there exists a 

value x
 (α)

 where det(DF(x
 (α+1)

)) = 0, and this may cause divergence. When the initial value is 

x
 (02)

, convergence to the feasible solution x
 (FS)

 may occur because x
 (02)

 is close to x
 (FS)

 and 

det(DF(x
 (α)

)) ≠ 0 for all x
 (α)

. However, if the initial value is x
 (03)

, convergence to an unfeasible 

solution x
 (US)

 may occur because x
 (03)

 is closer to x
 (US)

 than to x
 (FS)

. 

 

There are also modified Newton-Raphson methods [33, 39] which consist of the iteration process 

of the algorithm 

The Newton-Raphson method is included in (3.3) when a factor ( ) 1   is chosen for all 

iterations. The Newton-Raphson method converges to the correct solution quickly if the initial 

value is close to the solution, but a bad choice of the initial value may lead the algorithm to 

diverge or face convergence problems. The modified Newton-Raphson method uses the damping 

factor    to reduce the significance of the term  

This in turn avoids the large jumps being caused by Newton-Raphson method in the iterative 

process thereby improving the overall convergence of the algorithm. 

  

There are many ways in the literature to define a value for the damping factor [39], but the most 

commonly used term is 

( 1) ( ) 1 ( ) ( )( ) ( ),x x DF x F x        (3.2) 

 ( 1) ( ) 1 ( ) ( )( ) ( ).x x DF x F x
        (3.3) 

1 ( ) ( )( ) ( ).DF x F x    (3.4) 

 
 

1
.

2n



   (3.5) 
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The parameter  
n
  is calculated starting from  0

0n   and in such a way that the term ( )( )F x   

will be strictly decreasing, i.e., ( ) ( 1)( ) ( )F x F x  . 

 

3.2. Fixed-point iteration method 

 

The nonlinear equation system F(x) = 0 can occasionally be reformulated as a set of q equations 

in q unknowns x = G(x): 

Most fixed-point iteration methods can be algorithmically expressed as 

which is applied from the initial value x
(0)

 to the problem solution x
(S)

, with G(x) being a 

nonlinear equation system derived from F(x) and β+1 the fixed-point iteration. Algorithm 

convergence is checked from the condition ||x
(β+1)

  x
(β)

|| < , where  is a fixed error. The main 

drawback of this method is that convergence to the problem solution is only assured if the initial 

value is close to the solution and ||DG(x
(S)

)|| < 1. Otherwise, it can lead to divergence or an 

unfeasible solution. This is illustrated in Figure 3.1(b). If the initial value is x
(01)

, then 

||DG+(x
(FS)

)|| > 1, and this causes divergence. When the initial value is x
(02)

, convergence to the 

feasible solution x
(FS)

 occurs because x
(02)

 is close to x
(FS)

 and ||DG–(x
(FS)

)|| < 1. However, if the 

initial value is x
(03)

, convergence to an unfeasible solution x
(US)

 occurs because x
(03)

 is closer to 

x
(US)

 than to x
(FS)

. 

 

One of the main fixed-point iteration methods is the Gauss-Seidel method, whose associated 

algorithm is 

At each fixed-point iteration β+1, the equations of (3.8) are used separately and in sequence. 

Thus, g1(·) allows x1
(β+1)

 to be obtained, g2(·) allows x2
(β+1)

 to be obtained, and so on.  

 

If it is not possible to reformulate the nonlinear equation system F(x) = 0 as x = G(x), the 

previous algorithm must be rewritten as follows: 

At each fixed-point iteration β+1, the equations of (3.9) are solved separately and in sequence by 

applying some iterative numerical method to each of them. Thus, the numerical resolution of 

    1 2, , , 1,..., .i i qx g x x x i q   (3.6) 

( 1) ( )( ),x G x    (3.7) 

  

   ( 1) ( 1)( 1) ( 1) ( )
1 1,...., , , 1,..., .i i i qix g x x x x i q
     

   (3.8) 

   ( 1) ( )( 1) ( )
1 1,...., , , , 0 1,..., .i i qif x x x x i q
   

    (3.9) 



24 
 

f1(·) = 0 allows x1
(β+1)

 to be obtained, the numerical resolution of f2(·) = 0 allows x2
(β+1)

 to be 

obtained, and so on. 

 

3.3. Simplified harmonic load flow fixed-point iteration method 

 

The fixed-point iteration method of SHLF formulation can be regarded as the application of the 

Gauss-Seidel method to a set of two nonlinear equation systems: 

The Gauss-Seidel method is applied to (3.10) by using the following algorithm: 

 

At each fixed-point iteration β+1, the nonlinear equation systems of (3.11) are solved separately 

and in sequence by applying the Newton-Raphson method to each of them (see Figure 3.1(c)). 

Thus, the numerical resolution of FN1(·) = 0 allows v
(β+1)

 (and uN1
(β+1)

) to be obtained by applying 

the iterative scheme 

 

the numerical resolution of FN2(·) = 0 allows w
(β+1)

 (and uN2
(β+1)

) to be obtained by applying the 

iterative scheme 

and so on. 

 

Section 2.2 identifies the unknowns uN1, uN2, v and w with those of SHLF formulation: 

 

 
1

2

N

N

, , 0
.

, , 0

F u v w

F u v w






 (3.10) 

 

 
1 1

2 2

( 1) ( 1) ( )
N N

( 1) ( 1) ( 1)
N N

, , 0
.

, , 0

F u v w

F u v w

  

  

 

  

 






 (3.11) 

       

       

1 1 2

1 11 1 1 1

(0) (S) (S)
( 1) ( ) ( )

N N N

( 1) ( ) ( ) ( )
( 1) ( 1) ( 1) ( 1)1

N NN N N N

;

,

T
T

x u v x u v

x x DF x F x

  

   
   




   

  
     


   

         

 (3.12) 

       

       

2 2 1

2 22 2 2 2

(0) (S) (S)
( 1) ( 1) ( )

N N N

( 1) ( ) ( ) ( )
( 1) ( 1) ( 1) ( 1)1

N NN N N N

;

,

T
T

x u w x u w

x x DF x F x

  

   
   

 


   

  
     


   

         

 (3.13) 
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Instead of the usual condition to check fixed-point iteration algorithm convergence 

where  is a fixed error, an alternative condition is used to check SHLF fixed-point iteration 

algorithm convergence: 

 

Convergence problems associated with the SHLF fixed-point iteration method are similar to 

those of the fixed-point iteration method described in Section 3.2. 

 

3.4. A minimization approach: nonlinear least-squares methods 

 

The nonlinear equation system is of the form 

 

 

 

 

1 1 2

2 1 2

1 2

, , , 0

, , , 0
,

, , , 0

n

n

n n

f x x x

f x x x

f x x x







 

 (3.17) 

in which the function F has the range 

 

:F

X F X

n nR R
 (3.18) 

where  

 

 

 

 

1 1 1 2

2 2 1 2

1 2

, , ,

, , ,
  and  .

, , ,

n

n

n n n

x f x x x

x f x x x

x f x x x

  
  
   
  
    

   

X F X  

   

   

1 1 1 11

2 2 2 22

1

2

1
N N , I N , II N ,N ,

max

1
N N , I N , II N ,N ,

max

1
N ,

N ,

, ,

( 1, , ; 1, , )

, ,

( 1, , ; 1, , )

( 2, , )

( 1, , ).

r
ii

r
ii

i

h
i

u u u V

i c n r r

u u u V

i c n r r

v V i c

w V i c n





 

  

 

  

 

  

 (3.14) 

         1 1
, , ,v w v w

   


 
   (3.15) 

   
2 1

1 1

N , I N , I
.u u

 


 
   (3.16) 
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The values of X for which the nonlinear equation system (3.17) is satisfied are called solutions of 

F(X)  

  .F X 0  (3.19) 

There are numerous mathematically correct solutions which satisfy (3.17), but we are looking for 

a physically possible solution through numerical resolution of the nonlinear equation system. 

 

Harmonic load flow formulations usually comprise of nonlinear equation systems in which the 

number of unknowns is equal to the number of equations, so they can be categorized as 

determined systems. If we opt for a starting point which is sufficiently close to the solution, then 

Newton-Raphson method can be a good selection for the numerical resolution of the harmonic 

load flow problem. The main advantages for using this method are rapid convergence and 

simplicity of the numerical method. The algorithm for the m-th iteration (m) is 

 

    
1

( 1) ( ) ( ) ( ) ,m m m m


   X X JF X F X  (3.20) 

where  

 

 

     

     

     

1 1 1

1 2

2 2 2

1 2

1 2

 

X X X

X X X
JF X

X X X

n

n

n n n

n

f f f

x x x

f f f

x x x

f f f

x x x

   
   
 
   
 
    

 
 
   

    

 is the Jacobian matrix of function F(X). 

 

MATLAB has been used as a software tool for the creation of a custom developed program to 

analyse the harmonic formulations and the electrical network example proposed in Chapter 4. 

This software tool provides a built-in calculation routine ‘fsolve’ [44] for the numerical 

resolution of the nonlinear equation system by optimization techniques (applying the Gauss-

Newton method by default). However, the software does not have a built-in calculation routine 

for applying the Newton-Raphson method, which seems surprising, as Newton-Raphson is the 

most commonly used method for the numerical resolution of these types of problems due to its 

simplicity of implementation. 

 

There is always a possibility of implementing the method by oneself as done in this thesis 

memory to get results of different HLF formulations for comparison purposes. One logical 

explanation of not having a built-in calculation routine is that the Gauss-Newton method 

becomes the Newton-Raphson method when it is close to the solution sought. Taking into 

account, as already mentioned, that for each one of nonlinear equation systems that are intended 
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to be solved we will try to have a starting point sufficiently close to its solution, using ‘fsolve’ 

applying the Gauss-Newton method is equivalent in these conditions to apply the Newton-

Raphson method. 

 

In order to justify the explanation given in the above paragraphs, we are going to discuss briefly 

the theoretical foundations of optimization techniques applied to the numerical resolution of 

nonlinear equation systems keeping in view specially the Gauss-Newton method. 

 

In general, it is usually less computationally expensive to find the minimum of a scalar function 

of several variables (linear or nonlinear) than to find solutions of a nonlinear equation system 

defined by a vector function of several variables. This advantage, together with the fact that 

through minimization of a certain scalar function of several variables one can find solutions for 

both determined and overdetermined nonlinear equation systems, prompts the use of 

optimization for all these type of problems. 

 

Specifically, the optimization problem that arises to deal with nonlinear equation systems of type 

(3.17) is 

    
2

1 2 1 2

1

[MIN] , , , , , ,
n

n i n

i

S x x x f x x x


  (3.21) 

(known as the nonlinear least-squares problem), the solution sought from any of these systems 

being the point *X  at which the function S  associated with the system presents its global or 

absolute minimum. At this point, this function S  must vanish, since it is a determined nonlinear 

equation system. 

