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Introduction

Charles Darwin first introduced and formalized the concept of evolution in On the Origin of Species
by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life
([Dar59]), published in 1859. We have come a long way since those first postulates, but biologists
still use the representation of the evolutionary relationships among species that was introduced by
Darwin: phylogenetic trees (see Figure 1).

Phylogenetic trees are a widely used tool in biology to visualize and establish evolutionary
relationships between organisms. Mathematically speaking, they are trees (in the sense of graphs)
whose leaves are in bijection with the living species, where the internal nodes represent common
ancestors and the branches evolutionary processes.

The reconstruction of evolutionary history of living species was inferred from morphological
traits until the eighties. Nowadays, with huge amounts of sequences of molecular data at our
disposal, the inference of phylogenetic trees uses DNA or protein sequences as input.

There are several algorithms to reconstruct n-leaved phylogenetic trees given sequences associ-
ated to present-day species. Some of them rely on assigning every species an evolutionary distance
to the rest, such as the neighbour-joining algorithm. Others use statistical techniques such as
assigning a confidence score to a subset of possible trees, such as maximum likelihood.

D. abnormicollis

D. theryi

D. delarouzei

D. aubei

D. fosteri

D. wewalkai

Figure 1: Example of phylogenetic tree for 6 species of the genus Deronectes, derived from
[RGVB+16].

Although reconstructing 4-leaved phylogenetic trees may seem unnecessary since they are the
simplest case for unrooted trees, a whole branch of algorithms has emerged based in quartet re-
construction, see [RG01]. In broad terms, these algorithms compute first the optimal quartets for
all 4-tuples of n species (in some cases assigning a weight to each one of them). Then, a tree is
reconstructed such that its topology respects the maximum possible amount of quartets, taking
into account their weights. This justifies the study of new quartet reconstruction methodologies
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and the improvement of accuracy of already existing ones.
Restricting to quartets allows the consideration of probabilistic models of evolution (which turns

impossible for trees of more than 20 species). These are Markov processes of nucleotide substitution
on the tree. Although the phylogenetic reconstruction based on these models has usually been done
via maximum likelihood or bayesian approaches, a new set of techniques based on algebraic tools
has emerged in the last 15 years (see [AR07] or [CFS16] for example).

More precisely, the objectives set for this project are the following:

1. Understanding and studying models of evolution from a mathematical perspective as well as
the notion of phylogenetic tree.

2. Studying the K81 model of nucleotide substitution with algebraic tools.

3. Using multilineal algebra techniques (tensors, flattenings,...) on the joint distribution of
nucleotides at the leaves of the tree.

4. Understanding and implement the quartet inference measures proposed in [CCFS].

5. Testing these inference measures on simulated and real data.

The structure of this report is the following. In Chapter 1 we introduce the biological background
needed for the project: phylogenetic trees and alignments of DNA sequences. In Chapter 2 we
introduce mathematical models of nucleotide substitution, in particular the K81 model that will
be used throughout the work. In Chapter 3 we develop the algebraic tools needed for the quartet
inference measures proposed in Chapter 4, where they are analyzed and tested on simulated and
real data. We give conclusions and future works in Chapter 5. The Appendices contain the codes
used to test and analyze the inference measures proposed.



Chapter 1

Biological background

In this Chapter we briefly introduce the biological background and context needed for this work.
A good reference for the reader interested in this topic is [AR07]

1.1 Phylogenetic trees

Evolution in a biological population is understood as the divergence of a subset of it, due to
environmental stresses or other reasons such as genetic drift, to eventually change so much they
can no longer be considered to the same species. Phylogenetic trees are used to model and visualize
the ancestral relationships among the living species in the Earth.

Definition 1.1. Let S be a non-empty finite set. A phylogenetic tree T = (V,E) on S is a tree
–with its set of vertices V and edges E– whose leaves are bijectively labeled in the set S.

In a phylogenetic tree, the set S represents the living species while the interior vertices are
the common ancestors between species. The edges of T represent evolutionary processes and their
lengths (if assigned).

The topology of a phylogenetic tree is the topology corresponding with the labeled graph. Two
phylogenetic trees on the set S have the same topology if they represent the same evolutionary
relationships among species in S (without taking branch lengths into account).

Phylogenetic trees can have a distinguished node called root, which is the node corresponding
to the common ancestor of all the species at the leaves of the phylogenetic tree. The choice of an
interior node of the tree that acts as its root implicitly directs the edges of the tree and gives a
direction to the evolutionary process, in this case we call a phylogenetic tree directed. However, we
will work with unrooted trees because the placement of a common ancestor to all species cannot
be made solely from the data available to us. In a directed tree, the node from which an edge
originates is called the parent and the node where the edge ends is called the children.

In this work we try to reconstruct the topology of unroooted 4-leaved phylogenetic trees, which
show the evolutionary relationship between 4 species. The 3 possible topologies for such trees are
notated by writing the species at the leaves opposed by the internal edge, in the fashion depicted
in Figure 1.1. We will use the notation ij|kl ⌘ {{i, j}, {k, l}} as a bipartition of the {1, 2, 3, 4} set,
therefore the three distinct quartet trees are 12|34, 13|24 and 14|23.

7
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Tree topology 12|34

1

2

r s

3

4

Tree topology 13|24

1

3

r s

2

4

Tree topology 14|23

1

4

r s

2

3

Figure 1.1: The three topologies for 4-leaved phylogenetic trees.

1.2 Alignments of DNA sequences

During the XXth century the reconstruction of phylogenetic trees was done with tables of morpho-
logical traits, the more traits in common the closer two species were. Nowadays we have a more
powerful tool to understand and measure how have species diverged from their common ancestor:
the DNA. The DNA is a molecule present in each cell of an organism that is inherited from its pro-
genitors. It is a nucleic acid shaped as a double helix of two strands of nucleotides. Four di↵erent
nucleotides form the units of the DNA molecule: two purines, adenine (A) and guanine (G) and two
pirimidines, citosine (C) and timine (T).

Definition 1.2. We refer to an alignment of n species of length N as a set of n ordered sequences
of length N with elements in ⌃ = {A, C, G, T}, representing nucleotide sequences of length N .

8
>><

>>:

Deronectes wewalkai TTATATTTTAATCTTACCAGGATTTGGGATAATTTCCCATATTATTAGTC

Deronectes aubei ATATATTTTAATTCTTCCAGGATTTGGTATAATTTCTCATATTATTAGTC

Deronectes theryi TTATATTTTAATTTTACCTGGATTTGGAATAATTTCCCATATCATTAGTC

Deronectes abnormicollis TTATATTCTAATTCTACCAGGATTTGGAATAATTTCCCATATTATTAGTC

Figure 1.2: Example of alignment for 4 species of the genus Deronectes.

The change of a nucleotide in a DNA chain is called a mutation. There are three kinds of
mutations:

· Supression. A nucleotide is deleted.

· Substitution. Change of nucleotides.

· Insertion. An extra nucleotide is added.

In this work we will only consider substitutions, since the other two kinds of mutations can be
omitted in certain circumstances.



Chapter 2

Mathematical models of nucleotide

substitution

In this Chapter we introduce evolutonary models from an algebraic point of view as is done in
[AR07]. We also delve into some notions on phylogenetic trees, such as branch length ([BH87]) and
leaf permutations ([STHJ16]).

2.1 Algebraic models of evolution

Given an alignment of 4 species, we want to find the topology of the phylogenetic tree that best
describes their evolutionary path. To do so we need a probabilistic model for the change in nu-
cleotides from node to node, and, therefore, a set of assumptions on how this process is taking
place.

Definition 2.1. In our model of substitutions in the DNA the following assumptions are made:

(i) Phylogenetic trees are binary. That is, internal nodes have degree 3 except the root, which
may have degree 2.

(ii) The evolution of a species (in terms of mutation in the nucleotides) depends only on its father
node.

(iii) Mutations are random with positive probability.

(iv) Nucleotides in a DNA sequence evolve identically and independently.

The assumptions in 2.1 and the nature of the evolutionary process, that makes only states in
the present observable, give a phylogenetic tree a structure of hidden Markov model.

Definition 2.2. AMarkov model is a stochastic model for randomly changing systems that assumes
the Markov property, that future states depend only on the current state and not events that
occurred before. When this model has unobserved states it is called a hidden Markov model.

In the case of a rooted phylogenetic tree, we associate discrete random variables at each node of
the tree taking values in the set ⌃ = {A, C, G, T} and the Markov property states that two of these
random variables are independent conditioned on the random variables of their most immediate
common ancestal node.

9
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X1

X2

Yr Ys

X3

X4

M
e

M
1

M
2

M
3

M
4

Figure 2.1: Markov process on the tree 12|34.

For a 4-leaved phylogenetic tree, labelling the leaves i 2 {1, ..., 4} we can associate a discrete
random variable Xi, called observed variables. Similarly for the internal nodes, labelled with j 2
{r, s}, Yj will be the hidden variables, see Figure 2.1. The conditional probabilities of substitution
of nucleotides from one node to its inmediate descendant determine the Markov process on the tree.

Definition 2.3. A Markov matrix M 2Mn⇥n(R) is a square matrix with non-negative real entries
whose rows sum 1. A transition matrix M

e 2 M4⇥4(R) for a phylogenetic tree T at a directed
edge e is a Markov matrix whose entries (M e)(x,y) are the conditional probability P (y|x; e) for the
y nucleotide to be substituded by nucleotide x along the evolutionary process along branch e.

A C G T

M
e =

A

C

G

T

0

BB@

P (A|A, e) P (C|A, e) P (G|A, e) P (T|A, e)
P (A|C, e) P (C|C, e) P (G|C, e) P (T|C, e)
P (A|G, e) P (C|G, e) P (G|G, e) P (T|G, e)
P (A|T, e) P (C|T, e) P (G|T, e) P (T|T, e)

1

CCA

Note that the rows of the matrix sum to 1.

Remark 2.4. A 4⇥ 4 matrix can be indexed with ⌃ = {A, C, G, T} by taking 1 ! A, 2 ! C, 3 ! G,
4! T and then following the natural indexation.

Given a phylogenetic tree T on 4 leaves {1, 2, 3, 4}, the probabilities of the nucleotides {x1, x2, x3, x4}
being observed at the leaves, pTx1x2x3x4

= P (X1 = x1, X2 = x2, X3 = x3, X4 = x4|T ), can be derived
by marginalizing over the interior nodes of the tree given a known distribution of nucleotides at
the root,

⇡
r =

�
⇡A = P (Yr = A),⇡C = P (Yr = C),⇡G = P (Yr = G),⇡T = P (Yr = T)

�

and the conditional probabilities at the edges. We denote by M
i the transition matrix leading to

leaf i and by M
e the transition matrix at the internal edge.

To find an explicit expression for those probabilities, we have to take into account the chance
of a nucleotide changing along every edge from the root (or a distinguished node), with a set
nucleotide distribution, to the leaves, that is given by the products of the transition matrices along
those edges.

Definition 2.5. For a general n-leaved phylogenetic tree T with a set of edges E(T ) and a model
of evolution there is a set expression for the distribution of probabilities at the leaves. If px1...xn =
P (x1...xn|T ) probabilities of a certain configuration of nucleotides at the leaves, we have

px1...xn =
X

xN2⌃, N2Int(e)

⇡
r

Y

e2E(T )

M
e
xpa(e)xch(e)

where Int(T ) are the interior edges of the tree and pa(e) and ch(e) the parent and child nodes for
an edge respectively.



2.1. ALGEBRAIC MODELS OF EVOLUTION 11

Example 2.6. For the T = 12|34 tree the expression for pTx1x2x3x4
before becomes:

p
T
x1,x2,x3,x4

=
X

xr,xs2{A,C,G,T}

⇡xrM
1
(xr,x1)

M
2
(xr,x2)

M
e
(xr,xs)M

3
(xr,x3)

M
4
(xr,x4)

(2.1)

as can be derived from the Markov process on the tree.

Remark 2.7. An alignment of length N for a set of species S = {1, ..., n} can be thought of as N

independent samples of observations of the joint random variables at the leaves (x1, ..., xn) and the
relative frequencies of column patterns x1...xn are estimators fx1...xn of the probabilities pTx1...xn

of
observing x1...xn at the leaves of the tree T which lead to the alignment.

We want to formalize now the structure generated by the assumptions that we have made in
the context of the problem we are treating, in which we have a set of parameters (the transition
matrices and distribution at the root) that determine a joint distribution for the variables in the
nodes, and allow us to derive the joint probability at the leaves pTx1x2x3x4

.

Definition 2.8. Let T be a n-leaved phylogenetic tree with n+1 transition matrices M i along its
edges E(T ), we define the 'T map as:

'T : R4 ⇥
Y

e2E(T )

M4⇥4(R) �! R4n

✓ = {⇡r
,M

1
, ...,M

n
,M

n+1} 7�! 'T (✓) = p = (pAA...AA, pAA...AC, ..., pTT...TT).

where the coordinates px1...xn are given as in Definition 2.5.

Note that to be able to interpret the map 'T as the description of the joint probability at the
leaves in terms of the parameters we need to restrict the parameters to probabilities (for example
⇡
r should be in the 3-dimensional simplex). As in this report we will be using algebraic tools we

define the map in this more general setting.

Example 2.9. For T a 4-leaved phylogenetic tree we will have that 'T is:

'T : R4 ⇥
Y

e2E(T )

M4⇥4(R) �! R44

✓ = {⇡r
,M

1
,M

2
,M

3
,M

4
,M

e} 7�! 'T (✓) = p = (pAAAA, pAAAC, ..., pTTTT).

If T = 12|34 then the expression of px1x2x3x4 is as in 2.1.

The way these transition matrices are defined and what symmetries are assumed in the process
of nucleotide substitution yield a family of models of evolution.

Definition 2.10. The general Markov model makes no assumptions on the root distribution and
the transition matrices are considered generic Markov matrices:

M =

0

BB@

a b c d

e f g h

j k l m

n o p q

1

CCA .
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Definition 2.11. The Kimura 3-parameter model also known as K81 includes a parameter for
transitions (mutations from purine to purine, or pyrimidine to pyrimidine) and a parameter for
each kind of transversions (from purine to pyrimidine or reverse), see Figure 2.2. The distribution
at the root is assumed uniform:

⇡
r = (

1

4
,
1

4
,
1

4
,
1

4
)

and the transition matrix is of type:

M =

0

BB@

a b c d

b a d c

c d a b

d c b a

1

CCA .

Note that the stationary distribution for these matrices (v such that vM = v and therefore
limn!1 vM

n = v) is the uniform distribution. Since we assume ⇡
r to be uniform, we expect

this proportion between bases to hold under iterations of this model.

A

G

T

C

Purines Pyrimidines

Transition Transition

Transversions

d

c

b

c

d

a

a
a

a

Figure 2.2: Visualization of the parameters for nucleotide substitution under the K81 model.

