
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Treball realitzat per: 

Genís Majoral Oller 
 
 
 

Dirigit per: 

Dr. Eduardo Alonso Pérez de Ágreda 
Dra. Anna Ramon Tarragona 
 
 

Grau en:  

Enginyeria Civil 
 
 
 
 

Barcelona, setembre 2018 

 
 

Departament d’Enginyeria del Terreny 
 

 T
R

EB
A

LL
 F

IN
A

L 
D

E 
G

R
A

U
 

Study of the influence of tunnel 

excavations on pile founded 

buildings 



  



  

 

  

Study of the influence of tunnel excavations on pile 

founded buildings 

 

 
Genís Majoral Oller 



  

Cover photo “Used Drill Head of a TBM 
(Tunnelbohrmaschine) IV” by Marcel Grieder licenced 
under Creative Commons (CC) 2.0. 



  

  



  



  

Declaració d’originalitat 

 

L’autor d’aquest treball, Genís Majoral Oller, fa constar que aquest treball s’ha escrit fruit de la 

seves pròpies paraules i raonament, a excepció d’aquelles parts que estan degudament citades o 

parafrasejades, sempre amb la pertinent referència d’acord amb la normativa vigent de l’Escola 

de Camins i sota la tutoria del Dr. Eduardo Alonso Pérez de Ágreda i la Dra. Anna Ramon 

Tarragona. 

Aquesta declaració confirma que: 

• En Genís Majoral Oller estudiant del grau en Enginyeria Civil de l’Escola de Camins, 

ETSECCPB, és l’exclusiu autor d’aquest treball. 

• No s’ha comés cap tipus de plagi i s’han seguit les normes de citació dictades per la 

ETSECCPB, Universitat Politècnica de Barcelona. 

• S’han documentat de manera veraç totes les metodologies, dades i processos. 

• No s’ha manipulat cap dada. 

• S’han citat a totes les persones que han facilitat de manera significativa la elaboració del 

present treball. 

I per a que així en quedi constància signa l’autor 

 

Genís Majoral Oller       

Barcelona, a 26 de setembre de 2018. 

  



  



  

 

  



 



  

Abstract 

With the development of underground construction in urban areas, tunnelling exerts 

some unavoidable influence on adjacent buildings, that may become an important 

problem for many high-rise buildings, or others, that are supported by piled foundations. 

This may result in additional settlement and lateral displacements, hence a change in 

internal forces that may lead to structural distress or failure of the piled foundation.  

Existing geotechnical software or FEM analysis may be used to solve the tunnel-pile 

interactions. However, semi-analytical formulation may make it worth solving at a 

reduced computational cost. To carry out this project, the following fundamental theory 

has been used: the Sagaseta problem (1987) describing displacements due to an 

underground soil loss point, the Mindlin problem (1921) for subsurface movements 

induced by a subsurface force, and the Boussinesq problem (1885) for a surface force. The 

required variables are the soil elastic modulus and Poisson ratio, the tunnel and piles 

geometry, the tunnel areal ground loss and the applied forces. The fundamental solutions 

used are applicable for an elastic, homogeneous, isotropic and incompressible soil. 

The project aims to describe and comprehend the existing formulae, while creating a 

simple semi-analytical procedure implemented in MATLAB language. Throughout the 

project many subproblems arise such as the effect of a rigid pile cap, how to discretise an 

advancing tunnel and the applicability of a compensation grouting option in the MATLAB 

code. Afterwards, several simulations will be run to understand the response of piles to an 

underground soil volume loss. Likewise, the effects of an advancing tunnel will be studied, 

for different configurations and throughout the advancement of the tunnel towards and 

past the foundations. Finally, the capabilities of the developed MATLAB code will be 

shown with the analysis of the effects of a compensation grouting injection produced on 

a certain foundations and the study of the Sagrada Família pile wall (Ledesma & Alonso, 

2015). 

  



Resum  

Amb el desenvolupament de construccions en el subsol de zones urbanes, els túnels 

exerceixen unes influències inevitables en les edificacions adjacents, que poden derivar en 

un important problema per molts grata-cels o altres edificis que tenen pilots com a 

fonamentació. Això es pot traduir en assentaments i moviments laterals addicionals, per 

tant, un canvi en les forces internes que pot provocar danys estructurals i falles als pilots. 

Alguns softwares geotècnics existents, o anàlisis MEF, poden ser emprats per resoldre la 

interacció túnel-pilots. Tanmateix, els procediments semi-analítics poden resultar 

d’interès atès el reduït cost computacional que presenten. En base això, la següent teoria 

proporciona la formulació necessària per desenvolupar el treball: Sagaseta (1987) i el 

problema de pèrdua de sòl en un punt, Mindlin (1921) i el problema de moviments a causa 

d’una força a l’interior d’un sòl i Boussinesq (1885) i el problema de moviments a causa 

d’una força en superfície. Les variables necessàries seran el mòdul elàstic i el coeficient de 

Poisson del sòl, les geometries del túnel i els pilots, la pèrdua de volum per metre lineal de 

túnel i les forces aplicades. Les solucions fonamentals emprades són aplicables per sòls 

elàstics, homogenis, isotròpics i incompressibles. 

Aquest projecte se centra en descriure i comprendre la formulació existent, crear un 

procediment semi-analític i implementar-lo en el llenguatge MATLAB. Durant el projecte 

apareixen sub-problemes com tenir en compte l’encepat d’un grup de pilots, com 

discretitzar un túnel i l’aplicabilitat d’una funció de compensation grouting al codi 

MATLAB. Més endavant, diverses simulacions es duran a terme per entendre la resposta  

dels pilots envers una pèrdua de volum de sòl. A més, els efectes d’un túnel en avenç també 

seran estudiats, per diferents configuracions de túnel i al llarg de l’avenç d’aquest. 

Finalment, el potencial del codi MATLAB es veuran amb l’aplicabilitat d’un compensation 

grouting a uns determinats fonaments (i l’estudi dels seus efectes) i amb l’estudi de la 

pantalla de pilots de la Sagrada Família (Ledesma i Alonso, 2015). 
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1 INTRODUCTION 

Tunnel excavations threaten building foundations, typically in massified urbanised areas 

where piled foundations flood the underground space. One of the challenges this poses 

consists in determining the tunnel-pile interaction, and when the structure is jeopardised, 

to engineer a plan that mitigates the effects.  

The structure of this work starts by detailing, in section 2, the formulation that underpins 

the analyses carried out in the current project, based on authors like H.G. Poulos and E.H 

Davis for the general structural approach, R.D. Mindlin and his subsurface force induced 

movements, J.V. Boussinesq to account for movements due to surface forces and C. 

Sagaseta the precursor with his fundamental formulation in soil movements due to a 

ground point volume loss.  

Afterwards, section 3 describes the structure of the code and how it flows. While section 

4 verifies the output provided by the code against known solutions or commercial software 

(Plaxis), section 5 actually computes results of interest to examine and learn how the piles 

behave to different scenarios and to an advancing tunnel. Section 6 analyses a piled 

foundation through two stages: prior and after applying a compensation grouting injection 

once a tunnel excavation is completed, it is intended to provide more insight in the 

response to a tunnel. Eventually, section 6 studies a real case, the Sagrada Família pile 

wall. 

That being said, the main objectives of this dissertation would be classified into: 

• Describe and comprehend the existing formulation for pile analysis, tunnel ground 

loss induced soil movements and the pile-tunnel interaction. 

• Create a code that analyses pile-tunnel interaction based on exiting formulation, 

while learning how to manage and structure a large-sized code. 

• Actually simulate the interaction between a group of piles and a tunnel in several 

situations characterized by different foundation and tunnel designs. 
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2 PROBLEM MODELLING 

This section aims to describe the model being used, both the existing fundamental 

formulae and its development and adaptation towards creating a functional code.  

In the first place, use is made of Poulos and Davis (1980) handbook Pile and Foundation 

Analysis Design which sets the basics on pile foundation analysis. Likewise, Sauter’s master 

thesis and his code (2012), along with the posterior article (Alonso et al., 2015), developed 

to analyse a swelling soil strata under Pont de Candí has helped and played a reference 

role in the comprehension process.   

To begin with the actual problem, let a certain pile group be bored in a soil. The 

fundamental equations used constrain the analysis to be applicable for an elastic, 

undrained, homogeneous, isotropic and incompressible soil. Let us start by saying that the 

problem uncouples the soil and pile structures, as seen in Figure 1. On the one hand, the 

pile structure becomes just a matter of elastic structural analysis. It may resemble beam 

analysis in any building, considering that there may have a pile cap (or not) which will 

restrain head movements in comparison to the rest of the pile group. The pile structure 

accounts for the external loads and moments applied at the pile heads, these are known 

data. Most importantly, the unknowns are both the piles displacements laws and the load 

distribution acting along the piles shafts. 

On the other hand, the soil structure may be conceived as a free field soil where 

displacements and stresses at the very location of the pile structure are again unknown. In 

this problem, displacements generated by both ground losses due to a tunnel and/or 

surface loads are calculated. Parallelly, there is the so-called shielding effect, this is taken 

into account in the form of influence coefficients calculated by means of the Mindlin 

subsurface force problem (1937): the displacement of each pile induce some forces that 

have an effect along the shaft of the neighbouring piles.  

As stated earlier, unknowns are both stresses and displacements, which can be related in 

a simple equation. In order to solve the problem, both displacements at the pile and soil 

structures will be equalled to work out stresses. 

Therefore it is key to comprehend that the current elastic analysis is about relative 

stiffnesses and interaction between elastic bodies in contact along with a displacement 

compatibility equation.  
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Solutions for horizontal and vertical analysis are also uncoupled, i.e. settlements do not 

influence horizontal displacements and so forth. 

Piles will be discretised into a number of elements and all the equations will be developed 

in finite differences, which will derive into a system of equations assembled in matrix form, 

the reason being the use of MATLAB for an easy computational resolution. Afterwards, 

bending moments, shear stresses and axial compression laws are calculated for each pile. 

Concerning the modelling of the tunnel, it will also be discretised into various sections, 

each containing a number of points that model the associated tunnel volume loss. The 

induced displacements in the free field soil due to a sink point are found according to 

Sagaseta (1987). 

 

Figure 1. Sketch representation of the problem’s approach, both pile (left) and soil (right) structures are 
depicted. 
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2.1 PILE MODELLING 

2.1.1 Piles lateral response 

Over the following lines, the structural analysis of a single pile will be analysed, knowing 

that it is extendable to a group of piles. 

Deep foundations will be treated as beams where external forces and moments act at the 

top of the pile either for a free or fixed head. The soil exerts an unknown distribution of 

lateral and vertical stresses along the shaft of the pile, as well as a base vertical stress. 

Within each discretised element of the pile, the stresses are assumed to remain constant, 

the smaller the length of each discretisation, the more accurate the assumption is. 

A beam’s differential bending equation is: 

𝐸𝑝𝐼𝑝 ·
𝑑4𝑤

𝑑𝑧4
= −𝑞 = 𝑝𝑑 

Where 

𝐸𝑝 is the elastic modulus of the pile 

𝐼𝑝 is the moment of inertia of the pile’s section 

𝑧 is the depth in soil 

𝑑 is the width or diameter of the pile 

𝑤 is the pile’s deflection 

𝑝 is the horizontal shear stress (kN/m2) 

𝑞 is the linear load (kN/m) 

 

Applying finite differences the equation for any element i on any pile would then be: 

−𝑝𝑖𝑑 ·
ℎ𝑖
4

𝐸𝑝𝐼𝑝
= 𝛿𝑖−2 − 4𝛿𝑖−1 + 6𝛿𝑖 − 4𝛿𝑖+1 + 𝛿𝑖−1 

 

( 2 ) 

( 1 ) 
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There are N elements discretising the pile, 

placed so that the nodes are located like shown 

in Figure 2. Therefore, arising N equations to 

solve. Note how the first and last nodes fall 

exactly on the top and tip of the pile. Every 

element has a length of ℎ𝑖 =
𝐿

𝑁−1
  and notice how 

the lateral load acts upon the whole length of 

the elements, except for the first and last ones 

that only do so in half of it, provided the load 

acts in half of the length. 

Equation ( 2 ) is applied to elements 2 to N-1. It 

would similarly be applied to the first and last 

elements, but then two new unknowns would 

come up corresponding to the virtual nodes -2 

and N+2. 

In order to avoid this, the analysis is completed 

with the following equilibrium equations: 

 

 

 

Force equilibrium 

∑𝑝𝑖ℎ𝑖𝑑 = 𝐻

𝑁

𝑖=1

 

Where  

𝐻 is the external horizontal force applied to the top 

𝑝𝑖  is the load acting upon every element 

𝑑 is the piles diameter 

 

 

𝑝𝑥,𝑖
𝑝𝑖𝑙𝑒1

 

𝑝𝑥,1
𝑝𝑖𝑙𝑒1

 

𝑝𝑥,𝑁
𝑝𝑖𝑙𝑒1

 

Hpile1 

Mpile1 

Figure 2. Vertical view sketch of a discretised single pile. 
Diameter (d), load (pi), element length (hi), element depth 
(zi) and external forces (H and M) are depicted. 

( 3 ) 
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ℎ𝑖 is the height of each element  
𝐿

𝑁−1
 for each one except the first and last 

elements (1 and N) where it is halved: 
1

2

𝐿

𝑁−1
 

 

Moment equilibrium 

∑𝑝𝑖ℎ𝑖𝑧𝑖𝑑 +𝑀𝐸 = 𝑀ℎ𝑒𝑎𝑑

𝑁

𝑖=1

 

Where the new variables are 

𝑀𝐸 is the external moment applied at the top 

𝑧𝑖  is the distance of the centre of the load of every discretisation to the head of 

the pile: 

 
𝑧1 = 0,5 ·

0,5𝑑𝐿

𝑁 − 1
 

 

𝑧𝑖 = 0,5 ·
0,5𝐿

𝑁 − 1
 

𝑓𝑜𝑟  𝑖 𝜖 2, … ,𝑁 − 1 

𝑧𝑁 = 0,5 ·
0,5𝐿

𝑁 − 1
 

 

𝑀ℎ𝑒𝑎𝑑 is the moment at the head of the pile 

 

Additionally, to eliminate virtual nodes -1 and N+1, that appear in the bending equation, 

depending on the type of pile cap, use is made of the following boundary conditions. 

Constrained rotation at the head of the pile 

For instance, if there happens to be a pile cap. 

(
𝑑(𝛿)

𝑑𝑧
𝐸𝐼)

𝑧=0

= 0 = 𝛿2 − 𝛿−1 

 

Moment at the head of the pile 

A free headed pile, for example, will present null moment at the top. 

𝑀ℎ𝑒𝑎𝑑
(
𝐿
𝑁)

2

𝐸𝐼
= 𝛿2 − 2𝛿1 + 𝛿−1 = 2𝛿2 − 2𝛿1 

( 4 ) 

( 5 ) 

( 6 ) 
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Moment at the tip of the pile 

The pile tip will always be considered free, hence presenting null moment: 

𝑀𝑡𝑖𝑝 = (
𝑑2(𝛿)

𝑑𝑧2
𝐸𝐼)

𝑧=0

= 𝛿𝑛+1 − 2𝛿𝑛 + 𝛿𝑛−1 = 0 

Results in: 

𝛿𝑛+1 = 2𝛿𝑛 − 𝛿𝑛−1 

 

From here, the analysis distinguishes two different pile head cases: free head or fixed head. 

Free head pile 

For this case, the following boundary conditions apply: 

• Null moment at the head of the pile 

• Null moment at the tip of the pile 

The first and last rows are used to fit in the two equilibrium equations, whereas the rest 

correspond to the finite difference form of the bending equations: 

[
 
 
 
 
 
 
0 0 0 0 0 … 0 0
2 5 −4 1 0
1 −4 6 −4 1

…
1 −4 6 −4 1 0
0 0 1 −4 5 −2

0 0 … 0 0 0 0 0 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝛿1
𝛿2
𝛿3
𝛿4
…
…
𝛿𝑛−2
𝛿𝑛−1
𝛿𝑛 ]

 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
𝐵𝐶
𝐵𝐶2
0
…
0
𝐵𝐶3]

 
 
 
 
 

=

=

[
 
 
 
 
 
 
 
 
 
0,5𝑑𝐿

𝑁 − 1

𝑑𝐿

𝑁 − 1
…

𝑑𝐿

𝑁 − 1

0,5𝑑𝐿

𝑁 − 1

0
𝑑

𝐸𝐼
(
𝐿

𝑁
)
4

0

…

0
𝑑

𝐸𝐼
(
𝐿

𝑁
)
4

0

0,5𝑑𝐿

𝑁 − 1
𝑧1

𝑑𝐿

𝑁 − 1
𝑧2 …

𝑑𝐿

𝑁 − 1
𝑧𝑁−1

0,5𝑑𝐿

𝑁 − 1
𝑧𝑁]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝑝1
𝑝2
𝑝3
𝑝4
𝑝5
…
…
𝑝𝑛−2
𝑝𝑛−1
𝑝𝑛 ]

 
 
 
 
 
 
 
 
 

 

Where: 

𝐵𝐶1 = 𝐻𝐸 

( 7 ) 

( 8 ) 
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𝐵𝐶2 =
𝑀

𝐸𝐼
(
𝐿

𝑁
)
2

 

𝐵𝐶3 = 𝑀𝐸 

Put it in matrix form: 

[𝐷𝑝𝑖𝑙𝑒]{𝛿𝑝𝑖𝑙𝑒} + [𝐵𝐶𝑝𝑖𝑙𝑒] = [𝐴𝑝𝑖𝑙𝑒]{𝑝𝑝𝑖𝑙𝑒} 

Where 

𝐷𝑖𝑗 𝑁 × 𝑁stiffness matrix 

𝛿𝑗 𝑁 size pile displacements column vector 

𝐵𝐶𝑗  𝑁 size load column vector 

𝑝𝑗 𝑁 size column vector 

𝐷𝑖𝑗 𝑁 × 𝑁 load coefficients matrix 

Constrained or casted pile 

For this case, which tends to be more common, piles are casted into a pile cap. This has 

an effect on the piles of a group that compels their heads to remain in a plane and maintain 

the spacing at the top (see section 2.5). Concerning the assembly of equations for a single 

pile the next boundary conditions are used: 

• Rotation at the head is zero. 

• Moment at the end of the pile is zero. 

Furthermore, the two equilibrium equations are placed in the first and last rows. In this 

case, unlike the free headed problem where Mhead is zero, there is some bending moment, 

namely fixing moment. It is taken into account with the following. 

𝑀ℎ𝑒𝑎𝑑 = (
𝑑2(𝛿)

𝑑𝑧2
𝐸𝐼)

𝑧=0

= −2𝛿1 + 2𝛿2 

Therefore, the moment equilibrium equation is: 

∑𝑝𝑖ℎ𝑖𝑧𝑖𝑑 +𝑀𝐸 = 𝑀ℎ𝑒𝑎𝑑

𝑁

𝑖=1

= −2𝛿1 + 2𝛿2 

( 9 ) 

( 10 ) 
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[
 
 
 
 
 
 
0 0 0 0
−4 7 −4 1
1 −4 6 −4 1

…
1 −4 6 −4 1

1 −4 5 −2
−2 2 0 … 0 0 0 0 ]

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝛿1
𝛿2
𝛿3
𝛿4
𝛿5
…
…
𝛿𝑛−2
𝛿𝑛−1
𝛿𝑛 ]

 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
𝐵𝐶1
𝐵𝐶2
0

…

0
𝐵𝐶3]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
0,5𝑑𝐿

𝑁 − 1

𝑑𝐿

𝑁 − 1
…

𝑑𝐿

𝑁 − 1

0,5𝑑𝐿

𝑁 − 1

0
𝑑

𝐸𝐼
(
𝐿

𝑁
)
4

…
𝑑

𝐸𝐼
(
𝐿

𝑁
)
4

0

0,5𝑑𝐿

𝑁 − 1
𝑧1

𝑑𝐿

𝑁 − 1
𝑧2 …

𝑑𝐿

𝑁 − 1
𝑧𝑁−1

0,5𝑑𝐿

𝑁 − 1
𝑧𝑁]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑝1
𝑝2

…

𝑝𝑁−1
𝑝𝑁 ]

 
 
 
 
 
 
 
 

 

Where 

𝐵𝐶1 = 𝐻𝐸 

𝐵𝐶2 =
𝑀

𝐸𝐼
(
𝐿

𝑁
)
2

 

𝐵𝐶3 = 𝑀𝐸 

 

Let this be put as: 

[𝐷𝑝𝑖𝑙𝑒]{𝛿𝑝𝑖𝑙𝑒} + [𝐵𝐶𝑝𝑖𝑙𝑒] = [𝐴𝑝𝑖𝑙𝑒]{𝑝𝑝𝑖𝑙𝑒} 

 

( 11 ) 
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2.1.2 Piles axial response 

 

For vertical pile modelling, each element measures now 

ℎ𝑖 =
𝐿

𝑁
. Nodes have to be defined so that they are located 

like shown in Figure 3. In this problem, N skin stresses 

and 1 base stress make N+1 unknowns. Defining 𝜎𝑖 as the 

axial stress at node i, it can be derived from axial 

equilibrium of an element that: 

 

𝜎𝑖 = 𝜎𝑖−1 +
𝜕𝜎

𝜕𝑧
· ℎ𝑖 = 𝜎𝑖−1 −

𝑝𝜋𝑑

𝐴𝑝
ℎ𝑖 

𝜕𝜎

𝜕𝑧
= −

𝑝𝜋𝑑

𝐴𝑝
= −

4𝑝

𝑅𝐴𝑑
 

Where: 

𝑅𝐴 =
𝐴𝑝
𝜋𝑑2

4

 

As defined in Poulos and Davis (1980), for circular 

massive piles 𝑅𝐴 = 1. 