To solve numerically the proposed optimization problem, the Gauss-Newton method (belonging 

to the family of quasi-Newton methods) can be applied. This method is based on the fact that the 

point at which S  presents its global minimum can be seen as the point at which the gradient of 

S  equals zero, i.e., *X  is such that 

 

 

 

 

 

1

2 0.

n

S

x

S

xS

S

x

 
 
 
 
 
   

 
 
 

  

*

*

*

*

X

X
X

X

 (3.22) 

Newton-Raphson method can be applied to solve   0S X . The expression of the algorithm 

for the optimization problem will be 
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    
1

( 1) ( ) ( ) ( ) ,m m m mS S


   X X H X X  (3.23) 

where  H XS  is the Hessian matrix of S  and is given as 

 

    

     

     

     

2 2 2

2

1 1 2 1

2 2 2

2

2 1 2 2

2 2 2

2

1 2

.

n

n

n n n

S S S

x x x x x

S S S

S S x x x x x

S S S

x x x x x

   
 

     
   
 

        
 
 
   
 
     

X X X

X X X
H X J X

X X X

 

 

 

3.4.1. Gauss-Newton method  

 

From (3.21), the gradient  ( )
X

mS  and the Hessian matrix  H XS  can be written as: 

 

      

          

T

T

1

2

2 2
n

i i

i

S

S f f


   



     




X JF X F X

H X JF X JF X H X X
 (3.24) 

Equations (3.24) gives us an opportunity to modify the Newton-Raphson expression being 

applied for minimization of S .We are going to replace the gradient function  XS and the 

Hessian function  H XS in the algorithm (3.23) with a small modification: 

      

      

T

T

2

2

S

S

   


  

X JF X F X

H X JF X JF X
 (3.25) 

Placing (3.25) into (3.23) gives us Gauss-Newton method. The reason why the method works 

with an approximation rather than a true Hessian of S  is as follows: 

 

 The Gauss-Newton method calculates a point from the previous one following directions 

of decrease of S . For any direction to be a direction of decrease of S , 
( )( )H X
mS  must be 

positive definite. The approximation of 
( )( )H X
mS  taken for the Gauss-Newton method, 

given that it is positive semidefinite for every point in which it is evaluated, when it is far 

from the minimum, it is practically guaranteed that it is following directions of decrease 

of S  (except for those points where this approach is not positive definite, a problem that 

can be overcome by means of an evolution of the Gauss-Newton method known as the 



29 
 

Levenberg-Marquardt method, also available in the computer package that has been used 

as a programming tool). 

 

 When the starting point is close to the minimum then, in addition to the condition of the 

Hessian matrix being positive semidefinite, from (3.24) it is true that: 

      

      

T

T

2

2

S

S

   


  

X JF X F X

H X JF X JF X
 (3.26) 

and, after replacing (3.26) in (3.23), operating a bit we will get to 
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X X H X X

X JF X JF X JF X F X

X JF X JF X JF X F X

X JF X F X

 (3.27) 

 

which is the algorithmic expression corresponding to the Newton-Raphson method 

(3.20). This demonstrates the equivalence between the Gauss-Newton method and the 

Newton-Raphson method when the starting point is close to the solution we are looking 

for. 

If a starting point is close enough to the solution of (3.19) and the Newton-Raphson method is 

guaranteed to converge towards it, then previously demonstrated equivalence suggests that, in 

the context of numerical minimization of the function S  in which the Gauss-Newton method is 

applied, that same starting point must also be sufficiently close to the point for which S  presents 

its global minimum. This assumption turns out to be true in reality and, consequently, in spite of 

the property of local convergence Gauss-Newton method exhibits, none of the nonlinear 

equation systems that are intended to be solved are at risk of converging towards a non-global 

local minimum. 

 

3.4.2. Levenberg-Marquardt method  

 

The Hessian matrix  ( )
H X

mS  may, under some circumstances, become singular or nearly 

singular. In this case, the step size 
( ) ( 1) ( )m m m X = X X  might not be a descent direction and 

may become very large. To avoid this situation, Levenberg in 1944 [45] and Marquardt in 1963 

[46] proposed a damped Gauss-Newton method. The expression for the algorithm is as follows: 
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          
1T T

( 1) ( ) ( ) ( ) ( ) ( )m m m m m m


       X X JF X JF X I JF X F X  (3.28) 

The damping factor   has the following effects on the expression of the algorithm: 

 For all 0;   the coefficient matrix becomes positive definite and the resulting step size 
( )mX is in descent direction. 

 One drawback of   is that if we set 0;   the term      
1T

( ) ( )m m 


  JF X JF X I  

will lose its form as true Hessian, even if all if  are equal to zero, and the convergence 

property of Newton-Raphson may be lost. To overcome such a condition, one strategy is 

to update   iteration by iteration. If the algorithm is making good progress we decrease 

  towards zero but if algorithm is not making progress we increase the value of  . 

 We can observe how well the algorithm is progressing by computing the ratio: 

   

      

( 1) ( )

T T
( ) ( ) ( ) ( ) ( )1

· · ·
2

m m

m m m m m

S S

S S



 


     

X X

X X X H X X

 
(3.29) 

The numerator is the decrease in function value for a single iteration, whereas the 

denominator is the decrease predicted by the local quadratic model, i.e. 

                  
TT

1 ( ) 1
· · ·

2

m m m m m mmS S S S


       X X X X X H X X  (3.30) 

If this ratio is close to one, we assume that the local quadratic model is good and 

therefore a decrease in  is required. However, if 1  , we increase the damping factor 

 . 

 

 There are also techniques available in literature [47] for controlling the step size ( )mX  

also called the “trust region” approaches. The basic idea is minimizing the function 

       
2

m m m
· +JF X X F X  with the additional constraint (step size limitation) 

 m
 X . (3.31) 

This inequality defines what is called the “trust region” about the current point  m
X , 

where we think our quadratic approximation is valid. 

 

If it is assumed that 
 m

 X , the gradient of        
2

m m m
· +JF X X F X  with 

respect to the components of  m
X  must be zero. That is: 
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(3.32) 

 

Setting 0  , (3.28) is obtained (it being 0  ). 

 

If it is assumed that 
 m

 X , we can write this constraint as  
2

2 0
m

  X . Then, 

there exists such a value 0   for which the gradient of        
2

m m m
· +JF X X F X  is 

proportional to the gradient of  
2

2m
 X , both gradients taken with respect to the 

components of  m
X . The gradient of  

2
2m

 X  is 
 

2
m

X . Therefore: 
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(3.33) 

 

Setting    , (3.28) is obtained (it being 0  ). 
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4. An improved harmonic load flow formulation 
 

4.1. Formulation of the harmonic problem 

 

The proposed HLF formulation, known as improved unified harmonic load flow (IUHLF) [51], 

derives from the unified harmonic load flow (UHLF) [48, 49]. Both formulations are a 

modification of the CHLF (CHLFm) which takes into account the Thévenin equivalent circuit 

approach used in SHLF to avoid considering the harmonic voltages at the Slack and PQ buses as 

unknowns. 

Let it be a network with n buses ( 1,2, , )i n : a Slack bus ( 1)i  , a number of PQ buses 

( 2, , )i c  and a number of NL buses ( 1, , )i c n  . UHLF and IUHLF formulations are 

illustrated in Figure 4.1 and their data and unknowns are summarised in Table 4.1. 

 

VN 

                     (4.3) 

  CHLFm      

                                (4.1) 

                   

             

 

V
1
i  i = 2,…,n 

V
h
i  i = c+1,…,n 

 r
i  i = c+1,…,n 

 

V
h

i  i = 1,…,c 

  
Figure 4.1: UHLF / IUHLF formulation flowchart 

 

Stage Bus Data Unknowns 

CHLFm 

Slack 
1

1V  --- 

PQ ,i iP Q  (injected) 
1

iV  

NL 
m

iD
 

1
, ,

h r

i i iV V 
 

VN 

Slack 
1

1X
 1

h
V

 

PQ  1h h

i iYi
Y f V  h

iV  

NL 
h

iI
 

--- 

Table 4.1: UHLF / IUHLF formulation data and unknowns 

The superscripts r and m are the indices of the NLL state variables and NLL data which define 

the NLL behaviour, respectively. Distorted voltages and currents will be expressed in terms of 
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the summation of 1,3,5,k   components: 1 is the fundamental component and 3,5,7,h   are 

the harmonic components. 

UHLF formulation [48, 49] is based on the simultaneous resolution of the power equations at the 

PQ buses, Kirchhoff’s second law applied to the fundamental and harmonic Thévenin equivalent 

circuits, and the NLL equations defining HVDC converter behaviour, i.e., 

where Y
1

ij are the ij
th

 elements of the network fundamental admittance matrix Y
1

B, I
k
i is defined 

as 

and hvdc
r
i(·) = 0 represents the HVDC converter equations. HVDC converters are the only sort 

of nonlinear load analysed and considered in [48, 49] for the UHLF formulation, probably 

because the authors only knew the model of this nonlinear load and they did not know how to 

include others. 

 

The fundamental and harmonic Thévenin equivalent circuits of the linear network “observed” 

from the NL buses (i.e., E
k
Thi and Z

k
Thij) are determined in each of the iterations to be used in the 

corresponding equations since E
k
Thi = f

 k
EThi(V

1
l) and Z

k
Thij = f

 k
ZThij(V

1
l) (l = 2,…,c). The use of a 

constant Jacobian matrix is proposed in [48] to carry out the numerical resolution of (4.1) by the 

Newton-Raphson method. Holding the Jacobian matrix constant leads to a larger number of 

faster iterations to obtain the overall solution, [49]. However, if voltages are highly distorted, this 

number of iterations may still be larger or convergence to the solution might even not be 

achieved. The numerical resolution of (4.1) provides the fundamental voltages at the PQ and NL 

buses, the harmonic voltages at the NL buses and the NLL state variables. Subsequently, the VN 

method (4.3) is applied to determine the harmonic voltages at the Slack and PQ buses. This 

method is based on the resolution of the linear system 

 

This formulation allows the HLF problem to be tackled as a single nonlinear equation system, 

considering NLL harmonic interaction but not including the harmonic voltages at the Slack and 

PQ buses as unknowns. 

*

1 1 1

1

1

1
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i c n r r m m





 

 
  

 
 

   



   



  

 

(4.1) 

1

max max

( , , , )

( 1, , ; 1, , ; 1, , ),

k k h r m
i ii i ii

I f V V D

i c n r r m m



   
 (4.2) 

B B BY V I
h h h   (4.3) 
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Another UHLF formulation could be considered, namely removing the following equations of 

Kirchhoff’s second law applied to the fundamental Thévenin equivalent circuits from (4.1): 

and incorporating the following power equations derived from HVDC converters when treated as 

PQ loads into (4.1) instead: 

 

However, this alternative UHLF formulation is discarded due to the high degree of nonlinearity 

of equations in (4.5) compared to those in (4.4). 

