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Abstract. We study the importance of the quality of random numbers in Monte

Carlo simulations of 2D Ising systems. Simulations are carried out at critical

temperature to find the dynamic scaling law of the linear relaxation time. Our aim is to

show that statistical correlations that appear in large Ising simulations performed with

pseudorandom numbers can be corrected using a quantum random number generator

(QRNG). To achieve high speeds and large systems, Ising lattices are simulated on

a field programmable gate array (FPGA) with an optical QRNG. Here we report on

results on simulations with pseudorandom nunbers and first results with the QRNGs.

1 Introduction

Randomness is a very important concept in several fields such as philosophy, science

and technology. Random processes can be used to extract random numbers, which

have many applications in computation, simulations or cryptography, and are central to

fundamental research and technological developments. Many efforts are being devoted

towards developing efficient ways of generating large sequences of random numbers [1].

Defining randomness can be controversial, as it may have more than one

interpretation depending on the field it concerns. In general, a sequence is considered

to be random if it is unpredictable and follows a certain statistical distribution.

Devices or methods that generate strings of random numbers are called random number

generators (RNG) and can be built in several ways. In computing, it is important to

distinguish between algorithmically generated number sequences, and numbers which

are extracted from measurements of certain physical events. Methods that produce

random numbers using arithmetic algorithms are said to be pseudorandom number

generators (PRNG), as it is not possible to generate a true random sequence from a

deterministic process. Physical or true random number generators (TRNG) measure a

random, or at least apparently unpredictable physical process to extract random values

and create a sequence of numbers that can then be accessed by a software [2].
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PRNGs generate random numbers using an initial string of bits known as seed,

which serves as input for a procedure which outputs a sequence of numbers that mimics

the statistics of a random distribution. One of the most important aspects of a PRNG

is its period. Each number in a pseudorandom sequence is determined by the current

internal state of the generator; for a finite memory, there is a certain length after which

the internal state will be the same as some previous state and the sequence will start

repeating itself. For most purposes, PRNGs work just as fine as TRNG when it comes

to statistical distributions, with the advantage that they can generate random numbers

much faster than any other RNG and the sequences can be replicated if the seed is

known, allowing for reproducibility. Nonetheless, the predictibility and deterministic

nature of PRNGs make them unsuitable for some practical uses; they are not 100%

cryptographically sercure, and although most PRNGs are designed to have very large

periods, they are known to adversely affect simulations which require a high volume of

data due to long range undetected correlations [3].

True random number generators are able to avoid these problems by measuring

physical random processes from which independent, uncorrelated values are obtained.

They rely on entropy sources, which consist of physical systems with some random

quantity plus the instruments used to read them. The process of collecting unpredictable

data is called entropy gathering. From the measurement of the random quantity a string

of bits called the raw bit string is obtained. The raw bit string is often noisy and may

have some degree of correlation, so it usually goes through a postprocessing stage referred

to as randomness extraction (Figure 1). Randomness extractors transform the bits from

the raw sequence into a shorter uniform random sequence at the output, which contains

most of the randomness available in the system [2].

Figure 1: Block diagram of a typical physical random number generator. The raw bit string is

obtained from the entropy source which consists of the physical system plus the measurement

device, and then goes through a post-processing stage to remove any biases.

Quantum random number generators (QRNG) are a particular type of physical

RNG in which data is gathered from the measurement of a quantum event. QRNG

excel in generating random data due to the intrinsic randomness of quantum mechanics,

where the outcome of a measurement is probabilistic even if we have complete knowledge

of the system in consideration. This intrinsic randomness appears in contrast to the

apparent randomness found in classical physics. Apparent randomness is the concept

we use to express our lack of knowledge of the system and it implies the existence of the
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so called underlying hidden variable theory ; there must exist some hidden variables that

we cannot access, so we use probabilities and stochastic processes to partially describe

the system. Had we known them, the illusion of randomness would disappear [4].

The first QRNGs were based on radioactive decay, but they were limited by the low

bit generation bit rate. Since then, more efficient QRNGs have been developed. Optical

QRNGs are among the most used nowadays, reaching speeds well above the megabit per

second [5]. Although their generation rate is still several orders of magnitude lower than

that of good PRNGs, these improvements have made QRNGs suitable for large-scale

simulations that were previously limited to PRNGs [6].