Remark 2.12. When the transition matrices in ✓ = {⇡r
,M

1
,M

2
,M

3
,M

4
,M

e} are K81 and ⇡
r is

uniform, we will refer to ✓ as a K81 set of parameters.

Often, one assigns lengths to the edges of the tree to represent the evolutionary distance between
both nodes of the edge. This is usually measured as the expected number of substitution of
nucleotides between both nodes, per nucleotide. The Markov process on a phylogenetic tree allows
an estimation of this measure, see [BH87].

Lemma 2.13. Let T be a phylogenetic tree with M transition matrix associated to a directed edge
e. Then, if our nucleotide substitution model assumes uniform distribution of nucleotides at the
initial node of e, the length of such branch can be approximated by �1

4 log(det(M))

Proof. LetM be a transition matrix, it can be rewritten as: a concatenation of infinitesimal Markov
processes such that

M =
Y

↵

M↵

where {M↵}↵ are transition matrices that represent the substitution process on an infinitesimal
amount of time. We have that:

log(det(M)) =
X

↵

log(det(M↵))
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But since M↵ are infinitesimal transition matrices, very little amounts of mutation are expected,
therefore these matrices are close to Id4. If M↵ = (M ij

↵ ) then they can be written as:

M
ij
↵ =

⇢
1�mij if i = j

mij if i 6= j

where 0 < mij << 1 are small (we omit the subscript ↵ for a moment). We can approximate
the determinant of the infinitesimal transition matrices by Taylor approximation of order 1 on the
small coe�cients:

det(M↵) = (1�m11)(1�m22)(1�m33)(1�m44) + o(m2
ij) ⇡

⇡ 1�m11 �m22 �m33 �m44 = 1� (m11 +m22 +m33 +m44)

Taking the logarithm and expanding once more, using log(1� h) = �x+ o(h2):

� log(det(M↵)) ⇡ �(m11 +m22 +m33 +m44) = (1�M
11
↵ ) + (1�M

22
↵ ) + (1�M

33
↵ ) + (1�M

44
↵ )

For each process ↵, if i was the value of the nucleotide at the start of ↵, then M
ii
↵ is the chance of

no change happening and (1�M
↵
ii ) = P (i changes |i) = P (change from i)

P (i) by conditional probabilities.

By assumption we have P (i) = 1
4 . Therefore:

� log(det(M↵)) ⇡
X

i2{A,C,G,T}

P (change from i)

P (i)
and � 1

4
log(det(M↵)) ⇡

X

i2{A,C,G,T}

P (change from i)

In general, this will be an estimation of the amount of changes between two species in an interval
↵, as long as the interval is small enough to support the hypothesis that mij << 1. Finally, the
amount of changes along the process lead by M is the sum of the amount of changes in the process
↵, and can therefore be approximated by

X

↵

�1

4
log detM↵ = �1

4
log detM.

2.2 Leaf permutations on 4-leaved phylogenetic trees

There are three di↵erent topologies for 4-leaved phylogenetic trees, shown in Figure 2.3, which
correspond to the three distinct bipartitions of the set {1, 2, 3, 4} and are denoted by:

T1 = 12|34; T2 = 13|24; T3 = 14|23.

Each quartet has symmetries under leaf permutations which leave it invariant. For example, when
considering the tree for 4 species {1, 2, 3, 4}, we have several biologically identical trees from the
equalities 12|34 = 21|34 = 34|12 = 12|43 = . . . , that respect the 2 sides of the bipartition.
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12|34

1

2

3

4

21|34 ⌘ 12|34

2

1

3

4

34|12 ⌘ 12|34

3

4

1

2

Figure 2.3: Examples of permutations that leave invariant the 12|34 topology.

Since we are shu✏ing a bipartition of a set with 4 elements, it makes sense to ask the question
of what permutations of S4 leave invariant each topology.

Definition 2.14. Let T be a 4-leaved phylogenetic tree. We call the stabilizer of T , Stab(T ) ⇢ S4,
the subset of permutations of S4 that leave invariant the topology of T .

Lemma 2.15. The stabilizers for the three topologies on 4-leaved phylogenetic trees are:

(i) Stab(T1) = {e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)}

(ii) Stab(T2) = {e, (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432)}

(iii) Stab(T3) = {e, (14), (23), (12)(34), (13)(24), (14)(23), (1243), (1342)}

It is important to understand the e↵ect of leaf permutations in a black-box algorithm for
phylogenetic reconstruction. Our aim is to find an algorithm such that given an alignment for 4
species returns the correct tree topology describing their evolutionary relationships. The input for
such algorithm would be 4 sequences associated to 4 species (A,B,C,D), but we have to take into
account that the input is ordered and that permuting the species should give consistent results for
the topology of the tree, that is, the algorithm should be covariant under taxon permutations. For
example if for the input (A,B,C,D) the algorithm returns the 12|34 topology, we would expect for
the (A,C,B,D) input to get the 13|24 topology, because they both keep A and B at the same side
of the partition.

Input Black-Box Output

(A,B,C,D) 12|34

(B,A,D,C) 12|34

(A,D,B,C) 13|24

(A,D,C,B) 14|23

Figure 2.4: Example of covariance under taxon permutations



Chapter 3

Algebraic transformations

Given a frequency vector f = (fijkl) obtained from an alignment, we aim to find a transformation
which provides direct ways to decide whether f is similar to a theoretical distribution in a certain
phylogenetic tree. We want to transform the vector f in a way it is more manageable, to do so we
will focus on:

(i) Markov action. An action that will allow us to modify the transition matrices in the exterior
branches of the phylogenetic tree.

(ii) Flattenings. Converting those vectors into matrix form, which gives us new comparative
tools such as ranks or determinants.

(iii) Fourier Coordinates. Diagonalization of the transition matrices implicit in p to have a
better grasp of its structure and how to later prune unnecessary information.

The intuitive reasoning behind these transformations will become apparent when the basic
properties a quartet inference measure should have are discussed in section 4.1. The results in
sections 3.3 and 3.4 are based in [CCFS].

3.1 The Markov action for phylogenetic trees

Once the basic formal structure of a phylogenetic tree and the parameters that define it are set, we
look for tools that allow us to alter and work with those objects. The Markov action will allow us
to modify the transition matrix at exterior edges of a phylogenetic tree, which will be very useful
for the proofs needed to develop methods of algebraic reconstruction.

Given a tree T , the joint probability of the nucleotides at the leaves p
T :=

�
p
T
x1x2x3x4

�
x1x2x3x4

can be thought of as a tensor in R4 ⌦ R4 ⌦ R4 ⌦ R4 = ⌦4R4:

p
T =

X

x1x2x3x42⌃
p
T
x1x2x3x4

x1 ⌦ x2 ⌦ x3 ⌦ x4 (3.1)

where we are considering ⌃ = {A, C, G, T} the natural basis for R4 and the natural basis for ⌦4R4 is
considered to be

A⌦ A⌦ A⌦ A, A⌦ A⌦ A⌦ C, ..., T⌦ T⌦ T⌦ T

We need the following three definitions to enable the tools that will allow us to work with this
tensorial interpretation of the joint probabilities.

15



16 CHAPTER 3. ALGEBRAIC TRANSFORMATIONS

Definition 3.1. We denote by K the group of invertible K81 matrices without the stochastic
condition (entries are not required to be non-negative, but sum up to 1). Note that if M 2 K, so
does M�1.

Definition 3.2. The Kroenecker product of two matrices, whereA = (aij)ij is n⇥m andB = (bkl)kl
is p⇥ q, is the np⇥mq matrix:

A⌦B =

0

B@
a11B ... a1nB

...
. . .

...
an1B · · · annB

1

CA

We introduce the following definition from [STHJ16] adapted to our case.

Definition 3.3. The Markov action of the group K ⇥K ⇥K ⇥K on the set ⌦4R4 is defined as:

A : ⇥4
K ⇥⌦4R4 �! ⌦4R4

(N1, N2, N3, N4; p) 7�! q = (N1 ⌦N2 ⌦N3 ⌦N4)p

Remark 3.4. We can extend this definition for tensors in ⌦nRn:

A : ⇥n
K ⇥⌦nRn �! ⌦nRn

(N1, ..., Nn; p) 7�! q = (N1 ⌦ ...⌦Nn)p

Lemma 3.5. Let T be a phylogenetic tree, let p = 'T (✓) with ✓ = {⇡r
,M

1
,M

2
,M

3
,M

4
,M

e}.
Consider the Markov action:

A : ⇥4
K ⇥⌦4R4 �! ⌦4R4

(N, Id4, Id4, Id4; p) 7�! q = (N ⌦ Id4 ⌦ Id4 ⌦ Id4)p

Then if we consider p
⇤ = 'T (✓⇤) with ✓

⇤ = {⇡r
,M

1
N

t
,M

2
,M

3
,M

4
,M

e} we get that

AN,Id4,Id4,Id4(p) = p
⇤
.

Proof. First, we compute q = (N t⌦ Id4⌦ Id4⌦ Id4)p. Since the Kroenecker product is associative:
N ⌦ Id4 ⌦ Id4 ⌦ Id4 = (N ⌦ Id4) ⌦ (Id4 ⌦ Id4). It easy to see that Id4 ⌦ Id4 = Id16. Consider
N 2 K indexed by ⌃ = {A, C, G, T}:

N =

0

BB@

nAA nAC nAG nAT

nCA nCC nCG nCT

nGA nGC nGG nGT

nTA nTC nTG nTT

1

CCA

The Kroenecker product yields:

N ⌦ Id4 =

0

@
nAAId4 ... nATId4

... ... ...

nTAId4 ... nTTId4

1

A =

0

BBBBBBBBBBBB@

nAA 0 0 0
0 nAA 0 0
0 0 nAA 0
0 0 0 nAA

...

nAT 0 0 0
0 nAT 0 0
0 0 nAT 0
0 0 0 nAT

... ... ...

nTA 0 0 0
0 nTA 0 0
0 0 nTA 0
0 0 0 nTA

...

nTT 0 0 0
0 nTT 0 0
0 0 nTT 0
0 0 0 nTT

1

CCCCCCCCCCCCA
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Now computing (N ⌦ Id4)⌦ (Id4 ⌦ Id4):

(N⌦Id4)⌦(Id4⌦Id4) =

0

BBBBBBBBBBBB@

nAAId16 016 016 016 nATId16 016 016 016

016 nAAId16 016 016 ... 016 nATId16 016 016

016 016 nAAId16 016 016 016 nATId16 016

016 016 016 nAAId16 016 016 016 nATId16

... ... ...

nTAId16 016 016 016 nTTId16 016 016 016

016 nTAId16 016 016 016 nTTId16 016 016

016 016 nTAId16 016 ... 016 016 nTTId16 016

016 016 016 nTAId16 016 016 016 nTTId16

1

CCCCCCCCCCCCA

where 016 is the 16 ⇥ 16 matrix with all entries equal to 0. Now the product of this matrix by
p = (pAAAA, pAAAC, pAAAG, ..., pTTTT):

q = (N ⌦ Id4)⌦ (Id4 ⌦ Id4)

0

BBBB@

pAAAA

pAAAC

pAAAG

...

pTTTT

1

CCCCA
=

0

BBBBBB@

nAApAAAA + nACpCAAA + nAGpGAAA + nATpTAAA

nAApAAAC + nACpCAAC + nAGpGAAC + nATpTAAT

...

nGApATAG + nGCpCTAG + nGGpGTAG + nGTpTTAG

...

nTApATTT + nTCpCTTT + nTGpGTTT + nTTpTTTT

1

CCCCCCA
=

0

BBBBBB@

qAAAA

qAAAC

...

qCTAG

...

qTTTT

1

CCCCCCA

which can be rewritten in a more compact form as:

qx1x2x3x4 =
X

xi2{A,C,G,T}

nx1xipxix2x3x4

It is left to see that p⇤ = (p⇤
AAAA

, p
⇤
AAAC

, p
⇤
AAAG

, ..., p
⇤
TTTT

), p⇤ = 'T (✓⇤) with ✓
⇤ = {⇡r

,M
1
N

t
,M

2
,M

3
,M

4
,M

e},
satisfies that p

⇤ = q. Assume T has topology t = 12|34, but the proof extends by analogy to the
other two 4-leaved tree topologies. As in 2.1, the coordinates of p⇤ can be computed as:

p
⇤
x1x2x3x4

=
X

xr,xs2{A,C,G,T}

⇡xr(M
1 ·N t)(xr,x1)M

2
(xr,x2)

M
e
(xr,xs)M

3
(xs,x3)

M
4
(xs,x4)

(3.2)

Given

M
1 =

0

BB@

mAA mAC mAG mAT

mCA mCC mCG mCT

mGA mGC mGG mGT

mTA mTC mTG mTT

1

CCA

we develop the term

(M1·N t)(xr,x1) =
�
mxrA mxrC mxrG mxrT;

�
·

0

BB@

nx1A

nx1C

nx1G

nx1T

1

CCA = nx1AmxrA+nx1CmxrC+nx1GmxrG+nx1TmxrT;

Substituting this in 3.2 we get:

p
⇤
x1x2x3x4

=
X

xi2{A,C,G,T}

nx1xi

X

xr,xs2{A,C,G,T}

⇡xrmxrxiM
2
(xr,x2)

M
e
(xr,xs)M

3
(xs,x3)

M
4
(xs,x4)
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and therefore:

p
⇤
x1x2x3x4

=
X

xi2{A,C,G,T}

nx1xipxix2x3x4 = qx1x2x3x4 ,

which is precisely what we aimed to find.

Proposition 3.6. Let T be a phylogenetic tree, let p = 'T (✓) with ✓ = {⇡r
,M

1
,M

2
,M

3
,M

4
,M

e}.
Consider the Markov action:

A : ⇥4
K ⇥⌦4R4 �! ⌦4R4

(N1, N2, N3, N4; p) 7�! q = (N1 ⌦N2 ⌦N3 ⌦N4)p

Then if we consider p
⇤ = 'T (✓⇤) with ✓

⇤ = {⇡r
,M

1
N

t
1,M

2
N

t
2,M

3
N

t
3,M

4
N

t
4,M

e} we get that

AN1,N2,N3,N4(p) = p
⇤
.

Proof. By applying Lemma 3.5 if we consider:

p
1 = (N1 ⌦ Id4 ⌦ Id4 ⌦ Id4)p then we have p

1 = '(⇡r
,M

1
N

t
1,M

2
,M

3
,M

4
,M

e)

and analogously:

p
2 = (Id4 ⌦N2 ⌦ Id4 ⌦ Id4)p

1 equals p2 = '(⇡r
,M

1
N

t
1,M

2
N

t
2,M

3
,M

4
,M

e),

p
3 = (Id4 ⌦ Id4 ⌦N3 ⌦ Id4)p

2 equals p3 = '(⇡r
,M

1
N

t
1,M

2
N

t
2,M

3
N

t
3,M

4
,M

e) and

p
4 = (Id4 ⌦ Id4 ⌦ Id4 ⌦N4)p

3 equals p4 = '(⇡r
,M

1
N

t
1,M

2
N

t
2,M

3
N

t
3,M

4
N

t
4,M

e).