On the other hand, from elastic theory: 

𝜕𝜌

𝜕𝑧
= −

𝜎

𝐸𝑝
 

𝜕2𝜌

𝜕𝑧2
= −

1

𝐸𝑝

𝜕𝜎

𝜕𝑧
=
1

𝐸𝑝

4𝑝

𝑅𝐴𝑑
 

Having found a relationship for shaft stress p as a 

function of vertical node displacements, now, by means 

of finite differences: 

𝑝𝑖 =
𝑅𝐴𝑑

4𝐸𝑠
·
𝜌𝑖+1 − 2𝜌𝑖 + 𝜌𝑖−1

(
𝐿
𝑁)

2  

 

𝑝𝑧,1
𝑝𝑖𝑙𝑒1

 

𝑝𝑧,𝑁
𝑝𝑖𝑙𝑒1

 

𝑝𝑧,𝑖
𝑝𝑖𝑙𝑒1

 

𝑝𝑧,𝑏𝑎𝑠𝑒
𝑝𝑖𝑙𝑒1

 

𝑃

𝐴𝑝
 

Figure 3. Vertical view of single pile 
subjected to settlement. 

𝜌𝑥,𝑁
𝑝𝑖𝑙𝑒1

 

𝜌𝑧,𝑁+1
𝑝𝑖𝑙𝑒1

 

𝜌𝑥,1
𝑝𝑖𝑙𝑒1

 

( 12 ) 

( 13 ) 

( 14 ) 
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From now on: 

𝑝𝑖 = 𝐾 · [𝜌𝑖+1 − 2𝜌𝑖 + 𝜌𝑖−1] 

The final form of the (N+1) system of equations for a single pile is: 

[
 
 
 
 
 
 
 
−2 2 0 0 0 … 0 0 0 0
1 −2 1 0 0
0 1 −2 1 0

…
…
0 1 −2 1 0
0 0 0 1 −1

0 0 0 0 … 0 0 0 0 0 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝛿1
𝛿2
𝛿3
𝛿4
𝛿5
…
…
𝛿𝑛−2
𝛿𝑛−1
𝛿𝑛 ]

 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
𝐵𝐶1
0
0

…

0
𝑃 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
1 + 𝐾 · 𝐷1 0 0 … … 0

0 1/𝐾 0 … … 0
… … … … … …
0 0 … 1/𝐾 0 0
0 0 … 0 𝐷2 1/2 · 𝐿/𝑁 · 1/𝐸𝑝

𝑝𝑖𝑑𝐿

𝑁
… … …

𝑝𝑖𝑑𝐿

𝑁
𝑝𝑖 (

𝑑

2
)
2

]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑝1
𝑝2
𝑝3

…

𝑝𝑁−1
𝑝𝑁
𝑝𝑁+1]

 
 
 
 
 
 
 
 

 

Let this be put as: 

[𝐷]{𝛿𝑝𝑖𝑙𝑒} + [𝐵𝐶] = [𝐴]{𝑝} 

Where 

𝐵𝐶1 = 𝐾
𝑃

𝐴𝑝𝐸𝑠
·
𝐿

𝑁
 

𝐷1 = (
𝐿

𝑁
)
2

· 𝑝𝑖 ·

𝑑
𝐸𝑝

𝑝𝑖 ·
𝑑2

4

 

𝐷2 = (
1

2
·
𝐿

𝑁
)
2

· 𝑝𝑖 ·

𝑑
𝐸𝑝

𝑝𝑖 ·
𝑑2

4

 

 

D1 and D2 appear once imposed the equilibrium of axial forces at the first element (see 

Figure 4) and displacements compatibility at the last element (see Figure 5).  

 

( 15 ) 

( 16 ) 
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For the first element: 

 

𝜎1𝐴𝑝 = 𝑃 − 𝑝1 (𝑝𝑖 · 𝑑 ·
1

2
·
𝐿

𝑁
) 

−
𝜎1
𝐸𝑝
=
𝜕𝜌

𝜕𝑧
 =

−𝜌2 + 𝜌−1

2 ·
𝐿
𝑁

 

 

 

 

 

Thus, the equation inserted in the first row is: 

𝑝1 (1 + 𝐾𝑝𝑖 · 𝑑 ·
𝐿2

𝑁2
·
1

𝐸𝑠𝐴𝑝
 ) = 𝐾{−2𝜌1 + 2𝜌2} + 𝐾

𝑃

𝐴𝑝𝐸𝑠
2 ·
𝐿

𝑁
 

 

For the last element: 

 

𝜌𝑁 = 𝜌𝐵 −
𝜕𝜌

𝜕𝑧
·
1

2
·
𝐿

𝑁
 

 

𝜎𝑁𝐴𝑝 = 𝜎𝐵𝐴𝑝 + 𝑝𝑁  (𝑝𝑖 · 𝑑 ·
1

2
·
𝐿

𝑁
) 

 

 

 

The previous equations come to give the equation inserted in the last row of matrix [𝐷]: 

𝜌𝑁 − 𝜌𝐵 = 𝜎𝐵 ·
1

𝐸𝑝
·
1

2
·
𝐿

𝑁
+ 𝑝𝑁 ·

1

𝐸𝑝
· (
1

2
·
𝐿

𝑁
)
2

· (𝑝𝑖 · 𝑑) ·
1

𝐴𝑝
  

Figure 5. Sketch of actions upon element N. 

Figure 4. Sketch of stresses upon element 1, analysis extendable 
to any pile. 
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2.1.3 Pile structure matrix assembly 

Based on the previously explained equations, notation does not distinguish horizontal or 

vertical analysis, so the following generalised form is valid for each direction, always 

bearing in mind the intrinsic differences. Just as a reminder, in the horizontal analysis the 

number of equations is (𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) · (𝑁𝑝𝑖𝑙𝑒𝑠), whereas in the vertical analysis it is 

(𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 + 1) · (𝑁𝑝𝑖𝑙𝑒𝑠). 

[𝐷𝑝𝑖𝑙𝑒]{𝛿𝑝𝑖𝑙𝑒} + [𝐵𝐶𝑝𝑖𝑙𝑒] = [𝐴𝑝𝑖𝑙𝑒]{𝑝𝑝𝑖𝑙𝑒} 

Assembling a system of equations for 𝑁𝑝𝑖𝑙𝑒𝑠 piles would give:  

[

[𝐷]𝑝𝑖𝑙𝑒1
…

[𝐷]𝑝𝑖𝑙𝑒𝑁𝑝

] {

𝛿𝑝𝑖𝑙𝑒1
…

𝛿𝑝𝑖𝑙𝑒𝑁𝑝

} + {

𝐵𝐶𝑝𝑖𝑙𝑒1
…

𝐵𝐶𝑝𝑖𝑙𝑒𝑁𝑝

} = [

[𝐴]𝑝𝑖𝑙𝑒1
…

[𝐴]𝑝𝑖𝑙𝑒𝑁𝑝

] {

𝑝𝑝𝑖𝑙𝑒1
…

𝑝𝑝𝑖𝑙𝑒𝑁𝑝
} 

The final form may be written as: 

[𝐷]{𝛿} + [𝐵𝐶] = [𝐴]{𝑝} 

  

( 17 ) 
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2.2 SOIL MODELLING 

The soil is modelled as an elastic continuum, homogeneous, isotropic and incompressible. 

As stated earlier, the soil displacements come from 3 sources: the tunnel excavation 

volume loss, the displacements due to subsurface forces and from surface forces. Each sort 

of movements is solved based on the problems presented by the following authors. 

2.2.1 Sagaseta 

Sagaseta (1987) presented the following solution for 3D elastic, homogeneous, isotropic 

and incompressible soil. Figure 6 depicts the problem. 

Let the following definitions be: 

∆𝑥 = 𝑋𝑎𝑓𝑒𝑐𝑡𝑒𝑑 − 𝑋𝑣𝑙𝑜𝑠𝑠 

∆𝑦 = 𝑌𝑎𝑓𝑒𝑐𝑡𝑒𝑑 − 𝑌𝑣𝑙𝑜𝑠𝑠 

𝑧 = 𝑍𝑎𝑓𝑒𝑐𝑡𝑒𝑑 

𝑥 = 𝑠𝑞𝑟𝑡(∆𝑥2 + ∆𝑦2) 

𝑟1 = (𝑥
2 + (𝑧 − ℎ)2)

1
2 

𝑟2 = (𝑥
2 + (𝑧 + ℎ)2)

1
2 

 

 

Sagaseta (1987) defined the soil displacement at a 

point due to a localised volume loss (or sink 

point) as the sum of: 

𝜌𝑥 = 𝜌𝑥,𝑝𝑎𝑣𝑒𝑑 + 𝜌𝑥,𝑓𝑟𝑒𝑒 

This comes from the solving process described in 

his article (Figure 7). Imposing a free surface 

condition, it starts by computing displacements 

in an infinite medium. Then add the contribution 

of a negative image source to cancel out normal 

stresses at the surface. Finally, to achieve the free 

surface condition, the shear stresses due to steps 

1 and 2 are removed in step 3. As formulated in 

equation ( 18 ) 𝜌𝑥,𝑝𝑎𝑣𝑒𝑑 corresponds to the sum of 

steps 1 and 2, called paved because as Sagaseta explains in step 2 there are no surface 

Figure 6. Point sink, problem definition as 
shown in Fig. 9 by Sagaseta (1987). 

( 18 ) 
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normal stresses but there are shear stresses constraining surface horizontal movement. 

This may resemble a situation where there is an inextensible membrane, like an urban 

pavement, hence the term paved. 

 

 

Figure 7. Steps in the Sagaseta analysis extracted from Sagaseta (1987) 

 

Equation ( 19 ) is the result of step 2, 

𝜌𝑥,𝑝𝑎𝑣𝑒𝑑 = −
𝑟3

3
(
∆𝑥

𝑟1
3 −

∆𝑥

𝑟2
3) 

𝜌𝑥,𝑓𝑟𝑒𝑒 =
2

𝜋
𝑟𝑎𝑑3

ℎ

𝑥
∫ 𝑟𝑏 ·

𝛼

(ℎ2 + 𝛼2)
5
2

· [𝐼𝐸 · 𝐸(𝑘) + 𝐼𝐹𝐹(𝑘)]𝑑𝛼
+∞

0

 

Equations above are valid for horizontal displacements, coordinate y displacement may be 

similarly calculated thanks to axial symmetry. 

Vertical displacements are the sum of equations ( 23 ) and ( 22 ): 

𝜌𝑧 = 𝜌𝑧,𝑝𝑎𝑣𝑒𝑑 + 𝜌𝑧,𝑓𝑟𝑒𝑒 

𝜌𝑧,𝑝𝑎𝑣𝑒𝑑 = −
𝑟𝑎𝑑3

3
· (
𝑧 − ℎ

𝑟1
3 −

𝑧 + ℎ

𝑟2
3 ) 

 

𝜌𝑧,𝑓𝑟𝑒𝑒 =
2

𝜋
𝑟𝑎𝑑3ℎ𝑧∫

1

𝑟𝑏
·

𝛼

(ℎ2 + 𝛼2)
5
2

· [𝐽𝐸 · 𝐸(𝑘) +  𝐹(𝑘)]𝑑𝛼
+∞

0

 

Where for both cartesian directions, 𝐹(𝑘) and 𝐸(𝑘) are complete elliptic functions of 

first and second kind respectively with; 

( 19 ) 

( 21 ) 

( 23 ) 

( 22 ) 

( 20 ) 
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𝑘 = (1 −
𝑟𝑎
2

𝑟𝑏
2)

0,5

 

And 

𝑟𝑎 = √(𝛼 − 𝑥)
2 + 𝑧2 

𝑟𝑏 = √(𝛼 + 𝑥)
2 + 𝑧2 

𝐼𝐸 =  1 +
1

2
𝑧2 ( 

1

𝑟𝑎
2
  +  

1

𝑟𝑏
2)  

            𝐼𝐹 = −
1

𝑟𝑏
2
(𝛼2 + 𝑥2 + 2𝑧2) 

𝐽𝐸 = −1 +  2(𝛼 · (𝛼 − 𝑥)) ·
1

𝑟𝑎
2 

 

2.2.2 Boussinesq 

The well-known Boussinesq solution (1885) for a surface horizontal point load: 

𝜌𝑥 =
𝑃(1 + 𝑣𝑠)

2𝜋𝐸𝑠𝑅
· (1 +

𝑥2

𝑅2
+ (1 − 2𝑣𝑠) (

𝑅

𝑅 + 𝑧
−

𝑥2

(𝑅 + 𝑧)2
)) 

Where  

𝑅 = √𝑥2 + 𝑦2 + 𝑧2 

The Y displacement is similarly calculated by means of axial symmetry. 

 

 

Similarly, for a surface vertical point load: 

𝜌𝑧 =
𝑃(1 + 𝑣𝑠)

2𝜋𝐸𝑠𝑅
(2(1 − 𝑣𝑠) +

𝑧2

𝑅2
) 

𝑅 = √𝑥2 + 𝑦2 + 𝑧2 

 

( 24 ) 

( 25 ) 

Figure 8. Boussinesq surface force problem. Vertical (left), horizontal (right). 
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2.2.3 Mindlin 

The Mindlin solution provides a subsurface displacement generated by a subsurface point 

force. This is used to take into account the influence that in-pile displacements have in 

neighbouring piles. Since the Mindlin solution is valid for point forces and the problem is 

relating loads and displacements, by integrating over the area of each pile element where 

the load is acting, new influence coefficients are found. 

Horizontal Loading 

The Mindlin problem for a horizontal load Q 

relates: 

𝜌𝑥 = 𝑄 ·
1 + 𝑣𝑠

8𝐸𝑠𝜋(1 − 𝑣𝑠)
(
3 − 4𝑣𝑠
𝑅1

+
1

𝑅2
+
𝑥2

𝑅13

+
(3 − 4𝑣𝑠)𝑥

2

𝑅23
+
2𝑐𝑧

𝑅23
(1 − 3

𝑥2

𝑅22
)

+ 4(1 − 𝑣𝑠)
1 − 2𝑣𝑠
𝑅2 + 𝑧 + 𝑐

· (1 −
𝑥2

𝑅2(𝑅2 + 𝑧 + 𝑐)
)) 

 

Where 

𝑅1 = √𝑥2 + 𝑦2 + (𝑧 − 𝑐)2 

𝑅2 = √𝑥2 + 𝑦2 + (𝑧 + 𝑐)2 

𝑅2 = √𝑥2 + 𝑦2 + (𝑧 + 𝑐)2 

𝐸𝑠 = 𝑠𝑜𝑖𝑙 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

𝑣𝑠 = 𝑠𝑜𝑖𝑙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 

Let 𝐼 be defined as the so-called influence coefficient, from equation ( 26 ): 

𝜌𝑥 =
𝑄

𝐸𝑠
𝐼  

Now, the integration over the area where the load acts is only done for in-pile coefficients, 

i.e. for the influence that elements of one pile exert in the same pile. Let these prima 

coefficients be: 

Figure 9. Horizontal point-load Mindlin 
problem. Extracted from Poulos and Davis 
(1980). 

( 26 ) 
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𝐼𝑖,𝑗
′ = 2 · ∫ ∫ 𝐼

𝑑
2

0

𝑐𝑠𝑢𝑝

𝑐𝑖𝑛𝑓

𝑑𝑦𝑑𝑐 

As for pile to pile influences, it is accurately enough to account for a load by simply 

multiplying coefficients 𝐼 by the area of the element (benefitting from a reduced 

computational time): 

𝜌𝑥 =
1

𝐸𝑠
𝐼 · (𝑑ℎ𝑖) 

 

Vertical Loading 

Quite like the process developed in the previous section for horizontal loading, let’s define: 

 

𝑧 = ℎ + 𝑐 

𝑧1 = ℎ − 𝑐 

𝑅1
2 = 𝑥2 + 𝑦2 + 𝑧1

2 

𝑅2
2 = 𝑥2 + 𝑦2 + 𝑧2 

 

 

 

Let the vertical displacement be defined in compact form, for a vertical subsurface force 

Q: 

𝜌𝑧 =
𝑄

𝐸𝑠
𝐼 

Which is: 

𝜌𝑧 = Q
(1 + 𝑣)

8𝐸𝑠𝜋(1 − 𝑣)

· [
𝑧1
2

𝑅1
3 +

3 − 4𝑣

𝑅1
+
5 − 12𝑣 + 8𝑣2

𝑅2
+
(3 − 4𝑣)𝑧2 − 2𝑐𝑧 + 2𝑐2

𝑅2
3 +

6𝑐𝑧2(𝑧 − 𝑐)

𝑅2
5 ]  

 

Figure 10. Vertical Mindlin problem. Adapted 
from Poulos and Davis (1980). 

( 27 ) 



22 
 

For the vertical problem, the pile is formed of N nodes all of length 
𝐿

𝑁
.  Like in the 

horizontal problem, vertical influence coefficients will need to be integrated over the 

acting area of the load. Regarding the used notation, integrated coefficients will be labelled 

as 𝐼′. 

For elements 𝐼𝑖,𝑗
′  , when the force is and acts on the shaft,  i, jϵ[1, … , N]: 

𝐼𝑖,𝑗
′ = 2 · ∫ ∫ 𝐼

𝜋
2

0

𝑐𝑠𝑢𝑝,𝑗

𝑐𝑖𝑛𝑓,𝑗

𝑑𝜃𝑑𝑐 

𝑐𝑠𝑢𝑝,𝑗 = 𝑧𝑗 −
1

2
·
𝐿

𝑁
 

𝑐𝑠𝑢𝑝,𝑗 = 𝑧𝑗 +
1

2
·
𝐿

𝑁
 

Where 𝑧𝑗 is the depth of each node. 

The influence coefficient resulting from the force acting on the base affecting elements on 

the shaft of the pile is: 

𝐼𝑖,𝑏
′ =

1

𝑑
∫ ∫ 𝑟 · 𝐼

𝑑
2

0

2𝜋

0

𝑑𝑟𝑑𝜃 

Finally, for the base acting upon the base itself: 

𝐼𝑏,𝑏
′ =

𝜋

4
∫ ∫ 𝑟 · 𝐼

𝑑
2

0

2𝜋

0

𝑑𝑟𝑑𝜃 

As stated by Poulos and Davis (1980) a factor 
𝜋

4
 must be allowed to account for an effect of 

rigidity of the base. These authors remark that this corresponds to the ratio of the surface 

displacement of a rigid circle on the surface of a half-space. 

Again, for influence coefficients relating two piles, these are acceptable enough if 

coefficients 𝐼 are multiplied by the area of the element 𝑑 ·
𝐿

𝑁
 (where 𝑑 is pile diameter). 

𝐼𝑝𝑖𝑙𝑒 𝑖,𝑝𝑖𝑙𝑒 𝑗 =
1

𝐸𝑠
· (𝑑 ·

𝐿

𝑁
) 
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2.2.4 Soil structure matrix assembly 

Horizontal analysis 

Finally, one can build the following system of equations of size 

𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 for a single pile problem. Based on the addition principle, volume loss (Sagaseta) 

and surface loading (Boussinesq) displacements need to be added to the total soil 

displacements.  

{

𝜌𝑥,1
𝜌𝑥,2
…
𝜌𝑥,𝑁

} =
1

𝐸𝑠
[
 
 
 
𝐼1,1′ 𝐼1,2′ … 𝐼1,𝑁′

𝐼2,1′ 𝐼2,2′ … 𝐼2,𝑁′
… … … …
𝐼𝑁,1′ 𝐼𝑁,2′ … 𝐼𝑁,𝑁′]

 
 
 

· {

𝑝𝑥,1
𝑝𝑥,2
…
𝑝𝑥,𝑁

} +

{
 
 

 
 𝜌𝑥,1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

𝜌𝑥,2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

…

𝜌𝑥,𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
 
 

 
 

+

{
 
 

 
 𝜌𝑥,1

𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

𝜌𝑥,2
𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

…

𝜌𝑥,𝑁
𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

}
 
 

 
 

 

Extending the problem to a group of piles, there are (𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) · (𝑁𝑝𝑖𝑙𝑒𝑠) equations, note 

the use of coefficients 𝐼′ or 𝐼: 

{
 

 
{𝜌𝑥,𝑝𝑖𝑙𝑒1}

{𝜌𝑥,𝑝𝑖𝑙𝑒2}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁}}
 

 
=
1

𝐸𝑠
[
 
 
 
[𝐼′]1,1 [𝐼]1,2 … [𝐼]1,𝑁
[𝐼]2,1 [𝐼′]2,2 … [𝐼]2,𝑁
… … … …

[𝐼]𝑁,1 [𝐼]𝑁,2 … [𝐼′]𝑁,𝑁]
 
 
 
·

{
 

 
{𝑝𝑥,𝑝𝑖𝑙𝑒1}

{𝑝𝑥,𝑝𝑖𝑙𝑒2}
…

{𝑝𝑥,𝑝𝑖𝑙𝑒𝑁}}
 

 
+

{
 
 

 
 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}
 
 

 
 

+

{
 
 

 
 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

}}
 
 

 
 

 

Vertical analysis 

Eventually, similar to the horizontal direction, the final vertical displacements in a pile 

group problem may be defined as: 

{
 

 
{𝜌𝑥,𝑝𝑖𝑙𝑒1}

{𝜌𝑥,𝑝𝑖𝑙𝑒2}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁}}
 

 
=
1

𝐸𝑠
[
 
 
 
[𝐼′]1,1 [𝐼]1,2 … [𝐼]1,𝑁
[𝐼]2,1 [𝐼′]2,2 … [𝐼]2,𝑁
… … … …

[𝐼]𝑁,1 [𝐼]𝑁,2 … [𝐼′]𝑁,𝑁]
 
 
 
·

{
 

 
{𝑝𝑥,𝑝𝑖𝑙𝑒1}

{𝑝𝑥,𝑝𝑖𝑙𝑒2}
…

{𝑝𝑥,𝑝𝑖𝑙𝑒𝑁}}
 

 
+

{
 
 

 
 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}
 
 

 
 

+

{
 
 

 
 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

}}
 
 

 
 

 

Where in this case there are (𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 + 1) · (𝑁𝑝𝑖𝑙𝑒𝑠) equations due to the extra unknown 

in the base of the pile. 

( 30 ) 

( 28 ) 

( 29 ) 
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Always bearing in mind that there are differences between the definition of some 

parameters depending whether it is horizontal or vertical analysis.  
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2.3 PROBLEM SOLVING 

The matrix form in which the problem has been conceived allows MATLAB to easily solve 

for load vector {𝑝} containing a number of 𝑁𝑝𝑖𝑙𝑒𝑠 load vectors, when pile and soil 

displacements are equated. The following structure can analogously be applied either to 

horizontal or vertical directions (bearing in mind the intrinsic differences between each 

analysis as the vectors and matrices in equations ( 32 )and ( 33 ) have been constructed in 

previous sections): 

[𝐷]{𝛿} + [𝐵𝐶] = [𝐴]{𝑝} 

{𝜌𝑠}  = [𝐼𝑠]{𝑝} + {𝜌𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎} + {𝜌𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞} 

{𝑝} = ([𝐴] −
1

𝐸𝑠
[𝐷][𝐼𝑠])

−1

· ([𝐵𝐶] + [𝐷][{𝜌𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎} + {𝜌𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞}]) 

Afterwards pile deflection or settlement may be calculated, reusing equation ( 33 ). 