 

Two features of the considered UHLF formulation are as follows [48, 49]: 

 

 The formulation is oriented to the presence of a specific sort of nonlinear load in the 

electrical network: HVDC converters. 

 

 The Newton-Raphson method with constant Jacobian matrix is applied for the numerical 

resolution of (4.1). 

 

While these two features could be good enough for electrical networks with the presence of 

HVDC converters and in a context of scarcely distorted voltages, [48, 49], they could not be 

convenient for electrical networks with the presence of any sort of nonlinear load or in scenarios 

of highly distorted voltages. 

 

To overcome these limitations, an enhanced UHLF formulation called IUHLF formulation is 

presented. The two improvements over the UHLF formulation are as follows: 

 

 The proposed formulation is oriented to the presence of any sort of nonlinear load in the 

electrical network. Therefore, hvdc
r
i(·) = 0 in (4.1) must be replaced by nl

r
i(·) = 0. 

 

 The Newton-Raphson method with true Jacobian matrix is applied for the numerical 

resolution of (4.1). It allows the increase in the number of iterations which is inherent to 

the presence of highly distorted voltages in electrical networks to be smaller. 

 

4.2. Discussion on the improved HLF formulation strengths 

 

The main IUHLF formulation strengths over other HLF formulations for electrical networks with 

highly distorted voltages are: 

1 1 1 1

1

( 1, , ),
n

Thi Thij ii
j c

V E Z I i c n
 

     (4.4) 

*

1 1 1 1 1*

1

( ) ( 1, , ).
n

i iji i j
j

V I V Y V i c n


 
   

 
 
  (4.5) 
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 In contrast to HP formulation, NLL harmonic interaction is considered in IUHLF 

formulation. 

 

 The numerical resolution of IUHLF formulation is carried out by applying the Newton-

Raphson method to a single nonlinear equation system, whereas the numerical resolution 

of SHLF formulation requires the application of the Gauss-Seidel method to a set of two 

nonlinear equation systems. The application of a fixed-point iteration method to the set of 

two systems in SHLF formulation hinders the global numerical resolution of the HLF 

problem, to such a point that high harmonic distortions might lead to very different 

values of uN1 and uN2. Therefore, convergence of SHLF formulation is improved by 

IUHLF formulation. 

 

 The number of unknowns at CHLFm stage in IUHLF formulation is smaller than in 

CHLF formulation (the harmonic voltages at the Slack and PQ buses are not unknowns at 

that stage). Thus, convergence of IUHLF formulation is likely better than that of CHLF 

formulation. 

 

 The use of Newton-Raphson method with true Jacobian matrix allows convergence of 

UHLF formulation to be enhanced by IUHLF formulation. 

 

 Unlike UHLF formulation, IUHLF formulation is applicable to electrical networks with 

the presence of any kind of nonlinear load. 

 

 IUHLF formulation exhibits the same accuracy as SHLF, CHLF and UHLF formulations 

(and better accuracy than HP formulation) because of the NLL harmonic interaction 

consideration in all four. 

 

4.3. Number of real equations required by the different HLF formulations 

 

Let it be a network with n buses ( 1,2, , )i n : a Slack bus ( 1)i  , a number of PQ buses 

( 2, , )i c  and a single NL bus ( 1 )i c n   . The superscripts r and m are the indices of the NLL 

state variables and NLL data which define the NLL behaviour, respectively. Distorted voltages 

and currents will be expressed in terms of the summation of 1,3,5,k   components: 1 is the 

fundamental component and 3,5,7,h   are the harmonic components. Let km be the total 

number of frequencies which includes fundamental and the first odd harmonic frequencies of an 

AC network whose harmonic load flow we intend to perform. Let rmax be the number of NLL 

state variables being found for the N identical NLL in the single NL bus. Tables 4.2 and 4.3 allow 

the number of real equations required by the different HLF formulations (UHLF only if NLL ≡ 

HVDC converter) for the numerical resolution of the considered AC network to be calculated. 



37 
 

 

Bus HP SHLF CHLF UHLF / IUHLF 

Slack --- --- 1 11
1

n
h h h h

j j
j

Y V Y V


   --- 
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1 1 1
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2
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N ,
1

1
N , N , N ,

( , , , ) 0

n
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Thi Thij ii
j c

r h r m
i ii i i
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Table 4.2: Equations required by the different HLF formulations 

 

Bus HP SHLF CHLF UHLF / IUHLF 

Slack 0 0 2·(km-1) 0 

PQ 2·(c-1) 

FLFm 

2·(c-1) 
2·(c-1)·km 2·(c-1) 

HA 

0 

NL 2·(n-c)+rmax 

FLFm 

2·(n-c)+rmax 
2·(n-c)·km+rmax 2·(n-c)·km+rmax 

HA 

2·(n-c)·km+rmax 

Table 4.3: Number of real equations required by the different HLF formulations 

4.4. Electrical network example 

 

Without loss of generality in the conclusions, an academic electrical LV network example is 

considered for which the equations and unknowns are shown for each HLF formulation. It is a 3-

bus system in which first bus is the Slack bus  1i  , second bus is the PQ bus ( 2)i  , and third 

bus is the nonlinear bus ( 3)i   to which N identical single-phase uncontrolled rectifiers [50] are 

connected (i.e., UHLF formulation is not applicable). Let’s consider the first odd ten frequencies, 
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v3(θ) = v(θ) 

i3(θ) = N · i(θ) 

V1
1 

i 
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D1 D3 

D2 D4 
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 RD 
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1
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h
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h
v V V h t      


         

v 

i.e., 1,3,5,7,9,......,19k   (i.e., those of the most significant harmonics for the study), so we have km 

= 10, and the NLL state variables of single-phase uncontrolled rectifiers, i.e., rmax = 2. The 

electrical network is given in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2(a): Three-bus network. 

 

 

 

 

 

 

 

Figure 4.2(b): Single-phase uncontrolled rectifier circuit. 

 

 

 

 

 

 

 

 

 

Figure 4.2(c): Supply voltage v, ac current i and dc voltage vC waveforms. 

 

The data for the electrical network considered in Figure 4.2 are shown in Table 4.4. For the 

purpose of simplicity and ease of comparison of results between different harmonic 

formulations, all the values of the AC network are converted into per unit values. The base 

values for power and voltage used to transform the data into per unit values are as follows: 
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vC 
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 3 =  1 + π 

 4 =  2 + π 
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Table 4.4: Network data for Figure 4.2 

The basic idea is to study the harmonic voltages at buses and the currents injected into the 

network by the N single-phase uncontrolled rectifiers. The main parameters defining the 

behaviour of the nonlinear device are the commutation times 1
3t  and 2

3t  as shown in Figure 4.2. 

The fundamental and harmonic currents injected by the N single-phase uncontrolled rectifiers 

will be: 

 

f
 k

3 is described in [13, 50]. Resonance is introduced in the AC network to observe the 

characteristics of harmonic voltages under the presence of resonance at a certain harmonic 

frequency. The resonant frequency in the electrical network depends on the following 

expression: 

For the electrical network example resonant frequency is set at 15resh  , which means that we 

will observe an increase in harmonic voltage at 15-th harmonic. The admittance matrix for the 

above-proposed example considering the fundamental component is as follows: 

2500VA; 220VB BS V    (4.6) 

Element # Type Data Values (pu) 

Bus 

1 Slack 
V

1
1 

X
1

1 

10º 

4.6168e-3 

2 PQ 
P2 = − PD2 

Q2 = − QD2 

− 0.8 

− 0.6 

3 NL 
R , XL 

XC , RD 

0.0207,0.0130 

1.1579,11.0021 

Shunt 2-0 Capacitor XC2 1.6667 

Branch 

1-2 Line 
Z12 

Y12 

5.1653e-4+j5.1653e-3 

j6.4533e-3 

2-3 Line 
Z23 

Y23 

5.1653e-4+j5.1653e-3 

j6.4533e-3 

1-3 Line 
Z13 

Y13 

5.1653e-4+j5.1653e-3 

j6.4533e-3 

1 1 2
3 3 3 3 3 33 3 33

( , , , , , , , )
k k h

L C DI N f V V t t R X X R    (4.7) 

1 2
1 2

res

CX
X

h
  (4.8) 
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The elements that constitute the admittance matrix are as follows 

 

 

 

4.4.1. Harmonic penetration 

 

HP formulation data and unknowns for the electrical network given in Figure 4.2 are summarised 

in Table 4.5. 

 

Stage Bus Data Unknowns 
Number of real 

unknowns 

FLFm 

Slack 
1

1V  --- 0 

PQ 2 2,P Q  1

2V  2 

NL 3 3 3 3, , ,L C DR X X R  1 1 2

3 3 3, ,V t t
 

4 

VN 

Slack 
1

1X
 1

h
V

 
18 

PQ 
22

1

2( )hh

YY Vf  
2

h
V

 
18 

NL 3

h
I

 3

h
V  18 

Table 4.5: HP formulation data and unknowns for the electrical network example 

 

 FLFm stage is solved by using the following nonlinear equation system: 

1 1 1

11 12 13

1 1 11

21 22 23

1 1 1

31 32 33

BY

Y Y Y

Y Y Y

Y Y Y

 
 

  
 
  

 (4.9) 

1 1
1 12 13
11 1 1

12 13

1 1
1 112 23
22 21 1

12 23

1 1
1 13 23
33 1 1

13 23

1 1 1

12 13 231 1 1

12 13 23

1 1 1 1 1 1

21 12 31 13 32 23

1 1

2 2

1 1

2 2

1 1

2 2

1 1 1
, ,

, ,

C

Y Y
Y

Z Z

Y Y
Y Y

Z Z

Y Y
Y

Z Z

Y Y Y
Z Z Z

Y Y Y Y Y Y

   

    

   

     

  

 
(4.10) 
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nl
1

3 and nl
2

3 are described in [13, 50]. The fundamental current injected by the N single-phase 

uncontrolled rectifiers will be: 

 

The number of real equations required in the numerical resolution of HP for the electrical 

network example are summarised in Table 4.6 for each bus. 