One particular area in which PRNGs are known to adversely affect the results is

on Monte Carlo methods [3, 7]. Monte Carlo simulations use stochastic methods to find

solutions to complex problems in numerical integration and statistical physics, where

most models cannot be solved analytically, by averaging over many random instances.

If the random instances are uniformly distributed, the results are usually accurate.

However, since the simulations require extremely large amounts of data, using PRNGs

may result in correlated outputs, even if they are of good quality [8]. Several cases of

such failures have been recorded in the Ising model and related problems [7, 9].

Monte Carlo simulations of Ising systems have been widely used to understand the

properties of the model, some of which are still being studied. The dynamic scaling law

of the relaxation time of 2D Ising lattices has been the focus of many studies.Data on

linear relaxation studies has been limited by the extremely long simulated time required

in equilibrium simulations due to the so-called ”critical slowing down” effect. Most of

our current knowledge on the value of the dynamic exponent z for the 2D Ising model

comes from short nonequilibrium simulations where relaxation is nonlinear, or from

calculations at equilibrium on small lattices using the stochastic matrix method. The

results from such simulations with short correlation lengths agree on the approximated

value of z. Verifying this approximation in lattices with larger correlations lengths has

not been an easy task [10].

Recent advancements in field programmable gate array processors (FPGA) have

significantly reduced the computing time of Monte Carlo simulations. Dedicated to

perform specific tasks programmed by users, digital circuits in FPGA contain multiple

logical elements which can perform calculations independently and concurrently,

allowing for massive parallel computing and speed-ups beyond reach of most CPU-

based computers [11]. Using a FPGA-based device, Lin & Wang (2016) were able to

study linear relaxation in large two-dimensional Ising lattices. Their main goal was

to address whether critical Ising systems with longer correlation lengths conformed to

the same dynamic exponent z found in previous simulations. While the value of z

was consistent with studies of Ising lattices with shorter correlation lengths (with some

statistical deviation), it was found that simulations in large lattices were very sensitive

to statistical correlations between pseudorandom numbers [10].

In the current study, we test an ultrafast QRNG based on accelerated phase

diffusion developed at ICFO in a FPGA-based computing system configured to perform
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Monte Carlo simulations of 2D Ising models. As in [10], we run simulations in large

square lattices (ideally up to 2048× 2048 spins) at criticality and evaluate the dynamic

scaling behavior of the linear relaxation time. Theoretically, statistical errors that

appear in previous simulations carried with PRNGs should be able to be corrected

using a QRNG, allowing for a more accurate calculation of z. Based on the results, we

discuss whether quantum mechanics can be used as a benchmark for RNG.

2 Monte Carlo simulations of the Ising model

The Ising model is a mathematical model of a magnet used to study ferromagentism in

statistical mechanics. Here we consider a finite 2D square lattice with N sites, where

the spin at the ith site can be oriented either up or down (si = ±1). For the simplest

ferromagnetic model without external magnetic field, where spins interact only with

their nearest neighbors, the Hamiltonian of the system is

H = −J
∑
〈ij〉

sisj, (1)

where J is the interaction strength and si, sj represent the spins at neighboring sites i

and j. The model includes a thermal reservoir, an external system that acts as a source

and sink of heat. The effects of the reservoir are incorporated in the calculations by

giving the system a dynamics. We define a set of weights ωµ(t) which represent the

probability that the system will be in the state or configuration µ at time t. We also

define the transition rates R(µ → ν)dt, which give the probability of going from state

µ to state ν at each time interval dt. We can then write a master equation for the

evolution of the weights in terms of the transition rates:

dωµ
dt

=
∑
ν

[ων(t)R(ν → µ)− ωµ(t)R(µ→ ν)] (2)

Monte Carlo simulation of the system is carried out with the Metropolis algorithm. At

each time step, the simulation updates the direction of a single spin according to the

change in energy caused by the flipping of the spin, given by

∆E = Eν − Eµ = 2Jsµk
∑
〈ki〉

sµi , (3)

where ∆E is the change in energy due to the spin flip, Eν is the energy of the state after

the spin flip, Eµ is the energy of the current state, sµk is the spin that is to be flipped

and sµi are the nearest neighbour spins of sµk . The flip move is accepted if it lowers the

total energy of the system, or if the following condition is fulfilled,

R < exp
[
− ∆E

kT

]
, (4)

where R is a uniform random number between 0 and 1. The right hand side is the

Boltzmann weighting factor, with k the Boltzmann constant and T the temperature.

