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Abstract
We study chiralmodels in one spatial dimension, both static and periodically driven.We demonstrate
that their topological propertiesmay be read out through the long time limit of a bulk observable, the
mean chiral displacement. The derivation of this result is done in terms of spectral projectors, allowing
for a detailed understanding of the physics.We show that the proposed detection converges rapidly
and it can be implemented in awide class of chiral systems. Furthermore, it canmeasure arbitrary
winding numbers and topological boundaries, it applies to all non-interacting systems, independently
of their quantum statistics, and it requires no additional elements, such as external fields, norfilled
bands.

Topological phases ofmatter constitute a newparadigmby escaping the standardGinzburg–Landau theory of
phase transitions. These exotic phases appear without any symmetry breaking and are not characterized by a
local order parameter, but rather by a global topological order. In the last decade, topological insulators have
attractedmuch interest [1]. These systems are insulators in their bulk but exhibit current carrying edge states
protected by the topology. A classification of topological insulators in terms of their discrete symmetries and
their spatial dimensionality has been obtained in the celebrated periodic table of topological insulators and
superconductors [2]. The topological invariant characterizing thesemodels can be derived from the bulk
Hamiltonian and allows one to recover the so called bulk-edge correspondence, namely that the number of
topologically protected edge states is proportional to the topological invariant. A famous example of this
correspondence can be found in theQuantum–Hall effect where the quantization of theHall conductance is
rooted in the current-carrying protected edge states [3–5]. The ensemble of (natural and artificial) topological
insulators is steadily growing, and these have been by now synthetically engineered in amultitude of physical
systems such as atomic [6–11], superconducting [12], photonic [13–17] and acoustic platforms [18–20].

This work focuses on one-dimensional (1D) topological insulators possessing chiral symmetry. As a
consequence of the chiral symmetry, the different sites of the unit cell can always be regarded as part of two
sublattices. The topological invariant of the bulk, thewinding number , allows one to predict the number of
zero energy edge states. 1D chiral topological insulators have been realized in numerous platforms as ultracold
atoms [6, 11], photonic crystals [15], photonic quantumwalks [21–25]. Let us notice that the 1D chiral
Hamiltonian can be static or the effectiveHamiltonian of a Floquet system. In the latter case, the topology can be
richer than its static counterpart [26–29]. In both cases, two different approaches to characterize the topology of
such systems have been proposed and implemented experimentally. Thefirst one is to look at intrinsic
properties of the system. The second one is tomeasure the response to an external change. The observation of
edge states [11, 21, 30, 31] and themeasurement of thewinding number through themean chiral displacement
[24] belong to thefirst category. Themeasurement of thewinding number by interferometric architectures
[6, 25], by introducing losses [15, 32, 33], and by scatteringmeasurements [22] belong to the second category.
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Herewe generalize the notion ofmean chiral displacement introduced in [24], andwe present an intrinsic
measurement of the topology for 1D chiralHamiltonianswith an arbitrary (even)number of sites per unit cell.
Thismeasure is based on the real-time evolution of an initially localized, single-particle state. Since this probes
the free dynamics (i.e. without interactions), themethod applies equally well to fermionic and bosonic systems,
without requiring a specific bandfilling.Moreover, themeasurement is carried out inside the bulk, so that the
method also applies to systemswith periodic boundary conditions (i.e. in a ring geometry). Themethod directly
probes theHamiltonian of interest, without resorting to additional external forces (which is generally required
in two-dimensional). Finally, this detection scheme even applies to a class of dissipative bosonic systems, as long
as the losses act uniformly on all sites of the lattice. Practically, our proposal only requires the single-site-resolved
measurement of the density, and therefore it is implementable in awide class of natural and artificial systems.

The plan of the paper is as follows. In section 1we introduce the chiralmodels, define the relevant projectors,
and present various equivalent definitions of thewindingwhichmay be usedwhen either theHamiltonian or its
eigenstates are known. In section 2we derive ourmain results, which permit the characterization of topology
through the real time dynamics of the system.We start by introducing various classes of localized states, we
define the operators to characterize their displacement, and finally we showhow the the real-time evolution of
an initially localized state provides direct access to the chiral winding number. In section 3we introduce the
simplest 1D chiralmodel with internal dimension 4 = , we discuss its properties, and apply ourfindings to
study its topology. In section 4we showhowour resultsmay equivalently well be used to characterize
periodically-driven systems; specifically, we consider the example of a quantumwalkwith four internal degrees
of freedom. In section 5, we consider an SSHmodel with additional staggered long-range hoppings and show
that our detectionmethod canmeasurewindings greater than 1. In section 6, we discuss possible experimental
implementations of these systems, and present outlook and conclusions.