 

Stage Bus 
Number of real 

equations 

FLFm 

Slack 0 

PQ 2·(2-1)=2 

NL 2·(3-2)+2=4 

Table 4.6: Number of real equations required by HP formulation 

 

The harmonic voltages of the AC network are then obtained by applying the voltage node (VN) 

method: 

where 
BV
h  is the h-order bus voltage vector. This vector can be given as 

BmY
h  is the h-order modified bus admittance matrix. This matrix is obtained by integrating the 

harmonic admittances at Slack bus and the harmonic admittances at PQ buses into the h-order 

bus admittance matrix 
BY
h

 

  
  
     
     

*
1 1 1 1 1 1 1

21 22 232 1 2 3 2

*
1 1 1 1 1 1 1

21 22 232 1 2 3 2

* *
1 1 1 1 1 1 1 1 1

31 32 33 33 1 2 3 3

* *
1 1 1 1 1 1 1 1 1

31 32 33 33 1 2 3 3

11 1 2

33 3 3 3 3 3 3

12 1 2

33 3 3

Re 0

Im 0

Re Re 0

Im Im 0

( , , , , , , ) 0

( , ,

L C D

V Y V Y V Y V P

V Y V Y V Y V Q

V Y V Y V Y V V I

V Y V Y V Y V V I

nl V t t R X X R

nl V t t

   

   

   

   



3 3 3 3, , , , ) 0L C DR X X R 

 (4.11) 

1 1 1 1 2
3 3 3 3 3 33 33

( , , , , , , )L C DI N f V t t R X X R   (4.12) 

1( ) ,B Bm BmV Y I
h h h   (4.13) 

1

2

3

BV

h

hh

h

V

V

V

 
 

  
 
  

 (4.14) 
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The elements that constitute the admittance matrix are as follows 

 

 

The harmonic admittances at Slack bus are 

 

 

The harmonic admittances at PQ bus are 

 

 

BmI
h  is the h-order modified bus current vector. This vector can be given as 

11m 12 13

21 22m 23

31 32 33

BmY

h h h

h h hh

h h h

Y Y Y

Y Y Y

Y Y Y

 
 

  
 
  

 (4.15) 

12 13
11m 1

12 13

12 23
22m 2 2

12 23

1 13 23
33

13 23

12 13 23

12 13 23

21 12 31 13 32 23

1 1

2 2

1 1

2 2

1 1

2 2

1 1 1
, ,

, ,

h h
h h

h h

h h
h h h

Ch h

h h

h h

h h h

h h h

h h h h h h

Y Y
Y Y

Z Z

Y Y
Y Y Y

Z Z

Y Y
Y

Z Z

Y Y Y
Z Z Z

Y Y Y Y Y Y

    

     

   

     

  

 
(4.16) 

1

1
1 11

1 1

1
, .

20

h X
Y R

R j h X
 

  
 (4.17) 

 

*
11 2 2

2 2 22 2 1 21 1
2 2 22 2

( )1 1 1
, , ,

h k

C

C

P jQ
Y R jX Y Y

R j h X j k XY V

 
    

     
 (4.18) 

1 1

2 2

1 1 2

3 3 3 3 3 3 3 33

0 0

0 0

( , , , , , , )

h

h h

L C DI N f V t t R X X R

  
  

    
       

BmI  (4.19) 
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4.4.2. Simplified harmonic load flow 

 

SHLF formulation data and unknowns for the electrical network given in Figure 4.2 are 

summarised in Table 4.7. 

 

Stage Bus Data Unknowns 
Number of real 

unknowns 

FLFm (N1) 

Slack 
1

1V  --- 0 

PQ 2 2,P Q  
1

1

N ,2V  2 

NL 
2N ,3 3 3 3 3, , , ,

h

L C DV R X X R
 1 1 1

1 1 2

N ,3 N ,3 N ,3, ,V t t
 4 

HA (N2) 

Slack 
1 1

1 1,V X
 

--- 0 

PQ 
2 1

1

2 N ,2  ( )kk

YY f V
 --- 0 

NL 3 3 3 3, , ,L C DR X X R
 2 2 2 2

1 1 2

N ,3 N ,3 N ,3 N ,3, , ,
h

V V t t
 22 

VN 

Slack 
1

1X
 1

h
V

 
18 

PQ 
2 1

1

2 N ,2  ( )hh

YY f V  
2

h
V  18 

NL 3

h
I

 
--- 0 

Table 4.7: SHLF formulation data and unknowns for the electrical network example 

First of all, numerical resolution of FLFm and HA stages must be performed in order to address 

the voltage node (VN) method. FLFm stage will imply to solve the following equation system: 

The fundamental current injected by the N single-phase uncontrolled rectifiers will be: 

 

  
  
     
     

1 1 1

1 1 1

1 1 1 1

1 1 1 1

1

*
1 1 1 1 1 1 1

21 22 23N ,2 1 N ,2 N ,3 2

*
1 1 1 1 1 1 1

21 22 23N ,2 1 N ,2 N ,3 2

* *
1 1 1 1 1 1 1 1 1

31 32 33 3N ,3 1 N ,2 N ,3 N ,3

* *
1 1 1 1 1 1 1 1 1

31 32 33 3N ,3 1 N ,2 N ,3 N ,3

1

N3

Re 0

Im 0

Re Re 0

Im Im 0

(

V Y V Y V Y V P

V Y V Y V Y V Q

V Y V Y V Y V V I

V Y V Y V Y V V I

nl V

   

   

   

   

2 1 1

1 2 1 1

1 1 2

,3 N ,3 N ,3 N ,3 3 3 3 3

12 1 2

N ,3 N ,33 N ,3 N ,3 3 3 3 3

, , , , , , , ) 0

( , , , , , , , ) 0

h

L C D

h

L C D

V t t R X X R

nl V V t t R X X R





 (4.20) 

1 11 2

1 1 1 1 2
N ,3 N ,3 3 3 3 33 N ,3 N ,33

( , , , , , , , )
h

L C DI N f V V t t R X X R   (4.21) 
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The harmonic voltages of the nonlinear load N2,3
h

V are found by the numerical resolution of the 

HA stage. 

In HA stage, the harmonic voltages N2,3
h

V are found by converting the AC network to its Thévenin 

equivalent thereby eliminating all other buses and considering the unknowns at nonlinear bus 

only. Thévenin equivalent is calculated for fundamental and harmonic frequencies. The system 

for the fundamental frequency is shown in Figure 4.3 where the impedance at the bus 2 has been 

calculated under the hypothesis that power is produced by fundamental frequency only. This 

hypothesis allows not only the admittance of PQ bus at fundamental frequency to be modelled, 

but also at harmonic frequencies. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: System under study for fundamental frequency 

Figure 4.4 shows the AC network for the harmonic frequencies. The harmonic admittances at 

Slack bus are provided by equation (4.17) whereas harmonic admittances at PQ bus are provided 

by equation (4.18).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: System under study for harmonic frequencies 
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Once the Thévenin equivalent of the AC network is seen from the nonlinear bus, the study of the 

problem is reduced to the equations corresponding to the circuits shown in Figure 4.5 and Figure 

4.6 together with the equations that define the behaviour of the nonlinear load: 

where 

V
1

N1,2 are found by the numerical resolution of the FLFm stage. 

 
Figure 4.5: Thévenin equivalent circuit for fundamental frequency 

  
Figure 4.6: Thévenin equivalent circuit for harmonic frequencies 

 

The HA stage will provide the fundamental voltages (in addition to harmonic voltages and 

nonlinear load unknowns) at bus 3, which are then compared to fundamental voltages of FLFm 

stage at bus 3. This will indicate whether the iterative process between both nonlinear equation 

systems N1 and N2 has finished or not. 

2

2 22 2

2 22 2

3 33 3N ,3

11 1 2
3 N ,3 N ,3 3 3 3 3N ,3 N ,3

12 1 2
3 N ,3 N ,3 3 3 3 3N ,3 N ,3

( , , , , , , , ) 0

( , , , , , , , ) 0

k k k k
Th Th

h
L C D

h
L C D

V E Z I

nl V V t t R X X R

nl V V t t R X X R

 





 (4.22) 

1 1

2 22 2

1 1
3 33N ,2 N ,23 33

1 1 2
N ,3 N ,3 3 3 3 33 N ,3 N ,33

( ) ; ( )

( , , , , , , , )

k k k k
Th ThETh ZTh

k k h
L C D

E f V Z f V

I N f V V t t R X X R

 

 
 (4.23) 
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The number of real equations required in the numerical resolution of SHLF for the electrical 

network example are summarised in Table 4.8 for each bus. 

 

Stage Bus 
Number of real 

equations 

FLFm (N1) 

Slack 0 

PQ 2·(2-1)=2 

NL 2·(3-2)+2=4 

HA (N2) 

Slack 0 

PQ 0 

NL 2·(3-2)·10+2=22 

Table 4.8: Number of real equations required by SHLF formulation 

Once the iterative process between both nonlinear equation systems N1 and N2 has finished, the 

harmonic voltages for the rest of the electrical network can be calculated through the voltage 

node (VN) method by using equations (4.13) - (4.19). 

 

4.4.3. Complete harmonic load flow 

 

If power only at fundamental frequency is considered in power equations, CHLF formulation 

data and unknowns for the electrical network given in Figure 4.2 are summarised in Table 4.9. 

 

Stage Bus Data Unknowns 
Number of real 

unknowns 

CHLF 

Slack 
1 1

1 1,V X  1

h
V  18 

PQ 2 2,P Q  1

2 2,
h

V V  20 

NL 3 3 3 3, , ,L C DR X X R  1 1 2

3 3 3 3, , ,
h

V V t t
 

22 

Table 4.9: CHLF formulation data and unknowns for the electrical network example 

CHLF implies to solve the following equation system: 
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where 

 

The number of real equations required in the numerical resolution of CHLF for the electrical 

network example are summarised in Table 4.10 for each bus. 

 

Stage Bus Number of real equations 

CHLF 

Slack 2·(10-1)=18 

PQ 2·(2-1)·10=20 

NL 2·(3-2)·10+2=22 

Table 4.10: Number of real equations required by CHLF formulation 

 

4.4.4. Improved unified harmonic load flow 

 

IUHLF formulation data and unknowns for the electrical network given in Figure 4.2 are 

summarised in Table 4.11. 