We have p
4 = 'T (⇡r

,M
1
N

t
1,M

2
N

t
2,M

3
N

t
3,M

4
N

t
4,M

e) = p
⇤ by definition and p

4 = q because of
how the group action is defined, the composition es equivalent to multiplying the matrices in the
correct position in ⇥4

K. Therefore p
⇤ = q as we wanted to see.

Remark 3.7. In order to retain the probabilistic interpretations of the parameter of our model we
have restricted this action to Markov matrices. Nevertheless, in the proof we do not use this fact
and therefore this result is valid for general matrices, but the resulting parameters will not be
interpretable biologically, as we will see in section 3.3.

This Markov action, in a↵ecting the transition matrices of the tree has the following e↵ect in
the length of the edges of T , in relation to Lemma 2.13.

Lemma 3.8. The Markov action of the matrix N onto a branch i changes the approximation of
the length of such branch by adding �1

4 log(| det(N)|) to it.

Proof. From Lemma 2.13:

length(i⇤) = �1

4
log(| det(M i⇤)|) = �1

4
log(| det(M i

N
t)|) =

= �1

4
log(| det(M i)det(N t)|) = �1

4
log(| det(M i)|)� 1

4
log(| det(N)|) = length(i)� 1

4
log(| det(N)|)

.
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3.2 Flattenings

A flattening is a way to flatten the R4 ⌦ R4 ⌦ R4 ⌦ R4 tensors we are working with into matrices
by indexing the elements according to a bipartition of ⌃ = {A, C, G, T} as basis for R4. Given
a f = (fijkl) we want to provide 3 di↵erent matrices, one corresponding to each possible tree
topology, which can be compared to the theoretical matrices obtained with p = (pijkl) theoretical
distribution.

Definition 3.9. Let p = (pAAAA, pAAAC, pAAAG, ..., pTTTT) be a tensor in R4 ⌦R4 ⌦R4 ⌦R4. Then, the
flattenings for the three di↵erent bipartitions are obtained by indexing the elements of p by the
states of the leaves in the opposed sites of the bipartition:

States at leaves 3 and 4

flatt12|34(p) =
States

at leaves
1 and 2

0

BBBB@

pAAAA pAAAC . . . pAATT

pACAA pACAC . . . pACTT

pAGAA pAGAC . . . pAGTT

. . . . . . . . . . . .

pTTAA pTTAC . . . pTTTT

1

CCCCA

States at leaves 2 and 4

flatt13|24(p) =
States

at leaves
1 and 3

0

BBBB@

pAAAA pAAAC . . . pATAT

pAACA pAACC . . . pATCT

pAAGA pAAGC . . . pATGT

. . . . . . . . . . . .

pTATA pTATC . . . pTTTT

1

CCCCA

States at leaves 2 and 3

flatt14|23(p) =
States

at leaves
1 and 4

0

BBBB@

pAAAA pAACA . . . pATTA

pAAAC pAACC . . . pATTC

pAAAG pAACG . . . pATTG

. . . . . . . . . . . .

pTAAT pTACT . . . pTTTT

1

CCCCA

Theorem 3.10. (Allman-Rhodes) Under the general Markov model 2.10, let p be the joint
distribution at the leaves of the tree 12|34 under some transition matrices, p = '12|34(✓). Then the
following hold:

(i) rank(flatt12|34(p))  4

(ii) rank(flatt13|24(p)) = 16 for general parameters

(iii) rank(flatt14|23(p)) = 16 for general parameters

Proof. See [AR07].

This theorem already gives us a ground for comparison, because upon computing the flattening
for the vector of frequencies f = (fijkl) obtained from an alignment we would imagine it would have
arisen from the 12|34 topology if its 12|34 flattening had rank less or equal than 4 approximately.
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3.3 Fourier coordinates

As seen in Chapter 2, the probability vector p = (pijkl) can be written in terms of the transition
matrices along the 5 edges of the tree, for example under the 12|34 topology:

px1x2x3x4 =
X

xr,xs2{A,C,G,T}

⇡rM
1
(xr,x1)

M
2
(xr,x2)

M
e
(xr,xs)M

3
(xs,x3)

M
4
(xs,x4)

In order to see more clearly what is the structure behind the transformations we are making to
such vector and asses its dependency on the di↵erent transition matrices we need to simplify the
terms in the expression, and an intuitive way to do it is choosing a basis in which the transition
matrices are diagonal.

Lemma 3.11. Let M be a transition matrix under the K81 model for a tree T and ⇡
r = (14 ,

1
4 ,

1
4 ,

1
4)

its root distribution. The Hadamard matrix

H =

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1

CCA

has the following properties:

(i) H
�1 = 1

4H

(ii) H
t = H

(iii) H(i,k)H(j,k) = H(i+j,k)

(iv) H diagonalizes M : H
�1

MH = diag(mA,mC,mG,mT) where mA = a+ b+ c+ d,mC = a+ b�
c� d,mG = a� b+ c� d,mT = a� b� c� d are the eigenvalues and a basis of corresponding
eigenvectors is ⌃̄ = {Ā, C̄, Ḡ, T̄} where

Ā = (1, 1, 1, 1)t Ḡ = (1,�1, 1,�1)t
C̄ = (1, 1,�1,�1)t T̄ = (1,�1,�1, 1)t

(v) mA = 1

(vi) In this new basis of eigenvectors ⌃̄ the root distribution becomes ⇡̄
r = (14 , 0, 0, 0)

Proof. (i) It follows by observing that H2 = 1
4Id4

(ii) It holds because H is symmetric.

(iii) Easily verifiable.

(iv) We compute:

H
�1

MH = H
�1

0

BB@

a b c d

b a d c

c d a b

d c b a

1

CCAH =

0

BB@

a+ b+ c+ d 0 0 0
0 a+ b� c� d 0 0
0 0 a� b+ c� d 0
0 0 0 a� b� c+ d

1

CCA

Since this is a diagonal matrix, a basis of eigenvectors is given by the columns of H.
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(v) By definition of Markov matrix, a+ b+ c+ d = mA = 1.

(vi) We compute:

⇡̄
r = H

�1
⇡
r =

1

4

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1

CCA

0

BB@

1
4
1
4
1
4
1
4

1

CCA =

0

BB@

1
4
0
0
0

1

CCA

We now define the Fourier coordinates for tensors and give a basic property for this new basis
of eigenvectors.

Definition 3.12. Let p be a tensor in R4 ⌦ R4 ⌦ R4 ⌦ R4 with coordinates

p⌃ = (pAAAA, pAAAC, ..., pTTTT)

in the A⌦ A⌦ A⌦ A, ..., T⌦ T⌦ T⌦ T basis. We denote by

p⌃̄ = (p̄AAAA, p̄AAAC, ..., p̄TTTT)

its coordinates in the Ā⌦ Ā⌦ Ā⌦ Ā, ..., T̄⌦ T̄⌦ T̄⌦ T̄ basis. This is,

p =
X

x1x2x3x42⌃
px1x2x3x4x1 ⌦ x2 ⌦ x3 ⌦ x4 =

X

x1x2x3x42⌃
p̄x1x2x3x4 x̄1 ⌦ x̄2 ⌦ x̄3 ⌦ x̄4

and we call p⌃̄ the Fourier coordinates.

Lemma 3.13. The following rule applies to change coordinates with tensors in ⌦4R4, where H is
the change of basis matrix between ⌃̄ and ⌃:

p⌃̄ = (H�1 ⌦H
�1 ⌦H

�1 ⌦H
�1)p⌃ =

1

44
(H ⌦H ⌦H ⌦H)p⌃

Proof. H
�1 is the change of basis matrix from ⌃ to ⌃̄ and hence H

�1 ⌦H
�1 ⌦H

�1 ⌦H
�1 is the

change of basis from {x1⌦x2⌦x3⌦x4}xi2⌃ to {x̄1⌦ x̄2⌦ x̄3⌦ x̄4}x̄i2⌃̄ and the last equality follows
from Lemma 3.11 (i).

We introduce now an interpretation of ⌃ as a group by the following bijection with Z2 ⇥ Z2:

⌃ = {A, C, G, T}  ! (Z2 ⇥ Z2,+)
A  ! (0, 0)
C  ! (1, 0)
G  ! (0, 1)
T  ! (1, 1)

which gives an additive group structure to ⌃, with neutral element A and the following addition
table:

+ A C G T

A A C G T

C C A T G

G G T A C

T T G C A
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This will be a very useful tool to index matrices and vectors. The same change of basis ⌃ =
{A, C, G, T} to ⌃̄ = {Ā, C̄, Ḡ, T̄}, can be formalized by considering ⌃ as the Z2 ⇥ Z2 group and the
entries of the transition matrices as characters on it. Then the discrete Fourier transform plays
the role of the change of basis described above, see [CGS05]. This is the reason for the adjective
Fourier for these coordinates. Now we can examine how the expression of p in Fourier coordinates
simplifies greatly.

Proposition 3.14. If p = '12|34(✓) with ✓ = {⇡r
,M

1
,M

2
,M

3
,M

4
,M

e} a K81 set of parameters,
then p can be rewritten in Fourier coordinates in terms of the eigenvalues of the transition matrices
as:

p̄x1x2x3x4 =

( 1

44
·m1

x1
m

2
x2
m

e
x1+x2

m
3
x3
m

4
x4
, if x1 + x2 = x3 + x4;

0, otherwise.

where m
i
x refers to the x 2 ⌃ eigenvalue (in the notation of Lemma 3.11 (iv)) of the transition

matrix M
i and ⌃ has the additive group structure defined above.

Proof. Firstly, we take the equality in Lemma 3.13 and combining it with Proposition 3.6 we have
that considering p⌃̄ Fourier coordinates for p is the same as taking p̄ = 'T (✓̃) arising from T with

✓̃M = {⇡r
,M

1(H�1)t,M2(H�1)t,M3(H�1)t,M4(H�1)t,M e} = {⇡r
, M̃

1
, M̃

2
, M̃

3
, M̃

4
,M

e}.

Knowing that (H�1)t = 1
4H

t = 1
4H we have the following result for each M̃

i:

M̃
i = M

i · 1
4
H =

0

BB@

a
i

b
i

c
i

d
i

b
i

a
i

d
i

c
i

c
i

d
i

a
i

b
i

d
i

c
i

b
i

a
i

1

CCA · 1
4

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1

CCA =
1

4

0

BB@

m
i
A

m
i
C

m
i
G

m
i
T

m
i
A

m
i
C
�mi

G
�mi

T

m
i
A
�mi

C
m

i
G
�mi

T

m
i
A
�mi

C
�mi

G
m

i
T

1

CCA

Using the expression (2.1) in terms of the transition matrices we have:

p̄x1x2x3x4 =
X

xr,xs2{A,C,G,T}

⇡xrM̃
1
(xr,x1)

M̃
2
(xr,x2)

M
e
(xr,xs)M̃

3
(xr,x3)

M̃
4
(xr,x4)

By observing that

M̃
i
(xj ,xi)

=
1

4
H(xj ,xi)m

i
xi

and with ⇡xr = (14 ,
1
4 ,

1
4 ,

1
4)

t the expression can be rewritten as:

p̄x1x2x3x4 =
1

45
m

1
x1
m

2
x2
m

3
x3
m

4
x4

X

xr,xs2{A,C,G,T}

H(xr,x1)H(xr,x2)H(xs,x3)H(xs,x4)M
e
(xr,xs)

By property (iii) in Lemma 3.11 we have:

H(xr,x1)H(xr,x2)H(xs,x3)H(xs,x4) = H(xr,x1+x2)H(xs,x3+x4)

Going back to the sum:

X

xr,xs2{A,C,G,T}

H(xr,x1+x2)H(xs,x3+x4)M
e
(xr,xs) =

X

xr2{A,C,G,T}

H(xr,x1+x2)

X

xs2{A,C,G,T}

H(xr,x3+x4)M
e
(xr,xs)



3.4. MARGINALIZATION ADJUSTMENT 23

and using that H is symmetric we have:

X

xr2{A,C,G,T}

H(x1+x2,xr)(M
e
H)(xr,x3+x4) = (HM

e
H)(x1+x2,x3+x4)

which by taking H = 1
4H

�1 and noting it is precisely the change to the diagonal form of M e yields:

(HM
e
H)(x1+x2,x3+x4) = 4(H�1

M
e
H)(x1+x2,x3+x4) =

⇢
4me

x1+x2
, if x1 + x2 = x3 + x4;

0, otherwise.

Therefore, by plugging this result into the previous expression we get:

p̄x1x2x3x4 =

( 1

44
·m1

x1
m

2
x2
m

e
x1+x2

m
3
x3
m

4
x4
, if x1 + x2 = x3 + x4;

0, otherwise,

which is precisely what we aimed to prove.

3.4 Marginalization Adjustment

If we combine the two transformations presented so far, we can consider the flattening in Fourier
coordinates of p, which will be the backbone of the reconstruction methods presented.

Definition 3.15. The Fourier flattening of p relative to 12|34, with p = 'T (✓), is:

flatt12|34(p) := flatt12|34(p⌃̄)

which by Lemma 3.13 equals to

flatt12|34(p) = flatt12|34((H
�1 ⌦H

�1 ⌦H
�1 ⌦H

�1)p).

However, in the case of the Fourier flattening matrix is considered to be indexed in the rows/columns
in the following order:

{AA, CC, GG, TT, AC, CA, GT, TG, AG, CT, GA, TC, AT, CG, GC, TA}.

Note that with the structure of ⌃ as additive group we have:

A+ A = C+ C = G+ G = T+ T = A

A+ C = C+ A = G+ T = T+ G = C

A+ G = C+ T = G+ A = T+ C = G

A+ T = C+ G = G+ C = T+ A = T.

For example, with this indexation we will have flatt12|34(p)(AC,TG) = p̄ACTG.

The flatt13|24(p) and flatt14|23(p) matrices are defined analogously by permuting the leaves
2$ 3 and 1$ 4 respectively. Then we have, for example:

flatt13|24(p)(AC,TG) = p̄ATCG; flatt14|23(p)(AC,TG) = p̄ATGC
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Remark 3.16. Due to Proposition 3.14, the 12|34 flattening in Fourier coordinates of a probability
vector p = 'T (✓) with T 4-leaved phylogenetic tree with ✓ a K81 set of parameters is a block
diagonal matrix:

flatt12|34(p) =

0

BB@

B
12
A

0 0 0

0 B
12
C

0 0

0 0 B
12
G

0

0 0 0 B
12
T

1

CCA

where 0 is a 4⇥ 4 matrix with all entries equal to 0 and

B
12
A

=

0

BB@

p̄AAAA p̄AACC p̄AAGG p̄AATT

p̄CCAA p̄CCCC p̄CCGG p̄CCTT

p̄GGAA p̄GGCC p̄GGGG p̄GGTT

p̄TTAA p̄TTCC p̄TTGG p̄TTTT

1

CCA B
12
G

=

0

BB@

p̄AGAG p̄AGCT p̄AGGA p̄AGTC

p̄CTAG p̄CTCT p̄CTGA p̄CTTC

p̄GAAG p̄GACT p̄GAGA p̄GATC

p̄TCAG p̄TCCT p̄TCGA p̄TCTC

1

CCA

B
12
C

=

0

BB@

p̄ACAC p̄ACCA p̄ACGT p̄ACTG

p̄CAAC p̄CACA p̄CAGT p̄CATG

p̄GTAC p̄GTCA p̄GTGT p̄GTTG

p̄TGAC p̄TGCA p̄TGGT p̄TGTG

1

CCA B
12
T

=

0

BB@

p̄ATAT p̄ATCG p̄ATGC p̄ATTA

p̄CGAT p̄CGCG p̄CGGC p̄CGTA

p̄GCAT p̄GCCG p̄GCGC p̄GCTA

p̄TAAT p̄TACG p̄TAGC p̄TATA

1

CCA .