Then, the corresponding bending moment may be found by finite differences at the Euler-

Bernoulli bending theory and boundary conditions presented in equations ( 5 ), ( 6 ) and 

( 7 ). By using 𝛿 as horizontal displacements: 

𝑀𝑖,𝑝𝑖𝑙𝑒𝑗 =
𝐸𝑝𝐼𝑝

(
𝐿
𝑁)

2 [𝛿𝑖+1
𝑝𝑖𝑙𝑒𝑗

− 2𝛿𝑖
𝑝𝑖𝑙𝑒𝑗

+ 𝛿𝑖−1
𝑝𝑖𝑙𝑒𝑗

] 

Using standard notation, displacements in the X direction generate a law of 𝑀𝑦 bending 

moments. Likewise, displacements in the Y direction generate a law of 𝑀𝑥 bending 

moments. For this project an assumption is made in that no torsion 𝑀𝑧 is considered, nor 

that it is applied as an external action. 

On the other hand, the axial force, now by using 𝛿 vertical displacements, can be 

calculated for any element 𝑖 = 2,… ,𝑁 with equations ( 35 ): 

𝑁𝑖,𝑝𝑖𝑙𝑒𝑗 = −
𝐸𝑝𝐴𝑝

2
𝐿
𝑁

[𝛿𝑖+1
𝑗
− 𝛿𝑖−1

𝑗
] 

For the first element: 

𝑁1,𝑝𝑖𝑙𝑒𝑗 = 𝑃𝑝𝑖𝑙𝑒𝑗 − 𝑝𝑧,1
𝑝𝑖𝑙𝑒𝑗 1

2
·
𝐿

𝑁
𝜋𝑑 

For the last element: 

( 33 ) 

( 32 ) 

( 31 ) 

( 34 ) 

( 35 ) 
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𝑁𝑁,𝑝𝑖𝑙𝑒𝑗 = 𝑝𝑧,𝑁+1
𝑝𝑖𝑙𝑒𝑗

·
𝜋𝑑2

4
+ 𝑝𝑧,𝑁

𝑝𝑖𝑙𝑒𝑗 1

2
·
𝐿

𝑁
𝜋𝑑 

Hereafter, according to how it has been defined, all results showing positive axial force 

correspond to compression while negative refer to tensile stresses. 
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2.4 PILE CAP EFFECT 

The pile cap acts as a rigid plate (rigid pile cap) that constrains horizontal movements, by 

making pile head displacements equal, i.e. the pile heads may present some head 

displacements albeit all the same. Differential displacements are not allowed, that is the 

purpose of a rigid plate, or rafted foundation. In a similar way, vertical movements at the 

head are imposed to be in a plane, i.e. heads may present different settlements as long as 

they are coplanar. In order to achieve this, Sauter (2012) proposed to modify the force 

acting on each pile, as if the pile group distributed the total load among its piles (which is 

what in reality occurs). The procedure is iterative, where it is applicable to any time step j 

(as in reference to tunnel advance steps). 

Horizontal analysis 

1. Calculate the mean value of the displacements at time 𝑗 at the piles’ head: 

𝛿𝑥,𝑚𝑒𝑎𝑛
ℎ𝑒𝑎𝑑,𝑗

 

2. Change the new pile external applied force (𝑃𝑥,𝑖
𝑗

) with the following weighted 

function, for pile 𝑖 and actual head displacements at current time step being 

𝛿𝑥,𝑖
ℎ𝑒𝑎𝑑,𝑗

: 

𝑃𝑥,𝑖
𝑗
= 𝑃𝑥,𝑖

𝑗−1
+ (𝛿𝑥,𝑚𝑒𝑎𝑛

ℎ𝑒𝑎𝑑,𝑗
− 𝛿𝑥,𝑖

ℎ𝑒𝑎𝑑,𝑗
) ·
| ∑ 𝑃𝑥,𝑖

𝑗−1𝑁𝑝𝑖𝑙𝑒𝑠
𝑖=1

|

𝑁𝑝𝑖𝑙𝑒𝑠
· 100 

3. Recalculate piles deflection and stresses, with the procedure developed in section 

2.3 and the new forces having changed the matrix [𝐵𝐶]. 

4. Iterate whether the following conditions is not fulfilled, for every pile head 𝑖: 

−5 · 10−6 < [𝑚𝑎𝑥(𝛿𝑥,𝑖
ℎ𝑒𝑎𝑑,𝑗

)  − min(𝛿𝑥,𝑖
ℎ𝑒𝑎𝑑,𝑗

)] < 5 · 10−6 

𝑖𝜖{1, … ,𝑁𝑝𝑖𝑙𝑒𝑠};  𝑗𝜖ℕ 

For the horizontal Y direction the procedure is similarly applied. 

Vertical analysis 

1. Calculate the mean plane using a least-square approximation and the theoretical 

head settlement: 

𝛿𝑧,𝑚𝑒𝑎𝑛
ℎ𝑒𝑎𝑑  

( 36 ) 
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2. Compute the difference between the calculated pile heads and the mean plane pile 

heads: 

𝛿𝑧,𝑑𝑖𝑓,𝑖
ℎ𝑒𝑎𝑑 = 𝛿𝑧,𝑖

ℎ𝑒𝑎𝑑 − 𝛿𝑧,𝑚𝑒𝑎𝑛,𝑖
ℎ𝑒𝑎𝑑  

3. Average the pile heads differences: 

𝛿𝑧,𝑑𝑖𝑓,𝑚𝑒𝑎𝑛
ℎ𝑒𝑎𝑑  

4. Change new pile external applied force with this weighted function: 

𝑃𝑧,𝑖
𝑗
= 𝑃𝑧,𝑖

𝑗−1
+ (𝛿𝑧,𝑑𝑖𝑓,𝑚𝑒𝑎𝑛

ℎ𝑒𝑎𝑑,𝑗
− 𝛿𝑧,𝑑𝑖𝑓,𝑖

ℎ𝑒𝑎𝑑,𝑗
) ·
| ∑ 𝑃𝑥,𝑖

𝑗−1𝑁𝑝𝑖𝑙𝑒𝑠
𝑖=1

|

𝑁𝑝𝑖𝑙𝑒𝑠
· 100 

5. Recalculate piles settlement and stresses, with the procedure developed in section 

2.3 and the new forces having changed the matrix [𝐵𝐶]. 

6. Iterate whether the following condition is not fulfilled (limits in meters), for every 

pile head 𝑖: 

[−5 · 10−5 < 𝑚𝑖𝑛(𝛿𝑧,𝑑𝑖𝑓,𝑖
ℎ𝑒𝑎𝑑 )]  ∨ [max(𝛿𝑧,𝑑𝑖𝑓,𝑖

ℎ𝑒𝑎𝑑 ) < 5 · 10−5] 

𝑖𝜖{1, … ,𝑁𝑝𝑖𝑙𝑒𝑠};  𝑗𝜖ℕ 

As it can be appreciated that: for the horizontal analysis the head displacements are 

compared to the mean head displacements, whereas the vertical procedure compares each 

head settlement to the corresponding theoretical settlement in a mean plane. With this is 

made clear that the horizontal head displacements are constraint to be all equal, in 

contrast with the vertical procedure that allows differential settlement as long as it is in a 

plane.   

( 37 ) 
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2.5 TUNNEL VOLUME LOSS 

González and Sagaseta (2001) thoroughly described the crossectional deformation 

undergone by a tunnel (see Figure 11). In earlier works, Lee et al. (1992) defined the gap 

parameter, which is nothing but the maximum radial distance from the final tunnel cross 

section to the original, when it undergoes ground loss and vertical movement  (marked as 

𝑑0 − 𝑑1 in Figure 12), in other words, the maximum measurable settlement at the tunnel 

crown. From Figure 11, the gap parameter would imply the consideration of the sum of 

ground loss and vertical movement.  

 

Figure 11. Adapted from González and Sagaseta (2001). Components of deformation of the tunnel. 

 

To show insight about the sources of deformation, the Lee et al. (1992) gap parameter 

definition is: 

2𝑟0 = 2𝑟1 + 𝑔 

𝑔 = 𝐺𝑝 + 𝑈3𝐷
∗ +𝜔 

Where: 

𝐺𝑝 Physical gap. The difference between the maximum outside diameter of the 

tunneling machine and the outside diameter of the lining for a circular tunnel. 

𝑈3𝐷
∗  3D elastoplastic deformation into the tunnel face. 

𝜔 Workmanship factor. 

 

For this project, ovalisation as it is described by González and Sagaseta (2001) will be 

neglected, therefore, the ground loss and vertical movement contributions are the 

considered types, just like Lee et al. (1992) in the gap parameter. From here, equations 

below were worked out to discretise a tunnel deformation in various points. Based only on 
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the initial and final geometries (see Figure 12), let’s define the following as the areal loss 

ratio: 

𝜀0 =
𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐴𝑓𝑖𝑛𝑎𝑙

𝐴𝑓𝑖𝑛𝑎𝑙
=
𝜋𝑟0

2 − 𝜋𝑟1
2

𝜋𝑟1
2 =

𝑟0
2

𝑟1
2 − 1 

𝜀0 is nothing but the relationship between the final and initial tunnel cross section areas. 

In general, this ratio remains around 1% strongly dependant on machine shield 

technology, lining characteristics and workmanship skills (Lee et al., 1992). With that 

being said, the MATLAB code developed for this project only asks to input the 𝜀0 ratio and 

the tunnel diameter which is 2𝑟1. Then it computes 𝑟0 from equation ( 39 ), rearranging 

terms: 

𝑟0 = (𝑟1
2 · (𝜀0 + 1))

1/2
 

As stated earlier, the tunnel cross section undergoing ground loss and vertical settlement 

results in the cross section depicted in blue in Figure 12. The perimetral areal loss will be 

discretised into various portions (depending on the required number of elements). If one 

sets a local polar system of coordinates (𝑌′ − 𝑍′), datum on the biggest circle’s centre 

(black cross), equations describing the two circumferences that represent the original and 

the final tunnel cross sections may be expressed as:  

 

 

 

 

 

 

 

 

𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑟0 

𝑟𝑓𝑖𝑛𝑎𝑙(𝜃) = 𝑟𝑐,𝑓𝑖𝑛𝑎𝑙 cos(𝜃 − 𝜑) + √𝑎
2 − 𝑟𝑐,𝑓𝑖𝑛𝑎𝑙sin (𝜃 − 𝜑) 

Where 𝑎 is the final circle’s radius, 𝜑 is 270º and: 

𝑟𝑐,𝑓𝑖𝑛𝑎𝑙 = 𝑟1 − 𝑟0 

Figure 12. Tunnel volume loss cross section representation (exagerated), local coordinate system. 

( 40 ) 

( 39 ) 

( 38 ) 
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Now, each of the elements that define a portion shaded in Figure 12, have varying area. 

The area for each element is calculated as: 

(∆𝐴)𝑗 = 𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝜃𝑖+1−𝜃𝑖 − 𝐴𝑓𝑖𝑛𝑎𝑙

𝜃𝑖+1−𝜃𝑖    

𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝜃𝑖+1−𝜃𝑖 = 𝑝𝑖 ·

𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2

𝑛𝑑𝑖𝑠𝑐
 

𝐴𝑓𝑖𝑛𝑎𝑙
𝜃𝑖+1−𝜃𝑖 = ∫ 𝑟𝑓𝑖𝑛𝑎𝑙(𝜃)

1

2
𝑟𝑓𝑖𝑛𝑎𝑙(𝜃)𝑑𝜃

𝜃𝑖+1

𝜃𝑖

 

For: 

𝑖𝜖[0, 𝑛𝑑𝑖𝑠𝑐𝑟];  𝑗𝜖[1, 𝑛𝑑𝑖𝑠𝑐𝑟];  𝜃𝑖𝜖[0,
2𝑝𝑖

𝑛𝑑𝑖𝑠𝑐𝑟
, … ,2𝑝𝑖] 

Once the areal loss in known for every discretisation, these are associated to 

corresponding sink points located in the middle circumference, just as marked in Figure 

12. With this, proportionality is already taken into account at each point. 

To recap, for any problem the variables required for the MATLAB code are 𝜀0, 𝑟0 and the 

number of points. For the calculations developed further on (sections 5.2, and 6), these 

are specified. 

An example below, similar to the sketch in Figure 12, shows the discretisation in 10 points, 

for a 𝜀0 = 1% tunnel. Since the deformation is normally almost imperceptible the zoomed-

in plots show the discretisation sink points in between the two cross sections. Note that 

the bottom point coincides with both curves, whereas the maximum difference is at the 

crown, that is a result of the vertical movement.  

  

( 41 ) 

Figure 13. Tunnel cross section discretised into 10 points, local 
coordinates. For 𝜀0 = 1% and radius 5m. On the right hand side, three 
zoomed-in plots. In red the sink points, in blue the deformed cross 
section, in black the initial cross section. Plots provided by the 
MATLAB code developed for this project. 
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2.6 ADVANCING TUNNEL PROBLEM 

The problem of an advancing tunnel is solved based on the development in sections 2.1, 

2.2, 2.3, 2.4 and 2.5.  

Firstly, the tunnel will be discretised into various sections of a certain length (Figure 14). 

It is assumed that along the length of the tunnel the areal loss remains the same. As 

described in section 2.6, the tunnel cross section areal loss is simulated by a number of 

sink points. To account for volume, each areal loss at each point is multiplied by the 

corresponding length of the section, as seen in Figure 14 it is 
𝐿𝑡𝑢𝑛

𝑁𝑑𝑖𝑠𝑐
, where 𝐿𝑡𝑢𝑛 is the input 

length of the tunnel in the code.  

 

 

Once the location and volume loss of each point in known, soil movements at the piles are 

computed for each advancing tunnel discretisation. Therefore, if 𝑁𝑑𝑖𝑠𝑐 is the number of 

tunnel discretisations, there appear 𝑁𝑑𝑖𝑠𝑐  column vectors of size 𝑁𝑒𝑙𝑒𝑚 · 𝑁𝑝𝑖𝑙𝑒𝑠 that are 

stored in a matrix. 

For any time step 𝑗 (tunnel advance) the final soil displacements are the cumulative soil 

displacements generated by the advances 1 to 𝑗. For instance, in the X direction: 

{
 
 

 
 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}
 
 

 
 

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑗

=∑

{
 
 

 
 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}
 
 

 
 

𝑖

𝑗

𝑖=1

 

This may be generalised to any coordinate. 

Figure 14. Sketch of the tunnel discretised into several segments, each segment is discretised into several points. 

( 42 ) 
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Then, for the said 𝑗 tunnel advance, the problem is solved using cumulative soil 

displacements described above and the standard solutions presented in previous sections. 

Equation ( 31 ) is then, at time step 𝑗: 

{𝑝}𝑗 = ([𝐴] −
1

𝐸𝑠
[𝐷][𝐼𝑠])

−1

· ([𝐵𝐶] + [𝐷] [{𝜌𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎}𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑗
+ {𝜌𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞}]) 

Below, a sketch of the problem geometry in MATLAB, in this example, containing 10 points 

per discretised tunnel element. The number of points is deemed as a choice for the user of 

the code, however, it has been found that calculations for more than 10 points provide 

similar results. 

The length of the tunnel is a choice of the user of the code, where they have to find a 

reasonable computational time in relation to a representative simulation. 

 

 

Figure 15. Sample 3D scheme output provided by the code. Black nodes represent the tunnel volume loss 
discretisation points. 
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2.7 COMPENSATION GROUTING 

Compensation grouting is a technique used to compensate or reverse displacements on a 

structure. Injection of material expands so that its induced movements counteract  the 

effects of the source of unwanted displacements. In this case, the compensation grouting 

nested in the code is built so that the user specifies its characteristics, it can be injected in 

a strip or more than one and vary the total expansive volume, which will be negative to 

account for swelling. 

Each strip is formed by  𝑁𝑑𝑖𝑠𝑐  points that add up to the specified total expansion volume. 

The problem is similarly solved to what has been described in previous sections. The new 

volume expansion creates soil movements along the piles, both volume loss and swelling 

are added, thus these final soil displacements are used to solve the problem.  

Equation ( 42 ) becomes then, at time step 𝑗: 

{
 
 

 
 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}
 
 

 
 

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑗

=∑

(

 
 
 

{
 
 

 
 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}
 
 

 
 

𝑖

𝑣𝑜𝑙.  𝑙𝑜𝑠𝑠

+

{
 
 

 
 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}
 
 

 
 

𝑖

𝑐𝑜𝑚𝑝.  𝑔𝑟𝑜𝑢𝑡

)

 
 
 

𝑗

𝑖=1

 

 

Finally, the problem is again solved with Equation ( 31 ), although it can be solved for a 

certain time step as if each point compensates a tunnel advance step, it is more relevant 

to find the final solution, for the last time step 𝑗 = 𝑁𝑑𝑖𝑠𝑐: 

{𝑝}𝑗 = ([𝐴] −
1

𝐸𝑠
[𝐷][𝐼𝑠])

−1

· ([𝐵𝐶] + [𝐷] [{𝜌𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎}𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑗
+ {𝜌𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞}]) 
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3 MATLAB CODE 

Section 3 provides an insight into the structure of the code. Having started from scratch, 

the code has been inspired by the 2012 Master’s Thesis by Sauter, where the author studied 

the effects of an expanding layer of soil underneath a pile group in Pont del Candí (Sauter, 

2012). It must be said that although the main goal of this project was to study the tunnel-

pile interaction, a collateral consequence have been that of learning how to create and 

manage a large-sized code. 

After a first stage of input data, the piles’ and tunnel geometries are created. Then, a 

MATLAB function computes the soil movements induced by the points discretising the 

tunnel, as well as displacements due to surface loads being computed. In terms of 

computational cost, this is the most expensive part, mostly due to the repetitive task done 

for 𝑁 = (𝑁𝑝𝑜𝑖𝑛𝑡𝑠 · 𝑁𝑑𝑖𝑠𝑐) · (𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 · 𝑁𝑝𝑖𝑙𝑒𝑠) times of computing the integral involving 

complete elliptic functions in equations ( 20 ) and ( 22 ). Where 𝑁𝑝𝑜𝑖𝑛𝑡𝑠 is the number of 

points discretising each tunnel advance; 𝑁𝑑𝑖𝑠𝑐 the number of discretisations along the 

tunnel length; 𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 the number of elements in each pile; 𝑁𝑝𝑖𝑙𝑒𝑠 the number of piles. 

Computational time follows a linear relationship with an increase of elements (either in 

the tunnel or in the piles). This means that a 20 elements pile discretisation is half as fast 

as a 40 elements discretisation. 

Once the vectors of soil displacements are known for each tunnel advance, they are sent 

to the horizontal and vertical analyses. In each analysis, the system of equations as 

described in sections 2.3 and earlier, are assembled. Working out the Mindlin’s coefficients 

for the in-pile interaction absorbs most of this subprocess computational time, mainly due 

to the required integration (as developed in section 2.3) for both horizontal and vertical 

analyses. Nevertheless, it is far less important than the integral for the Sagaseta soil 

movements involving elliptic functions, moreover, assembling the rest of matrices and 

solving the actual system of equations is quickly done. 

The results analysis (calculating bending moments, etc.) and the final plots entail no 

significant computational effort and this is done at the end of the code. 

In the following section a schematic workflow diagram of the code is presented, two 

predefined subprocesses are further explained afterwards to show insight in what is called 

Problem-solving and Results-analysis. The required input data is also specified. 
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3.1 CODE FLOW CHART 
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4 CODE VERIFICATION 

4.1 STANDARDISED SOLUTIONS 

Mattes and Poulos (1969), and David and Poulos (1974) presented the following 

standardised solutions. The results show the good response of the developed code. 

Parameters found in subsequent figures are: 𝜈𝑆 soil Poisson ratio; H is the applied 

horizontal force at the pile head, 𝐿 and 𝑑 pile length and diameter, respectively, and 𝑝 the 

horizontal or vertical pressure acting along the pile shaft. 

4.1.1 Vertical 

In this case, different soil stiffnesses are compared. Poisson’s ratio has a small effect as it 

is implied from the next figure. For the test, the soil’s elastic modulus is related to the pile’s 

modulus as: 

𝐸𝑆 =
𝐸𝑝
𝐾
  

 

Figure 16. Adapted from Mattes and Poulos (1969), in colour present project results. 

Genis5000 v05

Genís k5000 v0

Genis50v05

Genis k50 v0

𝜈𝑆 = 0,5 ; 𝐾 = 5000 

𝜈𝑆 = 0 ; 𝐾 = 5000 

𝜈𝑆 = 0,5 ; 𝐾 = 50 

𝜈𝑆 = 0 ; 𝐾 = 50 

 



42 
 

4.1.2 Horizontal load free head pile 

For subsequent figures regarding horizontal behaviour, the soil elastic modulus is defined 

as: 

𝐸𝑆 =
𝐸𝑝𝐼𝑝
𝐿4 𝐾𝑅

 

Where 𝐾𝑅 relates pile and soil stiffnesses. 

 

Figure 17. Adapted from Davis and Poulos (1974), in colour present project results. 

 

The resulting bending moment for a pile subjected to a horizontal force H at its head. 

 

Figure 18. Adapted from Davis and Poulos (1974), in colour present project results. 

Kr1
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Kre10-4
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𝐾 = 10−4 

𝐾 = 1 

 

 

𝐾𝑅 = 10−4 

𝐾𝑅 = 1 
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4.1.3 Horizontal load fixed head pile 

 

Figure 19. Adapted from Davis and Poulos (1974), in colour present project results. 

 

The resulting bending moment: 

 

Figure 20. Adapted from Davis and Poulos (1974), in colour present project results. 
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4.2 PLAXIS GROUP PILE TEST 

Continuing with the validation of this project code, a 9 pile group with applied external 

forces will be modelled in a commercial geotechnical software, PLAXIS. Two different 

analysis will be carried out, firstly, one with external horizontal loads applied at the top, 

and secondly, a vertical analysis with external vertical loads, so as to see the responses in 

each direction. 