1. Chiralmodels

1.1. ChiralHamiltonians and spectral projectors
In this paper we consider 1D chiral systems, described by a tight-bindingHamiltonian on a latticewithN unit
cells, and  sites per unit cell. AnHamiltonianH is said to possess chiral symmetry if there exists a local (i.e.
acting onlywithin a single unit cell), unitary andHermitian operatorΓ (so that 2 G = )which anticommutes
with theHamiltonian [2, 34],

H H. 1G G = - ( )

Wewill only consider the case where  is even, else chiralmodel necessarily presentflat bands at zero energy.
Equation (1) has a remarkable consequence: in a chiral systemonemay always identify two intertwined
sublatticesA andB, of equal length, and theHamiltonian ‘swaps’ them.Working in the ‘canonical basis’where
the 2 first elements are in the sublatticeA, theHamiltonian has a therefore a completely block-off-diagonal
form

H h
h
0

0
, 2= ⎜ ⎟⎛

⎝
⎞
⎠ ( )

†

and the chiral operator has diagonal form

0
0

. 3
G =

-( ) ( )

The simplest 1D chiralmodel is the one introduced by Su, Schrieffer andHeeger (SSH) to describe electrons
hopping along polyacetylene chains [35]. These chains present a dimerized structure, and the dynamics of the
electrons is described to a very good approximation by a tight-bindingmodel with staggered tunnelings, so that
the unit cell is composed of two sites (i.e. it has internal dimension 2 = ). In this paper, wewill be interested in
describingmore general chiral systems, characterized by 2;  the simplest example of a chiralmodel with

4 = is shown infigure 1(b), andwewill refer to it as the SSH4model. In the following, wewill also consider a
periodically driven 4 = chiralmodel (seefigure 4(a)) and amodel withwinding greater than 1, see figure 1(c).
Another example of chiralmodel with 2 > may be found in [33].

To further characterize chiralmodels, let us denote the eigenstates of the BlochHamiltonian by kjy ñ∣ ( ) , with
j 1, , 2=  ¼  , and the corresponding energies by E kj ( ) (with E k 0j >( ) for j 0> ). For simplicity, unless
explicitly needed, wewill often dropmomentum indices. This notation is chosen to highlight the fact that
eigenstates of chiral systems appear in chiral-partners pairs, j jy yG ñ = ñ-∣ ∣ , with energies satisfying E Ej j= -- .
Let us further introduce two classes of projectors, whichwill prove useful in the next sections: the projectors on
energy eigenstates,
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P , 4j j jy y= ñá∣ ∣ ( )

and the projectors on the eigenstates of positive energy,minus the one on the states of negative energy,

Q Q P P . 5
j

j
j

j j
1

2

1

2 

å å= = -
= =

- ( )

These definitions agreewith the usual ones of, e.g. [36], since a fermionic system can be chiral only if its Fermi
energy is set at E 0F = . TheQ-matrix has the following properties (see, e.g. [2]): (i) isHermitian and unitary,
(ii) it satisfies Q2 = , so that its eigenvalues are simply 1Ql =  , (iii) it is diagonal in any basis of eigenvectors
ofH, (iv) once expressed in the canonical basis, it becomes block-off-diagonal,

Q
q

q

0

0
, 6=

⎛
⎝⎜

⎞
⎠⎟ ( )

†

with q unitary. Finally, the chiral operatormay bewritten as a sumof ‘partial chiral operators’,

. 7
j

j
j

j j j j
1

2

1

2 

å å y y y yG = G = ñá + ñá
= =

- -∣ ∣ ∣ ∣ ( )

1.2. Thewinding number
One-dimensional chiralmodels are characterized by a quantized invariant, thewinding number . The latter is
an integer, whichmay be positive or negative. The bulk-edge correspondence relates thewinding of a periodic
system to the number of protected edge states which appear when edges are inserted in the system. In particular,
the number of edge states on each edge is exactly equal to ∣ ∣. The systemʼs Zak phase γ [37] corresponds to p
(eventually, depending on the convention,modulo 2p).

Thewinding number may be found in various equivalent ways, starting from either theHamiltonian
with periodic boundary conditions, or the associatedQ-matrix, or their eigenstates. Thefirst one is in terms of
thewinding of the lower-left block h of the off-diagonalHamiltonian [27],

k
h h

k
h

k
h

k
h

d

2 i
Tr

d

2 i
log Det

d

2
arg Det

d

2 i
log , 8k k k

j
k j

1

1

2




åp p p p
= ¶ = ¶ = ¶ = ¶-

=
∮ ∮ ∮ ∮[ ] [ ( )] [ ( )] ( )

where k kd dò=
p

p

-
∮ indicates an integral over thewhole Brillouin zone, and hj{ }denote the complex

eigenvalues of thematrix h.We have implicitly assumed that theHamiltonian is gapped at zero energy, so that
bothH and h are invertible, andwe have used the fact that the integral of the derivative of a continuous and
periodic function is zero over a complete period. Thewinding of themodel is therefore given by the cumulative
winding of all eigenvalues of h around the origin of the complex plane.

Equivalently, onemay extract from thewinding of q, the lower-left block of theQ-matrix [36],

k
q q

k
q

d

2 i
Tr

d

2
arg Det . 9k k

1
p p

= ¶ = ¶-∮ ∮[ ] [ ( )] ( )

The last equalitymay be simply demonstratedwriting q q uDet= ( ) , so that u SU 2Î ( ), and exploiting the
fact that thewinding of any SU(2)matrix is zero

Alternatively, as discussed in [38], thewindingmay be computed through the integral over the Brillouin
zone of the skew polarization j jocc. = å Î ,

k
k

d
. 10 

p
= ∮ ( ) ( )

Figure 1. 1D chiralmodels. Sketch of the SSH (a), the SSH4 (b) and the SSHmodel with staggered long range hoppings (c). Red and
blue sites belong respectively to theA andB sublattices, thin lines denote hoppings, and the unit cells of the lattice are indexed by the
integerm. The correspondingHamiltonians are explicitly chiral, as these contain no term coupling a sublattice directly with itself.
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The quantity ij j j y y= áG ¢ñ∣ (with j k jy y¢ñ º ¶ ñ∣ ∣ )may be shown to be a purely real number, and occ.denotes
the set of occupied bands (i.e., of negative energies). From these definitions, it is clear that thewinding is not a
property of a single band but rather of the 2 negative (or positive) energy bands, which all contribute to its
value.