Note that even if p = 'T (p) with T = 13|24 or T = 14|23, the flatt12|34(p) has still block-diagonal
form. Indeed, in this case one can apply the analogous version of Proposition 3.14 and by observing
that

x1 + x2 = x3 + x4 , x1 + x3 = x2 + x4 , x1 + x4 = x2 + x3

we are done.
Moreover, if p is a distribution on the 12|34 topology, by Proposition 3.14, each block in the

Fourier flattening flatt12|34(p) will have rank 1, while it has generally rank 4 otherwise.

The qualitative idea of how di↵erent the topologies of two metric phylogenetic trees are should
rely on the length of the interior edge (implicit in M

e under the K81 model, as seen in Lemma
2.13). Therefore, the dependence on the length of the pendant edges should not be important
when determining the tree topology that originated the alignment. In section 4.1 this idea will be
reinforced in Properties 2 and 3 for quartet inference measures, where we will ask the expectation of
our measures to not be ’too’ dependant on how we modify the matrices (or lengths) at the pendant
edges. We now develop a tool to modify the Fourier flattening matrix in a way that it only depends
on the entries of the M

e matrix.

Definition 3.17. Given a 4-tensor with coordinates (px1x2x3x4)x1x2x3x4 in the ⌃ basis, the marginal
of the 1� 2 leaves is the 2-tensor (p12)++ given by:

(p12)x1x2 =
X

x3,x42⌃
px1x2x3x4

Analogous definitions are given for the (pij)++ marginals, with i, j 2 {1, 2, 3, 4}.

For example, the marginals of the 1� 3 leaves is written as:

(p13)x1x3 = px1·x3· =
X

x2,x42⌃
px1x2x3x4

This transformation describes a smaller tree with observations only at the leaves we are marginal-
izing. This is because we are grouping the probabilities by the leaves we take the marginal of, and
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this new probabilities do not account for the observation at the leaves we are summing in respect
of, because of the law of total probability. For example, in the 12|34 topology, the marginals for
1� 2 and 1� 3 would correspond to the trees shown in Figure 3.1.

Tree topology 12|34

1

2

r s

3

4

M
e

Tree for the 1� 2 marginal

1

2

r s

3

4

Tree for the 1� 3 marginal

1

2

r s

3

4

M
e

Figure 3.1: Marginals for the 12|34 topology

We can verify this fact by developing the expression of (p12)x1x2 :

(p12)x1x2 = px1x2·· =
X

x3,x42⌃
px1x2x3x4 =

X

x3,x42⌃

X

xr,xs2⌃
⇡
r
M

1
(xr,x1)

M
2
(xr,x2)

M
e
(xr,xs)M

3
(xs,x3)

M
4
(xs,x4)

=
X

xr2⌃
⇡
r
M

1
(xr,x1)

M
2
(xr,x2)

X

xs2⌃
M

e
(xr,xs)

X

x32⌃
M

3
(xs,x3)

X

x42⌃
M

4
(xs,x4)

=
1

4

X

xr2⌃
M

1
(xr,x1)

M
2
(xr,x2)

which as expected is congruent with (p12)x1x2 = '(✓12) and ✓12 = {⇡r
,M

1
,M

2}. This can be
generalized for the marginals of leaves at the same side of the bipartition.

As seen in Figure 3.1, for marginals of leaves in opposed sides of the bipartition, the s node is
in the middle of an edge, with degree 2 instead of 3. For the 1 � 3 marginalization we proceed as
before and develop:

(p13)x1x3 = px1x3·· =
X

x2,x42⌃
px1x2x3x4 =

X

x2,x42⌃

X

xr,xs2⌃
⇡
r
M

1
(xr,x1)

M
2
(xr,x2)

M
e
(xr,xs)M

3
(xs,x3)

M
4
(xs,x4)

=
X

xr2⌃
⇡
r
M

1
(xr,x1)

X

xs2⌃
M

3
(xs,x3)

M
e
(xr,xs)

X

x22⌃
M

2
(xr,x2)

X

x42⌃
M

4
(xs,x4)

=
1

4

X

xr2⌃
M

1
(xr,x1)

(M3
M

e)(xr,x3)

which indeed corresponds to the tree with ✓13 = {⇡r
,M

1
,M

3
M

e}. This means we are considering
the r ! s edge and the s ! 3 to be one, so that the transition matrix for the r ! 3 edge will be
M

3
M

e. This is analogous for marginals of leaves in opposing sides of the bipartition.
In the following proposition we give an explicit expression for the marginals in Fourier coordi-

nates by developing the intuitions seen here.

Proposition 3.18. Let T phylogenetic tree with the 12|34 topology and p = 'T (✓) under the K81
model, with ✓ = {⇡r

,M
1
,M

2
,M

3
,M

4
,M

e}. In Fourier coordinates the marginalization of the 1�2
leaves is given by:

(p12)x1x2 =

⇢
1
42m

1
x1
m

2
x2

if x1 = x2

0 if x1 6= x2

and for the 1� 3 leaves:

(p13)x1x3 =

⇢
1
42m

1
x1
m

3
x3
m

e
x1

if x1 = x3

0 if x1 6= x3
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and similar expressions are deduced for marginals of leaves at the same and at opposite sides of the
bipartition respectively.

Proof. We have proposed and will prove this result for the 1 � 2 and 1 � 3 marginals, the other
cases are proven by analogy depending on the kind of bipartition they are.

As seen above, (p12)x1x2 = '(✓12) and ✓12 = {⇡r
,M

1
,M

2}. In the same fashion as with 4-
tensors, we can understand the change to Fourier coordinates as

(p12)x1x2 =
1

42
(H ⌦H)(p12)x1x2

which translates to the tree with (p12)x1x2 = '(✓̄12), ✓̄12 = {⇡r
,
1
4M

1
H,

1
4M

2
H}. Plugging this

result into the previous expression we get:

(p12)x1x2 =
1

43

X

xr2⌃
(M1

H)(xr,x1)(M
2
H)(xr,x2)

The matrices have the following structure:

M
i ·H =

0

BB@

m
i
A

m
i
C

m
i
G

m
i
T

m
i
A

m
i
C
�mi

G
�mi

T

m
i
A
�mi

C
m

i
G
�mi

T

m
i
A
�mi

C
�mi

G
m

i
T

1

CCA

and it is easy to check that if x1 6= x2 the sum of the product between the elements of the x1 and
x2 columns will always cancel out. Therefore the

P
xr2⌃(M

1
H)(xr,x1)(M

2
H)(xr,x2) sum will only

be di↵erent from 0 when x1 = x2, when the result will be 4m1
x1
m

2
x2
. Therefore, we get the desired

expression:

(p12)x1x2 =

⇢
1
42m

1
x1
m

2
x2

if x1 = x2

0 if x1 6= x2

For the 1�3 marginalization in Fourier coordinates we proceed as before, with (p13)x1x3 = 'T (✓13)
and ✓13 = {⇡r

,M
1
,M

3
M

e}. Now the tree in Fourier coordinates will have ✓13 = {⇡r
,M

1
H,M

3
M

e
H},

computing as before:

(p13)x1x3 =
1

43

X

xr2⌃
(M1

(xr,x1)
H)(M3

M
e
H)(xr,x3)

which by the same argument as before cancels out when x1 6= x3. Taking into account that:

M
3 ·M e ·H =

0

BB@

m
3
A
m

e
A

m
3
C
m

e
C

m
3
G
m

e
G

m
3
T
m

e
T

m
3
A
m

e
A

m
3
C
m

e
C
�m3

G
m

e
G
�m3

T
m

e
T

m
3
A
m

e
A
�m3

C
m

e
C

m
3
G
m

e
G
�m3

T
m

e
T

m
3
A
m

e
A
�m3

C
m

e
C
�m3

G
m

e
G

m
3
T
m

e
T

1

CCA

we get the desired result:

(p13)x1x3 =

⇢
1
42m

1
x1
m

3
x3
m

e
x1

if x1 = x3

0 if x1 6= x3
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Remark 3.19. The Fourier transform of the marginal does not coincide with the marginal of the
Fourier transform:

X

x3x4

p̄x1x2x3x4 = ... =
1

44
m

1
x1
m

2
x2
m

e
x1+x2

X

x3

m
3
x3
m

4
x1+x2�x3

which depends on transition matrices M
3
,M

4 and M
e and cannot be the same in general as the

Fourier transform of the marginal.

We will now consider the A block of the Fourier flattening block diagonal matrix and ’normalize’
its entries so that they depend only on the interior branch matrix M

e. To do so, we will divide
by the marginals. Although analogous results can be derived for the other blocks of the Fourier
flattening block diagonal matrix, we only work with B

ij
A

to develop further methods. Previous
work on the subject seemed to indicate that the results were similar when considering all 4 blocks
instead of the first.

Definition 3.20. Let p be a probability tensor in R4 ⌦ R4 ⌦ R4 ⌦ R4. For each bipartition ij|kl
we define the matrix Gij|kl(p) as:

Gij|kl(p) = 42(pik)AA

0

BBB@

1
(pij)AA

0 0 0

0 1
(pij)CC

0 0

0 0 1
(pij)GG

0

0 0 0 1
(pij)TT

1

CCCA
B

ij
A

0

BBB@

1
(pkl)AA

0 0 0

0 1
(pkl)CC

0 0

0 0 1
(pkl)GG

0

0 0 0 1
(pkl)TT

1

CCCA

Example 3.21. For the 12|34 Fourier flattening we get the matrix:

G12|34(p) = 42(p13)AA

0

BBBBBBBB@

p̄AAAA

(p12)AA(p34)AA

p̄AACC

(p12)AA(p34)CC

p̄AAGG

(p12)AA(p34)GG

p̄AATT

(p12)AA(p34)TT
p̄CCAA

(p12)CC(p34)AA

p̄CCCC

(p12)CC(p34)CC

p̄CCGG

(p12)CC(p34)GG

p̄CCTT

(p12)CC(p34)TT
p̄GGAA

(p12)GG(p34)AA

p̄GGCC

(p12)GG(p34)CC

p̄GGGG

(p12)GG(p34)GG

p̄GGTT

(p12)GG(p34)TT
p̄TTAA

(p12)TT(p34)AA

p̄TTCC

(p12)TT(p34)CC

p̄TTGG

(p12)TT(p34)GG

p̄TTTT

(p12)TT(p34)TT

1

CCCCCCCCA

Remark 3.22. Although from Proposition 3.18 we have that 42(pik)AA = 1, this term will be nec-
essary for section 4.2. In the following proposition it will be omitted to avoid convoluting the
notation.

Proposition 3.23. If p = 'T (✓) with T = 12|34 and ✓ = {⇡r
,M

1
,M

2
,M

3
,M

4
,M

e} a K81 set of
parameters, then:

(i) all entries of G12|34(p) are equal to 1

(ii) (G13|24(p))(X,Y) = (G14|23(p))(X,Y) =
me

X+Y

me
X
me

Y

(iii) detG13|24(p) = detG14|23(p) =
44Me

(A,A)M
e
(A,C)M

e
(A,G)M

e
(A,T)

(detMe)2

(iv) All Gij|kl(p) matrices are invariant under permutations of leaves that preserve both sides of
the bipartition.

(v) If the sides of the bipartition are permuted, transposed matrices are obtained.
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Proof. (i) In this case we get that the entries of the matrix are:

(G12|34(p))(X,Y) =
p̄XXYY

(p12)XX(p34)YY
= m

e
X+Y

= m
e
A
= 1

because by Propositions 3.14 and 3.18:

p̄XXYY =
1

44
m

1
X
m

2
X
m

e
X+Y

m
3
Y
m

4
Y
, (p12)XX =

1

42
m

1
X
m

2
X
, (p34)YY =

1

42
m

3
Y
m

4
Y
.

(ii) The entries of these matrices are:

(G13|24(p))(X,Y) =
p̄XYXY

(p13)XX(p24)YY
=

m
e
X+Y

m
e
X
m

e
Y

; (G14|23(p))(X,Y) =
p̄XYYX

(p14)XX(p23)YY
=

m
e
X+Y

m
e
X
m

e
Y

by Propositions 3.14 and 3.18.

(iii) Since both matrices are equal by (ii), we will use (G13|24(p))(X,Y) in the proof. In the last item

we have seen that (G13|24(p))(X,Y) =
me

X+Y

me
X
me

Y

:

G13|24(p) =

0

BBBB@

me
A

me
A
me

A

me
C

me
A
me

C

me
G

me
A
me

G

me
T

me
A
me

T

me
C

me
C
me

A

me
A

me
C
me

C

me
T

me
C
me

G

me
G

me
C
me

T

me
G

me
G
me

A

me
T

me
G
me

C

me
A

me
G
me

G

me
C

me
G
me

T

me
T

me
T
me

A

me
G

me
T
me

C

me
C

me
T
me

G

me
A

me
T
me

T

1

CCCCA

Each column and each row has a m
e
xi

dividing to all its elements. By properties of the
determinant we get:

detG13|24(p) =
1

(me
A
m

e
C
m

e
G
m

e
T
)2

��������

m
e
A

m
e
C

m
e
G

m
e
T

m
e
C

m
e
A

m
e
T

m
e
G

m
e
G

m
e
T

m
e
A

m
e
C

m
e
T

m
e
G

m
e
C

m
e
A

��������

This is a determinant of a matrix with the same symmetries as a K81 matrix, therefore its
eigenvalues are, as seen in Lemma 3.11:

m
e
A
+m

e
C
+m

e
G
+m

e
T
= 4M e

A,A,

m
e
A
+m

e
C
�m

e
G
�m

e
T
= 4M e

A,C,

m
e
A
�m

e
C
+m

e
G
�m

e
T
= 4M e

A,G,

m
e
A
�m

e
C
�m

e
G
+m

e
T
= 4M e

A,T.

and we get the following determinant:

detG13|24(p) = detG14|23(p) =
44M e

(A,A)M
e
(A,C)M

e
(A,G)M

e
(A,T)

(detM e)2

(iv) Follows from the structure of the matrix, since the leaves at the same side of the partition
play the same role.
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(v) We will show that
G34|12(p) = G12|34(p)

t

and the other cases will follow analogously. The element (X, Y) in the G34|12(p) matrix is:

G34|12(p)(X,Y) =
p̄YYXX

(p12)YY(p34)XX

which is the same as G12|34(p)(Y,X).
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Chapter 4

Algebraic techniques for phylogenetic

reconstruction

In this Chapter we propose and test several quartet inference measures based in [CCFS] and the
properties for inference measures in [STHJ16]. We test the inference measures on the Huelsenbeck
([Hue95]) tree space and perform some preliminary analysis of their bias.