The most relevant information used in this section is gathered in Table 1. 

Table 1. Used soil and piles parameters. 

Piles Value 

Length (m) 20 

Diameter (m) 1.65 

Spacing (m) 4 

Young modulus (kN/m2) 3·107 

Number of piles 9 

Vertical load (kN/pile) 3000 

Horizontal load (kN/pile) 3000 

Soil Value 

Elastic modulus (kN/m2) 100000 

Poisson ratio 0,5 

 

To configure the problem in PLAXIS, a borehole is defined with the corresponding 

properties in Table 1. The size of the soil mesh is a cube that spans 100 m wide and 50 m 

in depth. The software requires to input some soil properties, as defined in Table 1. As for 

structures, the only ones are the embedded beams used to simulate the piles. 

The code of this project will model the group of piles connected via a rigid pile cap, this 

means that it constraints horizontal displacements to be equal for every pile head. 

Moreover the vertical displacements at the pile heads must be coplanar. To account for 

this in PLAXIS, a squared surface is generated containing every pile cap, this can later be 

transformed into a plate with concrete properties similar to those of the piles. Finally, the 

piles must have the rigid cap option selected. It is important to highlight that PLAXIS does 
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not calculate for any Poisson ratio of 0,5, and recommends inserting ratio values below 

0,4, this will be relevant in later sections. 

4.2.1 Horizontal analysis 

Figure 22 shows piles displacements calculated by PLAXIS (dashed) and by the model 

developed for this project (continuous line). It can be easily understood from Figure 22 

that both models well capture the effect of the pile cap. All the pile heads present, at the 

top, an exactly equal horizontal displacement, naturally differing downwards. There is 

good correspondence between the two models. 
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D
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Figure 22. Results by PLAXIS (dashed) and this project (continuous) for horizontal displacement at different piles due 
to a 2000 kN per pile vertical load. 

Figure 21. PLAXIS 3D representation 
of a piled group with applied 
horizontal load at the head (soil 
mesh not visible). 
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4.2.2 Vertical analysis 

The analysis is done with the specified values above. Below, a 3D representation extracted 

from PLAXIS. Results shown in this section represent settlements as negative, unlike for 

the rest of the figures over the project, as stated in section 2.3. Likewise in the horizontal 

direction, both models capture the effect of the cap, in this case all the pile heads present  

the same settlement, hence inferring that they are in an horizontal plane. There is 

acceptable correspondence. 
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Figure 24. Results by PLAXIS (dashed) and this project (continuous) for vertical displacement at different piles 
due to a vertical 2000 kN per pile. 

Figure 23. PLAXIS 3D representation of a piled 
group with applied horizontal load at the head 
(soil mesh not visible). 
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5 SENSITIVITY ANALYSIS 

In the following section, once the code is verified, it is time to study problems of interest 

with soil volume losses. Firstly, a sensitivity analysis will be carried out for different pile-

group configurations to see their behaviour upon a point volume loss. Secondly, an 

advancing tunnel will be simulated in order to study the tunnel-piles interaction as the 

tunnel progresses, and how it varies for different areal loss ratios. 

5.1 PILE-GROUP RESPONSE TO A POINT SOIL VOLUME LOSS 

5.1.1 Influence of pile length and diameter 

For this section, various tests are carried out so as to compare a 9 pile group for varying 

diameters and lengths undergoing the effects of a nearby point volume loss, Figure 25 

depicts the geometry of problem. 

Combinations are for 15, 20, 25 and 30 m pile lengths; 0,5, 1 and 1,5 m diameters. For all the 

cases, the parameters gathered in the following table remain constant.  

Table 2. Piles, soil and volume loss parameters used in this section. 

Piles Value 

Number of piles 9 

Pile cap Rigid 

Young modulus (kN/m2) 3·107 

Spacing (m) 4 

Vertical load (kN/pile) 0 

Horizontal load (kN/pile) 0 

Soil Value 

Elastic modulus (kN/m2) 100000 

Poisson ratio 0,5 

Point volume loss Value 

Volume (m3) 0,5 

  

Since the only source of distress is the point volume loss, the nearest piles are likely to be 

the most affected, i.e. 1, 4 and 7 (for pile labelling see Figure 25 and thumbnails next to 
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plots). For the sake of simplicity, figures in this section show results for piles 4 and 7. An 

assumption can be formulated beforehand, that the farther the piles, the less 

compromised they will be, therefore the plots show two of the closest piles, hence the 

most affected once. This can be corroborated with the following plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X direction  

Right to each horizontal displacements plot one can see the corresponding bending 

moment. As one could recognise beforehand, since the sink point is located at 𝑥 = 0, 

horizontal X displacements for piles 4, 5 and 6 should be zero, piles 7, 8 and 9 should be 

slightly deflected towards X positive direction and 1, 2 and 3 in the opposite direction. 

Figure 25. Plant view of a 9 piled-raft foundation affected by a nearby point volume loss. 

X 

Y 

Y 

Z 
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A remark is made in how piles shorter than the depth of the point loss present the slightest 

of the displacements, whereas the 20 m length pile (which coincides with the depth of the 

sink point) is the most affected. 

For piles larger than 20 m, the broadest the diameters, the least deflection they take due 

to its higher inertia, at the expenses of a larger bending moment.  

Notice how the only visible deflected profiles correspond to pile 7, pile 4 behaves as 

expected and the results are no movement at all, hence no bending moment, since it is 

horizontally aligned with the sink point. 

 

 

 

Figure 26. Deflection in X coordinate (left plots) along corresponding bending moment (right plots) for different 
pile lengths and diameters, calculated with the MATLAB code developed in this project. 
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Y direction  

Again, piles 4 and 7 are depicted. In this direction, the most compromised pile is 4, the 

reason being that pile 7 is located farther off. The rest of the piles are deformed similarly, 

albeit less intensely owing to a farther location. Observe that the difference between both 

piles grows as the length increases. 

Notice that displacements are similar for increasing diameters, however, the bending 

moments do vary significantly. Likewise in the X direction, the higher the dimeter, the 

higher the inertia, thus bigger bending moment. So, upon the choice, a smaller diameter 

would be the least expensive option regarding the small bending moment it is subjected 

to, provided an hypothetical case where the only area of interest was this particular lateral 

response. 

The maximum bending moment occurs owing to the deflection of the pile at the sink point 

depth. Observe the presence of a bending moment at the head of the piles (𝑧 = 0), this is 

Figure 27. Deflection in X coordinate (left plots) along corresponding bending moment (right plots) for different 
pile lengths and diameters, calculated with the MATLAB code developed in this project. 
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proof of the fixing moment due to the pile cap. As it as well happened in the X direction, 

the moments at the tip of the piles are zero, corroborating the expected behaviour imposed 

in the formulation of the model. 

 

 Figure 28. Deflection in Y coordinate (left plots) along corresponding bending moment (right plots) for different 
pile lengths and diameters, calculated with the MATLAB code developed in this project. 
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Z direction  

For this comparison piles 4 and 5 will be used. Since coordinate Z is positive downwards, 

settlement has positive values, as can be seen in subsequent figures. As stated in section 

2.3, axial compression is represented as positive forces. 

A remark is made in how pile 4, closest to the point volume loss, behaves: for lengths that 

fall above the depth of the point sink, the vertical displacement increases with z, meaning 

that pile 4 is elongating, hence the tension (negative axial force) seen in the corresponding 

plot. However, pile 5, farther off in the second row, is compressed, and it appears that the 

rest of the pile-group is supporting the first row, as if these were hanging from the pile 

cap. Provided all the piles are located above the point, all experience an exclusive 

downward displacements. The difference between the intensity of the displacements 

creates a differential settlement that results in this situation, also being coherent with the 

fact that there is a rigid pile cap and that there is an interaction between them. 

Figure 29. Deflection in Y coordinate (left plots) along corresponding bending moment (right plots) for 
different pile lengths and diameters, calculated with the MATLAB code developed in this project. 
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For longer piles, one can see that around the depth where the sink point is located, axial 

force increases significantly, this is due to the fact that a sink point (as described by 

Sagaseta 1987) produces downwards soil movements above the point and upwards 

movements for the soil below that point, this is clearly visible for piles of 30 m length. 

Also in terms of the piles length, it is clear that for longer piles the maximum axial force 

increases. Perhaps owing to a larger area where the soil introduces shear stresses. 

On the other hand, boarder diameters translate into smaller settlements, as expected, 

owing to an increase of skin and base area, hence more subsurface load taken into account 

within the Mindlin’s factors.  

To summarise, this section has shown that closer piles (to the source of soil loss) tend to 

be more affected and that there is a direct proportionality, and how the soil moves due to 

a point volume loss. 

Figure 30. Displacements in Z coordinate (left plots) along corresponding axial force (right plots) for different 
pile lengths and diameters, calculated with the MATLAB code developed in this project. 
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Figure 31. Displacements in Z coordinate (left plots) along corresponding axial force (right plots) for different pile 
lengths and diameters, calculated with the MATLAB code developed in this project. 
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5.2 ADVANCING TUNNEL 

The aim of the current section is to simulate an advancing tunnel and to study the 

response of a 9 pile group for two different tunnel areal loss ratios, the geometry in both 

simulations remains the same. A sketch of the problem geometry shows that there is a 4 

m gap between the outermost part of the tunnel and the closest pile axis. The group of 

piles are connected via a rigid pile cap. 

 

Figure 32. Plant and vertical views of the adjacent tunnel and the 9 piled-raft foundation. The tunnel starts at -
50 and ends at 50 m along X direction. 

 

Table 3 and  

Table 4 gather the values that would need to be input in this project code. 

Table 3. Piles, soil and tunnel relevant parameters used for the current simulation. 

Piles Value 

Length (m) 25 

Diameter (m) 1 

Young modulus (kN/m2) 3·107 

Number of piles 9 

Z 

Y 

Y 

X 
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Soil Value 

Elastic modulus (kN/m2) 50000 

Poisson modulus 0,3 

Tunnel Value 

Tunnel areal loss (%) 1  

Tunnel initial diameter (m) 10 

Tunnel centreline depth (m) 20 

 

Table 4. Piles location of the 9 piled-raft for the problem in this section. 

Group X Y 

Pile 1 -4 9 

Pile 2 -4 13 

Pile 3 -4 17 

Pile 4 0 9 

Pile 5 0 13 

Pile 6 0 17 

Pile 7 4 9 

Pile 8 4 13 

Pile 9 4 17 

 

Tunnel-wise, it will be discretised into 100 segments, its trajectory goes from -100 to 100 m 

in the X direction, spanning 200 m. This choice is a compromise between accuracy and 

computational time. As it is supported by subsequent figures and argued later on, a start 

100 m away from the piles is accurate enough, provided that the farther it is, the less 

influence on the foundation it has and the more insignificant the contribution grows. The 

tunnel will be discretised into 100 parts (2 m long each one), to illustrate this, Figure 33 

shows the meaning of what time steps mean in successive graphs. For instance, a plot that 

represents results for time step 25/100, shows the behaviour when the tunnel has advanced 

50 m, from -100 to -50 m in the X direction. Time step 85/100 infers that the tunnel has 

advanced 170 m, from -100 m to +70 m in the X direction, and so forth.  
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For this particular problem, the associated volume loss will be distributed among 15 points 

for each tunnel segment. In terms of accuracy, more tunnel slices or points are found to 

give similar results at the expenses of an increase in computational time. 

 

 

5.2.1 Effect of tunnel areal loss 

Getting down to the problem itself, it consists of a comparison between the effects of a 

0.5% and 1% tunnel volume loss ratio. Parallelly, a first glance at the general response of 

piles due to a tunnel is cast. Subsequent graphs will show displacements, bending 

moments and axial forces plotted along the vertical profile of the piles for different time 

steps, and a second typology of plot illustrates the varying behaviour of the maximum 

value of some variables of interest (maximum bending moments, maximum axial forces…). 

Lateral response 

Concerning the X direction, while the tunnel is approaching the group of piles these are 

deformed towards the source of the volume loss, in this case, towards negative X direction. 

When then tunnel moves away, piles slowly return to its original position by being 

deformed in the opposite direction, i.e at time step 100/100 the final displacements are 

zero with null bending moment (Figure 34). This is due to the tunnel’s symmetry in the 

YZ plane: for an infinitely long tunnel the final displacements should, theoretically, be 

zero. At time step 1/100, the displacements are also zero (negligible), as a consequence, 

endorsing the hypothesis that the tunnel exerts a very small influence already 100 m away 

from the foundations, and the modelling approximation is sufficiently representative of 

an infinitely long tunnel. 

There is quite a contrast between the maximum deflection of piles 4 and 5. The shielding 

effect of the group of piles, or rather the interaction considered by the Mindlin problem, 

makes pile number 5 (in the centre of the group) to be less affected, whereas outer piles 

seem to receive a greater influence from the tunnel. 

Figure 33. Lateral view of the current problem with its corresponding tunnel discretisations. Samples are 25/100, 
50/100, 80/100 and 100/100, showing the interpretation of time steps. 
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In terms of the areal loss, although similar in shape, it is patented the existing correlation 

between greater displacements and greater ratios. Notice, for instance, the head 

displacements in the X direction for 1% that double those at 0,5%. 

Figure 35, depicts the varying maximum X displacement and bending moment 𝑀𝑌 as the 

tunnel approaches and moves away from the piles. It must be said that these figures 

represent the maximum numbers in absolute value. 

The behaviour in the X direction fulfils the presumed intuitive ideas. The maximum 

displacement in this direction occurs when the tunnel is exactly located horizontally with 

the pile in question, thus the recognisable peaks in Figure 35. In a similar way, the 

maximum bending moment also tops when the tunnel is at the X location of the 

corresponding pile. It appears that in every displacement curve there is a change of slope 

about 5 m before the maximum, which is interesting to analyse. In relation to that, a 

remark is made in how there is a lag between the largest maximum displacement and 

bending moment, the latter occurring more or less 8 m before the former. 

 

 

Figure 34. Comparison of displacements in the X coordinate (left plots) along corresponding bending moment 
(right plots) generated by 0,1% and 0,5% areal loss tunnels, calculated with the MATLAB code developed in this 
project. 
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The reason of this marked slope variation is due to the change in the location where this 

takes place within the pile. The idea is that in the first stages of the tunnel excavation, the 

maximum bending moment takes place at the head of the pile (also the maximum 

displacement), when the tunnel gets closer there is more influence around the excavation 

depth (for this particular case 𝑧 = 17,8 𝑚) creating a sort of belly-shaped deflected beam 

(see Figure 36). At that point, the maximum bending moment also takes place at 𝑧 =

17,8 𝑚.  

Take for instance pile number 1 for 1% tunnel volume loss ratio (Figure 35 in purple). There 

is a maximum at around 𝑥 = −14 𝑚 (time step 45/100 in Figure 36) happening at the head. 

When the tunnel keeps approaching the pile (time step 50/100 in Figure 36), the maximum 

deflection does indeed increase in contrast with the decreasing maximum bending 

moment. When this occurs, the head gains in verticality, reducing the bending moment 

at the cap while the maximum now occurs at the tunnel depth (time step 50/100 Figure 

36), much smaller than before. 

Figure 35. Variation of the maximum lateral X deflection and corresponding bending moment as a tunnel is 
advancing (both in absolute value). Comparison for 0,5 and 1% areal loss ratio, calculated with the MATLAB 
code developed in this project. 
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Having seen this and continuing with pile 1 as an example, it is easy to understand the dip 

in bending moment when the tunnel is around 𝑥 = 0 𝑚 which is due to the verticality the 

pile presents at that point. Afterwards, the maximum bending moment increases again 

until around 𝑥 = 18 𝑚, once more owing to a maximum bending moment taking place at 

the head (time step 59/100 in cyan, Figure 36). 

In conclusion, throughout this process there are two critical parts in every pile, the head 

and at the depth halfway through the tunnel crown and centreline axis, in this case 𝑧 =

17,8 𝑚. Let us also remark that in general, the maximum bending moment ever at that 

depth (𝑧 = 17,8 𝑚) is much smaller than that at the head. 

 

Figure 36. Displacements and corresponding bending moment for relevant time steps, calculated with the 
MATLAB code developed in this project. 

 

Coming to the response in the Y direction, the differences between the X direction analysis 

emerge towards the last half of the tunnel excavation. In this case, piles are always 

influenced towards negative Y in contrast with the changing direction as for the X 

response.  
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It is clever to realise again how pile 5 is less affected than the rest. In general, piles are to 

remain unchanged once the tunnel has passed, then the critical parts would be the head 

and at 𝑧 = 17,8 𝑚, where both present the largest bending moments. Therefore, it is 

crucial to analyse these results against the resistance of the piles, because they will remain 

like this for the rest of their lifespan. 

In Figure 38 it is clearly seen that most of the displacement is gained when the tunnel is 

within 20 m from the piles. 

If one takes a close look, there is a small dip in 𝑀𝑋 just before the tunnel meets the pile. 

Again, this owes to a change in the location of the most affected part. Similar to what 

happens in the X direction, if the maximum bending moment at the 100/100 takes place at 

17,8 m of depth, before that dip, it occurs at the head of the piles, check Figure 37. 

 

 

 

Figure 37.Comparison of displacements in the Y coordinate (left plots) along corresponding bending moment 
(right plots) generated by 0,1% and 0,5% areal loss tunnel, calculated with the MATLAB code developed in this 
project. 
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Vertical response 

Likewise, the vertical displacements reflect the differences between the 0,5% and 1% ratios 

as both horizontal analysis have demonstrated. The greater the ratio, the greater the 

settlement and consequent axial forces undergone.  

In the following figure (Figure 39), piles 4 and 5 are represented showing that due to the 

interaction between the group, number 5 being at the centre surrounded by 8 other piles 

it presents half the maximum axial force. 

 

Figure 38. Variation of the maximum lateral X deflection and corresponding bending moment as a tunnel is 
advancing. Comparison for 0,5 and 1% areal loss ratio, calculated with the MATLAB code developed in this 
project. 
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Timestep-wise, the settlement and axial force, gradually build up, especially when the 

tunnel is close to the piles. The maximum axial force soon stabilises: 20 m after the tunnel 

has passed (𝑥 = 10 𝑚 in Figure 40), showing no further changes. As it was commented 

earlier, pile 5 compared to the rest appears to have the least settlement. Moreover, pile 4 

compared to pile 1 also has smaller maximum axial force. This will remain a constant for 

any squared group of piles (9, 16…), further analysis in section 6.1.  

In Figure 39 note how the maximum compression takes place at about 𝑧 = 17,8 𝑚. This is 

not coincidental with what happened in the horizontal directions. In terms of the vertical 

stresses, Figure 41 confirms what could be a first assumption and was argued in section 5.1: 

the soil movements induced by the tunnel create downwards shear stresses from the top 

Figure 39. Comparison of displacements in the Z coordinate (left plots) along corresponding bending moment 
(right plots) generated by 0,1% and 0,5% areal loss tunnels, calculated with the MATLAB code developed in this 
project. 
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to 𝑧 = 17,8 𝑚 and upward lift below that point, in the plot negative and positive 

respectively.  

In Figure 41, a drastic increase at the tip of the pile stands out, this represents the load at 

the base, which obviously is completely different from the shaft stress. The chosen time 

steps in Figure 41 is irrelevant, insofar the most important fact to grasp in this lines is the 

general behaviour of the said loads. Besides, the regularity derived from Figure 39 and 

Figure 40 implies that the vertical shear stress the pile is subjected to, would only increase 

with time maintaining the same shape of the load distribution law.   

 

 

 

 

Figure 40. Variation of the maximum lateral X deflection and corresponding bending moment as a tunnel is 
advancing. Comparison for 0,5 and 1% areal loss ratio, calculated with the MATLAB code developed in this 
project. 
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Finally, to justify the choice of the 

length of the advancing tunnel (200 m), 

it has been made clear from figures 35, 

38 and 40 that the maximum responses 

are already stabilised when the tunnel 

crosses the 100 m mark. Even if a longer 

excavation is preferred, the results 

would not significantly change.  

 

Figure 41. Vertical shear stress along the piles of interest, 
for key some steps and 1% tunnel areal loss ratio, 
calculated with the MATLAB code developed in this 
project. 
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6 PROBLEMS OF INTEREST 

After studying the tunnel-pile interaction, this chapter will go through two different case 

studies so as to showcase the applicability of the developed code. In the first place, an 

advancing tunnel is again calculated, then compared with the commercial software 

PLAXIS and finally the effect of applying compensation grouting is simulated. In the 

second place, based on the work by Ledesma and Alonso (2015), the Sagrada Família pile 

wall, which was executed on occasion of the approaching Spanish high velocity railway 

tunnel, will be studied. 

6.1 ADVANCING TUNNEL 

Similar to what has been simulated in section 5.2, the following problem varies in that 

there is an external vertical load, which could well represent the weight of a building. In 

fact, the geometry is the same as the previous problem. Below, the specifications are 

recalled in the form of Figure 42, Table 5 and Table 6. It is important to highlight that, as 

depicted below, the group of piles are connected via a rigid pile cap (a pile cap as defined 

in section 2.4). 

 

Figure 42. Plant and vertical views of the adjacent tunnel and the 9 piled-raft foundation. The tunnel starts at -
50 and ends at 50 m along X direction. 

Z 

Y 

Y 

X 
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Table 5. Piles, soil and tunnel relevant parameters used for the current simulation. 

Piles Value 

Length (m) 25 

Diameter (m) 1 

Young modulus (kN/m2) 3·107 

Number of piles 9 

Vertical load per pile (kN) 2000 

Soil Value 

Elastic modulus (kN/m2) 50000 

Poisson modulus 0,5 

Tunnel Value 

Tunnel areal loss (%) 1  

Tunnel initial diameter (m) 10 

Tunnel centreline depth (m) 20 

 

Table 6. Piles location at the 9 piled-raft. 

Group X Y 

Pile 1 -4 9 

Pile 2 -4 13 

Pile 3 -4 17 

Pile 4 0 9 

Pile 5 0 13 

Pile 6 0 17 

Pile 7 4 9 

Pile 8 4 13 

Pile 9 4 17 

 

Upon this occasion, the pile group is bearing a total 18000 kN of vertical force, hence 2000 

kN per pile. 
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Again, as in section 5.2, the tunnel is discretised into 100 segments, its trajectory goes from 

-100 to 100 m in the X direction, spanning 200 m. Figure 43 has been coloured accordingly 

with the plots in the following pages. 