 

Stage Bus Data Unknowns 
Number of real 

unknowns 

CHLFm 

Slack 
1

1V  --- 0 

PQ 2 2,P Q  1

2V  2 

NL 3 3 3 3, , ,L C DR X X R
 

1 1 2

3 3 3 3, , ,
h

V V t t
 

22 

 

 

   

   

   

*
1 1 1 1 1 1 1

221 22 232 1 2 3

*
1 1 1 1 1 1 1

221 22 232 1 2 3

11 12 13 11 2 3 1

11 12 13 11 2 3 1

21 22 23 21 2 3 2

21

Re 0

Im 0

Re Re 0

Im Im 0

Re Re 0

Im

h h h h h h h h

h h h h h h h h

h h h h h h h h

h

V Y V Y V Y V P

V Y V Y V Y V Q

Y V Y V Y V Y V

Y V Y V Y V Y V

Y V Y V Y V Y V

Y

 
    

 

 
    

 

     

     

     

   

   

   

22 23 21 2 3 2

31 32 33 31 2 3

31 32 33 31 2 3

11 1 2
3 3 3 3 3 3 33 3

12 1 2
3 3 3 3 3 3 33 3

Im 0

Re Re 0

Im Im 0

( , , , , , , , ) 0

( , , , , , , , ) 0

h h h h h h h

k k k k k k k

k k k k k k k

h
L C D

h
L C D

V Y V Y V Y V

Y V Y V Y V I

Y V Y V Y V I

nl V V t t R X X R

nl V V t t R X X R

     

   

   





 (4.24) 

1 1 2
3 3 3 3 3 33 3 33

( , , , , , , , )
k k h

L C DI N f V V t t R X X R   (4.25) 
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VN 

Slack 
1

1X
 1

h
V

 
18 

PQ  
2

1

2 2

h h

Y
Y f V  

2

h
V  18 

NL 3

h
I

 
--- --- 

Table 4.11: IUHLF formulation data and unknowns for the electrical network example 

 

IUHLF implies to solve the following equation system: 

where 

 

The number of real equations required in the numerical resolution of IUHLF for the electrical 

network example are summarised in Table 4.12 for each bus. 

 

Stage Bus 
Number of real 

equations 

CHLFm 

Slack 0 

PQ 2·(2-1)=2 

NL 2·(3-2)·10+2=22 

Table 4.12: Number of real equations required by IUHLF formulation 

 

Once CHLFm stage has finished, the harmonic voltages for the rest of the electrical network can 

be calculated through the voltage node (VN) method by using equations (4.13) - (4.19).  

 

4.4.5. Obtained results 

 

The obtained results for the studied electrical network and for HP, SHLF, CHLF and IUHLF 

formulations are shown through Tables 4.13 to 4.20. The main goal of this subsection is to 

compare these results. In order to analyse the effect of the harmonic voltage distortion level on 

the obtained results for the four HLF formulations, this level is varied by connecting a number N 

 

 

*
1 1 1 1 1 1 1

221 22 232 1 2 3

*
1 1 1 1 1 1 1

221 22 232 1 2 3

3 33 33

11 1 2
3 3 3 3 3 3 33 3

12 1 2
3 3 3 3 3 3 33 3

Re 0

Im 0
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1 1
3 332 23 33

1 1 2
3 3 3 3 3 33 3 33
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Th ThETh ZTh
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L C D
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 
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of nonlinear loads to the network. Five harmonic voltage distortion levels are considered and 

applied to the electrical network, from N=1 (the lowest level) to N=5 (the highest level). 

 

It was observed that SHLF, CHLF and IUHLF formulations, for the first odd ten frequencies and 

the five harmonic voltage distortion levels considered, lead to almost same results with very little 

difference. Therefore, in order to avoid repetition of the same set of values for SHLF, CHLF and 

IUHLF formulations, average results are shown in Tables 4.14, 4.16, 4.18 and 4.20. 

 

 N=1 N=2 N=3 N=4 N=5 
1
1V
 

1∠0° 1∠0° 1∠0° 1∠0° 1∠0° 

3
1V  0.0022∠-170.5737° 0.0044∠-170.6555° 0.0067∠-170.7373° 0.0089∠-170.8190° 0.0111∠-170.9007° 

5
1V  0.0037∠137.0732° 0.0074∠136.9369° 0.0110∠136.8006° 0.0147∠136.6645° 0.0184∠136.5284° 

7
1V  0.0052∠84.6883° 0.0103∠84.4974° 0.0155∠84.3067° 0.0207∠84.1161° 0.0258∠83.9256° 

9
1V  0.0069∠32.5513° 0.0138∠32.3060° 0.0207∠32.0607° 0.0276∠31.8156° 0.0345∠31.5707° 

11
1V  0.0097∠-19.1712° 0.00194∠-19.4711° 0.0291∠-19.7708° 0.0388∠-20.0703° 0.0484∠-20.3697° 

13
1V  0.00194∠-70.7979° 0.0388∠-71.1524° 0.0582∠-71.5066° 0.0776∠-71.8606° 0.0969∠-72.2144° 

15
1V  0.0276∠65.9631° 0.0551∠65.5546° 0.0826∠65.1463° 0.1102∠64.7383° 0.1377∠64.3305° 

17
1V  0.0045∠17.3675° 0.0090∠16.9042° 0.0135∠16.4411° 0.0180∠15.9783° 0.0225∠15.5158° 

19
1V  0.0015∠-22.5044° 0.0030∠-23.0222° 0.0044∠-23.5398° 0.0059∠-24.0571° 0.0074∠-24.5741° 

Table 4.13: Fundamental and harmonic voltages (pu) at Slack bus by using HP formulation 

 

 N=1 N=2 N=3 N=4 N=5 
1
1V  1∠0° 1∠0° 1∠0° 1∠0° 1∠0° 

3
1V  0.002∠155.8072° 0.0034∠130.5895° 0.0044∠106.2158° 0.0052∠94.08° 0.0059∠83.8087° 

5
1V  0.0032∠80.9822° 0.0057∠38.9187° 0.0073∠-1.4791° 0.0086∠-21.8606° 0.0097∠-39.0493° 

7
1V  0.0045∠6.0294° 0.0079∠-52.9363° 0.0103∠-109.0621° 0.0121∠-137.8979° 0.0135∠-162.1044° 

9
1V  0.006∠-68.8258° 0.0104∠-144.7858° 0.0137∠143.7026° 0.016∠106.1569° 0.0177∠74.7992° 

11
1V  0.0083∠-143.4911° 0.0143∠123.4071° 0.019∠36.8384° 0.022∠-9.7036° 0.0243∠-48.3791° 

13
1V  0.0163∠141.6107° 0.0277∠31.1249° 0.0366∠-70.2612° 0.0421∠-126.1237° 0.0463∠-172.3285° 

15
1V  0.0222∠-105.3589° 0.037∠126.3498° 0.0474∠10.1693° 0.0545∠-55.4411° 0.0599∠-109.4859° 

17
1V  0.0034∠-178.1487° 0.0053∠34.9699° 0.0062∠-96.5023° 0.0072∠-172.7242° 0.0079∠124.7265° 

19
1V  0.0009∠119.0576° 0.0013∠-47.3375° 0.0009∠165.2717° 0.0011∠73.4039° 0.0013∠-1.3899° 

Table 4.14: Fundamental and harmonic voltages (pu) at Slack bus by using SHLF, CHLF and IUHLF formulations 
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At Slack bus, the comparison of harmonic voltage values between HP and the rest of the 

formulation leads to observation that for low distortion the results are almost similar for 

harmonic voltage amplitudes, but not for angles as there is too much difference of harmonic 

voltage angles between HP and the rest of the formulations. Similarly, when distortion is 

increased by increasing the number N of nonlinear loads, HP leads to high harmonic voltage 

values as compared to rest of the harmonic formulations. 

 

 N=1 N=2 N=3 N=4 N=5 
1
2V  0.9996∠-0.1717° 0.9995∠-0.1854° 0.9993∠-0.1990° 0.9992∠-0.2126° 0.9990∠-0.2262° 

3
2V  0.0031∠-170.9078° 0.0062∠-170.989° 0.0092∠-171.072° 0.0123∠-171.153° 0.0154∠-171.235° 

5
2V  0.0052∠136.8484° 0.0104∠136.7120° 0.0155∠136.5758° 0.0207∠136.4396° 0.0259∠136.3035° 

7
2V  0.0075∠84.5040° 0.0149∠84.3131° 0.0224∠84.1224° 0.0298∠83.9318° 0.0373∠83.7412° 

9
2V  0.0103∠32.3825° 0.0206∠32.1372° 0.0309∠31.8919° 0.0412∠31.6469° 0.0515∠31.4019° 

11
2V  0.0152∠-19.3373° 0.0303∠-19.6372° 0.0455∠-19.9369° 0.0606∠-20.2365° 0.0758∠-20.5358° 

13
2V  0.0322∠-70.9701° 0.0644∠-71.3254° 0.0965∠-71.6788° 0.1287∠-72.0328° 0.1608∠-72.3866° 

15
2V  0.0492∠65.7775° 0.0984∠65.3690° 0.1475∠64.9607° 0.1966∠64.5527° 0.2457∠64.1449° 

17
2V  0.0088∠17.1604° 0.0176∠16.6971° 0.0264∠16.2340° 0.0352∠15.7712° 0.0440∠15.3087° 

19
2V  0.0032∠-22.7432° 0.0097∠-23.2610° 0.0097∠-23.7786° 0.0129∠-24.2959° 0.0161∠-24.8129° 

Table 4.15: Fundamental and harmonic voltages (pu) at PQ bus by using HP formulation 

 

 

 N=1 N=2 N=3 N=4 N=5 
1
2V  0.9996∠-0.1684° 0.9994∠-0.1735° 0.9993∠-0.174° 0.9992∠-0.1748° 0.9991∠-0.1746° 

3
2V  0.0027∠155.4731° 0.0047∠130.2553° 0.006∠105.8817° 0.0072∠93.7458° 0.0081∠83.4745° 

5
2V  0.0045∠80.7573° 0.0079∠38.6939° 0.0102∠-1.704° 0.0121∠-22.0854° 0.0136∠-39.2742° 

7
2V  0.0065∠5.8451° 0.0114∠-53.1206° 0.0148∠-109.246° 0.0174∠-138.0822° 0.0194∠-162.2887° 

9
2V  0.009∠-68.9945° 0.0155∠-144.9546° 0.0205∠143.5338° 0.0239∠105.9881° 0.0265∠74.6304° 

11
2V  0.013∠-143.6572° 0.0224∠123.2409° 0.0297∠36.6723° 0.0344∠-9.8698° 0.038∠-48.5452° 

13
2V  0.027∠141.4385° 0.046∠30.9527° 0.0607∠-70.4334° 0.0698∠-126.2959° 0.0769∠-172.5007° 

15
2V  0.0397∠-105.5445° 0.0661∠126.1642° 0.0846∠9.9837° 0.0973∠-55.6268° 0.1069∠-109.6715° 

17
2V  0.0066∠-178.3558° 0.0104∠34.7628° 0.0121∠-96.7094° 0.014∠-172.9313° 0.0154∠124.5194° 

19
2V  0.002∠118.8188° 0.0027∠-47.5763° 0.0021∠165.0329° 0.0025∠73.1651° 0.0028∠-1.6287° 

Table 4.16: Fundamental and harmonic voltages (pu) at PQ bus by using SHLF, CHLF and IUHLF formulations 

 

 

At PQ bus, HP is able to correctly estimate the fundamental voltages for all number N of 

nonlinear loads when we compare their values with those of the other formulations, but results in 
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overestimation of the harmonic voltages when distortion is increased. This is due to the fact that 

HP is a modified form of fundamental load flow without considering the harmonic interaction of 

nonlinear bus with AC network. 