4.1 Quartet inference measures

In this section we introduce some ’natural’ properties an inference method for quartets should have,
based on [STHJ16].

Let us consider an alignment A of DNA sequences with length N for 4 species. Let p be a
probability distribution in R4 ⌦ R4 ⌦ R4 ⌦ R4 and P = Np the corresponding absolute probability
distribution on the set of 4-tuple nucleotides configurations. Let f and F be the array of relative and
absolute frequencies (respectively) observed in the alignment A. By assuming that the columns of A
are independent samples from the distribution P , we have that the vector F follows a multinomial
distribution,

F ⇠ MultiNom(p,N).

We understand the observed absolute frequency F as the count of the successes in 256 categories
(combinations of {A, C, G, T}) for the N trials that are configurations at the columns of A. With
this statistical interpretation of the problem, we can expect to define a quartet inference measure
and to develop properties it should have, since now we can work with expectancies and confidence.

Definition 4.1. A quartet inference measure for a pattern frequency array F = (Fijkl) is a triple

�(F ) = (R12, R13, R14)

where Rij is a (statistically interpretable) confidence in F ⇠ MultiNom(p,N), with p arising as a
distribution on the tree T = ij|{1, 2, 3, 4} \ {i, j}.

The following properties are desirable for the purposes of phylogenetic reconstruction. They aim
to guarantee consistency of the algorithm: good behaviour under covariancy of taxon permutations
and certain control on the transition matrices of the external branches.

Property 1. A quartet inference method �(F ) should be covariant under taxon permutations.

31
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Property 2. (Strong) In expectation, the quartet inference measure �(F ) should be covariant
under the Markov action (3.3). That is, if F ⇠ MultiNom(p,N) where p = 'T (✓) is the dis-
tribution on a quartet tree T with ✓ = {⇡r

,M
1
,M

2
,M

3
,M

4
,M

e} and F
0 ⇠ MultiNom(p0, N)

such that p0 = 'T (✓0) with ✓
0 = {⇡r

,M
1
N1,M

2
N2,M

3
N3,M

4
N4;M e}, there should exist a scalar

�(N1, N2, N3, N4) such that:

E[�(F 0)] = �(N1, N2, N3, N4)E[�(F )]

Property 3. (Weak) In the same conditions as Property 2, the equality of expectations is only
necessary to hold in the limit of infinite sequence length:

lim
N!1

E[�(F 0)] = �(N1, N2, N3, N4) lim
N!1

E[�(F )]

These properties induce the definition of specific type of function that could be used as quartet
inference measure.

Definition 4.2. A Markov invariant for the K81 model q : R4⌦R4⌦R4⌦R4 �! R is a function
such that if p is a tensor in R4 ⌦ R4 ⌦ R4 ⌦ R4 and p

0 is obtained from p by the Markov action
p
0 = (N1 ⌦N2 ⌦N3 ⌦N4)p for some matrices Ni 2 K, then

q(P 0) = �(N1, N2, N3, N4)q(P )

with � a group homomorphism (�(N1N
0
1, N2N

0
2, N3N

0
3, N4N

0
4) = �(N1, N2, N3, N4)�(N 0

1, N
0
2, N

0
3, N

0
4)).

Intuitively, this idea of a Markov invariant follows from properties 2 and 3, as it would induce
a quartet inference measure that satisfies the weak property. Even though the Markov invariant is
defined for an arbitrary function �, we have some interest in ’controlling’ it, since � is a measure of
the dependence of our method to elongations of the external edges, which is something we want to
minimize. Therefore Markov invariants with � ⌘ 1 seem to be a good approach to finding a robust
phylogenetic reconstruction method.

4.2 Proposed quartet inference measures

In this section we propose some inference quartet measures derived from the algebraic transforma-
tions presented before. We also discuss their behaviour in relation with the properties and intuitions
in section 4.1. In general we assume without loss of generality that a � inference quartet measure
is designed so that smaller values of Rij correspond to greater confidence in the tree T = ij|kl.

Going back to the idea of Markov invariants and as a result of the transformations we have
made in order to avoid dependance on external branches, we find the following property for the
Gij|kl(p) matrices.

Lemma 4.3. The entries of G12|34(p), G13|24(p) and G14|23(p) are Markov invariants with � = 1.

Proof. Let p be a tensor in R4⌦R4⌦R4⌦R4 and let p0 be obtained from p by the Markov action:

p
0 = (N1 ⌦N2 ⌦N3 ⌦N4)p

for some matrices Ni 2 K. Then, when we transform p and p
0 into Fourier coordinates we have:

p0 = (H�1 ⌦H
�1 ⌦H

�1 ⌦H
�1)(N1 ⌦N2 ⌦N3 ⌦N4)p
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and since p = (H ⌦H ⌦H ⌦H)p we obtain:

p0 = (H�1
N1H ⌦H

�1
N2H ⌦H

�1
N3H ⌦H

�1
N4H)

As Ni share the symmetries of K81 matrices, H diagonalizes them, H�1
NiH = diag(ni

A
, n

i
C
, n

i
G
, n

i
T
).

The Kroenecker product of diagonal matrices is a diagonal matrix and therefore we obtain

p0x1x2x3x4
= n

1
x1
n
2
x2
n
3
x3
n
4
x4
px1x2x3x4

. (4.1)

An analogous formula holds for the marginalizations.
Now the entries of Gij|kl are Markov invariant with � = 1 if Gij|kl(p

0) = Gij|kl(p) for any tensor
p. Note that in the definition of Gij|kl(p

0) the terms ni
x cancel out in each fraction (only remaining

n
i
A
n
k
A
which is 1, from the (pik)AA term). Thus, Gij|kl(p

0) = Gij|kl(p) and hence each entry of the
matrix is a Markov invariant with � = 1.

Therefore we propose the following quartet inference measure based on the Gij|kl matrices in
Definition 3.20. Since for the correct topology the result of Gij|kl(p) is a matrix with all entries
equal to 1, we should expect the smaller determinant to be the one for the correct tree topology.

Definition 4.4. Determinant of G matrices (detG).

�detG(F ) =
�
detG12|34(F ), detG13|24(F ), detG14|23(F )

�

We now describe the properties for the detG inference measure.

Proposition 4.5. �detG(F ) is a quartet inference measure that satisfies Properties 1 and 3 with
� = 1. Moreover the limit expectation of �detG(F ) when F ⇠ MultiNom(p,N) and p = 'T (✓) with
a set ✓ of K81 parameters, is:

(i) limN!1 E[�detG(F )] = �detG(p) =
�
0,

44Me
A,AM

e
A,CM

e
A,GM

e
A,T

(detMe)2 ,
44Me

A,AM
e
A,CM

e
A,GM

e
A,T

(detMe)2

�
, if p arises from

12|34.
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Proof. Firstly, the inference measure verifies Property 1 because the determinant is invariant for
transposition, therefore applying points (iv) and (v) in Proposition 3.23 the property is verified.

To prove Property 3 is verified, consider F frequency with F ⇠ MultiNom(p,N), with p = 'T (✓)
a distribution on a 4-leaved tree T with ✓ = {⇡r

,M
1
,M

2
,M

3
,M

4
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e}. Using the multivariate
Delta method (or Taylor’s expansion) we have:

lim
N!1

E[detGij|kl(F )] = detGij|kl(Np).

Analogously, if we now consider F
0 ⇠ MultiNom(p0, N) with p

0 = 'T (✓0) arising from T with
✓
0 = {⇡r

,M
1
N1,M

2
N2,M

3
N3,M

4
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e}, we have:

lim
N!1

E[detGij|kl(F
0)] = detGij|kl(Np

0).
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Note that the entries of Gij|kl(p) are quotients of homogeneous polynomials of degree 2 on the
coordinates of p. In particular, we have

Gij|kl(Np) = Gij|kl(p) and Gij|kl(Np
0) = Gij|kl(p

0).

Because of Lemma 4.3, the determinant of G is a Markov invariant with � = 1 because it is a
combination of entries of Gij|kl, therefore for two distributions p and p

0 holds that:

detGij|kl(p
0) = detGij|kl(p).

Therefore the determinant verifies Property 3,

lim
N!1

E[detGij|kl(F )] = lim
N!1

E[detGij|kl(F
0)].

The limit expectations are deduced from Proposition 3.23.

With this idea of the G matrix for the correct topology having all its entries equal to one, it is
intuitive to use the Frobenius distance to 12M4⇥4(R) as inference measure.

Definition 4.6. Frobenius distance from G matrices to 1 (dG1). Let 12M4⇥4(R) be the
matrix with all entries equal to 1.

�dG1(F ) =
�
distFrob(G12|34(F ),1), distFrob(G13|24(F ),1), distFrob(G14|23(F ),1)

�

Proposition 4.7. �dG1(F ) is a quartet inference measure that satisfies Properties 1 and 3 with
� = 1. Moreover the limit expectation of �dG1(F ) when F ⇠ P is:
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Proof. The argument in the proof for Proposition 4.5 also proves that �dG1 satisfies Properties 1
and 3. The limit expectation follows from Proposition 3.23.

Remark 4.8. For these two inference measures detG and d1G, the method we follow is to compute
the measure and then choose the topology with the smaller score as the one that better fits the
data.

Finally, after Definition 3.15 one has that BA

ij(p) has rank 1 if p arises from the ij|kl topology.
We need the following result in order to determine the distance of a matrix to the space of matrices
with a rank k.

Theorem 4.9. (Eckart-Young) Let M be an m ⇥ n matrix with singular value decomposition
M = U⌃V t. Let A 2Mm⇥n have rank k. Then:

||M �A||Frob � ||M � Uk⌃kV
t
k ||Frob =

vuut
mX

i=k+1

�
2
i

where Uk,⌃k, Vk are the truncations to the first k columns.
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Therefore, since our B
ij
A

are 4 ⇥ 4 and we want to know which one is the closer to rank 1 in
order to infer the correct tree topology.

distFrob(B
ij
A
, {X|rank(X)  1}) = min

X|rank(X)1
||Bij

A
�X||Frob =

q
�
2
2 + �

2
3 + �

2
4,

where �i are the singular values of Bij
A
. Since the three flattening matrices have the same entries

but in di↵erent order we have that their Frobenius norms

||B12
A
||Frob = ||B13

A
||Frob = ||B14

A
||Frob =

q
�
2
1 + �

2
3 + �

2
4.

Therefore, if we want to find the minimum distance and the Frobenius norm is constant in the
matrices, the following two problems are equivalent: minimizing �

2
2 + �

2
3 + �

2
4 and maximizing �

2
1.

Since it is known that ||Bij
A
||2 = �1, we can propose the following inference measure:

Definition 4.10. Euclidean norm of the B
ij
A

matrices (n2B).

�n2B(F ) =
1

N

�
||B12

A
(F )||2, ||B13

A
(F )||2, ||B14

A
(F )||2

�

Remark 4.11. As it is made apparent in the justification for this inference measure, in this case we
will take as correct the topology that presents a higher score, as opposed to the other two measures.

4.3 On the simulation of alignments

Once a method of quartet reconstruction is presented, it makes sense to find a systematic way to
to test its efectiveness in a di↵erent range of trees and to understand what tree topologies can
systematically produce weaknesses in reconstruction accuracy. The tree space, or the set of all phy-
logenetic trees, is huge, even when restricting it to quartets. To simulate alignments corresponding
to species evolving by a certain phylogenetic tree, we need to define a subspace of the tree space
small enough so that we can run simulations on it, but varied enough so that we are not leaving
out some patological trees, which could lead to a misleading evaluation of the accuracy of our
reconstruction method.

Definition 4.12. The Huelsenbeck tree space (see [Hue95]) is the subspace of the tree space ob-
tained by considering the phylogenetic trees T = 12|34 with two branch lengths a and b where a is
the length of the interior edge and the edge of external branches leading to 2 and 4 while b is the
length of the external branches leading to 1 and 3, see Figure 4.1.

Figure 4.1: (a) Generic tree in the Huelsenbeck space. (b) Overview of a section of the Huelsenbeck
space.
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The Huelsenbeck subspace not only provides a solid sample of the tree space, but also allows
us to represent results on the accuracy of a method in two dimensions, since it is indexed by two
parameters.

As seen in Lemma 2.13, under certain hypothesis which are supported by the K81 model, we
can find a relationship between branch length and transition matrices. The algorithm for generating
K81 transition matrices given a branch length can be found in [CK13]. To go from the transition
matrices of a Huelsenbeck phylogenetic tree to an alignment of length N coherent with such tree,
the GenNon-h algorithm, developed in [KC12], is used. The general flow of the simulation is shown
in Figure 4.2.

Algorithm parameters

⇢
branch lengths = {a, b};
length of alignment = N.

Transition matrices (K81)

with 1
4 log detM

i = {a, b}

M
i(a, b) =

0
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c
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d
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a
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b
i

d
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c
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b
i

a
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Alignment of length N .

8
>><

>>:

Species I AGTGCCCC...

Species II AGTGCGCC...

Species III CAAGCGTT...

Species IV ATTGCGCA...

[CK13] [KC12]

Figure 4.2: Flow of a simulation of alignments.

To test our methods, we vary the parameters a and b in the interval [0, 1.5] and the generate
100 alignments of a given length N . Then we generate the frequency array F = (Fijkl) for each
nucleotide configuration in the columns of the alignment, perform the algebraic transformations
discussed before and finally test the proposed quartet inference measures. The accuracy of a
measure is quantified by the amount of times it reconstructs the correct tree topology.

4.4 Overview of the code

To compute the algebraic transformations for the proposed inference measures we have written
a function in the R programming language that, given a relative frequency array arising from an
alignment of 4 species returns the topology a certain inference measure is more confident in. Since
the simulated data we received were alignments and not frequencies, we use the read.fasta function
in the seqinr package to read them and then simply count the frequencies of each nucleotide
configuration (more details in the Appendix).

The main function QuartetTopogy has the following structure:
Input: Relative frequency array f (1 ⇥ 256) from an alignment of 4 species and the choice of

inference measure.
Output: Topology a quartet inference measure is more confident in. (1 for 12|34, 2 for 13|24,

3 for 14|32)

1. Compute the flattenings for the 3 topologies.

2. Transform the flattenings to Fourier coordinates.

3. Compute the B
A

ij block for each topology.