1.2.1.Winding of the SSHmodel
Tomake a concrete example, for the usual SSHmodel we have h a be ki= + , and q h h= ∣ ∣, so that

h qarg arg= . As k traverses the Brillouin zone from0 to 2p, both complex numbers h and qwind once in the
positive (counter-clockwise) direction, so that thewinding is either 0 or 1, depending onwhether these circle
enclose or not the origin. The normalized eigenvectors which are also chiral partners are

, 1
a ab k b

a b

1

2

2 cos

e k

2 2

iy ñ = 
+ +

+
⎜ ⎟
⎛
⎝

⎞
⎠∣ ( )
, and ikd y yá ¢ ñ

p + -∮ ∣ equals either 0 or 1. Allmethods above therefore

coincide in dictating that thewinding of the non-trivial SSHmodel is 1 = .

2.Detection of topological invariants in real time

Wenowproceed to illustrate the keyfinding of this work, i.e. that thewinding number emerges in the long time
limit of an observable, the ‘mean chiral displacement’, measured over initially localized states. This detection
requires no precise knowledge about theHamiltonianʼs details (apart from the fact that it is chiral symmetric),
and it simply relies on the detection of the average position of thewavepacket (or of the single particle)within
each sublattice.

To proceed, we start by introducing the chiral localized states, thenwe discuss displacement operators, and
finally we present ourmain results.

2.1. Chiral localized states
Ageneric localized state on the sitem=0may bewritten as a superposition of Bloch eigenstates jy ñ∣ ,

k kd

2

d

2
. 11

j
j j

1, , 2
å

p p
a yYñ º Yñ = ñ

= ¼ 
∮ ∮∣ ∣ ∣ ( )

In the following, localized states will be denotedwith an overbar, andwewill be interested in a particular subclass
of these: the ‘chiral localized states’ jGñ∣ ,

j ksgn

2

d

2
, 12j

j j
j

y y

p
G ñ =

ñ + ñ
= G ñ- ∮∣

( )∣ ∣
∣ ( )

where j
k

j
d

2
y yñ = ñ

p∮∣ ∣ . The chiral localized states are eigenstates of the partial chiral operator,

jsgnj j jj jdG G ñ = Gñ¢ ¢∣ ( )∣ , and yield Q 0j j
á ñ =G¢ .

2.2. Position and displacement operators
Wenow introduce the position operator m̂ (where the integersm label whole unit cells, as shown infigure 1),
and the ‘chiral position’ operator m mG º G ˆ . In the following, wewill work in units where the length of a unit
cell is set to unity. The position operator inmomentum space is represented as usual by a derivative,

k m k k m m m m m k m m m k
e

2
i 13

m m m m

km km

k
m, ,

i
^ ^å å åd

p
á ñ = á ñá ñá ñ = - = ¶~ ~ ~ -

~ ~

~
 



∣ ∣ ∣ ∣ ∣ ∣ ( ) ( )
( )

As an immediate consequence, onefinds for example that themean position of a generic localized state Yñ∣ as
defined in of equation (11) is obviously zero,

m
k k

k k m k k
k kd d

2

d

2
i

i

2

d

2
0. 14k k

p p p
á ñ = áY ñá ñá Yñ = á ¶ ñ = ¶ áY Yñ =Y Y∮ ∮ ∮ˆ

˜
∣ ∣ ˆ ∣ ˜ ˜∣ ∣ ( )

In the last step, we have used that i k¶ is aHermitian operator.
Let us now consider the time evolution of Yñ∣ . Itsmean displacement after time t is given by:

m t
k

U U
d

2
i , 15t

k
t

p
á ñ = á ¶ ñY

-
Y∮ˆ ( ) ( ) ( )

whereU et Htiº - is the unitary evolution operator, andU et Htiº- its inverse. The correspondingmean chiral
displacement is:

m t
k

U U
d

2
i . 16t

k
t

p
áG ñ º á G ¶ ñY

-
Y ∮( ) ( ) ( )
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Finally, we define the chiral average displacement:

m t
k

U U
k

U U
d

2
i

d

2
i . 17t

k
t t

k
t

p p
áG ñ º áG ¶ ñ = á G ¶ ñY

-
Y Y∮ ∮· ˆ ( ) ( ) ( ) ( )

2.3.Measure of thewinding number
Themean displacement at time t of equation (15) can bewritten as (see appendix A.1 for details)

m t
k

t E Q tE Q tE

k

d

2
sin 2 i 1 cos 2

d

2
i e , 18

j
k j j j j j j j j j

j j j j
j j j j

t E E

1

2

, 1, , 2 and

i j j

 