 

 

 N=1 N=2 N=3 N=4 N=5 
1
3V  0.9996∠-0.1604° 0.9993∠-0.1337° 0.9990∠-0.1609° 0.9987∠-0.1881° 0.9984∠-0.2153° 

3
3V  0.0039∠-170.9224° 0.0077∠-170.0042° 0.0116∠-171.0860° 0.0154∠-171.1678° 0.0193∠-171.2494° 

5
3V  0.0063∠136.8841° 0.0126∠136.7477° 0.0189∠136.6115° 0.0252∠136.4753° 0.0315∠136.3392° 

7
3V  0.0087∠84.5744° 0.0173∠84.3836° 0.0260∠84.1928° 0.0346∠84.0022° 0.0433∠83.8117° 

9
3V  0.0112∠32.4883° 0.0224∠32.2429° 0.0336∠31.9977° 0.0448∠31.7526° 0.0559∠31.5077° 

11
3V  0.0150∠-19.1901° 0.0300∠-19.4900° 0.0451∠-19.7897° 0.0601∠-20.0892° 0.0751∠-20.3886° 

13
3V  0.0282∠-70.7694° 0.0564∠-71.1238° 0.0846∠-71.4780° 0.1128∠-71.8320° 0.1409∠-72.1858° 

15
3V  0.0366∠66.0539° 0.0731∠65.6454° 0.1096∠65.2371° 0.1462∠64.8291° 0.1826∠64.4213° 

17
3V  0.0052∠17.5573° 0.0104∠17.0940° 0.0156∠16.6309° 0.0208∠15.1681° 0.0260∠15.7056° 

19
3V  0.0014∠-22.1160° 0.0027∠-23.6339° 0.0041∠-23.1515° 0.0054∠-23.6687° 0.0068∠-24.1857° 

Table 4.17: Fundamental and harmonic voltages (pu) at NL bus by using HP formulation 

 

 

 N=1 N=2 N=3 N=4 N=5 
1
3V  0.9996∠-0.0998° 0.9992∠-0.11° 0.9989∠-0.1108° 0.9987∠-0.1123° 0.9985∠-0.1119° 

3
3V  0.0034∠155.4584° 0.006∠130.2407° 0.0076∠105.8671° 0.009∠93.7313° 0.0102∠83.46° 

5
3V  0.0055∠80.793° 0.0097∠38.7296° 0.0124∠-1.6683° 0.0148∠-22.0497° 0.0165∠-39.2385° 

7
3V  0.0076∠5.9155° 0.0132∠-53.0501° 0.0172∠-109.176° 0.0202∠-138.0118° 0.0225∠-162.2183° 

9
3V  0.0097∠-68.8888° 0.0169∠-144.8488° 0.0222∠143.6396° 0.0259∠106.0939° 0.0288∠74.7362° 

11
3V  0.0129∠-143.51° 0.0222∠123.3882° 0.0294∠36.8195° 0.034∠-9.7225° 0.0376∠-48.398° 

13
3V  0.0237∠141.6392° 0.0403∠31.1534° 0.0532∠-70.2326° 0.0612∠-126.0951° 0.0674∠-172.2999° 

15
3V  0.0295∠-105.2681° 0.0491∠126.4406° 0.0629∠10.2601° 0.0723∠-55.3503° 0.0795∠-109.3951° 

17
3V  0.0039∠-177.9589° 0.0062∠35.1597° 0.0072∠-96.3125° 0.0083∠-172.5344° 0.0091∠124.9163° 

19
3V  0.0008∠119.4459° 0.0012∠-46.9492° 0.0009∠165.66° 0.001∠73.7922° 0.0012∠-1.0016° 

Table 4.18: Fundamental and harmonic voltages (pu) at NL bus by using SHLF, CHLF and IUHLF formulations 

 

 

At NL bus, non-interaction hypothesis of the nonlinear load with the AC network results in high 

harmonic voltages for the bus as evident from the comparison of the harmonic voltage values 

between the two tables. The difference of values is more significant when distortion is increased 

by increasing the number N of nonlinear loads. 
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 N=1 N=2 N=3 N=4 N=5 
1
3I  0.1623∠153.5356° 0.3244∠153.5083° 0.4865∠153.4811° 0.6484∠153.4538° 0.8103∠153.4266° 

3
3I  0.1564∠100.6490° 0.3127∠100.5672° 0.4689∠100.4855° 0.6250∠100.4038° 0.7810∠100.3222° 

5
3I  0.1451∠47.8948° 0.2902∠47.7586° 0.4352∠47.6223° 0.5801∠47.4862° 0.7249∠47.3502° 

7
3I  0.1295∠-4.6183° 0.2589∠-4.8091° 0.3882∠-4.9998° 0.5175∠-5.1904° 0.6467∠-5.3808° 

9
3I  0.1107∠-56.7439° 0.2213∠-56.9893° 0.3319∠-57.2344° 0.4424∠-57.4795° 0.5528∠-57.7244° 

11
3I  0.0902∠-108.2631° 0.1804∠-108.5629° 0.2705∠-108.8626° 0.3606∠-109.1621° 0.4506∠-109.4614° 

13
3I  0.0696∠-158.8128° 0.1392∠-159.1671° 0.2088∠-159.5213° 0.2783∠-159.8752° 0.3478∠-160.2289° 

15
3I  0.0503∠152.2782° 0.1007∠151.8694° 0.1509∠151.4607° 0.2012∠151.0523° 0.2514∠150.6442° 

17
3I  0.0336∠106.4127° 0.0672∠105.9494° 0.1007∠105.4862° 0.1342∠105.0234° 0.1677∠104.5608° 

19
3I  0.0204∠66.8878° 0.06131∠66.3699° 0.06131∠65.8523° 0.0817∠63.335° 0.1020∠64.8180° 

Table 4.19: Fundamental and harmonic currents (pu) at NL bus by using HP formulation 

 

 N=1 N=2 N=3 N=4 N=5 
1
3I  0.1432∠142.3349° 0.2506∠133.9323° 0.317∠125.784° 0.3795∠121.7551° 0.4272∠118.3384° 

3
3I  0.1378∠67.0299° 0.241∠41.8122° 0.3067∠17.4386° 0.3659∠5.3029° 0.4112∠-4.9684° 

5
3I  0.1276∠-8.1962° 0.2228∠-50.2596° 0.2865∠-90.6574° 0.3395∠-111.0388° 0.3803∠-128.2276° 

7
3I  0.1133∠-83.2772° 0.1972∠-142.2428° 0.2569∠161.6314° 0.302∠132.7957° 0.3369∠108.5892° 

9
3I  0.0961∠-158.121° 0.1666∠125.919° 0.2196∠54.4074° 0.2559∠16.8618° 0.2842∠-14.4959° 

11
3I  0.0773∠127.417° 0.1331∠34.3152° 0.1767∠-52.2534° 0.2044∠-98.7954° 0.2259∠-137.4708° 

13
3I  0.0584∠53.5959° 0.0994∠-56.8899° 0.1313∠-158.2759° 0.151∠145.8617° 0.1663∠99.6569° 

15
3I  0.0406∠-19.0438° 0.0676∠-147.3355° 0.0866∠96.4837° 0.0996∠30.8729° 0.1094∠-23.1721° 

17
3I  0.025∠-89.1035° 0.0397∠124.015° 0.0462∠-7.4572° 0.0535∠-83.6791° 0.0588∠-146.2284° 

19
3I  0.0127∠-151.5502° 0.0173∠42.0546° 0.0131∠-105.3362° 0.0157∠162.796° 0.0174∠88.0022° 

Table 4.20: Fundamental and harmonic currents (pu) at NL bus by using SHLF, CHLF and IUHLF formulations 

 

At NL bus, it can be noticed that the higher the N value is, the greater the obtained fundamental 

and harmonic currents are for all formulations. In addition, regarding HP formulation, this 

increase in the obtained currents is clearly proportional to the N value. 

 

It is seen that HP offers simplicity and a fewer number of equations to be used for the numerical 

resolution of the harmonic problem, but the technique often leads to incorrect results due to the 

hypothesis of non-interaction between the nonlinear load and AC network. 
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Other HLF formulations consider the interaction between the nonlinear load and AC network, 

usually leading to correct results. However, the procedure followed differs from one formulation 

to another: 

 

 The HLF formulations which offer harmonic interaction with a fewer number of 

equations to be used for the numerical resolution of the harmonic problem are UHLF and 

IUHLF. This is achieved by transforming the AC network to its Thévenin equivalent and 

not considering the harmonic voltages of Slack and PQ buses in the numerical resolution 

of the harmonic problem. The harmonic voltages of Slack and PQ buses are found later 

after the numerical resolution by applying the voltage node method. 

 

 CHLF is the most computationally extensive formulation and requires the largest number 

of equations to be solved during the numerical resolution of the harmonic problem. This 

is because this particular formulation considers the harmonic interaction at each bus, i.e., 

the Slack bus, the PQ bus and the NL bus thereby increasing the number of unknowns to 

be determined for reaching the numerical solution of the harmonic problem. 

 

 SHLF also offers harmonic interaction with few equations to be used for the numerical 

resolution of the harmonic problem, but it carries the disadvantage of the implementation 

of two numerical procedures in order to reach the numerical solution of the harmonic 

problem. 
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5. Newton-Raphson method vs. nonlinear least-squares methods 

in harmonic load flow resolution 
 

In this chapter we are going to present the results of different harmonic formulations and try to 

make discussions and observations based on the results thereby validating and concluding the 

theory proposed in previous chapters. The HLF problem associated with the three-bus network in 

Figure 5.1(a) is solved by using the HLF formulations in Chapter 2 (HP, SHLF and CHLF) and 

the improved HLF formulation in Chapter 4 (IUHLF) so as to compare their performances. 

Typical NLLs, specifically single-phase uncontrolled rectifiers, connected to bus 3, and an 

increasing number N of these NLLs at the bus, are considered to analyse the behaviour of the 

different formulations in a context of high voltage distortion. 

 

 

 

 

 

 

 

 

Figure 5.1(a): Three-bus network. 

The circuit of a single-phase uncontrolled rectifier [50] is shown in Figure 5.1(b) and its supply 

voltage v, ac consumed current i and dc voltage waveforms are depicted in Figure 5.1(c), where 

 = 2·f and f is the fundamental frequency of the supply system. A distorted supply voltage v is 

considered in the rectifier model to allow harmonic interaction to be assumed in NLL behaviour. 

The commutation angles  
i
 are the NLL state variables, whose values must be determined 

irrespective of HLF formulation, i.e., they are always unknowns in the HLF resolution. The half-

wave symmetry hypothesis is considered; therefore, only  
1
 and  

2
 must be determined since the 

commutation angles verify the relation  
j + 2

 =  
j
 +  (j = 1, 2).  