4. Compute the 6 marginals.

5. Transform the marginals to Fourier coordinates.
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6. Compute Gij|kl matrix for each topology.

7. Compute the quartet inference measure.

8. Return topology with the most confidence.

We will refer to the Appendices to find the whole commented code, but we give some intuitions
about each of the previous steps of the code now, including some exherts of it. The explanation
assumes knowledge of the commands used in the R language.

1. Compute the flattenings for the 3 topologies. This is done through a character vector
of the form pt = (AAAA, AAAC, AAAG, ..., TTTT) which is used to index the frequency array f

according to each flattening. For example for the 12|34 flattening we would use the loop:

rn <- c("AA","AC","AG","AT","CA","CC","CG","CT","GA","GC","GG","GT","TA","TC","TG","TT")

for(i in 1:16){

pf1234[rn[i],] <- f[str_which(pt,str_c(rn[i],"[:upper:][:upper:]"))]

}

where the flattenings are initialized as data frames indexed by rn.

2. Transform the flattenings to Fourier coordinates. We use the Hadamard matrix with each
flattening to transform it to Fourier coordinates, for example:

pf1234fou <- kronecker(solve(H),solve(H))%*%as.matrix(pf1234)...

...%*%t(kronecker(solve(H),solve(H)))

The property used in this computation is not explicitly introduced in this work but can be seen in
[Cas18].

3. Compute the B
A

ij block for each topology. This is done by selecting the elements of the Fourier
flattenings whose ⌃ indexation sums A (understanding ⌃ as a group) and indexing those correctly into
the B

A

ij matrices, as described in 3.15.

4. Compute the 6 marginals. This is following using the initial definition 3.17 and summing the
elements (using the 12|34 flattening). For example, for the 1� 2 marginal we sum like:

marg12 <- transmute(pf1234,marginal12=AA+AC+AG+AT+CA+CC+CG+CT+GA+GC+GG+GT+TA+TC+TG+TT) %>%

t() %>%

matrix(4,4)

where the transmute function sums the rows of the flattening, which is then transposed and trans-
formed into a matrix. The %>% is the pipe operator, that passes the element to its left as argument to
the function below.

5. Transform the marginals to Fourier coordinates. Through the Hadamard matrix, as before.
For example:

foumarg12 <- solve(H) %*% marg12 %*% solve(H) %>%

diag()

The resulting matrices are diagonal, therefore they are saved in a 4 position vector.

6. Compute the Gij|kl matrix for each topology. As introduced in Definition 3.20 they are computed
with two auxiliary matrices, in the 12|34 case we use:

G12rightA <- blockdiag(1/foumarg34[1],1/foumarg34[2],1/foumarg34[3],1/foumarg34[4])

G12leftA <- blockdiag(1/foumarg12[1],1/foumarg12[2],1/foumarg12[3],1/foumarg12[4])

G12 <- G12leftA %*% bA12 %*% G12rightA
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7. Compute the quartet inference measure. This step changes depending on the inference measure
we want to implement. For example for the detG measure we would use the following:

Ddet <- map(list(G12,G13,G14),det) %>%

unlist() %>%

which.min()

8. Return topology with the most confidence. Following the previous example with the deter-
minant, we would just return what topology corresponds with the minimum (or maximum for n2B)
value of the measure:

return(Ddet)

4.5 Results on simulated data

To test the quartet inference measures introduced in 4.2 we consider a subset of the Huelsenbeck
space, in the fashion of Figure 4.1(b). The simulated data covers a 2 [0, 1.5] and b 2 [0, 1.5] with
steps of 0.1. For each pair (a, b), 100 sets of 4 alignments with N = 1000 are generated and their
frequencies calculated. The accuracy of the inference measure for the 100 trials is represented in
a scale of greys for every square, which corresponds with the (a, b) pair. We use the methods
described in Remarks 4.8 and 4.11. The results, plotted with the ggplot function in R, shown in
Figure 4.3.

Figure 4.3: Performance plots for inference measures 4.4 (detG), 4.6 (dG1) and 4.10 (n2B) respec-
tively, with N = 1000. In red the contour for 33% accuracy (equivalent to choice at random) and
in green for 95%.

The results show that measure 4.4 (detG) seems to be a very bad inference measure, since it
performs worse than a choice at random for most of the space where we have tested it. We will
delve on the reason behind this poor behaviour in section 4.6 and modify it accordingly in section
4.7.

For measures 4.6 (dG1) and 4.10 (n2B) we observe a plateau of over 95% accuracy and a solid
performance average, but there is a symptomatic area of poor accuracy in prediction for both of
the methods. This is due to the phenomena of long branch attraction, that occurs when a tree has
two long and two short edges in relation with the central one, with one of each at each side of the
partition. This can make most methods group as closer the species with similar branch lengths,
failing to correctly predict the topology, see Figure 4.4.
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Figure 4.4: Example of long branch attraction

This highlights the importance of the choice of parameters a and b, since we do not want to
omit patological cases in the tree space where the methods have trouble reconstructing the correct
topology, giving us an incomplete picture of the performance.

4.6 Empirical bias

When we consider an alignment of length N , the absolute frequency F is a vector of samplings on
the distribution of the configurations of the nucleotides at the leaves p:

F ⇠ MultiNom(p,N)

We can understand F as an estimator of P = Np, parameter in our statistical model, because
given an alignment, we can calculate an estimate of P by counting how many times a configuration
of nucleotide appears.

Definition 4.13. Let ⌘̂ be a estimator of the statistic ⌘. Then the bias of ⌘̂ relative to ⌘ is defined
as:

biasP [⌘̂] = E[⌘̂|⌘]� ⌘

where E[⌘̂|⌘] denotes the expected value of ⌘̂ subject to the value of ⌘.

In general a quartet inference measure is defined by

�(F ) = (R12 = �12(F ), R13 = �13(F ), R14 = �14(F ))

where �ij : F �! Rij are functions that given F and through transformations as the ones shown
in this work, generate a statistically interpretable confidence in the reconstruction. What can we
say about the bias of E[�(F )] for the inference measures developed when comparing them to their
expected value on the limit N �! 1? We will take a practical approach to this question by
analyzing how the scores evolve when N increases in measure 4.4 (detG):

�detG(F ) =
�
detG12|34(F ), detG13|24(F ), detG14|23(F )

�
.

For this case study we assume that T has the 12|34 topology. Then, as proven in Proposition 4.5
we have:

lim
N!1

E[�detG(F )] = �detG(P ).
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Therefore,
lim

N!1
bias[�detG(F )] = 0.

Nevertheless, for small N we could have huge bias and the convergence to 0 could be really slow.
It could be useful to generate this score for alignments with di↵erent N and asses its qualitative
behaviour, and how fast this bias is reduced when N is increased.

Figure 4.5: Evolution of the scores for the detG inference measure for subalignments of two di↵erent
alignments of length N = 1000000. In black the expected value for the scores of the 13|24 and
14|23 topologies, which are equal to 1281.234 and 587.1062 respectively.

To get a qualitative idea of the behaviour, we simulated an alignment A of length N = 1000000
for 4 species, using the techniques in section 4.3. To see how the scores evolve, we use a loop (starting
with N0 = 100) where at each iteration we consider a subalignment of A of length Ni = Ni�1+100,
where Ni�1 was the length at the previous iteration (the same alignment but 100 nucleotides longer)
and compute the scores for the detG inference measure. The results are shown in Figure 4.5. The
plots correspond to two di↵erent alignments of length N = 1000000, but it is pruned to omit big
scores to provide better readability. There are several things to be observed:

· The score for the correct topology (in this data 12|34) converges rapidly towards 0 and stays
there as N increases.

· The convergence towards the expected value (in black) is slow and erratic, and only seems to
happen for N larger than what is the alignment length attainable in practice.

· For small values of N the behaviour of the scores for the false topologies is very erratic, and
takes negatives values.

· As we increase N , the scores still have oscillations but in positive values. In both cases islands
of negatives values appear.

The huge values of the scores come from dividing by the marginals in Fourier coordinates in the
Gij|kl(p) matrices, because they can be very close or in some cases 0 for the incorrect topologies. To
compensate for the negative values, which are what is causing the method to fail since we look for
the minimum value in �detG(F ), we will consider the absolute value of the determinants instead,
in section 4.7.
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4.7 The adG inference measure

As seen in the previous section, the detG method has some undesired behaviours, both because it
takes negative values and because it fails to converge to the expected values for meaningful and
practical lengths of alignments. Since this latter behaviour is for the scores of the wrong topologies,
will not a↵ect the performance of the method as the first, once we proceed naturally to consider
the absolute value of the determinant as a new inference measure adG.

Definition 4.14. Absolute value of the determinant of the G matrices

�adG(F ) =
�
| detG12|34(F )|, | detG13|24(F )|, | detG14|23(F )|

�

Figure 4.6: Performance plot for inference measure 4.14 (adG), with N = 1000. In red the contour
for 33% accuracy (equivalent to choice at random) and in green for 95%.

The absolute value of the determinant of the G matrices is the best performing method of the
ones tried in this work, both presenting the bigger plateau of 95% accuracy and having the best
mean overall. Not only that but, when we compare its performance test with the one for the n2B
or dG1 measures, the region in which the phenomenon of long branch attraction forces the method
under 33% accuracy is slimmer, and reduced only to the squares where this behaviour is more
extreme.

This result of the adG inference measure on the Huelsenbeck space for sequences of length
N = 1000 is comparable with the methods most widely used by biologists: neighbour-joining and
maximum likelihood, which have a performance of around 80% on this tree space (see [CFS16],
Figure 3).
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4.8 Example of quartet reconstruction with real data alignments

In this section we will apply the algebraic method adG for quartet reconstruction to real alignments
of a lineages of water beetles of the genus Deronectes. The alignments are the ones used to construct
the phylogenetic trees in [RGV16] and were gently made accessible by Ignacio Ribera (IBE-CSIC)
in order to be used in this work. Aquatic beetles are one of the best examples of how phylogenetic
trees can unearth information not only about the evolution of the species themselves but also
of the geographical enviornment that surrounded such process. This is due to aquatic beetles
having precise needs for survival and having certain characteristics regarding range expansion. In
[RGVB+16] it is exposed how major geological and climatic events influenced the history of the
genus, and sometimes these kind of relationships can give valuable information or hints about when
and how events like such happened.

(
Deronectes wewalkai (1)

TTATATTTTAATCTTACCAGGATTT...

(
Deronectes algibensis (3)

ATATATTTTAATTCTACCAGGATTT...

(
Deronectes angusi (2)

TTATATTCTTATCCTCCCGGGATTC...

(
Deronectes aubei (4)

ATATATTTTAATTCTTCCAGGATTT...

Black-Box
12|34

> 13|24 <

14|23

D.wewalkai (1)

D.algibensis (3)

D.angusi (2)

D.aubei (4)

Figure 4.7: Example of implementation of the algorithm to reconstruct the phylogenetic relationship
between 4 species of the genus Deronectes.

Given 4 alignments of length N = 801 for 4 species of the Deronectes genus, we use the adG

inference measure to reconstruct their phylogenetic relationship, as shown in Figure 4.7. The
method successfully reconstructs the quartet, as can be checked in [RGVB+16]. By permuting
the order in which we label and introduce the species into our R function (the Black Box) we get
covariant outputs, for example, for the labeling:

{D.wewalkai (1), D.algibensis (2), D.angusi (3), D.aubei (4)}

the returned topology is 12|34, as expected by the reasoning introduced in section 2.2.
Even though in this particular case the phylogenetic tree was successfully reconstructed, we have

evidence that the K81 model may not be adequate for this data, since if we count the frequencies
of A, C, G, T in the alignment, we get that their distribution is:

fA = 0.298377, fC = 0.156367, fG = 0.1413858, fT = 0.4038702.

The K81 model has the uniform distribution as its stationary and root distribution, and the data
we are using is not close to this distribution.
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Conclusion and future work

In this work we have aimed to discuss the theoretical foundations of quartet reconstruction with
algebraic techniques and then implement some new quartet inference measures and test their per-
formance on a subset of the Huelsenbeck tree space. At the end of the project, we have successfully
fulfilled the following:

1. Understood the usefulness and limitations of both phylogenetic trees and the K81 model of
nucleotide substitution. Throughout the bibliographical research we have come across papers
using phylogenetic trees to model the evolution of species in various ways (see [RGV16] for
example) but also realized the di�culty in reconstruction, especially when the sequences have
small length. In section 4.8 we have also seen that the K81 model may not be suitable for
some sets of data.

2. Compiled the results on the bibliography for quartet reconstruction. The results were spread
between bibliography focusing in the algebraic aspect of the transformations ([AR07]) and
others focusing on a more statistical point of view ([STHJ16]). We also have tried to give
intuitive reasoning behind the steps followed in this work from the alignments to the inference
measures.

3. Given alternative proofs for some of the results in [CCFS]. In order to make some proofs
more intuitive, we have used the Markov action to follow a set structure throughout the work:
first modifying the transition matrices in the trees and then computing the probabilities to
reach our conclusions.

4. Implemented in the R language the algebraic transformations needed to use the quartet infer-
ence measures proposed in [CCFS]. We have developed a function that performs the trans-
formations described in this work and can be modified to test inference measures based in
the Bij

A
and Gij|kl matrices. To do so we have used several features of the library tidyverse,

for example all the plots are done with the ggplot function.

5. Tested the accuracy of such measures with simulated data. The data was provided by Marta
Casanellas using the algorithms described in section 4.3. The inference measures performed
reasonably well except for detG, because negative values would appear in the score.

6. Propose modifications to such measures. The adG inference measure is an attempt to improve
detG which ended up being the best performing measure. There were more modifications tried
to the proposed measures but none of them yielded relevant results.
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7. Made a preliminary study on the behaviour and bias of the detG and adG inference measures.
We tried to answer the question of how good were the inference measures in relation to the
properties in [STHJ16]. We analyzed the bias for some cases of the detG measure in order
to asses its general behaviour. The results show erratic behaviour for small alignments and a
tendency to the expected values as N increases.

We have seen that quartet inference measures based on algebraic tools might have a performance
of 83% on the Huelsenbeck tree space for sequences of length 1000. This is compatible with the
methods most widely used by biologists: neighbour-joining and maximum-likelihood, which have a
performance of around 80% on this tree space (see [CFS16], Figure 3). Therefore it is interesting
to pursue this study in a future work.

The specific things that were not tackled in this project and are left as future works:

1. Give a more extensive description on the huge bias for the adG inference measure. Specifically
we should deal with the problem that the denominators of the matrices Gij|kl might be close
to 0.

2. Perform an analysis on the expectation for the inference measures.

3. Give an in-depth comparison between the methods proposed and neighbour-joining or maxi-
mum likelihood.

4. Implement the inference measures in C++ in order to complement and improve existing code,
such as reconstruction algorithms based in quartets.

5. Partake in the authorship of a coming version of [CCFS].
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[CCFS] M. Casanellas, L. Cifuentes, and J. Fernández-Sánchez. Application of algebraic tech-
niques to phylogenetic reconstruction. [in preparation].