å

å

p

p
y y y y

á ñ = ¶ á ñ + á G ñ - - áG ñ

+ á ¢ ñáY ñá Yñ

Y
=

Y Y Y

¢= ¼ ¹ ¢
¢ ¢

- ¢

∮

∮

ˆ ( ) { ( ) [ ( )] }

∣ ∣ ∣ ( )
∣ ∣ ∣ ∣

( )

whereQj and jG are the projectors introduced in section 1.1, and j is the skew polarization introduced in
section 1.2. Equation (18) generalizes the onewe found for the special case 2 = in [24]. In particular, the
operatorwe had generically indicatedwith Ĝ in our earlier work is nowuniquely identified by the explicit
expression Qi j jG .When evaluated on the chiral localized states jGñ∣ , themean displacement reduces to

m t j
k

tEsgn
d

2
1 cos 2 . 19j jj 

p
á ñ = - -G ∮ˆ ( ) ( ) [ ( )] ( )

We therefore find that the chiral average displacement, m táG ñ· ˆ ( ) , when summed on the chiral localized states
with j 0> , converges in the long-time limit tominus one half of thewinding number ,

m t m t
k

tE

k
tE

d

2
1 cos 2

2

d

2
cos 2

2
20

j j j
j j

j
j j

1

2

1

2

1

2

1

2

j j 





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

å å å

å

p

p

áG ñ = á ñ = - +

=- + = - + ¼

=
G

=
G

=

=

∮

∮

· ˆ ( ) ˆ ( ) [ ( )]

( ) ( )

plus oscillatory terms (indicated by¼), which tend to zero in the long time limit.We alsofind a similar result for
themean chiral displacement m táG ñ ( ) (see appendix A.1 for details):

m t m t
k

tE
d

2
1 cos 2

2
. 21

j j j
j j

1

2

1

2

1

2

j j


  

å å å p
áG ñ = áG ñ = - = + ¼y

=
G

= =

  ∮( ) ( ) [ ( )] ( )

The expressions (20) and (21) are invariant under the change of j to j- , as the skewpolarization is invariant
under such change. Therefore, we can compute the traces over all the  chiral localized states:

m t m t
k

tETr Tr 2
d

2
1 cos 2 . 22

j
j j

1

2

 


å p
- G = G = - = + ¼

=

 ∮[ · ˆ ( )] [ ( )] [ ( )] ( )

As the trace does not depend of the choice of the basis, these results imply that a trace taken on any set of 
vectors forming a complete basis of the unit cell will converge to thewinding number in the long time limit.
These expressions constitute themain results of ourwork. Let us note that themethod alsoworks for systems
with periodic boundary conditions. In the latter case however, the time ofmeasurement should be chosen
sufficiently long such that the oscillatory termbecomes negligible, but at the same time sufficiently short such
that thewalker does not reach the lattice site where the position operator has a discontinuity.

3. The SSH4model

3.1.Hamiltonian andwinding number
Wenowdiscuss an example of chiralmodel with 4 = , which is a direct generalization of the SSHmodel. The
SSH4model is described by a non-interactingHamiltonianwith nearest-neighbor hoppings, as shown in
figure 1(b). The system is a Bravais lattice with a four atomunit cell of sites A B A B, , ,1 1 2 2. The intra-cell
hoppings are a, b and c, the inter-cell hopping is d. TheHamiltonian defines two sublattices, containing two sites
each: A A A,1 2= { }, and B B B,1 2= { }. Since theHamiltonian contains no term actingwithin a given sublattice,
themodel is chiral for arbitrary values of a b c d, , ,{ }. Themodel belongs therefore to class AIII when the
tunnelings are complex numbers, while it belongs to themore constrained class BDI if all tunnelings are purely
real.Wewill for simplicity restrict ourselves to the latter case, but note that our results hold for all 1D chiral
models, i.e. also for AIII ones, such as the one considered in [38]. Finally, note that for a=c and d=b the SSH4

reduces to the usual SSHmodel, shown infigure 1(a). In the canonical basis , , ,A A B B1 2 1 2
y y y y{ }, the Bloch

Hamiltonian assumes the off-diagonal form
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The energy spectrum and the eigenvectors of the different bandsmay be found analytically (see appendix B for
details). The corresponding windings are computed from equation (8), and by direct integration onefinds

0 = when ac bd> , and 1 = when ac bd< . Figure 2(a) shows the energy spectrum for a c d= = and
for different values of b. The gap closing appears at b=1, as it is the case for the SSHmodel. Figure 2(b) shows
thewinding number in terms of b (solid line). The yellow and green dashed lines are the separate contributions
of the two pairs of chiral partners to the total winding number. The separate conrributions are not quantized,
but their sum is. Finally, the insets of the figure showparametric plots of the determinant of h, which performs a
circle in the complex plane as k traverses the Brillouin zone. In the topological phase, the circle contains the
origin (right inset)whereas in the trivial phase the circle does not contain the origin (left inset).

3.2.Measure of thewinding number in real space
As a benchmark of the results derived in section 2.3, we proceed bymeasuring thewinding number through the
mean chiral displacement.We consider afinite systemof 200 unit cells, we prepare localized initial states at the
center of the chainm=0, andwe let them evolve. In particular, we choose as initial states two different bases of
the internal space: the chiral basis, and an arbitrary basis. At each time t, we compute (minus) the trace of the
chiral average displacement m tTr- G[ · ˆ ( )]of equation (20) on the chiral basis, and the trace of themean chiral

displacement m tTr G[ ( )]of equation (22) on an arbitrary basis.With the choice of the unit cell
, , ,A B A B1 1 2 2

y y y y{ }, in real space these operators are simply represented by the diagonalmatrices

m diag , 1, 1, 1, 1, 2, 2, 2, 2,= ¼ ¼ˆ ( ) and m diag , 1, 1, 1, 1, 2, 2, 2, 2,G = ¼ - - - - ¼ ( ).
Figure 3 shows the results of the numerical simulations. The two traces in the different bases are

superimposed (green dots), andmatch perfectly with the theoretical curve (blue curve) given in equation (22). In
thefigurewe also show a sliding average of the data over ten points (orange curve), which shows a smoother and
quicker convergence to thewinding number.