 

 

 

 

 

Figure 5.1(b): Single-phase uncontrolled rectifier circuit. 
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Resonance is also introduced in the AC network to observe the characteristics of harmonic 

voltages under the influence of resonances.  

 

 

 

 

 

Figure 5.1(c): Supply voltage v, ac current i and dc voltage vC waveforms. 

The data of the whole network were summarised in Table 4.4. 
 

5.1. Study of HLF formulation convergences 

 

To reach the numerical solution of the proposed electrical network, two numerical methods are 

used. The first is the Newton-Raphson method, which is one of the most famous methods 

conventionally used for the numerical resolution of AC networks. The second is the Levenberg-

Marquardt method (which includes Gauss-Newton method as a particular case), based on 

nonlinear least-squares approach. The basic idea is to observe the convergence of HLF 

formulations under both numerical methods and also to compare the effectiveness of both 

numerical methods when deployed for the numerical resolution of the harmonic problem. 

 

5.1.1.  Newton-Raphson method  

 

The evolutions of ||x
(α+1)

  x
(α)

|| and ||F(x)|| for the AC network, when HP, SHLF, CHLF and 

IUHLF formulations are used and the Newton-Raphson method is applied, are given in Figure 

5.2. As we know that Newton-Raphson method exhibits better convergence if the starting point 

is close to the solution, a starting point was chosen for all used HLF formulations, which was 

close to the solution of the harmonic problem. 

 

From a common initial value x
(0)

 for all used formulations, Newton-Raphson convergence was 

checked from the condition ||x
(α+1)

  x
(α)

|| < 10
-3

, and the terms of the Jacobian matrix were 

calculated by the finite difference approach (the only feasible choice for complicated networks). 

SHLF fixed-point iteration convergence was checked by considering  = 10
-5

 in equation (3.16).  

 

Figure 5.2(a) shows the evolution of ||x
(α+1)

  x
(α)

|| versus the Newton-Raphson iteration (α+1) for 

all used formulations and five different numbers N of single-phase uncontrolled rectifiers. The 

purpose of increasing N is to increase the voltage distortion in the AC network and observe the 

convergence of different HLF formulations under unstable conditions. In SHLF formulation, 

evolutions associated with the FLFm and HA stages are plotted in sequence. 
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Figure 5.2(a): Evolution of ||x(α+1)  x(α)|| versus the Newton-Raphson iteration (α+1) 

Figure 5.2(b) shows the evolution of ||F(x)|| versus the Newton-Raphson iteration (α+1) for all 

used formulations and five different numbers N of single-phase uncontrolled rectifiers. 
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Figure 5.2(b): Evolution of ||F(x)|| versus the Newton-Raphson iteration (α+1) 

It can be noticed that greater values of N generally lead to a higher number of iterations to the 

problem solution. This increase in the number of iterations is especially pronounced for CHLF 
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formulation, coherently exceeding for all values of N what is expected in a context of scarcely 

distorted voltages. It is also observed that HP and IUHLF formulations require a smaller number 

of iterations to the problem solution irrespective of N. Therefore, it can be concluded that both 

formulations are the best in terms of convergence. 

 

Comparison between the evolutions of ||x
(α+1)

  x
(α)

|| and ||F(x)|| also leads to some interesting 

findings. It is observed that evolution of the step size ||x
(α+1)

  x
(α)

|| towards the tolerance limit is 

very slow as compared to the evolution of error function ||F(x)||. E.g. when N = 1, for IUHLF the 

step size ||x
(α+1)

  x
(α)

|| takes 6 iterations to reach tolerance limit of 10
-3

 whereas the error function 

||F(x)|| reaches the limit 10
-14

 in these 6 iterations.  

 

The total number of iterations taken by each HLF formulation to reach the numerical solution of 

the harmonic problem setting the step size tolerance limit at ||x
(α+1)

  x
(α)

|| < 10
-3

 is summarised in 

Table 5.1. 

 

 

 

 

 

 

 

 

 

 

Table 5.1: Total number of iterations taken by each HLF formulation with varying NLLs (N) 

As observed from Table 5.1, the CHLF, SHLF and IUHLF have almost the same performance 

when the value of N is at its minimum. However, when the value of N is changed to higher 

values, the difference between HLF formulations becomes more significant. The highest increase 

in number of iterations observed is CHLF, which exposes CHLF to convergence problems for 

higher number of nonlinear loads. HP is the most economical HLF, but provides inaccurate 

results when nonlinearity is increased by increasing values of N. SHLF is also a feasible solution 

for the numerical resolution of the harmonic problem, but has the disadvantage of using two 

numerical procedures to reach the numerical solution which might result in convergence 

problems. 

 

In order to increase the accuracy of the results for the HLF formulations, the step size tolerance 

is set to a lower value and numerical resolution is performed again. From a common initial value 

x
(0)

 for all used formulations, Newton-Raphson convergence was checked from the condition 

||x
(α+1)

  x
(α)

|| < 10
-4

.
 

Figure 5.3(a) shows the evolution of ||x
(α+1)

  x
(α)

|| versus the Newton 

Raphson iteration (α+1) for all used formulations and five different numbers N of single-phase 

uncontrolled rectifiers. 

Number of 

NLLs (N) 

HP 

number of 

iterations 

 

CHLF 

number of 

iterations 

 

SHLF 

number of 

iterations 

IUHLF 

number of 

iterations 

1 2 6 (1+1)+(6+1) 6 

2 3 6 (1+1)+(6+1) 6 

3 3 10 (1+2)+(16+2) 9 

4 3 20 (1+2)+(14+2) 14 

5 3 33 (1+2)+(15+2) 13 
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Figure 5.3(a): Evolution of ||x(α+1)  x(α)|| versus the Newton-Raphson iteration (α+1) 

Figure 5.3(b) shows the evolution of ||F(x)|| versus the Newton-Raphson iteration (α+1) for all 

used formulations and five different numbers N of single-phase uncontrolled rectifiers. 
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Figure 5.3(b): Evolution of ||F(x)|| versus the Newton-Raphson iteration (α+1) 

The evolution of the plots for HP, IUHLF, CHLF remains almost identical when compared to 

evolution of the graphs with the tolerance limit of ||x
(α+1)
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of convergence behaviour for the SHLF, as a constant increase in number of iterations is 

observed for every number N of nonlinear loads. So a decrease in the step size tolerance and an 

increase in voltage distortion may affect the convergence of SHLF as compared to other HLF 

formulations. 

The total number of iterations taken by each HLF formulation to reach the numerical solution of 

the harmonic problem setting the step size tolerance limit at ||x
(α+1)

  x
(α)

|| < 10
-4

 is summarised in 

Table 5.2. 

 

 

 

 

 

 

 

 

 

 

Table 5.2: Total number of iterations taken by each HLF formulation with varying NLLs (N) 

The increase in the number of iterations taken by SHLF for every N might be attributed to the 

fact that there are two numerical procedures involved and a change in the step size tolerance 

limit affects both the procedures, which leads us to a very serious flaw in this formulation. 

Situation may arise during the numerical resolution of SHLF in which one of the numerical 

procedures converges to the solution, whereas the other procedure needs additional iterations to 

converge or even does not converge at all depending on the value of the step size tolerance limit 

given to the numerical procedure. 

5.1.2. Levenberg-Marquardt method 

The next technique employed in this thesis for the numerical resolution of harmonic problem is 

Levenberg-Marquardt method based on nonlinear least-squares approach. The theoretical 

background of the technique is briefly explained in Section 3.4 of the thesis memory. Even 

though Newton-Raphson is an efficient numerical method to solve the HLF problem, it suffers 

from convergence problems when starting points are not close to the solution and when voltage 

distortion is increased in the network. This disadvantage forces us to look at alternatives for the 

numerical resolution of the harmonic problem. The Levenberg-Marquardt method offers better 

convergence when voltage distortion is increased in the network. 

From a common initial value x
(0)

 for all used formulations, Levenberg-Marquardt convergence 

was checked from the condition ||x
(α+1)

  x
(α)

|| < 10
-3

(||x
(α)

||+10
-3

). SHLF fixed-point iteration 

convergence was checked by considering  = 10
-5

 in equation (3.16). Figure 5.4(a) shows the 

evolution of ||x
(α+1)

  x
(α)

|| versus the Levenberg-Marquardt iteration (α+1) for all used 

formulations and five different numbers N of single-phase uncontrolled rectifiers. 

Number of 

NLLs (N) 

HP 

number of 

iterations 

 

CHLF 

number of 

iterations 

 

SHLF 

number of 

iterations 

IUHLF 

number of 

iterations 

1 2 6 (1+2)+(6+2) 6 

2 3 6 (1+2)+(6+2) 6 

3 3 11 (1+2)+(17+2) 9 

4 3 20 (1+2)+(14+2) 14 

5 3 33 (1+2)+(15+2) 14 
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Figure 5.4(a): Evolution of ||x(α+1)  x(α)|| versus the Levenberg-Marquardt iteration (α+1) 

Figure 5.4(b) shows the evolution of S versus the Levenberg-Marquardt iteration (α+1) for all 

used formulations and five different numbers N of single-phase uncontrolled rectifiers. 
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Figure 5.4(b): Evolution of S versus the Levenberg-Marquardt iteration (α+1) 

Observation of the plots in Figure 5.4(a) and 5.4(b) leads us to the conclusion that for a certain 

step size tolerance limit ||x
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accuracy of the results at the cost of relatively slow convergence as compared to Newton-

Raphson method. 

The total number of iterations taken by each HLF formulation to reach the numerical solution of 

the harmonic problem setting the step size tolerance limit at ||x
(α+1)

  x
(α)

|| < 10
-3

(||x
(α)

||+10
-3

) is 

summarised in Table 5.3. 

 

 

 

 

 

 
 

Table 5.3: Total number of iterations taken by each HLF formulation with varying NLLs (N) 

Comparison of the two numerical methods, i.e., Newton-Raphson and Levenberg-Marquardt 

results using Table 5.1 and Table 5.3, yields some interesting findings. For both the methods, the 

starting points being considered are the same and lie close to the solutions to avoid convergence 

problems. Regarding the IUHLF and SHLF formulations, Newton-Raphson method offers rapid 

convergence as compared to Levenberg-Marquardt method if we have starting points close to the 

solution. The behaviour of HP formulation remains almost the same for both the methods, as we 

know that HP does not consider harmonic interaction of nonlinear load with the AC network, 

therefore posing not much of a challenge for both the numerical methods. 