[CFS16] M. Casanellas and J. Fernández-Sánchez. Invariant versus classical quartet infer-
ence when evolution is heterogeneous across sites and lineages. Systematic Biology,
65(2):280–291, 2016.
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Chapter 7

Appendices

7.1 Code: Inference Measures

library(tidyverse)

library(seqinr)

library(purrr)

library(stringr)

library(linpk)

library(ggplot2)

QuartetTopology <- function(f){

#Auxiliary vector with the character indexation of the probability vector.
pt <- c("AAAA", "AAAC", "AAAG", "AAAT", "AACA", "AACC", "AACG", "AACT", "AAGA", "AAGC", "AAGG", "AAGT", "AATA", "AATC", "AATG",

"AATT", "ACAA", "ACAC", "ACAG", "ACAT", "ACCA", "ACCC", "ACCG", "ACCT", "ACGA", "ACGC", "ACGG", "ACGT", "ACTA", "ACTC",

"ACTG", "ACTT", "AGAA", "AGAC", "AGAG", "AGAT", "AGCA", "AGCC", "AGCG", "AGCT", "AGGA", "AGGC", "AGGG", "AGGT", "AGTA",

"AGTC", "AGTG", "AGTT", "ATAA", "ATAC", "ATAG", "ATAT", "ATCA", "ATCC", "ATCG", "ATCT", "ATGA", "ATGC", "ATGG", "ATGT",

"ATTA", "ATTC", "ATTG", "ATTT", "CAAA", "CAAC", "CAAG", "CAAT", "CACA", "CACC", "CACG", "CACT", "CAGA", "CAGC", "CAGG",

"CAGT", "CATA", "CATC", "CATG", "CATT", "CCAA", "CCAC", "CCAG", "CCAT", "CCCA", "CCCC", "CCCG", "CCCT", "CCGA", "CCGC",

"CCGG", "CCGT", "CCTA", "CCTC", "CCTG", "CCTT", "CGAA", "CGAC", "CGAG", "CGAT", "CGCA", "CGCC", "CGCG", "CGCT", "CGGA",

"CGGC", "CGGG", "CGGT", "CGTA", "CGTC", "CGTG", "CGTT", "CTAA", "CTAC", "CTAG", "CTAT", "CTCA", "CTCC", "CTCG", "CTCT",

"CTGA", "CTGC", "CTGG", "CTGT", "CTTA", "CTTC", "CTTG", "CTTT", "GAAA", "GAAC", "GAAG", "GAAT", "GACA", "GACC", "GACG",

"GACT", "GAGA", "GAGC", "GAGG", "GAGT", "GATA", "GATC", "GATG", "GATT", "GCAA", "GCAC", "GCAG", "GCAT", "GCCA", "GCCC",

"GCCG", "GCCT", "GCGA", "GCGC", "GCGG", "GCGT", "GCTA", "GCTC", "GCTG", "GCTT", "GGAA", "GGAC", "GGAG", "GGAT", "GGCA",

"GGCC", "GGCG", "GGCT", "GGGA", "GGGC", "GGGG", "GGGT", "GGTA", "GGTC", "GGTG", "GGTT", "GTAA", "GTAC", "GTAG", "GTAT",

"GTCA", "GTCC", "GTCG", "GTCT", "GTGA", "GTGC", "GTGG", "GTGT", "GTTA", "GTTC", "GTTG", "GTTT", "TAAA", "TAAC", "TAAG",

"TAAT", "TACA", "TACC", "TACG", "TACT", "TAGA", "TAGC", "TAGG", "TAGT", "TATA", "TATC", "TATG", "TATT", "TCAA", "TCAC",

"TCAG", "TCAT", "TCCA", "TCCC", "TCCG", "TCCT", "TCGA", "TCGC", "TCGG", "TCGT", "TCTA", "TCTC", "TCTG", "TCTT", "TGAA",

"TGAC", "TGAG", "TGAT", "TGCA", "TGCC", "TGCG", "TGCT", "TGGA", "TGGC", "TGGG", "TGGT", "TGTA", "TGTC", "TGTG", "TGTT",

"TTAA", "TTAC", "TTAG", "TTAT", "TTCA", "TTCC", "TTCG", "TTCT", "TTGA", "TTGC", "TTGG", "TTGT", "TTTA", "TTTC", "TTTG",

"TTTT")

# Flattenings ----

#Initializing the three Flattenings
a <- rep(0,16)

rn <- c("AA","AC","AG","AT","CA","CC","CG","CT","GA","GC","GG","GT","TA","TC","TG","TT")

pf <- data.frame(rnames = rn,AA=a,AC=a,AG=a,AT=a,CA=a,CC=a,CG=a,CT=a,GA=a,GC=a,GG=a,GT=a,TA=a,TC=a,TG=a,TT=a)

pf <- column_to_rownames(pf,"rnames")

pf1234 <- pf

pf1324 <- pf

pf1423 <- pf

#Uses character vector to index correctly the elements of p into the flattening
for(i in 1:16){

pf1234[rn[i],] <- f[str_which(pt,str_c(rn[i],"[:upper:][:upper:]"))]

pf1324[rn[i],] <- f[str_which(pt,str_c(substr(rn[i],1,1),"[:upper:]",substr(rn[i],2,2),"[:upper:]"))]

pf1423[rn[i],] <- f[str_which(pt,str_c(substr(rn[i],1,1),"[:upper:]","[:upper:]",substr(rn[i],2,2)))]

}

rm(a,pf,i,rn)

#OBS: Substituting p with pt yields the theoretical flattenings (with characters)

# Flattenings in Fourier coordinates ----

H <- matrix(c(1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1),4,4)

pf1234fou <- kronecker(solve(H),solve(H))%*%as.matrix(pf1234)%*%t(kronecker(solve(H),solve(H)))

pf1324fou <- kronecker(solve(H),solve(H))%*%as.matrix(pf1324)%*%t(kronecker(solve(H),solve(H)))

pf1423fou <- kronecker(solve(H),solve(H))%*%as.matrix(pf1423)%*%t(kronecker(solve(H),solve(H)))

# Block A for each topology in the Fourier flattening ----
groupsum <- function(x){ #returns the sum (as a group) of the pair of elements in a row

if(x == 1 | x == 6 | x == 11 | x == 16) return(1) #A
if(x == 2 | x == 5 | x == 12 | x == 15) return(2) #C
if(x == 3 | x == 8 | x == 9 | x == 14) return(3) #G
if(x == 4 | x == 7 | x == 10 | x == 13) return(4) #T

}

49



50 CHAPTER 7. APPENDICES

#Construct the blocks, first making the vector then reorganizing with t(matrix(.))
bA12 <- c()

bA13 <- c()

bA14 <- c()

for(i in 1:16){

for(j in 1:16){

si <- groupsum(i); sj <- groupsum(j);

if(si == sj){

if(si == 1){

bA12 <- append(bA12,pf1234fou[i,j])

bA13 <- append(bA13,pf1324fou[i,j])

bA14 <- append(bA14,pf1423fou[i,j])

}

}

}

}

rm(si,sj,i,j)

bA12 <- t(matrix(bA12,4,4))

bA13 <- t(matrix(bA13,4,4))

bA14 <- t(matrix(bA14,4,4))

## Computing marginals ----

marg12 <- transmute(pf1234,marginal12=AA+AC+AG+AT+CA+CC+CG+CT+GA+GC+GG+GT+TA+TC+TG+TT) %>% #as vector
t() %>%

matrix(4,4) #to access with margpos: marg12[[mp("AA")]]
marg34 <- transmute(as.data.frame(t(pf1234)),marginal34=AA+AC+AG+AT+CA+CC+CG+CT+GA+GC+GG+GT+TA+TC+TG+TT) %>%

t() %>%

matrix(4,4)

a1 <- c(1,2,3,4); c1 <- c(5,6,7,8); g1 <- c(9,10,11,12); t1 <- c(13,14,15,16)

a2 <- c(1,5,9,13); c2 <- c(2,6,10,14);g2 <- c(3,7,11,15); t2 <- c(4,8,12,16)

marg13 <- c(sum(pf1234[a1,a1]), sum(pf1234[a1,c1]), sum(pf1234[a1,g1]),sum(pf1234[a1,t1]), #A+
sum(pf1234[c1,a1]), sum(pf1234[c1,c1]), sum(pf1234[c1,g1]),sum(pf1234[c1,t1]), #c+
sum(pf1234[g1,a1]), sum(pf1234[g1,c1]), sum(pf1234[g1,g1]),sum(pf1234[g1,t1]), #g1+
sum(pf1234[t1,a1]), sum(pf1234[t1,c1]), sum(pf1234[t1,g1]),sum(pf1234[t1,t1])) %>% #T+

t() %>%

matrix(4,4)

marg24 <- c(sum(pf1234[a2,a2]), sum(pf1234[a2,c2]), sum(pf1234[a2,g2]),sum(pf1234[a2,t2]), #a2+
sum(pf1234[c2,a2]), sum(pf1234[c2,c2]), sum(pf1234[c2,g2]),sum(pf1234[c2,t2]), #c2+
sum(pf1234[g2,a2]), sum(pf1234[g2,c2]), sum(pf1234[g2,g2]),sum(pf1234[g2,t2]), #g2+
sum(pf1234[t2,a2]), sum(pf1234[t2,c2]), sum(pf1234[t2,g2]),sum(pf1234[t2,t2])) %>% #t2+

t() %>%

matrix(4,4)

marg14 <- c(sum(pf1234[a1,a2]), sum(pf1234[a1,c2]), sum(pf1234[a1,g2]),sum(pf1234[a1,t2]), #A+
sum(pf1234[c1,a2]), sum(pf1234[c1,c2]), sum(pf1234[c1,g2]),sum(pf1234[c1,t2]), #C+
sum(pf1234[g1,a2]), sum(pf1234[g1,c2]), sum(pf1234[g1,g2]),sum(pf1234[g1,t2]), #G+
sum(pf1234[t1,a2]), sum(pf1234[t1,c2]), sum(pf1234[t1,g2]),sum(pf1234[t1,t2])) %>% #T+

t() %>%

matrix(4,4)

marg23 <- c(sum(pf1234[a2,a1]), sum(pf1234[a2,c1]), sum(pf1234[a2,g1]),sum(pf1234[a2,t1]), #a2+
sum(pf1234[c2,a1]), sum(pf1234[c2,c1]), sum(pf1234[c2,g1]),sum(pf1234[c2,t1]), #c2+
sum(pf1234[g2,a1]), sum(pf1234[g2,c1]), sum(pf1234[g2,g1]),sum(pf1234[g2,t1]), #g2+
sum(pf1234[t2,a1]), sum(pf1234[t2,c1]), sum(pf1234[t2,g1]),sum(pf1234[t2,t1])) %>% #t2+

t() %>%

matrix(4,4)

rm(a1,c1,g1,t1,a2,c2,g2,t2)

## Marginals in Fourier coordinates ----

#OBS: They are diagonal matrices
foumarg12 <- solve(H) %*% marg12 %*% solve(H) %>%

diag()

foumarg34 <- solve(H) %*% marg34 %*% solve(H) %>%

diag()

foumarg13 <- solve(H) %*% marg13 %*% solve(H) %>%

diag()

foumarg24 <- solve(H) %*% marg24 %*% solve(H) %>%

diag()

foumarg14 <- solve(H) %*% marg14 %*% solve(H) %>%

diag()

foumarg23 <- solve(H) %*% marg23 %*% solve(H) %>%

diag()

## G matrix for each tree ----
#OBS: 1 ~ A, 2 ~ C, 3 ~ G, 4 ~ T
#G12|34
G12rightA <- blockdiag(1/foumarg34[1],1/foumarg34[2],1/foumarg34[3],1/foumarg34[4])

G12leftA <- blockdiag(1/foumarg12[1],1/foumarg12[2],1/foumarg12[3],1/foumarg12[4])

G12 <- G12leftA %*% bA12 %*% G12rightA

#G13|24
G13rightA <- blockdiag(1/foumarg24[1],1/foumarg24[2],1/foumarg24[3],1/foumarg24[4])

G13leftA <- blockdiag(1/foumarg13[1],1/foumarg13[2],1/foumarg13[3],1/foumarg13[4])

G13 <- G13leftA %*% bA13 %*% G13rightA

#G14|23
G14rightA <- blockdiag(1/foumarg23[1],1/foumarg23[2],1/foumarg23[3],1/foumarg23[4])

G14leftA <- blockdiag(1/foumarg14[1],1/foumarg14[2],1/foumarg14[3],1/foumarg14[4])

G14 <- G14leftA %*% bA14 %*% G14rightA

## Quartet Inference Measures ----
Ddet <- map(list(G12,G13,G14),det) %>%

unlist() %>%
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#abs() %>%
which.min()

m1 <- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),4,4)

Ddist <- list(norm(G12-m1,"F"),norm(G13-m1,"F"),norm(G14-m1,"F")) %>%

unlist() %>%

which.min()

Dnorm2B <- map(list(bA12,bA13,bA14),norm,"2") %>%

unlist() %>%

which.max()

return(c(Ddet,Ddist,Dnorm2B))

}

p <- 1

Nmethods <- 3

v <- c(1,11,21,31,41,51,61,71,81,91,101,111,121,131,141)

res.method <- matrix(0L,ncol=Nmethods+2,nrow=1)

for(a in v){

for(b in v){

ab.res <- matrix(ncol=Nmethods,nrow=100)

for(i in 1:100) ab.res[i,] <- QuartetTopology(all.probs[[p]][i,])

res.method <- rbind(res.method,c(a,b,sum(ab.res[,1] == 1),sum(ab.res[,2] == 1),sum(ab.res[,3] == 1)))#falta optimizar
p = p+1;

print("-")

print(a)

print(b)

}

}

## Plots ----

f95 <- function(x){

for(i in 1:length(x)){

if(x[i] < 95) x[i] = 0;

if(x[i] >= 95) x[i] = 95;

}

return(x)

}

f33 <- function(x){

for(i in 1:length(x)){

if(x[i] < 33) x[i] = 0;

if(x[i] >= 33) x[i] = 33;

}

return(x)