Figure 2. Spectrum and topology of the SSH4model. (a)Dispersions for a c d= = , and b a 0.4, 1, 1.6= (from left to right). The
model is in the trivial phase for bd ac< ( 0 = , left), and in the non-trivial phase for bd ac> ( 1 = , right). At the critical point,
the two central bands touch at E k 0= = (center). Eventual gap closings between the other bands (such as the one visible in the
central figure, at E a 2p»  )have no topological relevance for thismodel. (b)Winding number for the SSH4model with
a c d= = , as a function of b/a. The yellow and green dashed lines are the separate contributions of the two pairs of chiral partners to

the total winding number, respectively kd
1p∮ and kd

2p∮ , while the blue solid line is the actual winding number, given by their sum.
The insets display the value of the determinant of h k( ) in the complex plane, as k is varied between 0 (blue) to 2p (white).
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Finally, let us note that the simplest procedure which yields the desired result (thewinding) is to follow
equation (20) and take the sumof themean displacementmeasured over two orthogonal states which are
completely localized on the central unit cell, andwhich form a complete basis of the left sublattice (the one
corresponding to the+1 eigenvalue of the chiral operator).Minus two times this quantity will give the result
plotted infigure 3. Explicitly, e.g. two states of the form 1 0 0 00, , 0, , , , , 0, , 0aY = ¼ ¼¯ ( ) and

0 1 0 00, , 0, , , , , 0, , 0 ,bY = ¼ ¼¯ ( ) where the four central numbers (marked in bold) indicate the amplitudes
on the cell with coordinatem=0 in the basis where the chiral operator is (1, 1,−1,−1).

4.Driven SSH4model

In this section, we show that our detectionmethodworks even for Floquet systems. In order to do so, we
consider a periodically-driven version of the SSH4model, where even and odd tunnelings are turned on and off
in a periodic sequence.More specifically, a single period of the evolution is generated by the one-step operatorU
given by a composition of the two unitary operatorsW andQ, as shown infigure 4. The operatorW acts on odd
links (see figure 4(a)), therefore only within each unit cell:

W e , 24Si
4 x0=
p- ( )

where Sij i js s= Ä . On the other hand, the operatorQ acts on even links, therefore bothwithin a given cell, and
between two consecutive cells:

Figure 3.Mean chiral and chiral average displacements of the SSH4model. Parameters are chosen in the topological phase:
a b c d, , , 1, 2.5, 0.3, 0.6={ } { }, so that bd ac> and 1 = . There are two completely superposed series of dots, showing the results
of the two observables discussed in the text, and the blue line shows the analytical result, equation (22). The yellow line shows a sliding
average of the data, which rapidly converges to the expected value of 1.

Figure 4.The driven SSH4model. (a) Scheme of the unit step of the driven SSH4model, or quantum-walk with 4D coin. The four sites
of each unit cell correspond to the coin states A A,1 2ñ ñ∣ ∣ (red spots), and B B,1 2ñ ñ∣ ∣ (blue spots). The dynamics is obtained by the
repeated application of two unitary operators:W is a rotation acting on the odd sites of the lattice (which are all intracell), whileQ acts
on the even sites, thereby coupling different cells. (b) Scheme of the quantum-walk protocol. In a periodically driven system, the
choice of the initial instant of the time period, i.e. the time-frame, is arbitrary. The single-step unitary operatorsU1 andU2 correspond
to two inversion-symmetric time-frames.
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The scheme proposed above effectively realizes a discrete-time quantumwalkwith a four-dimensional (4D)
coin, a generalization of the usual topological quantumwalkwith two-dimensional coin [21–25, 27].

In order to completely characterize the topology of this drivenmodel, we follow themethod proposed in
[27], and recently implemented in [24]. Different choices of timeframes, i.e. of the initial instant of the periodic
cycle, yield effectiveHamiltonians H Ui logeff =( ) with the same set of eigenvalues, but different eigenvectors,
and therefore possibly different windings.Here we consider the two chiral inversion-symmetric timeframes
defined by the evolution operatorsU W Q W1 = andU Q W Q2 = , shown schematically infigure 4(b).

The time evolution of awavepacket after t-timesteps of protocol j ( j 1, 2= { }) is as usual governed by the
evolution operator Uj

t( ) . Sliding averages over the long-time behavior of the trace of the chiral displacement are
shown infigure 5.We obtain the complete topological characterization of the system in terms of the invariants
C 20 1 2 º +( ) and C 21 2 º -p ( ) , where j is thewinding of protocolUj. Figure 6(a) showsC0

andCπ on the line 2d p= . To illustrate the ‘bulk-boundary’ correspondence for thismodel, infigure 6(b)we
show the energy spectrum and the degree of localization of eigenstates in a chainwith open boundary
conditions. Comparing the two panels, itmay be seen that the invariantsC0 andCπ converge, respectively, to the
number of edge states with energy equal to 0 and toπ, which are the ones protected by chiral symmetry in a
driven system. Finally,figure 6(b) also shows the presence of edge states with energy 2p . These states are not
protected by the chiral symmetry, and therefore not robust against (chiral-preserving) disorder. In order to
illustrate this fact, we add a spatial disorder in the operatorW: the hoppings of theHamiltonian ofW are
multiplied by a factor 1 +( ), where ò is a randomnumber in the range 2, 2-D D[ ]. The right side of the
energy spectrum (after the dashed line) infigure 6(b) shows clearly that, whereas the 0 and the p-energy states
remain unaffected, the unprotected states change of energy when disorder is applied.