If the condition is not fulfilled, the spin is not flipped and the system stays in its
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current state. This criterion is chosen so that occupation probabilities pµ of each state

at equilibrium are proportional to their Boltzmann weight

pµ =
1

Z
exp

[
− Eµ
kT

]
, (5)

where Z =
∑
µ exp

[
−Eµ

kT

]
is the partition function. The probability distribution in

Eq. (5) is known as Boltzmann distribution. In 1902, Gibbs showed that the occupation

probabilities of a system in thermal equilibrium with a reservoir follow the Boltzmann

distribution. To ensure that we obtain such distribution at equilibrium, we include the

condition of detailed balance, which implies that the rate of change of any weight at

equilibrium is zero, dω
dt

= 0. This occurs when pµR(µ→ ν) = pνR(ν → µ) in Eq. (2)

The simulation starts with the system at a known configuration, either at T = 0

where all spins are aligned (all up or all down) or at T =∞, where spins are randomly

oriented. The desired temperature is then selected and the system is let to equilibrate.

Once the system has reached equilibrium, the simulation runs for a certain number of

steps in order to obtain values for the physical quantities to be studied. If repeated

measurements are taken for a significant number of steps, the value of any quantity can

be determined by averaging over all measurements. An important quantity considered

here is the magnetization M , which for a given state µ is defined as the sum of all spin

values divided by the total number of spins

Mµ =
1

N

∑
i

si. (6)

The 2D Ising model has a phase transition that takes place at the critical temperature

Tc = 2J
log(1+

√
2)
' 2.269J . Above this temperature the system is in the paramagnetic

phase with zero average magnetization. Below Tc, the system is in the ferromagnetic

phase (or antiferromagnetic if J is negative) and develops spontaneous magnetization, in

which most of the spins are aligned (in the ferromagnetic case) and the magnetization

is non-zero. The region near Tc is called the critical region, and the processes that

occur in this region are called critical phenomena. It is important to define the reduced

temperature, a dimensionless parameter t that measures how far away we are from Tc

t =
T − Tc
Tc

. (7)

When approaching the critical temperature, the system tends to form large clusters of

spins pointing in the same direction. These clusters contribute significantly to quantities

such as the magnetization and energy, and they produce large fluctuations as they

flip orientation, called critical fluctuations. This is caused by the divergence of the

correlation length near Tc. The correlation length is a parameter that determines how

fast the correlation length, a measure of how strongly correlated two spins at different

sites are, vanishes. Near the phase transition, the correlation length diverges as

ξ ∼ |t|−ν , (8)

where ν is a positive quantity called a critical exponent. Critical exponents is the name

given to the exponents that appear in the expression in terms of power laws of the
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quantities in which anomalous behavior is observed in the critical region. The value of

critical exponents is a property of the Ising model itself, and independent of such things

as the value of the coupling J or the shape of the lattice. In fact, physical systems of

different nature and composition often show the same critical behavior, as long as they

share the same symmetry group in the hamiltonian and the dimensionality of the lattice

space. This property is known as universality.

Another quantity that diverges in the thermodynamic limit at Tc is the correlation

or relaxation time τ of the system. The relaxation time of the Ising model is defined

as the mean time-scale in which the magnetization autocorrelation falls off. The

autocorrelation function gives us a measure of the correlation of the magnetization

of the system at two different times, one a time interval t later than the other. The

time-displaced autocorrelation χ(t) of the magnetization is given by

χ(t) = 〈M(0)M(t)〉. (9)

In our model, the autocorrelation is expected to fall off exponentially at long times as

χ(t) ∼ e−t/τ , (10)

where τ is the relaxation time, measured in Monte Carlo steps. The divergence of τ

close to the phase transition is known as the critical slowing down effect, and goes as

τ ∼ ξz, (11)

where z is the dynamic exponent. While z is still independent of the shape of the lattice,

the spin-spin interaction J and so forth, it differs from other critical exponents in that

its value is affected by changes in the dynamics of the system.

Many attempts have been made to obtain a good value of z for the 2D Ising model.