The associated volume loss will be distributed among 15 points for each tunnel segment.  

 

Figure 43. Lateral view of the tunnel and the pile group, depicted in blue, orange, yellow, magenta and green the 
represented time steps in subsequent plots. 

 

Lateral response 

Given that the structure of the problem is exactly the same as the 1% tunnel areal loss ratio 

problem, described in the sensitivity analysis (section 5.2.1), one can expect beforehand 

that these results must be identical. Bear in mind that the analysis in each direction is 

uncoupled, therefore, the fact that there is vertical load should not alter the lateral 

behaviour. The following figures prove the robustness of the code by supporting this 

previous assumption. 
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As it is expected from previous knowledge, there are two critical parts of a pile where 

maximum bending moment occurs, the head and that at the tunnel’s depth, again 17,8 m. 

It is paramount to supervise the maximum bending moment occurring at the head, since 

it puts at risk the stability of the structure, given the hypothetical scenario of head 

detachment. At that point the pile would become worthless, by not contributing to the 

transmission of the superstructure load. This is represented below. Note how 𝑀𝑌 varies 

from negative to positive, corresponding to before and after the tunnel overcomes the pile 

in question. From Figure 46 it can be concluded that for closer piles (to the tunnel) 𝑀𝑋 is 

far more relevant at the end of the tunnel excavation than 𝑀𝑌, although the latter must 

not be dismissed. On the contrary, for farther rows of piles, for instance piles 5 and 6, the 

temporal nature of 𝑀𝑋 (it diminishes when the tunnel is completed) must not be 

overlooked, since it represents the maximum bending moment these piles experience, 𝑀𝑌 

remains small. 

Figure 44. Displacements in X coordinate (left plots) along corresponding bending moment (right plots) 
generated by a tunnel excavation represented for different time steps, calculated with the MATLAB code 
developed in this project. 
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Figure 46. Varying 𝑀𝑌 (above) and 𝑀𝑋 (below) at the piles head as a tunnel excavation passes by, calculated 
with the MATLAB code developed in this project. 

Figure 45. Displacements in Y coordinate (left plots) along corresponding bending moment (right plots) 
generated by a tunnel excavation represented for different time steps, calculated with the MATLAB code 
developed in this project. 
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Vertical response 

The vertical response is similar to that in the previous section, albeit not identical since 

there are external forces. This fact is useful to provide more insight about the behaviour 

of a group of piles. These are now loaded, hence producing greater settlement. Comparing 

vertical results from section 5.2 (Figure 39) and this section (Figure 47) the maximum 

settlement after the tunnel is gone, at time step 100/100, increases from about 5 to 15 mm. 

Consequently, the contribution of the loading translates in an additional 10 mm of 

settlement.  

Focusing in the axial force diagrams, the results for the head (where the loading is applied) 

are around 2000 kN. This is coherent insofar as the applied load was exactly 2000 kN per 

pile. However, pile 5 presents a far smaller value around 1500 kN, owing to the presence of 

a pile cap and the shielding effect of neighbouring piles. 

 

 
Figure 47. Displacements in Z coordinate (left plots) along corresponding axial force (right plots) generated by 
a tunnel excavation represented for different time steps, calculated with the MATLAB code developed in this 
project. 
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To show more insight in how the total load is distributed among piles, Figure 48 illustrates 

the axial force both at the head (above) and where the maximum occurs, at 𝑧 = 17,8 𝑚 

(below).  

There is a general rule of thumb for a loaded pile group. Imagine the said group without 

the presence of a nearby tunnel, the beginning (𝑥 = −100 𝑚) of Figure 48 well represents 

the said situation, at that point the tunnel influence is imperceptible. Keeping in mind 

how the piles are labelled above, generally, the corner piles 1, 3, 7 and 9 absorb the greatest 

amount of external load coming from the superstructure. The side piles 2, 4, 6 and 8 are 

the next in order, whereas pile 5, which is completely surrounded by the rest of the piles 

presents the smallest value. This is due to both the interaction between piles, namely the 

shielding effect, and most importantly the presence of a rigid pile cap. The general lines of 

this rule of thumb is maintained throughout the whole tunnel excavation, with some 

nuances. For instance, note how pile 5 increases its head axial force (Figure 48), the reason 

it gains in compression is due to a growing shaft shear stress at a certain depth, provoked 

by the soil movements and taken into account by means of the Mindlin factors. This is 

purely due to a direct drag force that does not go through the pile cap, therefore it loses 

the effect of redistribution among the rest of the piles. 

In the lower graph in Figure 48, the aforementioned rule of thumb is clearly altered. At 

𝑥 = 100 𝑚: the closest piles 1, 4 and 7 are subjected to the greatest compression; piles 2, 5 

and 8 (second closest row) form the second most affected group, although pile 5 is less 

influenced; the third group is a bit below the second, formed by piles 3, 6 and 9 (third 

row). Observe how they are in order of closest rows. The reason of this new results is 

obviously due to the presence of a tunnel, whose soil movements are greater for closer 

locations. Therefore, the basic idea changes so far as the relevant factor becomes the 

distance to the tunnel. 

In a nutshell, it is important to comprehend and distinguish the two sources of the 

difference in maximum compression. On the one hand, the proximity to the tunnel, on 

the other hand the interaction between piles. 
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Figure 48. Varying head axial force (above) and axial force at z=17,8 m (below) as a tunnel excavation passes by 
calculated with the MATLAB code developed in this project. Notice, they are always subjected to compression 
(positive axial force).  
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6.1.1 PLAXIS comparison 

The same problem is modelled and analysed in PLAXIS. For the sake of simplicity, only 

the last step is compared, i.e. when the tunnel is already 100 m away.  

The tunnel has been modelled following the next steps: 

1. In the structures screen, click create tunnel. 

2. In the cross section box define the tunnel cross section. 

3. In the properties box select the perimetric line defining the tunnel cross section 

and add a plate. 

4. Do as step 3 but add a negative interface. 

5. Do as step 3 but add a surface contraction and  insert 𝐶𝑟𝑒𝑓 = 0,99% 

 

Figure 49. Sketch of PLAXIS interpretation of a volume loss due to a tunnel. 

 

Figure 49 shows how PLAXIS interprets volume loss generated by a tunnel. Using notation 

from section 2.7, the new parameter 𝐶𝑟𝑒𝑓 is a percentage that relates initial and final areas. 

Knowing that in this project: 

𝜀0 =
𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐴𝑓𝑖𝑛𝑎𝑙

𝐴𝑓𝑖𝑛𝑎𝑙
=
𝜋𝑟0
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𝜋𝑟1
2 =

𝑟0
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𝑟1
2 − 1 

𝑟0 = (𝑟1
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1/2
 

For PLAXIS: 

𝜋 · 𝑟0
2 · 𝐶𝑟𝑒𝑓 = 𝜋𝑟1

2 

𝐶𝑟𝑒𝑓 =
𝑟1
2

𝑟0
2 

𝐶𝑟𝑒𝑓 =
𝑟1
2

(𝑟1
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=
1

𝜀0 + 1
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In the particular case of this simulation: 

𝐶𝑟𝑒𝑓 =
1

1
100

+ 1
= 0,99 % 

Which confirms what PLAXIS states in its Manuals that for small values 𝜀0 ≅ 𝐶𝑟𝑒𝑓 

The soil model is a cube 200 m of side and 100 m of depth. Moreover, like it was introduced 

in the MATLAB code developed in this project, the tunnel spans 200 m (from 𝑥 = −100 𝑚 

to 𝑥 = 100 𝑚). 

 

 

 

 

 

 

Figure 50. 3D representation of the PLAXIS model. On the left hand side the deformed mesh, on the right hand 
side a view of the structural elements: tunnel and group of piles. Extracted from the OUTPUT PLAXIS mode. 

Figure 51. Front (left) and plant (right) view of the PLAXIS model extracted from the OUTPUT PLAXIS mode. 
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Horizontal response 

As for the horizontal X displacements, these are zero at the last step as it has been 

extensively proven earlier, the following figure shows the comparison for Y displacements. 

These results present an acceptable correspondence. 

 

Figure 52. Horizontal displacements at time step 100/100 calculated with the MATLAB code developed in this 
project (continuous lines) and PLAXIS (dashed lines). 

 

Vertical response 

In this comparison, it is clear that piles do not present the same settlement at the cap, this 

is due to the fact that they are forming an inclined plane, not a horizontal one. Results 

provided by this project code: piles 1, 4 and 7 present the same settlement, 14,5 mm; piles 

2, 5 and 8 also present the same settlement, 13,8 mm; so do piles 3, 6 and 9 with 13 mm. 

However, the plane formed by both PLAXIS and this project is not the same, the former 

being a bit more tilted. Figure 54 may help in further comprehending the previous results. 
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Figure 53. Vertical displacements at time step 100/100 calculated with the MATLAB code developed in this project 
(continuous lines) and PLAXIS (dashed lines). 

 

It is important to bear in mind 

throughout this project, that the 

elemental theory for soil movements 

from Sagaseta is constraint to 

incompressible soils. Whereas PLAXIS 

uses a FEM model only being able to 

accept a maximum 0,4 Poisson ratio as 

input. Moreover, the sheer nature of 

the FEM model taking into account the 

physical presence of piles and a tunnel 

is in contrast with the uncoupled 

approach of the formulae used in this 

project. 

In view of the following comparison, the settlement curves resemble, although at a certain 

depth, the vertical displacements at the location of the piles (𝑥𝜖[9,17]) is larger for PLAXIS 

than for this project. 
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Figure 54. Sketch of settlement between PLAXIS results 
(dashed  red) and this project results (continuous black), not 
to scale. 
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Figure 55. Vertical displacements profiles at surface (blue) and 15 m of depth (orange) calculated with the 
MATLAB code developed in this project (continuous lines) and PLAXIS (dashed lines). 

 

As for the horizontal displacements, the boundary rigidity effect in PLAXIS comes into 

action with more relevance, at coordinates 𝑥 = −100 𝑚 and 𝑥 = 100 𝑚 the displacements 

are made zero. Nevertheless, both models provide the same results for the central region 

(between -50 and 50).  

At the group of piles location, just after 𝑥 = 13 𝑚, PLAXIS tends to present more lateral 

displacements, also influenced by its taking into account the physical presence of the piles. 

Which is coherent with results in Figure 53 were the PLAXIS results at 𝑧 = 15 𝑚 tend to 

be larger than those for this dissertation code. On the contrary, the situation for the first 

row of piles is reversed, since at 𝑥 = 9 𝑚 the MATLAB code results are bigger. The 

remarkable peaks at 𝑧 = 15 𝑚 that take place close to the centre (𝑥 = 0 𝑚 ), are due to the 

proximity to the tunnel, whose crown is actually at those coordinates. However, on the 

whole, both models do present symmetric horizontal displacements, i.e. as much positive 

as negative movements.  

Therefore, it is important to realise the increase in discrepancy between PLAXIS and the 

MATLAB code, is attributable to a different calculation approach. It might as well be due 

to the sum of several differences: the taking into account the presence of the tunnel in the 
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PLAXIS FEM model, the way of dealing with the interaction between piles, possibly the 

rigidity effect that a mesh implies within close piles and perhaps approximation errors or 

assumptions in the developed MATLAB code that may explain the differences between 

both models in Figure 52 and Figure 53. 

 

Figure 56. Horizontal displacements profiles at surface (blue) and 15 m of depth (orange) calculated with the 
MATLAB code developed in this project (continuous lines) and PLAXIS (dashed lines). 
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6.1.2 Compensation grouting 

One of the applications for what the code could be used for, is to figure out the utility of 

compensation grouting or to work out an efficient injection. Continuing with the problem 

of section 6.2, a compensation grouting injection is added between the tunnel and the 

closest piles (there is a 2 meters gap at each side) as seen in Figure 57. It has been modelled 

as a strip of expanding points, moving parallel to the tunnel, with the following 

characteristics: 

Table 7. Values used for compensation grouting in this section. 

Piles Value 

Start X coordinate (m) -20 

End X coordinate (m) 20 

Y coordinate (m) 7 

Depth, Z coordinate (m) 17,8 

Total volume (m3) 5 

 

 

Figure 57. Vertical and plant view of the problem including a strip of compensation grouting points. In red the 
compensation grouting injection. 
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In fact, there is no apparent previously known good solution, the choice in this section is 

genuinely personal. It all boils down to what the user inputs in the MATLAB code 

developed for this project. With that being said, the results below are just an example of 

the capabilities of the code. In a hypothetical real case scenario, it would all depend on 

what the engineer would be able to refine until a certain configuration would be deemed 

as acceptable so as to ameliorate the at risk foundations. 

Lateral Response 

Below, the final results (time step 100/100) before and after applying the compensation 

grouting injection are represented. In fact, one could expect a priori that these results 

should be zero, which is corroborated in Figure 58. 

Since the worse situation takes place when the tunnel approaches the pile in question, it 

would be wise to see what happens then, approximately at 𝑥 = 0. Especially for piles in the 

first row, provided previous knowledge says these are the more in distress. The maximum 

bending moment at 𝑧 = 17,8 𝑚 diminishes, however, those at the head remain more or 

less the same (Figure 59). 

 

Figure 58. Compensation grouting effects X direction for time step 100/100, calculated with the MATLAB code 
developed in this project. 
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Figure 59. Compensation grouting effects X direction at time step 50/100, calculated with the MATLAB code 
developed in this project. 
 

 

It is interesting to observe the effects in the Y direction. In an orange tone, piles 

displacements at some depth are reduced. At the same time, the bending moment laws 

also ameliorate, especially at its maximum where pile 1 (representing the first row) reduces 

from a maximum of 450 kNm to 3 local maximums of around 200-250 kNm. However, it 

is worth noticing how the fixing moment at the pile head remains the same. On the other 

hand, piles 5 and 6 are less benefited from the compensation grouting. 

It was found that a higher volume injection would result in excessive bending, thus turning 

the other way around by creating an even larger bending moment. Here lies the 

importance of finding a reasonable compensation grouting configuration, somehow by 

means of the trial and error method. 
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Vertical Response 

Concerning the vertical response, there is slightly less settlement, the reason being that 

the vertical load still induces a great portion of the settlement. 

It is quite interesting to see how the maximum axial force indeed decreases. If the aim of 

the compensation grouting was to reduce the settlement, as if to comply with an allowable 

settlement requirement, this configuration would not be optimum. 

Figure 60. Compensation grouting effects Y direction for time step 100/100, calculated with the MATLAB code 
developed in this project. 
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Alternative injection 

If the main objective was to reduce the settlement, one straightforward idea could be that 

of injecting grout right below the group of piles. The current section shows these 

alternative results so as to prove the previous hypothesis and show the capabilities of the 

developed MATLAB code, in spite of the fact that providing a realistic compensation 

grouting is not the main goal of this section.  

Table 8. Alternative compensation grouting characteristics. 

Piles Value 

Start X coordinate (m) -20 

End X coordinate (m) 20 

Y coordinate (m) 13 

Depth, Z coordinate (m) 26 

Total volume (m3) 10 

Figure 61. Compensation grouting effects Z direction for time step 100/100, calculated with the MATLAB code 
developed in this project. 
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The settlement gets indeed reduced considerably more than 5 mm, at the expenses of a 

great compression for the piles right above the strip: 2, 5 and 8. Pile 5 serves as an example 

since it nearly reaches 9000 kN. 

 

Figure 62. Compensation grouting effects Z direction for time step 100/100, calculated with the MATLAB code 
developed in this project. 

 

Given the main objective was to reduce the settlement, it should not be surprising to find 

out there is an increase in the bending moment for some piles. 𝑀𝑌 gets worse for both 

critical stages: 50/100 and 100/100. There is an extreme maximum bending moment 

especially for piles in the middle row (represented by pile 5) of up to 2000 kNm. 

As for the Y direction, it is clear how piles in the first and last row are really influenced by 

the compensation grouting strip especially at the tip. In contrast with the “before” 

scenario, pile 1 moves towards the negative Y and pile 6 moves towards the positive Y. 

Although pile 1 situation is surprisingly enhanced, pile 6 bending moment increases 

significantly, from 50 to a maximum of 500 kNm.  
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As a conclusion, this would not be a realistic compensation grouting injection provided 

their drawbacks, but has demonstrated to achieve the expected goal of drastically reducing 

the settlement. Therefore, this exposes even more the need to find a compromise between 

improved and worsened piles. 

 

 Figure 63. Compensation grouting effects X direction at time step 50/100, calculated with the MATLAB code 
developed in this project. 
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Figure 64. Compensation grouting effects X direction at time step 100/100, calculated with the MATLAB code 
developed in this project. 

 

Figure 65. Compensation grouting effects Y direction for time step 100/100, calculated with the MATLAB code 
developed in this project. 
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6.2 SAGRADA FAMÍLIA PILE WALL 

Another interesting application of the 

developed code is that of analysing the 

behaviour of the piling screen constructed 

to shield the Sagrada Família. 

Measurements confirm the safety of the 

cathedral by only observing a maximum 2 

mm vertical displacement, which can be 

calibrated to a 0,04% tunnel volume loss 

(Ledesma and Alonso, 2015), clearly 

meaning a great execution job of the 

excavation. 

This 2 mm maximum settlement trough has 

been fitted, within this project code, to a 

value of 0,14% volume loss tunnel by an 

iterative approach. We have to consider the 

differences between the two models, to 

understand the variation in these results. 

The calculation for this project was done for 

a greenfield scenario as plotted in Figure 67 

which can be compared to the 

measurements in magenta and blue. The 

effect of the pile wall upon the soil cannot 

be taken into account due to the way the 

developed MATLAB code was originally 

created. Unlike in the Ledesma & Alonso 

article, as can be seen in  Figure 67, where this interaction is indeed considered, note how 

computed results in black do take into account the retaining effect of the wall a drop  in 

settlement is recognisable. 

To simulate the Sagrada Família pile wall problem, a hypothesis is made in order to 

simplify the more than 100 piles executed along 230 m. Only 13 piles are simulated aiming 

to analyse the middle one (number 7), which would be representative of the majority of 

the wall, except for those piles at the ends (which are represented by the rest of the piles: 

Figure 66. Sagrada Família pile wall problem. 

Vertical view 
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1,2,3…). The reason of this simplification is to dismiss farther piles, that become less 

influent with distance, hence redundant.  In this case, a reasonable computational time 

was the limiting factor that arose the formulation of this hypothesis. In order for it to be 

true, one should be able to find convergence in the results. By convergence meaning that 

the final responses (last time step) for the middle piles tend to be equal, either for lateral 

or vertical results. 

 

 

The nature of the set-up is a row or piles whereas it was a squared group for the previous 

cases (sections 6.1 for example), however, the learnt knowledge can similarly be applied 

with some nuances. The lateral deflection behaves as expected. From the variation of the 

maximum bending moments 𝑀𝑌 tops the 300 kNm (Figure 70), whereas 𝑀𝑋 reaches the 

400 kNm, slightly more at the extremes (pile 1). From Figure 68 and Figure 69 the fixing 

moment at the head is relatively small, less than 100 kNm in any time step for both 𝑀𝑌 and 

𝑀𝑋. 

Again the abrupt change in slope around 5 m before the tunnel meets the pile (Figure 70), 

defines the region where the maximum displacement occurs at the head versus that 

occurring at around the tunnel’s depth, in this case 23 m (see Figure 69).  

In what concerns deflection in the Y direction, it is interesting to see how the maximum 

final displacement of pile 1 is slightly bigger than for piles 3, 5 and 7. What is more 

important is the convergence of piles 3, 5 and 7 after the tunnel has passed. Especially piles 

This project 0.14%

Figure 67. Adapted from Ledesma & Alonso (2015). Superposed in blue are the results calculated with this project 
code. 
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5 and 7 that present the exact same results for both displacements and bending moment. 

Consequently, it can be inferred that the interaction behaviour between piles is already 

well taken into account after pile 3. This fact supports the simplification that was assumed 

before, in simulating the whole pile wall with 13 piles.  

On this matter, as for the X direction, the same reasoning applies, despite the fact that the 

last time step is less important given all the piles return to its original position and null 

bending moment for a sufficiently long tunnel. However, what is relevant is that all the 

piles present a maximum bending moment 𝑀𝑌 around 300 kNm when the tunnel meets 

them and a bit over 2 mm of maximum displacement (Figure 70). 

As for the settlement analysis, it provides more insight where one can see how the 

maximum final settlement of pile 3 is slightly above piles 5 and 7, yet these two do converge 

(Figure 73). These last piles vary in no more than 0,015 mm for the settlement analysis. 

Therefore, a minimally realistic pile setup model would be that of at least 9 piles, provided 

that pile number 5 would be representative of the piles in the middle of the wall and the 

rest would correspond to those at the extremes.  

As it would be expected from the experience of tunnel-pile interactions (for example 

section 5.2), the maximum compression takes place a bit above the tunnel centreline, 23 

m down in this case. Observe how the said maximum axial force is bigger at the end piles 

(pile 1) than at pile 7, which is benefited from being surrounding by some piles, 1050 kN 

versus 700 kN, respectively. Finally, the maximum settlement takes place at the head: 0,47 

mm for pile 1 and 0,33 mm for pile 7. Corroborating the article’s conclusion, that the boring 

machine induced so little movements that were almost imperceptible; at the accuracy 

degree of the measuring instruments.  
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Figure 69. Displacements in the Y coordinate (left plots) along corresponding bending moment (right plots) 
generated by a tunnel excavation represented for different time steps, calculated with the MATLAB code 
developed in this project. 

Figure 68. Displacements in the X coordinate (left plots) along corresponding bending moment (right plots) 
generated by a tunnel excavation represented for different time steps, calculated with the MATLAB code 
developed in this project. 



  

95 
 

 

 

 

Figure 70. Variation of the maximum lateral X deflection and corresponding bending moment for the Sagrada 
Família analysis, calculated with the MATLAB code developed in this project. 

Figure 71. Variation of the maximum lateral Y deflection and corresponding bending moment for the 
Sagrada Família analysis, calculated with the MATLAB code developed in this project. 
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Figure 73. Variation of the maximum settlement and corresponding axial force for the Sagrada Família analysis, 
calculated with the MATLAB code developed in this project. 