Regarding CHLF formulation, we observe a very contrasting behaviour as compared to SHLF 

and IUHLF, i.e., CHLF exhibits better convergence when used in conjunction with Levenberg-

Marquardt method as it utilizes a fewer number of iterations to reach the numerical solution even 

for greater number N of nonlinear loads as compared to Newton-Raphson method. This unusual 

phenomenon can be explained looking at the theoretical foundation of the HLF formulation. As 

we know from Chapter 2 that CHLF is the most computationally complex harmonic formulation 

having greater number of unknowns and equations as compared to other HLF formulations, it 

performs better when the numerical method being used is Levenberg-Marquardt based on 

nonlinear least-squares approach. In short, Levenberg-Marquardt method holds an edge over 

Newton-Raphson method if the number of unknowns to be solved is greater. This property of 

Levenberg-Marquardt method becomes very useful when handling bigger AC networks with 

multiple buses and nonlinear loads. 

In order to increase the accuracy of the results for the HLF formulations, the step size tolerance 

is set to a lower value and numerical resolution is performed again. From a common initial value 

x
(0)

 for all used formulations, Levenberg-Marquardt convergence was checked from the condition 

||x
(α+1)

  x
(α)

|| < 10
-4

(||x
(α)

||+10
-4

). Figure 5.5(a) shows the evolution of ||x
(α+1)

  x
(α)

|| versus the 

Number of 

NLLs (N) 

HP 
number of 
iterations 

CHLF 
number of 

iterations 

SHLF 
number of 

iterations 

IUHLF 
number of 
iterations 

1 3 6 (1+2)+(6+1) 6 

2 3 8 (1+2)+(7+1) 7 

3 3 15 (1+2)+(26+1) 9 

4 4 21 (1+2)+(15+1) 15 

5 3 22 (1+2)+(20+1) 16 
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Levenberg-Marquardt iteration (α+1) for all used formulations and five different numbers N of 

single-phase uncontrolled rectifiers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5(a): Evolution of ||x(α+1)  x(α)|| versus the Levenberg-Marquardt iteration (α+1) 
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Figure 5.5(b) shows the evolution of S versus the Levenberg-Marquardt iteration (α+1) for all 

used formulations and five different numbers N of single-phase uncontrolled rectifiers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5(b): Evolution of S versus the Levenberg-Marquardt iteration (α+1) 
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As expected, increasing the accuracy of the results yields an increase in the number of iterations 

taken by each HLF formulation to reach the numerical solution of the harmonic problem. 

 

The total number of iterations taken by each HLF formulation to reach the numerical solution of 

the harmonic problem setting the step size tolerance limit at ||x
(α+1)

  x
(α)

|| < 10
-4

(||x
(α)

||+10
-4

) is 

summarised in Table 5.4. 

 

 

 

 

 

 

Table 5.4: Total number of iterations taken by each HLF formulation with varying NLLs (N) 

The increase in the number of iterations is more profound for SHLF formulation but not so much 

for the other HLF formulations (HP, CHLF and IUHLF). This is due to the reason that tolerance 

limit is applied to two numerical procedures in SHLF formulation. 

 

5.2.  Study of HLF formulation accuracies 

 

Regarding the voltage at bus 3, Figure 5.6 plots the values of individual Harmonic Distortions 

(HDs) versus the harmonic order h, as well as the value of Total Harmonic Distortion (THD) for 

all used formulations and five different numbers N of single-phase uncontrolled rectifiers 

connected to this bus. As it is evident from Figure 5.6 and Tables 5.1 to 5.4, IUHLF offers the 

same accuracy of results compared to CHLF and SHLF, with the advantage of requiring a fewer 

number of iterations. Even when the number N of NLLs is increased, IUHLF maintains the 

accuracy of results while also keeping the number of iterations required for the numerical 

resolution to a minimum. From the observation of the Tables 5.1 to 5.4, it can be stated with 

some assurance that if provided an AC network with highly distorted voltages, IUHLF is more 

capable of solving the harmonic problem as compared to the other three formulations. 

 

The high values of individual HD at h = 15 for all used formulations can be explained by the 

existence of a parallel resonance near h = 15 in the equivalent circuit of the network “observed” 

from bus 3. The reason for placing the resonance at such a high harmonic frequency is that the 

addition of the resonance to a lower harmonic frequency has a very significant effect on the AC 

network, increasing the harmonic voltage distortions and making the system difficult to solve by 

using the existing numerical methods. The bar graphs of Figure 5.6 only show the results of 

individual HD at bus 3 and at no other buses. This was done to avoid repetition of results, as 

Number of 

NLLs (N) 

HP 
number of 
iterations 

CHLF 
number of 

iterations 

SHLF 
number of 

iterations 

IUHLF 
number of 
iterations 

1 4 9 (1+2)+(6+1) 6 

2 3 9 (1+2)+(8+1) 8 

3 4 16 (1+2)+(27+1) 10 

4 4 21 (1+2)+(16+1) 16 

5 4 22 (1+2)+(24+1) 16 
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individual HDs at other buses give similar range of values. A more detailed summary of 

harmonic voltage distortion at all buses is given through Tables 4.13 to 4.18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Voltage at bus 3: Individual HDs versus the harmonic order h, as well as THD, for all used formulations 

and five different values of N. 
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Higher values of N lead to greater discrepancy between the results obtained from the HP 

formulation and those obtained from the other three formulations. This is because NLL harmonic 

interaction is not considered in HP formulation, rendering the other three formulations better in 

terms of accuracy. 
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6. Conclusions 

 

The study of harmonics in power systems is a very important field of research in Power Quality. 

The dynamics of AC networks is rapidly changing nowadays due to addition of nonlinear loads 

and renewable energy devices into the energy mix. It is very important to know how these 

nonlinear loads are interacting with the AC network and their potential impact on the power 

system. The thesis was aimed to study the harmonic load flow formulations and the numerical 

resolution of their nonlinear equation systems. The objective was to propose an improved HLF 

formulation, which considers the harmonic interaction of nonlinear loads with the AC network 

and offers simplicity and equal accuracy as compared to other HLF formulations. The study of 

numerical resolution of HLF formulations is focused on the analysis of the numerical method 

convergence and the comparison of numerical methods which try to obtain global convergence. 

The main conclusions of this thesis are presented below: 

 First of all, basic understanding for the modelling of nonlinear loads was developed. For 

this purpose, equations of a commonly used nonlinear load were studied and 

implemented on the computing tool MATLAB. This load was the single-phase 

uncontrolled rectifier. This practise gave us a fair estimation of the harmonic 

characterization we can expect if we integrate this load into an electrical network with 

multiple buses.  

 

 A study was conducted on the most important harmonic load flow formulations present 

in literature. The harmonic load flow formulations studied in this thesis are harmonic 

penetration (HP), simplified harmonic load flow (SHLF), complete harmonic load flow 

(CHLF) and unified harmonic load flow (UHLF). The equations pertaining to each 

harmonic formulation for Slack, PQ and NL buses were identified and presented. The 

unknowns for each formulation were also identified and presented in tabular form. The 

in-depth study of the harmonic formulations helped in understanding the complexity of 

each technique, level of harmonic interaction considered and mathematical orientation 

of each formulation. 

 

 To further illustrate the concepts of harmonic formulations, an electrical network 

example was considered for which the equations and unknowns are developed for each 

harmonic formulation. Resonance was also introduced into the electrical network to 

study the harmonic behaviour of the AC network under unstable conditions. It was 

observed that setting resonance to a harmonic frequency close to fundamental frequency 

makes the network highly unstable for the presence of highly distorted voltages and it 

becomes very difficult to achieve the numerical resolution of the AC network. 
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 An improved harmonic load formulation was proposed, called improved unified 

harmonic load flow (IUHLF). This enhanced formulation is based on the best properties 

of HP, SHLF, CHLF and UHLF formulations: use of harmonic equivalent circuits to 

reduce the number of harmonic voltages which are unknowns in nonlinear equations 

systems, and construction of a single nonlinear equation system which is numerically 

solved by the Newton-Raphson method with true Jacobian matrix and by the 

Levenberg-Marquardt method. 

 

 For all the HLF formulations applied to the electrical network example, it was noticed 

that Newton-Raphson method performs efficiently if the proposed starting point is close 

to the solution of the HLF problem, but it faces convergence problems if the starting 

point is set far from the solution. Newton-Raphson method was also observed to be 

vulnerable if voltage distortion in the AC network is increased to a certain limit. In 

addition, the use of Newton-Raphson method with constant Jacobian matrix in IUHLF 

formulation was studied through the same network and in the same context of voltage 

distortion. It was checked that it leads to serious convergence problems. Therefore, this 

strategy should be avoided in scenarios of highly distorted voltages. These observations 

forced us to look for alternative and more robust options for the numerical resolution of 

the HLF problem. 

 

 To overcome the aforementioned deficiencies of Newton-Raphson method when 

solving the HLF problem, the electrical network example was solved by using the 

Levenberg-Marquardt method, which is a method based on nonlinear least-squares 

approach. It was observed that Levenberg-Marquardt method has better convergence 

properties when the number of unknowns in the HLF problem increases, which makes 

the method suitable for the numerical resolution of the HLF problem in large AC 

networks. 

 

 IUHLF formulation allows the numerical resolution of the HLF problem to be 

simplified, i.e., the number of iterations required by the proposed formulation is smaller 

than that required by the other formulations with identical accurate results (SHLF, 

CHLF and UHLF). This is particularly critical in scenarios of highly distorted voltages. 
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7. Suggestions for future work 

 

This thesis covers the basic fundamentals of harmonic load flow formulation and numerical 

resolution, with some new findings in the HLF problem treatment. The following lines of 

research are proposed as future work for this field of study: 

 Only a specific nonlinear load was considered in this thesis: the single-phase uncontrolled 

rectifier. There is a need to extend the study of the HLF problem considering other 

important nonlinear loads such as discharge lamps, LED lamps, battery chargers, three-

phase uncontrolled rectifiers, etc. 

 

 Convergence properties for two numerical methods were explored in the thesis, one being 

the Newton-Raphson method and the other being the Levenberg-Marquardt method. 

There are many other numerical methods in literature which can be implored for the 

numerical resolution of the HLF problem. 

 

 It was observed during the numerical resolution of the HLF problem that starting points 

play a significant role in attaining the correct solution of the problem. There is a need to 

develop a more robust technique which gives a good estimate of starting points for any 

type of HLF problem. 

 

 For this thesis, the electrical network example taken was a 3-bus system. It would be 

highly advisable to implement the IUHLF formulation for electrical networks with a 

larger number of buses. In addition, convergence properties of IUHLF must be studied to 

know how this formulation performs for large networks as compared to other HLF 

formulations. 

 

 An in-depth study of the HLF problem in electrical networks with highly distorted 

voltages is suggested, as well as an investigation of specific numerical methods which 

might be helpful in the numerical resolution of such networks. 

 

 An analysis of the HLF problem in a context of renewable energy resources is 

recommended, which entails the harmonic characterization of the renewable energy 

resources and their harmonic interaction with the AC network. 
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