The exact value cannot be calculated analitically, so numerical methods are used to

obtain an approximated result. Different series-expansion methods give theoretical

estimations between 2.0 and 2.50. Previous studies that used methods based on

nonequilibrium relaxation simulations gave a value of z ' 2.167, in agreement with

the value obtained using the stochastic matrix method to calculate the relaxation times

of small 2D Ising lattices (L ≤ 16) [10]. A value of z ' 2.17 is fairly common amongst

Monte Carlo algorithms for the 2D Ising model [12]. Here we use a finite size scaling

(FSS) approach to study Ising systems with longer correlation lengths. The calculations

employed to obtain z are explained in more detail in section 4.

3 Simulation of the Ising model on FPGA

A field programmable gate array is a type of programmable logical device (PLD) in

which circuits can be programmed by users to carry out specific calculations. A FPGA

contains an array of logical elements (LE), individual components which perform simple

logical operations (Figure 2). Each LE is made of a 4-input lookup table (LUT) and a

flip flop. The lookup table is an array that can be configured to execute different kinds

of 4-bit operations, and the flip flop is used to store a one bit value. Each LE has its
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four input and one output data channels connected to vertical and horizontal channels

to which all other LE in the FPGA are connected. LEs can be programmed to couple

Figure 2: Internal structure of a

logical element (LE) from [11].

to each other and build digital circuits using elec-

tronic design automaton (EDA). Multiple intercon-

nected LE in FPGA can perform independent calcu-

lations, allowing for parallel data set processing. Un-

like CPU based computers with separated memories

and processing units, FPGA use data-stream-based

algorithms that execute operations by flowing data

through the appropriate circuits.

The Metropolis algorithm can be efficiently implemented in a FPGA and achieve

significant speedups over devices that make use of CPUs. The procedure implemented

Figure 3: Processing matrix of a 6× 6 Ising

lattice from [11].

in [11] is used here to update full rows

of the lattice at each clock cycle. Figure

3 shows the functioning of a processing

matrix. The matrix has two types of cells:

the storage cells (blank) are used solely

to store spin values, while the processing

cells (blue) update the spin values following

the Metropolis Algorithm. The processing

cells are placed in an alternated way in the

two middle rows of the 4-row sub-lattice

of the matrix, and update their spin value

according to the value in the neighboring storage cells. The spin values of the full lattice

are stored in Block RAMs. The VERILOG statement that updates a single spin in the

processing cells is

d <= ((m∧a+m∧b+m∧c+m∧d+R < p1 +R < p2) < 2)?m :∼ m. (12)

Here m is the spin that is updated, a, b, c and d are the neighboring spins in the lattice,

R is the register that stores the random number, <= is the non-blocking assignment

operator, ∧ is the logical exclusive XOR operator, and p1 and p2 are the spin flipping

probabilities

p1 = exp(−4/T ) and p2 = exp(−8/T ), (13)

where T is the temperature expressed in units of the interaction strength J . It can be

verified that this particular update procedure fulfills the Metropolis algorithm [11].

A Xilinx Kintex-7 FPGA is used in this study. The FPGA is integrated in an

Enclustra Mercury KX1 module inserted in a Mercury+ PE1 base board, which manages

the power supply and communication with the computer and the QRNG. The QRNG

used in this study is the one described in [5]. Simulations run for a total simulated time

of 1300τ Monte Carlo Sweeps (MCS). Each sweep corresponds to a full update of the

lattice, that is when each spin has been tested to flip at least once, on average. The

system is let to equilibrate for 300τ , after which the magnetization is recorded every
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step for another 1000τ . Here τ is approximated with τ = Lz, taking z = 2.17. This

value of z is not obtained from our simulations, but is used as approximation to set an

appropriate simulation length consistent with previous studies [10].

4 Results and discussion

Simulations were carried out in different Ising lattices, the smallest one consisting of

16 × 16 spins (L = 16) and the largest one 128 × 128, with 6 other lattices spaced

by 16. In the following we show results of simulations performed in a conventional

computer. Results from FPGA calculations are being performed by the company QuSide

(https://www.quside.com). At this moment, only simulations with a lattice with L = 32

spins are finished. Once a similar range of lattice sizes as the one presented here is

obtained, we will incorporate them to our study. Figure 4 shows an example of the

(normalized) magnetization over time. Jumps in magnetization are caused by critical

fluctuations at Tc and occur in all simulations.