Figure 72. Displacements in the Z coordinate (left plots) along corresponding bending moment (right plots) 
generated by a tunnel excavation represented for different time steps, calculated with the MATLAB code 
developed in this project. 
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7 CONCLUSIONS 

An operational code has been developed to analyse piled foundations response due to a 

nearby tunnel excavation. Conclusions may be formulated over three areas: firstly in terms 

of the author’s learning process as this dissertation seen as a milestone upon completion 

of his civil engineering studies; secondly, in relation to the project objectives; and thirdly, 

regarding further work. 

Throughout the dissertation, the process of creating a functional code has been the core 

element. Not only in view of the computational engineering-skills side of it, but most 

importantly in relation to the soil mechanics and structural knowledge. The MATLAB 

language has served both as a means and as an end, in learning terms. Good 

comprehension of the presented formulae is evidenced when it is, indeed, manipulated 

and fitted into an algorithm, especially when it has to properly work along with other 

formulation.  

The performance of the developed code is deemed as satisfactory, as it can function for a 

number of different case studies. For instance, greenfield surface displacements, squared 

or asymmetrical piled-groups, pile walls and for a swelling injection of compensation 

grouting. Even more, it could be used to simulate an expanding layer of soil. 

As for the actual tunnel-pile interaction, the basic mechanisms have been thoroughly 

described, such as it is a directly proportional function to the proximity and intensity of 

the ground loss source. The rigidity effect of the pile cap strongly affects the distribution 

of external loads coming from the superstructure, and finally, the shielding effect of a 

group of piles just boils down to the subsurface soil movements due to subsurface forces, 

as in the Mindlin problem (1937). Results have been computed for an advancing tunnel, 

and it has been interesting to analyse the piles behaviour along the tunnel advancement.  

From a safety point of view, conclusions point towards two critical parts in any pile: the 

head and a region around the tunnel centreline axis depth. The most affected parts change 

location, as the tunnel moves in the vicinity of the group of piles. 

The results provided by the MATLAB code are quite good when verified against existing 

software. However, there are some intrinsic limitations in the fundamental elastic theory 

used. For instance, the Sagaseta point ground volume loss formulation is constraint to an 

elastic, undrained, homogeneous, isotropic and incompressible soil. In this case, let us 

remark that the calculations are independent of the soil elastic modulus. The fact that it 
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was developed for an incompressible soil translates that the Poisson ratio must be 0,5, 

which limits the applicability in real case scenarios. In terms of further work and 

enhancement of the MATLAB code, Sagaseta itself discusses (1998) a new formulation 

published in 1996 by A. Verruijt & J.R. Booker under the name of Surface settlements due 

to deformation of a tunnel in an elastic half plane where the Poisson ratio is a variable to 

introduce. Therefore, it would be reasonable to explore and incorporate a 3D formulation 

applicable to the existing MATLAB code. 

In a nutshell, the tunnel-pile interaction study has been proven to be reliably calculated 

with the developed code, that could as well be used as a real first approach tool in some 

geotechnical applications, making clear the effectiveness of simplified semi-analytical 

procedures. 

7.1 CONCLUSIONS ON FURTHER WORK 

Aiming beyond the objectives of the current dissertation, the code is open to further work, 

which may be channelled, for example, towards the refinement of the soil model. For 

instance, to account for different soil strata, thus different elastic modulus. Or just a 

linearly increasing soil modulus, nevertheless, in this regard, the sole fact that the Mindlin 

subsurface force equation is only applicable to a soil with constant modulus, would still 

make the solution an approximation.  

Another area where to enhance the performance of the code, would be in including an 

option to analyse end-bearing piles or even battered piles, Poulos & Davis (1980) provide 

basic theory in relation to that. This dissertation has carried out an analysis for floating 

piles. 

Tunnel-wise, the assumptions taken can be improved by following the precise formulation 

developed by C. González & C. Sagaseta (2001), that accounts for tunnel ovalisation. Along 

the same lines, the tunnel modelling may be expanded by including changes in direction 

or pitch, i.e. a tunnel with trajectory. 

In view of the analysis of the Sagrada Família pile wall, it would be interesting to adapt the 

code so that for any soil line profile, the movements take into account the effect of a pile 

or piles. 

With that being said, the essence of a simplified semi-analytical procedure is to provide a 

first realistic calculation for any problem in question. Therefore, in engineering terms, it 
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would be more interesting to expand the applicability of the developed code rather than 

unbalancing the compromise between computational-costs-results, only for the benefit of 

small refinements in the results. On the other hand, it is indeed relevant to consider the 

limitations of the Sagaseta fundamental theory, as described in the conclusions section, 

and deepen into the improvement of the formulation for any Poisson ratio soil. 
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Annex 1 

 

ANNEX: MATLAB CODE 

Below, the developed routines and subroutines, the different list levels indicate the nested 

degrees of each function. 

1. Main.m 

1.1. Assemble_piles.m 

1.2. V_loss_points.m 

1.2.1. Tunnel_global_coords.m 

1.2.2. Tunnel_local_coord.m 

1.3. Boussinesq.m 

1.4. Sagaseta_3D.m 

1.4.1. Sagaseta_3D_integral.m 

1.5. Horizontal_analysis.m 

1.5.1. Horizontal_assemble_pile_structure.m 

1.5.2. Horionztal_assemble_mindlin.m 

1.5.2.1. Horizontal_mindlin_inpile.m 

1.5.2.2. Horizontal_mindlin_pile2pile.m 

1.6. Vertical_analysis.m 

1.6.1. Vertical_assemble_mindlin.m 

1.6.1.1. Vertical_mindlin_base.m 

1.6.1.2. Vertical_mindlin_shaft.m 

1.6.1.3. Vertical_mindlin_pile2pile.m 

1.6.2. Vertical_pile_cap.m 

1.7. Results_analysis.m 

1.8. Results_plots.m 

2. Compensation_grouting.m 

 

 