The effect of spatial disorder and noise on themean chiral displacement for systemswith 2 = were
already discussed at length in our previous publication, [24]. In particular, therewe confirmed that this
observable is a robust topologicalmarker by showing that, in presence of chiral-preserving static spatial disorder
of amplitude small compared to the gap, the ensemble average of themean chiral displacement smoothly
converges to the value obtained for a clean system. In the literature it has been discussed how a different
observablemay be used to detect thewinding of chiral non-Hermitianmodels [15, 32, 33]. Let us note that there
are important differences between the latter proposals and ours. First, the scheme proposed in [15, 32, 33]
requires the initial state to be polarized along awell-defined direction, while ourmethodworks independently of
the polarization of the initial condition. Second, thatmethod requires sublattice-dependent losses thatmay not

Figure 5.Mean chiral displacement of the driven SSH4model. Temporal average of theMCD, obtained performing a sliding average
between the 30th and the 50th step of thewalkerʼs evolution, as a function of the parameters 1d and 2d characterizing the action of the
Q-plate, for the time-framesU1 (a) andU2 (b).

8

New J. Phys. 20 (2018) 013023 MMaffei et al



be easily introduced in an experiment with ultracold atoms, or in an optomechanical system and do notwork
without losses. Finally, ourmethodworks even in presence of uniform losses while themethod for non-
Hermitian systems does not.

At a qualitative level, systemswith internal dimension 2 > behave in nomanner differently from systems
with 2 = in presence of disorder. Readers interested in this topic are therefore referred to our earlier
publication [24], and to its supplemental information, where thematter is discussed in great detail.

5. SSHmodel with staggered long range hoppings

In this sectionwewish to test the validity of our detectionmethod using a systemwhich exhibits a richer phase
diagram ( 0, 1, 2 =  ). To this aim, we study a 1D chiral Hamiltonian, which is a standard SSHmodel with
staggered nearest-neighbor hoppings a and b, andwith additional staggered third-nearest-neighbor hoppings c
and d (that is to say, there is a hopping c between sites 1 and 4, d between sites 2 and 5, c between 3 and 6, and so
on). Themodel is shown schematically infigure 1(c), and given its long-range character we refer to it as the LR-
SSHmodel.

Themodel can bewritten inmomentum spacewhen using a two-atomunit cell. The corresponding
Hamiltonian is a 2*2matrix,

H
a b c d

a b c d

0 e e e

e e e 0
. 26

k k k

k k kLR

i i 2i

i i 2i
= + + +

+ + +

- -

-

⎛
⎝⎜

⎞
⎠⎟ ( )

Thewinding of thismodelmay be computed as shown in section 1.2, and it equals+2,+1, 0, or−1. The
topological phase diagramwith a=b is shown infigure 7(a).

As shown infigure 7(b), the long time limit of the trace of themean chiral displacement detects correctly the
winding in all topologically distinct regions. In particular, when c d 0= = , themodel is at the critical point
between the phases with 0 = and 1 = , recovering the expected SSH result, which is critical when a=b.
In this point, as in all other phase transitions, themean chiral displacement converges to the intermediate
(integer, or half integer) value between thewindings of the neighboring phases (see dashed lines infigure 7(b)),
as discussed for example in [39].

6. Experimental implementation, outlook, and conclusions

Various possible experimental scenariosmay be envisaged to study chiralmodels with large internal dimensions.
For example, a 4 = chiralmodel with ultracold atomsmay be implemented bymeans of a suitable
superlattice as it has been proposed also in [40]. Three superposed optical lattices with lattice spacings 2l ,λ,
and 2l effectively realize an SSH4model with two equal tunnelings, as shown in figure 8. The three latticesmay
be obtained from a single laser working at 1064laserl = nm,which once retroreflected produces an optical
potential with lattice spacing 2laserl l= . The 2l latticemay be obtained by retroreflecting the frequency-
doubled laser, while the one at 2lmay be obtained by crossing two laserl beams at a small angle. Otherwise, the

Figure 6.Bulk-edge correspondence for the driven SSH4. (a) Invariants C 20 1 2 = +( ) (blue) and C 21 2 = -p ( )
(orange) for 2d p= . Continuous lines are obtained from the traces of themean chiral displacementsmeasured in timeframesU1 and
U2 shown infigure 5. (b) Spectrumwith open-boundary conditions on a lattice containing L2 1 21+ =( ) effective cells, varying 1d at
fixed 2d p= . The color coding of the spectrum indicates the degree of localization m Llog 110 - á ñ( ∣ ∣ ) of each eigenstate; light (dark)
colors indicate bulk (edge) states. For 21d p> , we have addedweak chiral-preserving disorder (see text for details)with 0.6D = ,
showing explicitly that the edge states with E 2p=  are localized, but not topologically protected. Comparing the left and right
image, it is easy to see thatC0 andCπ predict respectively the number of edge states with 0- and p-energies.
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superlatticemay be by directly imprintedwith a spatial lightmodulator orwith a digitalmirror device. Driven
modelsmay be realized by periodically pulsedHamiltonians, such as the one discussed, e.g. in [41].