Figure 4: Magnetization of a 112 × 112 lattice

as a function of simulation time t

From the magnetization, the time-

displaced autocorrelation χ(t) of the sys-

tem was obtained using Eq. (8). The

time period over which the autocorrela-

tion dropped off increased with the lat-

tice size. The relaxation time τ for each

lattice was then derived according to Eq.

(10). Solving for τ , we get τ = − t
lnχ(t)

.

Figure 5 shows the linear fit for autocor-

relation in a 112×112 lattice, from which

τ is obtained. Autocorrelation data was

fitted between 0.3τ and 1.1τ . This fit-

ting range was selected to avoid the ini-

tial nonlinearity while still retaining a

good signal-to-noise ratio. The errors of the data points in figure 5 are smaller than the

size of the symbols. Table 1 shows the linear relaxation time in MCS for the different

lattices.

Lattice size L 16 32 48 64 80 96 112 128

Relaxation time τ(×104) 0.1243 0.4555 1.3704 2.2903 3.9984 5.3615 7.2741 8.6739

ln(τ/τFSS) 0 -0.2034 0.0195 -0.0904 -0.0167 -0.1184 -0.1474 -0.2608

Table 1: Linear relaxation time for each lattice size. We compare τ to the theoretical τFSS .

The dynamic exponent z was obtained from τ using the finite size scaling (FSS)

theory approach. In Eq. (8), an expression is given for the divergence of the correlation

length near the critical temperature. For infinite lattices, ξ diverges to infinity at Tc;

however, in finite simulations the correlation length is limited by the size of the lattice

L. In fact, according to FSS theory the correlation length becomes exactly L at Tc,
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which, for a volume of Ld where d is the dimensionality of the system, it is the largest

cluster of spins possible. Thus, Eq. (11) becomes

τFSS(L) ∼ Lz. (14)

Here the subscript FSS is used to differentiate the theoretical τFSS from the simulated

τ , but it is calculated in the same. The value of z can then be obtained by performing

several simulations on lattices of different sizes and plotting τ against L on logarithmic

scales. The slope of the resulting plot gives us the value of z.

Figure 5: Log of the autocorrelation of

the magnetization in a 112 × 112 Ising

lattice as a function of the time delay t.

Figure 6: Log-log of the relaxation time τ

and lattice size L. The slope gives a value

of z = 2.1008.

The value of z was found to be 2.1008. To compare the obtained τ with the dynamic

FSS theory, we plotted the log of τ/τFSS versus L (Figure 7). τFSS was calculated

according to equation 14 by setting z = 2.167 and requiring that τFSS = τ for L = 16.

The constant of proportionality obtained was a = 3.0559.

Figure 7: the log of the relaxation time

τ over FSS theory τFSS(L).

The obtained z was not consistent with

that of previous studies. While a relative error

in the value of z was expected, it is difficult

to quantify the effect of RNG in the outcome

of the simulations due to the shortness of

data. Nonetheless, figure 7 suggests that the

error in τ increases as L grows. In fact, a

more accurate estimation of z is obtained if

data points from larger lattices are removed.

A value of z = 2.1341 is obtained if the

data point from L = 128 is removed, while

removing data points L = 112 & L = 128

yields a value of z = 2.1510. The value closest

to that of previous studies is obtained if only points 16 to 80 are used, with z = 2.1713.

This may suggest that longer simulations are affected by correlations in the PRNG used

by ordinary computers. Simulations with a QRNG should be free of such correlations.
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Figure 8: Autocorrelation in MCS of a

32x32 lattice from a FPGA simulation.

Figure 8 shows the magnetization autocorre-

lation with L = 32 for the first 1000 MCS from a

FPGA simulation using the QRNG. Autocorre-

lation shows an exponential drop-off, consistent

with previous simulations. However, a single run

is insufficient to estimate z, and the accuracy of

the simulation cannot be evaluated without sub-

sequent runs. More simulations on FPGA that

are scheduled to be performed in the near future

may help us obtain an accurate value of z and

determine the quality of the QRNG employed.

5 Conclusions

We have illustrated that, for L ≤ 128, the larger simulations with PRNG are prone to

errors possibly due to the correlations in the random numbers. We presented a first

calculation with the QRNG and we expect that upcoming simulations with TRN cure

the problems in the determination of the dynamic critical exponent for the Ising model.
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