  1 clear all; clc; close all;
  2 % File name: Main.m
  3 % Author: Genis Majoral Oller
  4 % Date: 16/7/2018
  5 % For Civil Engineering bachelor's degree dissertation
  6 % Computation of group of piles' displacements and stresses due to a tunnel
  7 % excavation using Boussinesq, Mindlin and Sagaseta theory
  8 
  9                                 tic
 10 %% %------------------------------SOIL-------------------------------%%%
 11 % ----------------------------- INPUT DATA
 12 soil_E=100000; %kN/m2
 13 soil_v=0.5;
 14 soil=[soil_E,soil_v];
 15 
 16 %% %------------------------------PILES-------------------------------%%%
 17 % ----------------------------- INPUT DATA
 18 
 19 piles_num  = 9;                 %number of piles
 20 piles_head_type = 1;            % "0" for free, "1" for casted
 21 piles_length = 20;              %m
 22 piles_dia=1;                    %m
 23 piles_E= 3*10^7;                 %kN/m2
 24 piles_I= pi/4*(piles_dia/2)^4;
 25 num_elem = 50;                  % Number of elements per pile: minimum 10
 26 find_surface=0;                 % Find surface settlement defined by 
 27                                 % surface_pts below, no piles. 1-> YES. 0-> NO
 28 
 29 surface_pts=[zeros(1,num_elem); %1st row is X coordinate 2nd Y coord Z depth
 30              linspace(-100,100,num_elem);
 31              15*ones(1,num_elem)];
 32          
 33 piles_input = [-4 9 0.1;      % Head coords [x,y,z(@ cap)] (m) 1row per pile
 34                 -4 13 0.1;
 35                 -4 17 0.1;
 36                 0 9 0.1;
 37                 0 13 0.1;
 38                 0 17 0.1;
 39                 4 9 0.1;
 40                 4 13 0.1;
 41                 4 17 0.1;];
 42 
 43 
 44     piles_forces_top = [0 0 0 0 0;   
 45                         0 0 0 0 0;
 46                         0 0 0 0 0;
 47                         0 0 0 0 0;
 48                         0 0 0 0 0;
 49                         0 0 0 0 0;
 50                         0 0 0 0 0;
 51                         0 0 0 0 0;
 52                         0 0 0 0 0;];
 53                     
 54  
 55 % units: piles_froces_top=[Fx, Fy, Fz, Mx, My] (in kN)
 56 
 57 surface_forces=[0 0 0 0 0 0 0 0];
 58 
 59 % units: surface_forces=[Fx Fy Fz x1 x2 y1 y2 0/1/2]
 60 % 0 there are no surface forces
 61 % 1 there is surface force
 62 % 2 thre is regtangular surface load defined by corners x1 x2 y1 y2
 63 %--------------------------------------------------------------------------
 64 
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 65 piles=assemble_piles(piles_input,piles_forces_top,piles_num,num_elem,...
 66                                 piles_length,find_surface,surface_pts);
 67 
 68 %% %------------------------------TUNNEL--------------------------------%%%
 69 % ----------------------------- INPUT DATA
 70 
 71 depth=20;                       %meters - depth of tunnel axis
 72 tun_coord=[0,0,depth];          % Coordinates it must be at x=0; y=0;
 73 time_step=1;                   % number of tunnel discretizations 
 74 dia_0=10;                        % Tunnel diameter
 75 V_loss = 1/100;                 % Percentage of areal volume loss: e0
 76 n_points=10;                     % Points in every XS
 77 v=linspace(-50,50,time_step);   % [coord X, coord X,#discretisations] 
 78                                 % tunnel length of action 
 79 
 80 [V_loss_pts]=V_loss_pts(depth,tun_coord,time_step,dia_0,V_loss,n_points,v);
 81 
 82                             time_geom=toc;
 83                             fprintf('Geometry created --> ok!\n')
 84                             fprintf('   Elapsed time: %.1f s \n',time_geom);
 85 
 86 
 87 %% %---------------BOUSSINESQ AND SAGASETA DISPLACEMENTS----------------%%%
 88 % ----------------------------------------------------------------------- %
 89 tic
 90 
 91 soil_bous=boussinesq(piles, num_elem,soil, surface_forces,time_step,piles_num,V_loss_pts);
 92 
 93 if V_loss==0
 94     
 95     soil_sagaseta=zeros(num_elem,4,piles_num,time_step);
 96 else
 97 [soil_sagaseta]=sagaseta_3D(piles,V_loss_pts,...
 98                             time_step); %total soil displacement
 99 end
100 soil_strain=soil_bous+soil_sagaseta;
101 % soil_strain: [num_elem,(x,y,z),piles_num,time_step]
102                             time_soil=toc;
103                             fprintf('Soil displacements computed --> ok!\n')
104                             fprintf('   Elapsed time: %.1f s \n',time_soil);
105 
106 
107 %% %----------------------PILE-GROUP HORIZONTAL "X" AND "Y" PROBLEM----------------------%%%
108 % ----------------------------------------------------------------------- %
109 [a,b]=size(piles_forces_top);
110 ppp=zeros(a,b,length(soil_strain(1,1,1,:)));  
111 
112 coord=1; %x direction
113 tic
114 [Is_global_x,BC_global_x,Ap_global_x,D_global_x,p_global_x,...
115     w_global_x,w_final_x,w_head_x,BC_change_x,ppp,w_dif_x2,...
116     soil_strain_auxx] = horizontal_analysis( piles,soil,piles_dia,...
117             piles_forces_top,piles_E,piles_I,piles_head_type,piles_num,...
118                                 soil_strain,coord,num_elem,time_step,ppp);
119 
120                         time_x=toc;
121                         fprintf('Horizontal X analysis computed --> ok!\n')
122                         fprintf('   Elapsed time: %.1f s \n',time_x);
123 
124 
125 coord=2; %y direction
126 tic
127 [Is_global_y,BC_global_y,Ap_global_y,D_global_y,p_global_y,...
128     w_global_y,w_final_y,w_head_y,BC_change_y,ppp,w_dif_y2,...
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129     soil_strain_auxy] = horizontal_analysis( piles,soil,piles_dia,...
130             piles_forces_top,piles_E,piles_I,piles_head_type,piles_num,...
131                                 soil_strain,coord,num_elem,time_step,ppp);
132 
133                         time_y=toc;
134                         fprintf('Horizontal Y analysis computed --> ok!\n')
135                         fprintf('   Elapsed time: %.1f s \n\n',time_y);
136 
137 %% %----------------------PILE-GROUP VERTICAL "Z" PROBLEM----------------------%%%
138 % ----------------------------------------------------------------------- %
139 tic;
140 [p_global_z,p_global_z2,v_global,v_global2,v_global3,v_final,...
141     D_global_z,Ap_global_z,Is_global_z,BC_z,BC_change_z,u_dif_u,u_dif_o,...
142     ppp,u_head_z,u_mean,Z_head,u_dif_z,soil_strain_auxz]=...
143     vertical_analysis(piles,piles_num,piles_dia,piles_head_type,...
144     piles_length,soil,piles_E,soil_strain,num_elem,piles_forces_top,ppp,find_surface);
145                         time_z=toc;
146                         fprintf('Vertical Z analysis computed --> ok!\n');
147                         fprintf('  Elapsed time: %.1f s \n',time_z);
148 
149 
150 %% %-------------------------RESULTS' ANALYSIS--------------------------%%%
151 % ----------------------------------------------------------------------- %
152 
153 [Mf_final_x,Mf_final_y,Q_global_x,axial_final]=results_analysis(...
154     piles_num,piles_length,piles_dia,piles_I,piles_E,piles_forces_top,...
155     num_elem,w_global_x,w_global_y,v_global3,p_global_z2,time_step,...
156     piles_head_type,ppp,find_surface);
157 
158 %% %-----------------------------PLOTTINGS------------------------------%%%
159 % ----------------------------------------------------------------------- %
160 
161 results_plots(num_elem,piles,w_final_x,w_final_y,v_final,...
162     Mf_final_x,Mf_final_y,axial_final,V_loss_pts,dia_0,find_surface,piles_length,soil_strain_auxz,soil_strain_auxy);
163 
164 %% %----------------------------SAVE WORKSPACE VARIABLES 
165 
166  s_name="sample_name";
167 save(s_name)
168 
169 
170 
171 
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 1 % File name: assemble_piles.m
 2 % Author: Genis Majoral Oller
 3 % Date: 1/3/2018
 4 % For Civil Engineering bachelor's degree dissertation
 5 % Enambling the "piles" matrix containing the elements of each pile
 6 % OUTPUT: piles=size[num_elem,4,piles_num]
 7 function piles=assemble_piles(piles_input,piles_forces_top,piles_num,num_elem,piles_length,find_surface,surface_pts);
 8 
 9 if find_surface==0
10     
11         [rows,waste]=size(piles_input);
12         [rows1, waste1]=size(piles_forces_top);
13 
14         if piles_num==rows && rows==rows1
15 
16         else
17             error('Please check number of piles and piles´ position');
18 
19         end
20 
21         clear rows waste rows1 waste1;
22 
23         piles=zeros(num_elem,3,piles_num); %Prelocating pile global tensor
24 
25         % -------------------------------------------------------------- %
26         %Generating a global pile-group matrix 
27         tic
28 
29         for k=1:piles_num
30 
31     v=linspace(piles_input(k,3),piles_length+piles_input(k,3),num_elem)';
32     vv=linspace(piles_input(k,3)+piles_length/num_elem/2,...
33     piles_length-piles_length/num_elem/2+piles_input(k,3),num_elem)';
34     piles(:,3,k)=v;
35     piles(:,4,k)=vv;
36     piles(:,1,k)=piles_input(k,1);
37     piles(:,2,k)=piles_input(k,2);
38 
39         end
40         clear v;
41 else
42     
43     piles=zeros(num_elem,3); %Prelocating pile's global tensor
44 
45         % --------------------------------------------------------------- %
46         %Generating a global pile-group matrix
47         tic
48 
49         for k=1:num_elem
50 
51             piles(:,3)=surface_pts(3,k)*ones(num_elem,1);
52             piles(:,4)=surface_pts(3,k)*ones(num_elem,1);
53             
54             piles(k,1)=surface_pts(1,k);
55             piles(k,2)=surface_pts(2,k);
56 
57         end
58         clear v;
59 end
60 
61 end
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 1 % File name: V_loss_pts.m
 2 % Author: Genis Majoral Oller
 3 % Date final version: 29/03/2018
 4 % For Civil Engineering bachelor's degree dissertation
 5 % [OUTPUT]: Matrix of Vloss points discretising the tunnel
 6 
 7 function [ V_loss_pts ] = V_loss_pts( depth,tun_coord,time_step,dia_0,...
 8                                                     V_loss,n_points,v )
 9 
10 
11 
12 tunnel_adv_coord = zeros(time_step,3); % tunnel advance coordinates
13 
14 
15 for i=1:time_step
16     if time_step==1
17         tunnel_adv_coord(i,1:3) = [tun_coord(1:3)];
18     else
19         tunnel_adv_coord(i,1:3) = [v(i),tun_coord(2:3)] ;
20     end
21 end
22 
23 clear v i
24 
25 % ----------------------------------------------------------------------- %
26 % Generating the global points' coords containing volume loss (in a matrix)
27 
28 
29 [V_loss_pts]=tunnel_glob_coord(V_loss,dia_0,n_points,tunnel_adv_coord,...
30                                                         time_step,depth);
31 % [V_loss_pts]=["X", "Y", "Z", "dV"] 
32 
33 
34 end
35 
36 
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 1 %File name: tunnel_glob_coord
 2 %Author: Genis Majoral Oller
 3 %Creation date: 29/03/2018
 4 %INPUT: [V_loss, dia_0,control,n_point] - [known loss volume, original diameter,
 5                                     % - depth of tunnel's axis, control variable]
 6 %OUTPUT: [V_loss_pts] - [coordinates of points that contain a loss of volume]
 7 
 8 function [V_loss_pts]=tunnel_glob_coord(V_loss, dia_0,n_points,...
 9                                     tunnel_adv_coord,num_tun,depth)
10 
11 % Creating the local coordinates "Y" and "Z" of the loss points in the
12 % tunnel crossection
13 
14 V_loss_aux=tunnel_local_coord(V_loss, dia_0,n_points);
15 %V_loss_aux=[y,z,dA]
16 
17 % Prelocating the final V_loss_pts matrix
18 
19 V_loss_pts = zeros(n_points,4,num_tun);
20 
21     for i=1:num_tun; %for all different tunnel advancing crossections
22         
23         x=tunnel_adv_coord(i,1)*ones(n_points,1); % X coordinate XS.
24         z=(depth-V_loss_aux(:,2));
25                           
26         if i==1 || i==num_tun
27 
28             if num_tun==1
29                 delta_x=1; %For m3/m
30             else
31                 if i==1
32                     delta_x=(tunnel_adv_coord(i+1)-tunnel_adv_coord(i))/2;
33                 elseif i==num_tun
34                     delta_x=(tunnel_adv_coord(i)-tunnel_adv_coord(i-1))/2;
35                 end
36             end
37 
38         else
39             delta_x=((tunnel_adv_coord(i+1)-tunnel_adv_coord(i)))/2+...
40                     ((tunnel_adv_coord(i)-tunnel_adv_coord(i-1)))/2;
41         end
42  
43                     dV=V_loss_aux(:,3)*(delta_x); 
44                     V_loss_pts(:,:,i)=[x, V_loss_aux(:,1), z, dV];      
45             
46     end
47 
48 end
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 1 %File name: tunnel_local_coord
 2 %Author: Genis Majoral Oller
 3 %Creation date: 29/03/2018
 4 
 5 %INPUT: [V_loss, dia_0,control,n_point] - [known loss volume, original diameter,
 6                                     % - depth of tunnel's axis, control variable]
 7 %OUTPUT: [V_loss_aux] - [coordinates of points that contain a loss of volume]
 8 
 9 function [V_loss_aux]=tunnel_local_coord(V_loss, dia_0,n_points)
10 
11 if n_points==1
12     V_loss_aux=[0,0,V_loss*pi*(dia_0/2)^2];
13 else
14 
15 tram=linspace(0,2*pi,n_points+1);
16     r_ini=sqrt((dia_0/2)^2*(V_loss+1));
17     r_final=dia_0/2;
18     r0=(r_ini-r_final); 
19     fi=-pi/2; % Where the second circle is located (angle)
20     rad=r_ini-r0; %final radius
21     rmed=r0/2;
22     radmed=r_ini-rmed; %Medium radius to colocate sink points
23 
24     c1=@(r0,theta,fi,rad) (r0*cos(theta-fi)+sqrt(r_ini^2-r0^2*sin(theta-fi).^2));
25     cmed=@(rmed,radmed,theta,fi,rad) (rmed*cos(theta-fi)+sqrt(radmed^2-rmed^2*sin(theta-fi).^2));
26     cint=@(r0,theta,fi,rad) 1/2*(0*r0*cos(theta-fi)+sqrt(rad^2-0*r0^2*sin(theta-fi).^2)).^2;
27 
28         for i=1:length(tram);
29             r2(i)=c1(r0,tram(i),fi,rad);
30         end
31         
32         for i=1:length(tram)-1;
33             dA(i)=((pi*(r_ini)^2)/n_points)-integral(@(theta)cint(r0,theta,fi,rad),tram(i),tram(i+1));
34             
35         end
36         A_loss=sum(dA);
37         for i=1:length(tram)-1;
38             dV(i)=dA(i);
39         end
40         
41         % Coordinates of Vloss points
42         tram2=tram+(tram(2)-tram(1))/2;
43         points_theta=tram2(1:length(tram2)-1);
44         
45         for i=1:length(points_theta);
46             r_points(i)=cmed(rmed,radmed,points_theta(i),fi,rad);
47             V_loss_y(i)=r_points(i)*cos(points_theta(i));
48             V_loss_z(i)=r_points(i)*sin(points_theta(i));
49         end
50         
51         V_loss_aux=zeros(length(V_loss_y),3);
52 
53         V_loss_aux(:,1)=V_loss_y(:)'; % 1st column y coord of Vloss point
54         V_loss_aux(:,2)=V_loss_z(:)'; % 2nd column z coord of Vloss point
55 
56         V_loss_aux(:,3)=dV(:); %only area
57 
58 
59 end
60 
61 end
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 1 % File name: boussinesq.m
 2 % Author: Genis Majoral Oller
 3 % Date: 1/8/2018
 4 % For Civil Engineering bachelor's degree dissertation
 5 % Boussinesq displacements due to surface load
 6 
 7 function soil_bous=boussinesq(piles, num_elem, soil, surface_forces,time_step,piles_num,V_loss_pts);
 8 
 9 %% PRELOCATING VARIABLES
10 [aa,bb,c]=size(V_loss_pts);
11 [a,b,k]=size(piles);
12 
13 soil_bous=zeros(a,b,k,c);
14 soil_bous_aux=zeros(a,b,k);
15 
16 %% 
17 Es=soil(1);
18 vs=soil(2);
19 form=surface_forces(8);
20 %local coordinates
21 
22 num_forces=length(surface_forces(:,1));% number of applied loads/forces
23 
24 
25     
26 
27 %%
28 for i_pile=1:piles_num
29 for i_element=1:num_elem
30         for i_forces=1:num_forces
31         
32         %% Actual Boussinesq formulation
33         z=piles(i_element,4,i_pile);
34         R=@(x,y)sqrt(x.^2+y.^2+z^2);
35         
36         
37         
38         Ibous_x=@(x,y)((1+vs)./(2*pi*R(x,y))).*...
39                             (...
40                             1+x.^2./(R(x,y).^2)+...
41                             (1-2*vs)*(R(x,y)./(R(x,y)+z)-...
42                             x.^2./(R(x,y)+z).^2)...
43                                     );
44          Ibous_y=@(x,y)((1+vs)./(2*pi*R(x,y))).*...
45                             (...
46                             1+y.^2./(R(x,y).^2)+...
47                             (1-2*vs)*(R(x,y)./(R(x,y)+z)-...
48                             y.^2./(R(x,y)+z).^2)...
49                                     );
50          Ibous_z=@(x,y)(1+vs)./(2*pi*R(x,y)).*...
51                             (2*(1-vs)+z^2./R(x,y).^2);
52                         
53         %% Depending on the type of force/load
54         if form==0
55             w_bous_x=0;
56             w_bous_y=0;
57             w_bous_z=0;
58             
59         elseif form==1
60                 x=piles(i_element,1,i_pile)-surface_forces(i_forces,4);
61                 y=piles(i_element,2,i_pile)-surface_forces(i_forces,6);
62                 
63                 
64             w_bous_x=surface_forces(i_forces,1)/Es*Ibous_x(x,y);
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65             w_bous_y=surface_forces(i_forces,2)/Es*Ibous_y(x,y);
66             w_bous_z=surface_forces(i_forces,3)/Es*Ibous_z(x,y);
67         elseif form==2
68                 x1=piles(i_element,1,i_pile)-surface_forces(i_forces,4);
69                 x2=piles(i_element,1,i_pile)-surface_forces(i_forces,5);
70                 y1=piles(i_element,2,i_pile)-surface_forces(i_forces,6);
71                 y2=piles(i_element,2,i_pile)-surface_forces(i_forces,7);
72                 
73                 
74             w_bous_x=surface_forces(i_forces,1)/Es*integral2(@(x,y)Ibous_x(x,y),min(x1,x2),max(x1,x2),min(y1,y2),max(y1,y2));
75             w_bous_y=surface_forces(i_forces,2)/Es*integral2(@(x,y)Ibous_y(x,y),min(x1,x2),max(x1,x2),min(y1,y2),max(y1,y2));
76             w_bous_z=surface_forces(i_forces,3)/Es*integral2(@(x,y)Ibous_z(x,y),x1,x2,y1,y2);
77         else
78         end
79                
80         
81         soil_bous_aux(i_element,1,i_pile)=soil_bous_aux(i_element,1,i_pile)+w_bous_x;
82         soil_bous_aux(i_element,2,i_pile)=soil_bous_aux(i_element,2,i_pile)+w_bous_y;
83         soil_bous_aux(i_element,3,i_pile)=soil_bous_aux(i_element,3,i_pile)+w_bous_z;
84         
85         clear w_bous_x w_bous_y w_bous_z
86         end
87 end
88 end
89 
90 
91     
92     %% Finally
93     
94     for i_time=1:time_step
95     soil_bous(:,:,:,i_time)=soil_bous_aux;
96     end
97     
98     
99 end
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 1 %File name: sagaseta_3D
 2 %Author: Genis Majoral Oller
 3 %Creation date: 1/4/2018
 4 %Description: This routine calculates the displacement in 3D for a pile or
 5 %             group of piles for a given point or points, this includes a 
 6 %             tunnel as long as it is discretised in several points.
 7               
 8 %INPUT: [piles, V_loss_pts]->Pile-group matrix
 9 %                            [x,y,z] dim=(N_elem x 3 x N_piles)
10 
11 %                            dV points matrix [x,y,z,dV]
12 %OUTPUT: [piles_sagaseta]->[x_new,y_new,z_new] dim=(N_elem x 3 x N_piles)
13 
14 function [soil_sagaseta_strain]=sagaseta_3D(piles,V_loss_pts,time_step)
15 
16 %% PRELOCATING VARIABLES
17 [aa,bb,c]=size(V_loss_pts);
18 [a,b,k]=size(piles);
19 
20 %piles_sagaseta=piles;
21 soil_sagaseta_strain=zeros(a,b,k,c);
22 
23 
24 %% ADVANCING TUNNEL
25 
26 fprintf('Soil strain calculations start here\n');
27 
28     for i_time=1:time_step % number of tunnel advances 
29         piles_sagaseta=zeros(a,b,k);
30         for i_pile=1:length(piles(1,1,:)) % number of piles
31             tic
32             for i_element=1:length(piles(:,1,1)) % elements on piles
33                 
34                 x_0=piles(i_element,1,i_pile);
35                 y_0=piles(i_element,2,i_pile);
36                 z_0=piles(i_element,3,i_pile);
37                 z_1=piles(i_element,4,i_pile);
38                 piles_sagaseta_x=zeros(1,length(V_loss_pts(:,1,1)));
39                 piles_sagaseta_y=zeros(1,length(V_loss_pts(:,1,1)));
40                 piles_sagaseta_z=zeros(1,length(V_loss_pts(:,1,1)));
41                 
42                 parfor i_point=1:length(V_loss_pts(:,1,1))
43 
44                     % Pile element to volume-loss-point distances
45                     Delta_x=x_0-V_loss_pts(i_point,1,i_time);
46                     Delta_y=y_0-V_loss_pts(i_point,2,i_time);
47                     Delta_z=z_0-V_loss_pts(i_point,3,i_time);
48 
49                     % Point
50                     h= V_loss_pts(i_point,3,i_time);% Coordinate "Z" of the loss-vol-point
51 
52                     rad=sign(V_loss_pts(i_point,4,i_time))*...
53                        (abs(V_loss_pts(i_point,4,i_time))*3/4/pi)^(1/3); %sphere
54 
55                     %% COORDINATE "X" ----------------------------------------------
56                     control_coord=1;% To assign sagaseta_3D_integral a calculation for coord "X"
57                     
58                     [Sx_paved,Sx_free,Sy_paved,Sy_free]=sagaseta_3D_integral...
59                             (Delta_x,Delta_y,Delta_z,rad,h,control_coord);
60                     
61                     piles_sagaseta_x(i_point)=Sx_paved + Sx_free;
62                     
63 
64                     %% COORDINATE "Y" ------------------------------------------------
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65                     
66                     piles_sagaseta_y(i_point)=Sy_paved+ Sy_free;
67 
68                     %% COORDINATE "Z" -------------------------------------------------------
69                     control_coord=3;% To assign sagaseta_3D_integral a calculation for coord "Z"
70                     Delta_z=z_1-V_loss_pts(i_point,3,i_time);%Because for the vertical analysis pile nodes are different
71                     [Sz_paved,Sz_free,S_paved2,S_free2]=sagaseta_3D_integral...
72                             (Delta_x,Delta_y,Delta_z,rad,h,control_coord);
73 
74                     %Final "Z" displacement
75                     piles_sagaseta_z(i_point)=Sz_paved + Sz_free;
76                     
77                     
78                 end
79                 piles_sagaseta(i_element,1,i_pile)=sum(piles_sagaseta_x);
80                 piles_sagaseta(i_element,2,i_pile)=sum(piles_sagaseta_y);
81                 piles_sagaseta(i_element,3,i_pile)=sum(piles_sagaseta_z);
82                 clear piles_sagaseta_x piles_sagaseta_y piles_sagaseta_z
83             end
84             temps=toc;
85             fprintf('        Soil strain of pile %i/%i at time...%i/%i calculated in %.1f s\n',i_pile,k,i_time,c,temps);
86         end
87 
88                 soil_sagaseta_strain(:,:,:,i_time)=piles_sagaseta;
89                 clear piles_sagaseta;
90     end
91 
92 
93 end
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 1 %File name: sagaseta_3D_integral
 2 %Author: Genis Majoral Oller
 3 %Date final version: 1/8/2018
 4 %Description: This routine implements the Sagaseta solution for a sink point
 5 %             to a particular point in space in 3D
 6 %             group of piles for a given point or points. 
 7               
 8 %INPUT: [Delta_x,Delta_y,Delta_z,rad,h,control_coord]
 9 %       
10 %       rad --> radius of vol-loss sphere
11 %       h   --> depth of vol-loss point
12 %       control_coord --> internal variable to decide what coord
13 %       "X,Y,Z" to calculate
14 %       
15 
16 %OUTPUT: [S_paved,S_free]->(in meters)
17 
18 function [S_paved,S_free,S_paved2,S_free2]=sagaseta_3D_integral(Delta_x,Delta_y,Delta_z,rad,h,control_coord)
19 
20 %% Common data
21 
22             z=Delta_z+h;%Returning z to being the original coordinate of the element afected by Vloss
23             x=sqrt(Delta_x^2+Delta_y^2);
24             r1=sqrt(x^2+(z-h)^2);
25             r2=sqrt(x^2+(z+h)^2);
26             r=sqrt(Delta_x^2+Delta_y^2+Delta_z^2);
27             
28             
29  if control_coord == 1 || control_coord == 2       
30 %% For COORDINATES "X" AND "Y" 
31             ra=@(a) ((a-x).^2+z^2).^0.5;
32             rb=@(a) ((a+x).^2+z^2).^0.5;
33             k=@(a) (( 1-(ra(a).^2)./(rb(a).^2) ).^0.5).^2;
34             E=@(a) ellipticE(k(a));% complete elliptic integral of 2nd kind
35             F=@(a) ellipticK(k(a)); % complete elliptic integral of 1st kind
36             IE=@(a)  1+1/2*z^2*( 1./(ra(a).^2)  +  1./(rb(a).^2) ) ;
37             IF=@(a)  -1./(rb(a).^2).*(a.^2+x^2+2*z^2);
38             f_integral = @(a) rb(a).*a.*1./( (h^2+a.^2).^(5/2) ).*( IE(a).*E(a)+IF(a).*F(a) );
39             
40             Sx_free=2/pi*rad^3*h/x*(integral(@(a)f_integral(a),0,inf));
41                                    
42                         
43             
44             S_paved=-rad^3/3*(Delta_x/r1^3-Delta_x/r2^3);
45             S_free=Sx_free*Delta_x/x;
46                 
47             
48                                    
49             S_paved2=-rad^3/3*(Delta_y/r1^3-Delta_y/r2^3);
50             S_free2=Sx_free*Delta_y/x;
51             
52                         
53             
54 elseif control_coord ==3
55 %% For COORDINATE "Z"
56             ra=@(a) ((a-x).^2+z^2).^0.5;
57             rb=@(a) ((a+x).^2+z^2).^0.5;
58             k=@(a) (( 1-(ra(a).^2)./(rb(a).^2) ).^0.5).^2;
59             E=@(a) ellipticE(k(a));
60             F=@(a) ellipticK(k(a));
61 
62             JE=@(a) -1 + 2*(a.*(a-x)).*1./(ra(a).^2);
63 
64             fz_integral = @(a) 1./(rb(a).^2).*a.*1./((h^2+a.^2).^(5/2)).*...
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65                 (JE(a).*E(a)+F(a)) ;
66             
67             
68             Sz_free=2/pi*rad^3*h*z*(integral(@(a)fz_integral(a),0,inf));
69             
70             
71             S_paved=-rad^3/3*((z-h)/r1^3-(z+h)/r2^3);
72             S_free=Sz_free;
73             S_paved2=0;
74             S_free2=0;
75  else 
76     fprintf('Error while calculating sagaseta displacements. Check control_coordinates')
77 end
78 
79 end
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  1 %File name: horizontal_analysis
  2 %Author: Genis Majoral Oller
  3 %Date final version: 25/4/2018
  4 %Description: Horizontal analysis of a group of piles, either free headed
  5 %              or with pile cap
  6 function [Is_global_x,BC_global_x,Ap_global_x,D_global_x,p_global_x,...
  7     w_global_x,w_final,w_head_x,BC_change_x,ppp,w_dif_x2,...
  8     soil_strain_aux] = horizontal_analysis( piles,soil,piles_dia,...
  9     piles_forces_top,piles_E,piles_I,piles_head_type,piles_num,...
 10     soil_strain,coord,num_elem,time_step,ppp)
 11 
 12         [Is_global_x]=horizontal_assemble_mindlin...
 13                                             (piles,soil,piles_dia,coord);
 14         
 15            
 16        if sum(piles_forces_top(:,coord))==0
 17            ppp(:,coord,1)=piles_forces_top(:,coord);
 18        else
 19            for i=1:length(soil_strain(1,1,1,:))
 20             ppp(:,coord,i)=piles_forces_top(:,coord);
 21            end
 22        end
 23         
 24         
 25         for i_pile=1:length(piles(1,1,:))
 26             
 27             iii_0=(i_pile-1)*(num_elem)+1;    %
 28             iii=iii_0+(num_elem)-1;
 29 
 30             Is_global_x_aux=Is_global_x(iii_0:iii,iii_0:iii);
 31             % Assembling the global system of equations for one pile - pile-structure
 32 
 33             [BC_x, Ap_x, D_x]=horizontal_assemble_pile_structure...
 34                 (piles(:,:,i_pile),piles_forces_top(i_pile,:),piles_dia,...
 35                 piles_E,piles_I,piles_head_type,soil);
 36             
 37             ii_0=(i_pile-1)*(length(Ap_x(:,1)))+1;
 38             ii=ii_0+(length(Ap_x(:,1)))-1;
 39 
 40             D_global_x(ii_0:ii,iii_0:iii)=D_x;
 41             Ap_global_x(ii_0:ii,iii_0:iii)= Ap_x;
 42             BC_global_x(ii_0:ii,1)=BC_x;
 43             
 44         end
 45             clear row_end col col_end iii iii_0 ii ii_0
 46         
 47         N=num_elem;
 48 soil_strain_aux=zeros(N*piles_num,length(soil_strain(1,1,1,:)));
 49 w_head_x=zeros(piles_num,length(soil_strain(1,1,1,:)));
 50 
 51 for i_time=1:length(soil_strain(1,1,1,:))
 52 
 53             
 54     for i_pile=1:length(soil_strain(1,1,:,1))