Two-photon Bragg processes were used in recent experiments by the group ofGadway to realize a static SSH
model inmomentum space [11]. The independent control of each hopping allows for the possibility to engineer
the long-ranged tunnelings we discussed in section 5, and drivenmodelsmay be obtained by periodically
modulating the amplitude of the Bragg lasers. This architecture allows also for a detailed study of the interplay
between topology and disorder [42].

In a photonic setting, we envisage using a lattice of evanescently coupled optical waveguides, where the
different hopping amplitudes correspond to different distances between thewaveguides [15, 43–45]. The driven
SSH4 discussed in section 4may be implemented by periodicalmodulation of the separation between the
waveguides along the propagation direction [43, 45], and long-ranged tunnelingsmay be obtained by letting the
waveguides propagate out of the plane, as possible in 3D-photonic chips [46, 47]. Finally, the SSH4modelmay be
implemented in exciton–polariton experiments, by a slightmodification of the approach used by the group of
Amo in [48].

Summarizing, in this workwe have generalized the notion ofmean chiral displacement to chiral systems
with any internal dimension , showing that when 2 > thewinding number is encoded in the long-time
limit of the trace of themean chiral displacement over a localized basis of the internal space.We analyzed three
chiralmodels having internal dimension 4 = , i.e. (i) the simplest extension of the SSHmodel (the SSH4),
(ii) its driven analog, and (iii) the SSHmodel with staggered long range hoppings.We applied our detection
method to these systems showing that it works correctly for both static and periodically-drivenHamiltonians,
and that it is able to capture values of thewindingwhich exceed 1, such as the LR-SSH. Furthermore, the
detection is rapid, as the amplitude of the oscillations displayed by themean chiral displacement is generally
smaller than the length of a unit cell, and therefore only very few tunneling times are needed to identify the
winding of themodel.Moreover, the detectionmethodwe propose does not require filled bands, but is based on
the dynamics of wavepackets, or even single particles, and therefore it is specially adapted to systemswhere
band-fillingmay be problematic, like bosonic ensembles of atoms, or photonic systems. Finally, themethod
only requires to follow the free evolution of the system, without the need of extra resources, such as external

Figure 7.Topology of the LR-SSHmodel. (a)Windings, with a=b. (b)Mean chiral displacement computed for the values of c d,( )
indicated by the corresponding dot in the leftfigure. The three dashed lines correspond to values of the parameters at the border
between two phases, where themodel is critical; in these cases, the observable remarkably converges to the average of the
corresponding invariants.

Figure 8. Implementation of the SSH4model, obtained superposing optical lattices with lattice spacings 2l ,λ, and 2 ;l in this
configuration a=c, but b and dmay be tuned independently.
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forces, losses, or interferometric schemes. Themain ingredient for the characterization of thewinding is the
single site detection, which can be realizedwith state-of-the-art experimental techniques.

Future interesting directions opened by this work include a study of the robustness of our observable against
static and temporal disorder [38], the extension of this approach to interacting systems [49, 50], and eventually
the extension of this proposal to other topological classes.
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AppendixA. Proofs

A.1.Meandisplacement
In terms of projectors on energy eigenstates, themean displacement of a generic localized state Yñ∣ reads:
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A.1.1.Mean displacement in 2 = . For 2 = , wewill denote with+ - the positive/negative energy
eigenstates, so that the skew polarization is simply i y y= á ¢ñ+ -∣ .Multiplying equation (A2) by i+( ), using

Qy y y yñá - ñá = G+ - - +∣ ∣ ∣ ∣ , and inserting a completeness relation P P + =+ - after j jy yñá ¢∣ ∣, onefinds:
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Then equation (A3)may bewritten as:
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This result coincides with the one given in the supplementalmaterial of [24].
In the particular case of a chiral localized state jGñ∣ , only the last termof equation (A3) survives. This comes

from the fact that Q 0
j

á ñ =G and Q 0
j

á Gñ =G .

On the other hand, for a localized state built as flat superposition of states in a single band jy ñ∣ , equation (A3)
gives 0. This comes from the facts that k E Q n j k Ed sig d 0k kj

¶ á ñ = ¶ =y+ +∮ ∮( ) , Q 0
j

á Gñ =y and 0
j

áGñ =y .
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A.1.2.Mean displacement in 2 > . For 2 > , themean displacement at time t, starting froma generic
localized state Yñ∣ reads:
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It can be shown that the terms arising from the second summation give rise to a purely real number, in agreement
with the fact that the result is the expectation value of aHermitian operator.

Noting that Qj j j j j jy y y yG = ñá - ñá- -∣ ∣ ∣ ∣, it is easy to see that the states jy ñ∣ are again stationary, as expected.

On the other hand, for a chiral localized state jGñ∣ , equation (A5) gives:
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which proves equation (20):
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A.2.Mean chiral displacement
In terms of projectors on energy eigenstates, themean chiral displacement of a generic localized state Yñ∣ reads:
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A.2.1.Mean chiral displacement in 2 = . For 2 = , themean chiral displacement at time t, starting from a
generic localized state Yñ∣ reads:
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This expression coincides with the one given in [24].