}

res.method <- as.data.frame(res.method[2:length(res.method[,1]),])

colnames(res.method) <- c("a","b","detG","distG1","norm2B")

ggdistG1 <- ggplot(res.method,aes(a/100,b/100))+

geom_raster(aes(fill=distG1))+

scale_fill_gradient(low = "white", high = "black")+

geom_contour(aes(z=f95(distG1)),color="green",bins=1)+

geom_contour(aes(z=f33(distG1)),color="red",bins=1)+

geom_text(aes(label = str_c("Mean = ", round(mean(res.method$distG1),2)), x = 1.30, y = 1.40),size=3,color="white")+

labs(title="sfmB",

fill="Accuracy",

x="a",y="b")+

scale_x_continuous(expand = c(0, 0))+

scale_y_continuous(expand = c(0, 0))+

theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),

panel.background = element_blank(), axis.line = element_line(colour = "black"))

ggdetG <- ggplot(res.method,aes(a/100,b/100))+

geom_raster(aes(fill=detG))+

scale_fill_gradient(low = "white", high = "black")+

geom_contour(aes(z=f95(detG)),color="green",bins=1)+

geom_contour(aes(z=f33(detG)),color="red",bins=1)+

geom_text(aes(label = str_c("Mean = ", round(mean(res.method$detG),2)), x = 1.30, y = 1.40),size=3,color="white")+

labs(title="adG",

fill="Accuracy",

x="a",y="b")+

scale_x_continuous(expand = c(0, 0))+

scale_y_continuous(expand = c(0, 0))+

theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),

panel.background = element_blank(), axis.line = element_line(colour = "black"))

ggnorm2B <- ggplot(res.method,aes(a/100,b/100))+

geom_raster(aes(fill=norm2B))+

scale_fill_gradient(low = "white", high = "black")+

geom_contour(aes(z=f95(norm2B)),color="green",bins=1)+

geom_contour(aes(z=f33(norm2B)),color="red",bins=1)+

geom_text(aes(label = str_c("Mean = ", round(mean(res.method$norm2B),2)), x = 1.30, y = 1.40),size=3,color="white")+

labs(title="n2B",

fill="Accuracy",

x="a",y="b")+

scale_x_continuous(expand = c(0, 0))+

scale_y_continuous(expand = c(0, 0))+

theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),

panel.background = element_blank(), axis.line = element_line(colour = "black"))
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7.2 Code: Bias of detG
library(tidyverse)

library(seqinr)

library(purrr)

library(stringr)

library(linpk)

## These functions are a less pruned version of QuartetTopology with a slightly different return
probtheo <- function(){

k <- 1

pt <- c()

for(i1 in 1:4){

for(i2 in 1:4){

for(i3 in 1:4){

for(i4 in 1:4){

pt[k] <- str_c(i1,i2,i3,i4)

k <- k + 1

}

}

}

}

translateACGT <- function(s){

s <- str_replace_all(s,"1","A") %>%

str_replace_all("2","C") %>%

str_replace_all("3","G") %>%

str_replace_all("4","T")

return(s)

}

rm(i1,i2,i3,i4)

return(translateACGT(pt))

} #generates probability vector with CHARACTERS
pt <- probtheo()

wherequart <- function(q){

q %>%

str_to_upper() %>%

#str_which(probtheo()) %>%
str_which(pt) %>%

return()

} #where is a ACGT (in chars) quartet in the vector

det_alchemy <- function(p){

#theoretical probability vector (with characters) for auxiliary porpuses
probtheo <- function(){

k <- 1

pt <- c()

for(i1 in 1:4){

for(i2 in 1:4){

for(i3 in 1:4){

for(i4 in 1:4){

pt[k] <- str_c(i1,i2,i3,i4)

k <- k + 1

}

}

}

}

translateACGT <- function(s){

s <- str_replace_all(s,"1","A") %>%

str_replace_all("2","C") %>%

str_replace_all("3","G") %>%

str_replace_all("4","T")

return(s)

}

rm(i1,i2,i3,i4)

return(translateACGT(pt))

}

pt <- probtheo()

#making the 3 flattenings
a <- c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

rn <- c("AA","AC","AG","AT","CA","CC","CG","CT","GA","GC","GG","GT","TA","TC","TG","TT")

pf <- data.frame(rnames = rn,AA=a,AC=a,AG=a,AT=a,CA=a,CC=a,CG=a,CT=a,GA=a,GC=a,GG=a,GT=a,TA=a,TC=a,TG=a,TT=a)

pf <- column_to_rownames(pf,"rnames")

pf1234 <- pf;pf1324 <- pf;pf1423 <- pf;

for(i in 1:16){ #here use pt instead of p (on the first one) to see the character flattenings
pf1234[rn[i],] <- p[str_which(pt,str_c(rn[i],"[:upper:][:upper:]"))] #busca las coincidencias en el vector te~A³rico
pf1324[rn[i],] <- p[str_which(pt,str_c(substr(rn[i],1,1),"[:upper:]",substr(rn[i],2,2),"[:upper:]"))]

pf1423[rn[i],] <- p[str_which(pt,str_c(substr(rn[i],1,1),"[:upper:]","[:upper:]",substr(rn[i],2,2)))]

}

rm(a,pf,i)

#return(list(pf1234,pf1324,pf1423))
#Flattenings in Fourier coordinates:
H <- matrix(c(1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1),4,4)

pf1234fou <- kronecker(solve(H),solve(H))%*%as.matrix(pf1234)%*%t(kronecker(solve(H),solve(H)))

pf1324fou <- kronecker(solve(H),solve(H))%*%as.matrix(pf1324)%*%t(kronecker(solve(H),solve(H)))

pf1423fou <- kronecker(solve(H),solve(H))%*%as.matrix(pf1423)%*%t(kronecker(solve(H),solve(H)))

#Block A of the fourier flattening of p
groupsum <- function(x){ #returns the sum (as a group) of the pair of elements in a row

if(x == 1 | x == 6 | x == 11 | x == 16) return(1) #A
if(x == 2 | x == 5 | x == 12 | x == 15) return(2) #C
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if(x == 3 | x == 8 | x == 9 | x == 14) return(3) #G
if(x == 4 | x == 7 | x == 10 | x == 13) return(4) #T

}

bA12 <- c()

bA13 <- c()

bA14 <- c()

#construct the blocks, first making the vector then reorganizing with t(matrix(.))
for(i in 1:16){

for(j in 1:16){

si <- groupsum(i); sj <- groupsum(j);

if(si == sj){

if(si == 1){

bA12 <- append(bA12,pf1234fou[i,j])

bA13 <- append(bA13,pf1324fou[i,j])

bA14 <- append(bA14,pf1423fou[i,j])

}

}

}

}

rm(si,sj,i,j)

bA12 <- t(matrix(bA12,4,4))

bA13 <- t(matrix(bA13,4,4))

bA14 <- t(matrix(bA14,4,4))

#Constructing the G matrix for each tree
#The marginals
marg12 <- transmute(pf1234,marginal12=AA+AC+AG+AT+CA+CC+CG+CT+GA+GC+GG+GT+TA+TC+TG+TT) %>% #as vector

t() %>% #to accurately convert
matrix(4,4) #to access with margpos: marg12[[mp("AA")]]

#the following equality holds: marg12 == 0.25*tM[[1]]%*%tM[[2]]
marg34 <- transmute(as.data.frame(t(pf1234)),marginal34=AA+AC+AG+AT+CA+CC+CG+CT+GA+GC+GG+GT+TA+TC+TG+TT) %>% #t(), transposing to sum columns

t() %>%

matrix(4,4)

a1 <- c(1,2,3,4); c1 <- c(5,6,7,8); g1 <- c(9,10,11,12); t1 <- c(13,14,15,16)

a2 <- c(1,5,9,13); c2 <- c(2,6,10,14);g2 <- c(3,7,11,15); t2 <- c(4,8,12,16)

marg13 <- c(sum(pf1234[a1,a1]), sum(pf1234[a1,c1]), sum(pf1234[a1,g1]),sum(pf1234[a1,t1]), #A+
sum(pf1234[c1,a1]), sum(pf1234[c1,c1]), sum(pf1234[c1,g1]),sum(pf1234[c1,t1]), #c+
sum(pf1234[g1,a1]), sum(pf1234[g1,c1]), sum(pf1234[g1,g1]),sum(pf1234[g1,t1]), #g1+
sum(pf1234[t1,a1]), sum(pf1234[t1,c1]), sum(pf1234[t1,g1]),sum(pf1234[t1,t1])) %>% #T+

t() %>%

matrix(4,4)

marg24 <- c(sum(pf1234[a2,a2]), sum(pf1234[a2,c2]), sum(pf1234[a2,g2]),sum(pf1234[a2,t2]), #a2+
sum(pf1234[c2,a2]), sum(pf1234[c2,c2]), sum(pf1234[c2,g2]),sum(pf1234[c2,t2]), #c2+
sum(pf1234[g2,a2]), sum(pf1234[g2,c2]), sum(pf1234[g2,g2]),sum(pf1234[g2,t2]), #g2+
sum(pf1234[t2,a2]), sum(pf1234[t2,c2]), sum(pf1234[t2,g2]),sum(pf1234[t2,t2])) %>% #t2+

t() %>%

matrix(4,4)

#marg14
marg14 <- c(sum(pf1234[a1,a2]), sum(pf1234[a1,c2]), sum(pf1234[a1,g2]),sum(pf1234[a1,t2]), #A+

sum(pf1234[c1,a2]), sum(pf1234[c1,c2]), sum(pf1234[c1,g2]),sum(pf1234[c1,t2]), #C+
sum(pf1234[g1,a2]), sum(pf1234[g1,c2]), sum(pf1234[g1,g2]),sum(pf1234[g1,t2]), #G+
sum(pf1234[t1,a2]), sum(pf1234[t1,c2]), sum(pf1234[t1,g2]),sum(pf1234[t1,t2])) %>% #T+

t() %>%

matrix(4,4)

marg23 <- c(sum(pf1234[a2,a1]), sum(pf1234[a2,c1]), sum(pf1234[a2,g1]),sum(pf1234[a2,t1]), #a2+
sum(pf1234[c2,a1]), sum(pf1234[c2,c1]), sum(pf1234[c2,g1]),sum(pf1234[c2,t1]), #c2+
sum(pf1234[g2,a1]), sum(pf1234[g2,c1]), sum(pf1234[g2,g1]),sum(pf1234[g2,t1]), #g2+
sum(pf1234[t2,a1]), sum(pf1234[t2,c1]), sum(pf1234[t2,g1]),sum(pf1234[t2,t1])) %>% #t2+

t() %>%

matrix(4,4)

rm(a1,c1,g1,t1,a2,c2,g2,t2)

#Fourier marginals
foumarg12 <- solve(H) %*% marg12 %*% solve(H) #should be a diagonal matrix
foumarg34 <- solve(H) %*% marg34 %*% solve(H)

foumarg13 <- solve(H) %*% marg13 %*% solve(H)

foumarg24 <- solve(H) %*% marg24 %*% solve(H)

foumarg14 <- solve(H) %*% marg14 %*% solve(H)

foumarg23 <- solve(H) %*% marg23 %*% solve(H)

mp <- function(XY){ #margpos
c("AA","AC","AG","AT","CA","CC","CG","CT","GA","GC","GG","GT","TA","TC","TG","TT") %>%

str_which(XY) %>%

return()

}

pm <- function(x){

c("AA","AC","AG","AT","CA","CC","CG","CT","GA","GC","GG","GT","TA","TC","TG","TT")[x] %>%

return()

}

#G12|34
G12rightA <- 16*blockdiag(1/foumarg34[[mp("AA")]],1/foumarg34[[mp("CC")]],1/foumarg34[[mp("GG")]],1/foumarg34[[mp("TT")]])

G12leftA <- foumarg13[[mp("AA")]]*blockdiag(1/foumarg12[[mp("AA")]],1/foumarg12[[mp("CC")]],1/foumarg12[[mp("GG")]],1/foumarg12[[mp("TT")]])

G12 <- G12leftA %*% bA12 %*% G12rightA

#G13|24
G13rightA <- 16*blockdiag(1/foumarg24[[mp("AA")]],1/foumarg24[[mp("CC")]],1/foumarg24[[mp("GG")]],1/foumarg24[[mp("TT")]])

G13leftA <- foumarg12[[mp("AA")]]*blockdiag(1/foumarg13[[mp("AA")]],1/foumarg13[[mp("CC")]],1/foumarg13[[mp("GG")]],1/foumarg13[[mp("TT")]])

G13 <- G13leftA %*% bA13 %*% G13rightA

#G14|23
G14rightA <- 16*blockdiag(1/foumarg23[[mp("AA")]],1/foumarg23[[mp("CC")]],1/foumarg23[[mp("GG")]],1/foumarg23[[mp("TT")]])

G14leftA <- foumarg12[[mp("AA")]]*blockdiag(1/foumarg14[[mp("AA")]],1/foumarg14[[mp("CC")]],1/foumarg14[[mp("GG")]],1/foumarg14[[mp("TT")]])
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G14 <- G14leftA %*% bA14 %*% G14rightA

G <- list(G12,G13,G14)

dets <- map(list(G[[1]],G[[2]],G[[3]]),det) %>%

unlist() #%>%
#abs()

return(dets) #returns the 3 determinants

}

#Matrices to compute expected value for the 2 cases

Me <- matrix(c(0.482794071309854, 0.140081335066641, 0.292151277919313, 0.0849733157041928,

0.140081335066641, 0.482794071309854, 0.0849733157041928, 0.292151277919313,

0.292151277919313, 0.0849733157041928, 0.482794071309854, 0.140081335066641,

0.0849733157041928, 0.292151277919313, 0.140081335066641, 0.482794071309854),4,4)

# Me <- matrix(c(0.513802714081176, 0.0689575677123846, 0.0609441668572961, 0.356295551349143,
# 0.0689575677123846, 0.513802714081176, 0.356295551349143, 0.0609441668572961,
# 0.0609441668572961, 0.356295551349143, 0.513802714081176, 0.0689575677123846,
# 0.356295551349143, 0.0609441668572961, 0.0689575677123846, 0.513802714081176),4,4)

detG13 <- (4^4*Me[1]*Me[2]*Me[3]*Me[4])/(det(Me)^2)

##Process

setwd("") #Location of fasta file
align <- read.fasta(file="") #Name of fasta file

kdets <- matrix(0L,ncol=4,nrow=1)

freqk<-rep(0L,256)

for(k in 1:10000){

alignk <- list(align[[1]][1:k*100],align[[2]][1:k*100],align[[3]][1:k*100],align[[4]][1:k*100])

for(j in (100*(k-1)+1):(100*k)){ #make probability vector for each alignment (length 1000)
idx <- str_c(align[[1]][j],align[[2]][j],align[[3]][j],align[[4]][j]) %>%

wherequart()

freqk[idx] <- freqk[idx] + 1 #add probability
}

freqk2 <- freqk/(100*k)

detsk <- det_alchemy(freqk2)

kdets <- rbind(kdets,cbind(c(which.min(detsk),which.min(detsk),which.min(detsk)),detsk,c(k,k,k),c(12,13,14)))

print(k)

}

kdets <- as.data.frame(kdets[2:length(kdets[,1]),])

colnames(kdets) <- c("sol","det","k","flatt")

#Changing parameters different plots are obtained
ggdet <- ggplot(filter(kdets,abs(det)<10^4))+

geom_point(aes(x=k*100,y=det,color=factor(flatt),shape=factor(sol)))+

geom_line(aes(x=k*100,y=detG13),color="black",size=0.5)+

labs(title= "Evolution of detG (|detG| < 10^4)",

x="length of alignment",

y="value of det",

color="G matrix",

shape="Tree yielded by method")