A.2.2.Mean chiral displacement in 2 > . Let us nowdefine the projector on the subspace of chiral-partner
eigenstates,
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When 2 > , wefind that equation (A9)multiplied by i gives the sumof two terms, a termAwhich acts in the
subspace of chiral partner states ( j j= ¢∣ ∣ ∣ ∣) and a termBwhich acts in the subspace of the states with j j¹ ¢∣ ∣ ∣ ∣.
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The termBhas no diagonal termbetween chiral partners, and is purely oscillatory, so for generic Ej and Ej¢ it will
average to zero in the long time limit. Once integrated over thewhole Brillouin zone the total derivative
contained inA vanishes, so that the final result is
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equation (21):
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Themean chiral displacement of a generic localized state, with support on all bands, in the long time-limit
would instead be given by:
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which, differently from the case 2 = , is not amultiple of thewinding number.

Appendix B. Eigensystemof the SSH4model

Given a generic block anti-diagonalmatrix M
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eigenvalues ofM therefore are the square roots of the eigenvalues of M M M12 21=ˆ . Thus, if we start from the
SSH4Hamiltonianwritten in its completely off-diagonal form (in the canonical chiral eigenbasis), we have
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and h h h.=˜ †. If we denote by 1
2l and 2

2l the two eigenvalues of ĥ, the eigenvalues of theHamiltonian are simply
given by their square roots:

T T
D

T T
D

2 4
,

2 4
, B21 1

2

2 2

2

l l l l=  =  - - =  =  + - ˆ ˆ ( )

whereT a b c d2 2 2 2= + + + and D a c b d abcd k2 cos2 2 2 2= + -ˆ ( ) are respectively the trace and determi-
nant of ĥ, and 1 2l l< ∣ ∣ ∣ ∣. The topological phase transition of the SSH4model takes placewhen ac bd= and
k=0, where 01l = .

In order tofind the eigenvectors ofH, let usfirst consider the eigenvectors ofH2. Provided that ab cde ki ¹ - ,

wehave H h hl l l
2 2lñ = ñ∣ ˆ ∣ ˆ (for l 1, 2= )with:

h
h h

b c

ab cd h
h h

b c

ab cd1 e
0
0

,
1 e

0
0

. B3
k k

1

1 1

1
2 2 2

i
2

2 2

2
2 2 2

i

l l

ñ =
á ñ

- +

+ ñ =
á ñ

- +

+

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
∣ ˆ

ˆ ∣ ˆ

( )

∣ ˆ
ˆ ∣ ˆ

( )

( )

Similarly, provided that bc ade ki ¹ - , we have H h hl l l
2 2lñ = ñ∣ ˜ ∣ ˜ , with:

h
h h

c d

bc ad

h
h h

c d

bc ad

1

0
0

e

,
1

0
0

e

. B4

k k

1

1 1
1
2 2 2

i

2

2 2
2
2 2 2

i

l lñ =
á ñ - +

+

ñ =
á ñ - +

+

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
∣ ˜

˜ ∣ ˜ ( ) ∣ ˜
˜ ∣ ˜ ( ) ( )

It is obvious that thesewill also be eigenvectors ofΓ.
The eigenvectors of theHamiltonian, ly ñ∣ are also eigenvectors ofH2, with eigenvalue l

2l . Therefore, for
each value of l, wemaywrite them as a normalized superposition of the two eigenvectors ofH2 with
eigenvalue l

2l :

h h . B5l l l l ly a añ = ñ + ñ  ∣ ˆ ∣ ˆ ˜ ∣ ˜ ( )

In particular, chiral symmetry imposes that energy eigenstates have equal support on both sublattices, i.e.,
1 2l la a= = ∣ ˆ ∣ ∣ ˜ ∣ . Then, with an appropriate choice of phases, we canwrite them as:
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h he

2
. B6l

l l
i l

y ñ =
ñ  ñf

∣ ∣ ˆ ∣ ˜
( )

The phase lf needs to befixed imposing that ly ñ∣ is an eigenstate ofHwith positive/negative energy. Thismay
be done using thefirst line of thematrix equality H l l ly l yñ = + ñ+ +∣ ∣ , which yields:

h

a h d h
e

e
, B7l l

l
k

l

i 1

3
i

4

l
l

=
ñ

ñ + ñ
f

-

∣ ˆ

∣ ˜ ∣ ˜ ( )

where nyñ∣ indicates the nth component of the vector yñ∣ . Notefinally that, upon sending k k - , the
eigenstates ofH satisfy

k k , B8l l *y y- ñ = ñ ∣ ( ) ∣ ( ) ( )

which tells us that theHamiltonian is time-reversal symmetric. Nowwe can explicitly build theQ-matrix in the
canonical chiral eigenbasis, it reads:

Q h h h h M Me e , B9
l

l l l l
r s t

r rs ss st t
1,2

i i

1 , , 4

l l

 
å å= ñá + ñá = Gñ G áGf f

=

-∣ ˜ ˆ ∣ ∣ ˆ ˜ ∣ ∣ ( ) ∣ ( )†

with Mrs r sy= áG ñ∣ theunitarymatrix for the change of basis between the canonical-chiral and energy eigenstates.

Computing the determinant ofq, the lower-left block ofQ, we see that qarg Det i log ac bd

ac bd

e

e

k

k

i

i= - =-
-( )[ ( )]

∣ ∣
harg Det[ ( )]. Thewinding of the SSH4modelmaynowbe computed fromequation (8), or equivalently from

equation (9).
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