 55         iii_0=(i_pile-1)*(num_elem)+1; 
 56         iii=iii_0+(num_elem)-1;       
 57         for j=1:i_time
 58         soil_strain_aux(iii_0:iii,i_time)=...
 59             soil_strain_aux(iii_0:iii,i_time)+soil_strain(:,coord,i_pile,j);
 60         %coordinate x or y defined by control variable "coord"
 61         end
 62     end
 63 
 64     p_global_x_aux=(Ap_global_x-D_global_x*Is_global_x)\...
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 65         (D_global_x*soil_strain_aux(:,i_time)+BC_global_x);
 66 
 67 
 68     w_global_x(:,i_time)=Is_global_x*p_global_x_aux+...
 69                                             soil_strain_aux(:,i_time);   
 70     p_global_x(:,i_time)=p_global_x_aux;
 71 
 72 
 73             
 74           %% iteration x-dir %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 75 
 76     piles_forces_top=ppp(:,:,i_time);        
 77     dir=coord;
 78     i_step=1;
 79     
 80     for i=1:piles_num
 81         w_head_x(i,i_time)=w_global_x((i-1)*num_elem+1,i_time);
 82     end
 83 
 84     if piles_head_type==0
 85         BC_change_x='No change';%no action
 86         w_dif_x2=0;
 87     else
 88         w_dif_x=max(w_head_x(:,i_time))-min(w_head_x(:,i_time));
 89         w_dif_x2(:,i_time)=w_dif_x;
 90         w_mean=mean(w_head_x(:,i_time));
 91         F_change=zeros(piles_num,1);
 92 
 93         if w_dif_x < -0.00005 || w_dif_x > 0.00005
 94         while w_dif_x < -0.00005 || w_dif_x > 0.00005
 95             BC_change_x=zeros(piles_num*num_elem,1);
 96             for it=1:piles_num
 97             if i_step==1
 98                 if sum(piles_forces_top(:,dir))==0
 99                     Fc=(w_mean-w_head_x(it,i_time))*100000;
100                 else
101                     Fc=piles_forces_top(it,dir)+(w_mean-w_head_x(it,i_time))*...
102                         abs(sum(piles_forces_top(:,dir)))/piles_num*100;
103                 end
104             else
105                 condition=sum(piles_forces_top(:,dir));
106                 if condition>-0.01 && condition<0.01
107                     Fc=piles_forces_top(it,dir)+...
108                                         (w_mean-w_head_x(it,i_time))*100000;
109                 else
110                     Fc=piles_forces_top(it,dir)+...
111                             (w_mean-w_head_x(it,i_time))*...
112                         abs(sum(piles_forces_top(:,dir)))/piles_num*100;
113                 end
114             end
115                 %B-matrix of pile displacement
116                 N=num_elem;
117                 Bp=zeros(N,1);
118                 Bp(1,1)=Fc;
119                 BC_change_x((it-1)*(N)+1:it*(N),1)=Bp;
120                 F_change(it,1)=Fc;
121             end %end changing force
122                 piles_forces_top(:,dir)=F_change;
123 
124             %new shear/displacement
125             p_global_x(:,i_time)=(Ap_global_x-D_global_x*Is_global_x)\...
126                     (D_global_x*soil_strain_aux(:,i_time)+BC_change_x);
127                 
128              w_global_x(:,i_time)=Is_global_x*p_global_x(:,i_time)+...
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129                                                 soil_strain_aux(:,i_time);
130 
131             %new condition
132             for i=1:piles_num
133                 w_head_x(i,i_time)=w_global_x((i-1)*num_elem+1,i_time);
134             end
135             w_dif_x=max(w_head_x(:,i_time))-min(w_head_x(:,i_time));
136             w_dif_x2(:,i_time)=w_dif_x;
137             w_mean=mean(w_head_x(i,i_time));
138             i_step=i_step+1;
139             dir_iter=[dir i_step];
140         end
141         else
142             BC_change_x='No change';
143             
144         end
145 
146     end
147 
148       ppp(:,coord,i_time)=piles_forces_top(:,coord);
149   
150     clear dir_i dir_iter piles_forces_top a Fc
151             for i_pile=1:piles_num
152 
153                 kk_0=(N)*(i_pile-1)+1;
154                 kk=kk_0+(N-1);
155 
156                 w_final(:,i_pile,i_time)=w_global_x(kk_0:kk,i_time);
157 
158             end
159 
160 end
161 
162 
163 end
164 
165 
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  1 %File name: horizontal_assemble_pile_structure.m
  2 % Author: Genis Majoral Oller
  3 %For Civil Engineering bachelor's degree dissertation
  4 
  5 %INPUT: pile,           piles_forces_top,   dia
  6 %       [x,y,z](100x3)  [Fx,Fy,Fz,Mx]       diameter or width
  7 
  8 
  9 function [BC_x, Ap_x, D_x]=horizontal_assemble_pile_structure(pile,...
 10         piles_forces_top,piles_dia,piles_E,piles_I,piles_head_type,...
 11                                                         soil)
 12     
 13     %Preparing the external horizontal load  and Moment in "x" direction
 14     %[kNm]
 15     
 16     H=piles_forces_top(1);   %[kN]
 17     M=piles_forces_top(5);   %[kNm]
 18     
 19     
 20     %pile position and properties
 21     
 22     Ep=piles_E;             %[kN/m2]
 23     N=length(pile(:,1));  %[-]
 24     L=pile(N,3);          %[m]
 25     
 26     
 27     %soil properties
 28     Es=soil(1);             %[kN/m2]
 29     vs=soil(2);             %[-]
 30     
 31     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 32     %Ip - moment of inertia
 33     Ip=piles_I; %b of a square is equal to b=(3*pi)^0.25/2*d
 34     h=(3*pi)^0.25/2*piles_dia; %square,
 35     d=h;
 36     
 37     %% PILE PROBLEM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 38     % Bending equation finite difference matrix
 39     D_x=zeros(N,N);
 40     EI=Ep*Ip;
 41     
 42  if piles_head_type==0
 43      
 44      
 45      
 46                     for r=1:N
 47                         if r==1
 48                             D_x(r,:)=0;
 49                         elseif r==2
 50                             D_x(r,1:4)=[-2, 5, -4, 1];
 51                         elseif r==N-1
 52                             D_x(r,N-3:N)=[1, -4, 5, -2];
 53                         elseif r==N
 54                             D_x(r,:)=0;
 55                         else
 56                             D_x(r,r-2:r+2)=[1, -4, 6, -4, 1];
 57                         end
 58                     end
 59 
 60 
 61                 %B-matrix of pile BC
 62                 BC_x=zeros(N,1);
 63                     for r=1:N
 64                         if r==1
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 65                             BC_x(r,1)=H;
 66                         elseif r==2
 67                             BC_x(r,1)=M*L^2/(N-1)^2/EI;
 68                         elseif r==3
 69                             BC_x(r,1)=0;
 70                         elseif r==4
 71                             BC_x(r,1)=0;
 72                         elseif r==N
 73                             BC_x(r,1)=-M;
 74                         else
 75                         end
 76                     end
 77                         
 78     
 79  elseif piles_head_type==1 %head-casted
 80      
 81                         
 82      
 83                     for r=1:N %fill except two last rows, where BC apply
 84                         if r==1
 85                             D_x(r,:)=0;
 86                         elseif r==2
 87                             D_x(r,1:4)=[-4, 7, -4, 1];
 88                         elseif r==N-1
 89                             D_x(r,N-3:N)=[1, -4, 5, -2];
 90                         elseif r==N
 91                             D_x(r,1:4)=-[2, -5, 4, -1]*EI/( L^2/(N-1)^2 );
 92                         else
 93                             D_x(r,r-2:r+2)=[1, -4, 6, -4, 1];
 94                         end
 95                     end
 96 
 97 
 98                 %B-matrix of pile BC
 99                 BC_x=zeros(N,1);
100                     for r=1:N
101                         if r==1
102                             BC_x(r,1)=H;
103                         elseif r==2
104                             BC_x(r,1)=0;
105                         elseif r==N
106                             BC_x(r,1)=-M;
107                         else
108                         end
109                     end
110  else
111  end
112      
113     
114     %Distribution of shear 
115     Ap_x=zeros(N,N);
116     coef=-d/(EI)*((L/(N-1))^4);
117     
118 for r=1:N
119     if r==1
120         Ap_x(r,1)=1*0.5*(L)/(N-1)*d;
121         Ap_x(r,2:N-1)=1*L/(N-1)*d;
122         Ap_x(r,N)=1*0.5*(L)/(N-1)*d;
123     elseif r==N
124         if piles_head_type==0
125               Ap_x(r,1)=0.25*L^2/(N-1)^2*d;
126               for j=2:N-1
127               Ap_x(r,j)=(j-1)*L^2/(N-1)^2*d;
128               end
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129               Ap_x(r,N)=(0.5*(N-1)-0.125)*L^2/(N-1)^2*d;
130         elseif piles_head_type==1
131             Ap_x(r,1)=0.5*d*L/(N-1)*( 0.5*0.5*L/(N-1) );
132             Ap_x(r,2:N-1)=d*L/(N-1)*( pile(2:N-1,3)-pile(1,3));
133             Ap_x(r,N)=0.5*d*L/(N-1)*( pile(N,3)-pile(1,3)-0.5*0.5*L/(N-1));
134 
135 
136         else
137         end
138     else
139         Ap_x(r,r)=1*coef;
140     end
141 end
142         
143 
144 end
145 
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 1 %File name: horizontal_assemble_mindlin.m
 2 %Author: Genis Majoral Oller
 3 %For Civil Engineering bachelor's degree dissertation
 4 %Date: 15/05/2018
 5 %OUTPUT: Is_global_x
 6 %        A matrix (Num_elements*Num_piles)x(Num_elements*Num_piles)
 7 
 8 function [Is_global_x]=horizontal_assemble_mindlin(piles,...
 9         soil,piles_dia,coord)
10 %% Preparing input data for mindlin problem
11     
12     N_piles = length(piles(1,1,:));
13 
14     %Soil properties
15     Es=soil(1);             %[kN/m2]
16     vs=soil(2);             %[-]
17 
18     %Ip - moment of inertia
19     %Ip=pi/4*(dia/2)^4; %b of a square is equal to b=(3*pi)^0.25/2*d
20     h=(3*pi)^0.25/2*piles_dia; %square,   
21     d=h;
22 
23     pile_acting=piles(:,:,1);
24     pile_afected=piles(:,:,1);
25     N=length(pile_afected(:,1));  %[num]
26     L=piles(N,3);  
27             
28 
29 [Is_temporal_inpile]=horizontal_mindlin_in_pile...
30                                     (pile_acting,pile_afected,d,L,N,vs,Es);
31 
32 for i_acting=1:N_piles;
33     
34     %Acting pile
35             pile_acting=piles(:,:,i_acting);
36     
37     for i_afected=1:N_piles;
38         
39         %Afected pile
40 
41         pile_afected=piles(:,:,i_afected);
42 
43 
44 
45         N=length(pile_afected(:,1));  %[num]
46         L=piles(N,3);          %[m]
47 
48 
49 
50         %% SOIL PROBLEM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51         %soil displacement due to shear force
52 
53         row=(i_acting-1)*N+1;
54         row_end=row+N-1;
55         col=(i_afected-1)*N+1;
56         col_end=col+N-1;
57 
58         %Is it pile2pile or pile within itself?
59 
60         if i_acting==i_afected %diagonal terms
61 
62          
63          Is_global_x(row:row_end,col:col_end)=1/Es*Is_temporal_inpile;
64         else
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65         [Is_temporal]=horizontal_mindlin_pile2pile...
66                                     (pile_acting,pile_afected,vs,coord);
67 
68         Is_global_x(row:row_end,col:col_end)=d*L/(N-1)/Es*Is_temporal;
69 
70         end
71       
72             
73     end
74 end
75 end
76 
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 1 %Author: Genís Majoral Oller
 2 %File name: horizontal_mindlin_in_pile
 3 %Date: 25/05/2018
 4 %Mindlin coeficients to find displacement due to a
 5 %horizontal load acting upon a rectangular area (i.e. discretisation of the
 6 %pile)
 7 
 8 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
 9 %Input
10 function [Is_hor]=horizontal_mindlin_in_pile(Pos_force,Pos_pile,d,L,N,vs,Es)
11             
12 % Pos_force - pile(x,y,z) "N" rows
13 % Pos_pile - pile(x,y,z) 
14 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
15 z_afected=Pos_pile(:,3); % column vector
16 z_acting=Pos_force(:,3); % column vector
17 Is_hor=zeros(length(z_afected),length(z_acting));
18 x=0;
19     for i_afected=1:length(z_afected)
20         z=z_afected(i_afected);
21         
22         for i_force=1:length(z_acting)  
23             
24             if i_force==1 %for 1st and last elements half length
25                 
26                 cc=z_acting(i_force);
27                 
28                 y_inf=0;
29                 y_sup=d/2;
30                 c_inf=cc;
31                 c_sup=cc+( (L)/(N-1)*0.5 );
32                 
33             elseif i_force==length(z_acting)
34                 
35                 cc=z_acting(i_force);
36                 
37                 y_inf=0;
38                 y_sup=d/2;
39                 c_inf=cc-( (L)/(N-1)*0.5 );
40                 c_sup=cc;
41                 
42             else
43                 cc=z_acting(i_force);
44                 
45                 y_inf=0;
46                 y_sup=d/2;
47                 c_inf=cc-( (L)/(N-1)*0.5 );
48                 c_sup=cc+( (L)/(N-1)*0.5 );
49             end
50             
51             %%
52                 
53                 
54                 R1=@(y,c) sqrt(x^2+y.^2+(z-c).^2);
55                 R2=@(y,c) sqrt(x^2+y.^2+(z+c).^2);
56                 
57                 Is_aux=@(y,c) (1+vs)/(8*pi*(1-vs))*((3-4*vs)./R1(y,c)+...
58                      1./R2(y,c)+...
59                      x^2./R1(y,c).^3+...
60                      (3-4*vs)*x^2./R2(y,c).^3+...
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61                      2*c.*z./R2(y,c).^3.*(1-3*x^2./R2(y,c).^2)+...
62                      4*(1-vs)*(1-2*vs)./(R2(y,c)+z+c).*...
63                      ( 1 -x^2./( R2(y,c).*(R2(y,c)+z+c) )  )   );
64                          
65                 
66                     Is_hor(i_afected,i_force)=2*integral2...
67                             (@(y,c)Is_aux(y,c),y_inf,y_sup,c_inf,c_sup);
68             
69             
70             
71         end
72     end
73 
74    
75     
76 end
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 1 %Author: Genís Majoral Oller
 2 %Date: 25/5/2018
 3 %File name: horizontal_mindlin_pile2pile
 4 
 5 
 6 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
 7 %Input
 8 function [Is_hor]=horizontal_mindlin_pile2pile(Pos_force,Pos_pile,vs,direction)
 9           
10 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
11 %direction (1=x,2=y)
12 Is_hor=zeros(length(Pos_pile(:,3)),length(Pos_force(:,3)));
13 
14 for i_afected=1:length(Pos_pile(:,3))
15     for i_force=1:length(Pos_force(:,3))  
16         z=Pos_pile(i_afected,3);
17         c=Pos_force(i_force,3);
18         x=Pos_pile(i_afected,1)-Pos_force(i_force,1);
19         y=Pos_pile(i_afected,2)-Pos_force(i_force,2);
20         R1=sqrt(x^2+y^2+(z-c)^2);
21         R2=sqrt(x^2+y^2+(z+c)^2);
22         if direction==1
23             if i_force==1 || i_force==length(Pos_force(:,3))
24             Is_hor(i_afected,i_force)=(0.5)*(1+vs)/(8*pi*(1-vs))*...
25                 ((3-4*vs)/R1+1/R2+x^2/...
26                 R1^3+(3-4*vs)*x^2/R2^3+2*c*z/R2^3*(1-3*x^2/R2^2)+...
27                 4*(1-vs)*(1-2*vs)/(R2+z+c)*(1-x^2/(R2*(R2+z+c))));
28             %0.5 accounts for half the discretisation, it will be
29             %multiplied later by d*L/(N-1)
30             else
31                 Is_hor(i_afected,i_force)=(1+vs)/(8*pi*(1-vs))*...
32                     ((3-4*vs)/R1+1/R2+x^2/...
33                 R1^3+(3-4*vs)*x^2/R2^3+2*c*z/R2^3*(1-3*x^2/R2^2)+...
34                 4*(1-vs)*(1-2*vs)/(R2+z+c)*(1-x^2/(R2*(R2+z+c))));
35             end
36         elseif direction==2
37                 Is_hor(i_afected,i_force)=(1+vs)/(8*pi*(1-vs))*...
38                     ((3-4*vs)/R1+1/R2+y^...
39                     2/R1^3+(3-4*vs)*y^2/R2^3+2*c*z/R2^3*(1-3*y^2/R2^2)+...
40                     4*(1-vs)*(1-2*vs)/(R2+z+c)*(1-y^2/(R2*(R2+z+c))));
41          else
42                 %no action
43         end
44     end
45 end
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  1 %Author: Genís Majoral Oller
  2 %Date: 12/6/2018
  3 %File name: vertical_analysis
  4 
  5 function [p_global_z,p_global_z2,v_global,v_global2,v_global3,v_final,D_global_z,Ap_global_z,...
  6     Is_global_z,BC_z,BC_change_z,u_dif_u,u_dif_o, ppp,u_head_z,u_mean,Z_head,u_dif_z,...
  7     soil_strain_aux]=vertical_analysis(piles,...
  8     piles_num,piles_dia,piles_head_type,piles_length,soil,piles_E,soil_strain,num_elem,piles_forces_top,ppp,find_surface)
  9 %% Pile structure
 10 if find_surface==0
 11        Ep=piles_E;
 12        Es=soil(1);
 13        L=piles_length;
 14        d=piles_dia;
 15        N=num_elem;
 16        Ra=1;
 17        coef1=Ra*d*Ep/(4*( (L)/(N) )^2);
 18        [a,b]=size(piles_forces_top);
 19        
 20        if sum(piles_forces_top(:,3))==0
 21            ppp(:,3,1)=piles_forces_top(:,3);
 22        else
 23            for i=1:length(soil_strain(1,1,1,:))
 24             ppp(:,3,i)=piles_forces_top(:,3);
 25            end
 26        end
 27               
 28        D_global_z_aux=zeros(N+1,N+1);
 29        
 30        for r=1:N+1
 31            if r==1
 32                 D_global_z_aux(r,1:2)=[-2 2];
 33            elseif r==N+1
 34                 D_global_z_aux(r,:)=0;
 35            elseif r==N
 36                D_global_z_aux(r,N:N+1)=[1,-1];
 37            else
 38                 D_global_z_aux(r,r-1:r+1)=[1, -2, 1];
 39            end
 40        end
 41        
 42        D_global_z_aux=coef1*D_global_z_aux;
 43        
 44        
 45        Ap_global_z_aux=zeros(N+1,N+1);
 46              
 47         for i=1:N+1
 48             if i==N+1
 49                 Ap_global_z_aux(i,:)=pi*d*(L/(N));
 50                 Ap_global_z_aux(i,N+1)=pi*(d/2)^2;
 51             elseif i==N
 52                 Ap_global_z_aux(i,N)=(0.5*L/(N))^2*pi*d/Ep/(pi*d^2/4);
 53                 Ap_global_z_aux(i,N+1)=1/2*L/(N)/Ep;
 54             elseif i==1
 55                 Ap_global_z_aux(i,1)=1+coef1*(L/(N))^2*pi*d/Ep/(pi*d^2/4);
 56             else
 57                 Ap_global_z_aux(i,i)=1;
 58             end
 59                 
 60         end
 61 
 62         for i_pile=1:piles_num
 63                 BC_z_aux=zeros(N+1,1);
 64                 P=piles_forces_top(i_pile,3);
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 65                 BC_z_aux(1,1)=coef1*P/(pi*d^2/4)*2*L/(N)/Ep;
 66                 BC_z_aux(N+1,1)=P;
 67                 
 68                 BC_z_aux2=zeros(N+1,1);
 69                 BC_z_aux2(1,1)=0;
 70                 BC_z_aux2(N+1,1)=0;
 71        
 72                 ii_0=(i_pile-1)*(num_elem+1)+1;
 73                 ii=ii_0+(num_elem+1)-1;
 74                 BC_z(ii_0:ii,1)=BC_z_aux;
 75                 BC_z2(ii_0:ii,1)=BC_z_aux2;
 76                 
 77                 D_global_z(ii_0:ii,ii_0:ii)=D_global_z_aux;
 78                 Ap_global_z(ii_0:ii,ii_0:ii)=Ap_global_z_aux;
 79 
 80         end
 81         
 82        
 83 %% Soil Structure
 84 
 85 %Mindlin matrix
 86 
 87         for i_pile=1:piles_num %pile afected
 88             
 89             Pos_pile=piles(:,:,i_pile);
 90             
 91             for j_pile=1:length(piles(1,1,:))%pile acting
 92                 
 93                 Pos_force=piles(:,:,j_pile);
 94 
 95                     %------------------------------------
 96 
 97                     col_0=(num_elem+1)*(j_pile-1)+1;
 98                     col=col_0+(num_elem+1)-1;
 99                     row_0=(num_elem+1)*(i_pile-1)+1;
100                     row=row_0+(num_elem+1)-1;
101                 
102                 
103                 
104                 if j_pile==1 && j_pile==i_pile
105                     
106                     control=1;%inpile coefficients
107                     [Is_z_diagonal]=vertical_assemble_mindlin(Pos_pile,Pos_force,...
108                     soil,piles_dia,piles_length,num_elem,control);
109                     Is_global_z(row_0:row,col_0:col)=Is_z_diagonal;
110                     
111                 elseif i_pile==j_pile && j_pile>1 %so that Is_Z_diagonal is not computed unnecessary times
112                     
113                     Is_global_z(row_0:row,col_0:col)=Is_z_diagonal;
114 
115                     
116                 else
117                     control=2;%pile to pile coefficients
118                     [Is_z]=vertical_assemble_mindlin(Pos_pile,Pos_force,...
119                     soil,piles_dia,piles_length,num_elem,control);
120                     Is_global_z(row_0:row,col_0:col)=Is_z;
121                 end
122                      
123                         
124                         
125             end
126         end
127         
128         Is_global_z=1/Es*Is_global_z;
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129         
130 %% Finding p
131 
132 p_global_z=zeros((num_elem+1)*(piles_num),length(soil_strain(1,1,1,:)));
133 v_global=zeros((num_elem+1)*(piles_num),length(soil_strain(1,1,1,:)));
134 soil_strain_aux=zeros((N+1)*piles_num,length(soil_strain(1,1,1,:)));
135 
136   for i_time=1:length(soil_strain(1,1,1,:))
137       
138       for i_pile=1:piles_num
139         row_0=(num_elem+1)*(i_pile-1)+1;
140         row=row_0+(num_elem+1)-1;
141         for j=1:i_time
142         soil_strain_aux(row_0:row,i_time)=soil_strain_aux(row_0:row,i_time)+[soil_strain(:,3,i_pile,j);...
143             soil_strain(N,3,i_pile,j)];
144         end
145       end
146       
147       if i_time==1
148         p_global_z(:,i_time)=(Ap_global_z-(D_global_z*Is_global_z))\(BC_z+D_global_z*soil_strain_aux(:,i_time));
149         v_global(:,i_time)=Is_global_z*p_global_z(:,i_time)+soil_strain_aux(:,i_time);
150         
151       else
152                     
153           p_global_z(:,i_time)=(Ap_global_z-(D_global_z*Is_global_z))\(BC_z+D_global_z*soil_strain_aux(:,i_time));
154           v_global(:,i_time)=Is_global_z*p_global_z(:,i_time)+soil_strain_aux(:,i_time);
155           
156           
157       end
158   end
159    
160   %%
161   v_global2=v_global;
162   v_global3=zeros(size(v_global));  
163   
164   
165 for i_time=1:length(soil_strain(1,1,1,:))
166     
167 
168     
169     [ppp,p_global_z2(:,i_time),v_global3(:,i_time),BC_change_z,u_dif_u(i_time),...
170         u_dif_o(i_time),u_head_z(:,i_time),u_mean(:,i_time),Z_head,u_dif_z(:,i_time)]=...
171         vertical_pile_cap(p_global_z,v_global2,...
172                       i_time,Ap_global_z,D_global_z,Is_global_z,...
173                       soil_strain_aux,N,piles_num,coef1,d,L,Ep,ppp,...
174                       piles_head_type,piles,num_elem);
175                   
176 
177 
178 
179     for i_pile=1:piles_num
180         
181         kk_0=(N+1)*(i_pile-1)+1;
182         kk=kk_0+(N+1-1);
183            
184                 v_final(:,i_pile,i_time)=v_global3(kk_0:kk,i_time);
185            
186     end
187 end
188             
189 else
190                     N=num_elem;
191                     soil_strain_aux=zeros((N+1)*piles_num,length(soil_strain(1,1,1,:)));
192                     
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193                     for i_time=1:length(soil_strain(1,1,1,:))
194 
195                       for i_pile=1:piles_num
196                         row_0=(num_elem+1)*(i_pile-1)+1;
197                         row=row_0+(num_elem+1)-1;
198                         for j=1:i_time
199                         soil_strain_aux(row_0:row,i_time)=soil_strain_aux(row_0:row,i_time)+[soil_strain(:,3,i_pile,j);...
200                             soil_strain(N,3,i_pile,j)];
201                         end
202                       end
203 
204 
205                     end
206                     p_global_z=0;
207                     p_global_z2=0;
208                     v_global=0;
209                     v_global2=0;
210                     v_global3=0;
211                     v_final=0;
212                     D_global_z=0;
213                     Ap_global_z=0;
214                     Is_global_z=0;
215                     BC_z=0;
216                     BC_change_z=0;
217                     u_dif_u=0;
218                     u_dif_o=0;
219                     ppp=0;
220                     u_head_z=0;
221                     u_mean=0;
222                     Z_head=0;
223                     u_dif_z=0;
224 end
225 end
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 1 %File name: vertical_assemble_mindlin.m
 2 %Author: Genis Majoral Oller
 3 %For Civil Engineering bachelor's degree dissertation
 4 %Date: 5/06/2018
 5 
 6 function [Is_z]=vertical_assemble_mindlin(Pos_pile,Pos_force,soil,...
 7         piles_dia,piles_length,num_elem,control)
 8 %% Preparing input data for mindlin problem
 9     
10     Is_z=zeros(length(Pos_pile(:,4)),length(Pos_force(:,4)));
11     d=piles_dia;
12     v=soil(2);
13     L=piles_length;
14     N=num_elem;
15 if control==1 %for inpile influence coefficients
16   
17     for i_afected=1:length(Pos_pile(:,4))+1 %this is the afected discretisation
18                                             % of the afected pile
19         
20         for i_force=1:length(Pos_force(:,4))+1 %this is the acting discretisation
21                                                % of the force due to the acting pile
22             
23                      
24             
25             if i_force==length(Pos_pile(:,3))+1 && i_afected==length(Pos_pile(:,3))+1
26                 cas=1;    % base against base
27                                 
28                 z_afected=Pos_pile(i_afected-1,3);
29                 z_force=Pos_force(i_force-1,3); 
30                 x_afected=Pos_pile(i_afected-1,1);
31                 x_force=Pos_force(i_force-1,1);  
32                 [Is_z_base_col, Is_z_base_base]=vertical_mindlin_base(L,d,v,z_afected,z_force,x_afected,x_force,cas);
33                 Is_z(i_afected,i_force)=Is_z_base_base;
34             elseif i_force==length(Pos_pile(:,3))+1
35                 cas=2; %base against shaft
36                 
37                     z_afected=Pos_pile(i_afected,4);
38                     z_force=Pos_force(i_force-1,3);
39                     x_afected=Pos_pile(i_afected,1);
40                     x_force=Pos_force(i_force-1,1);
41                     
42                 [Is_z_base_col, Is_z_base_base]=vertical_mindlin_base(L,d,v,z_afected,z_force,x_afected,x_force,cas);
43                 Is_z(i_afected,i_force)=Is_z_base_col;
44             
45             else  %ij and bj cases
46                     
47                     %Numerical integration over theta
48                     
49                     [Is_z_aux]=vertical_mindlin_shaft(L,d,v,N,Pos_pile,Pos_force,i_afected,i_force); 
50                     Is_z(i_afected,i_force)=Is_z_aux;
51             end
52             
53             
54             
55         end
56         
57     end
58 elseif control==2 %for pile to pile influence coefficients
59     
60         for i_afected=1:length(Pos_pile(:,4))+1 %this is the afected discretisation
61                                             % of the afected pile
62         
63         for i_force=1:length(Pos_force(:,4))+1 %this is the acting discretisation
64                                                % of the force due to the acting pile
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65             
66                      
67             
68             if i_force==length(Pos_pile(:,3))+1 && i_afected==length(Pos_pile(:,3))+1
69                 % base against base
70                          
71                 [Is_z_aux]=vertical_mindlin_pile2pile(L,d,v,N,Pos_pile,Pos_force,i_afected,i_force); 
72                 Is_z(i_afected,i_force)=pi*d^2/4*Is_z_aux;
73             elseif i_force==length(Pos_pile(:,3))+1
74                 %acting base affecting the rest of discretisations
75                 
76                 [Is_z_aux]=vertical_mindlin_pile2pile(L,d,v,N,Pos_pile,Pos_force,i_afected,i_force); 
77                 Is_z(i_afected,i_force)=pi*d^2/4*Is_z_aux;
78             
79             else  %ij cases and bj cases
80                     
81                     
82                 [Is_z_aux]=vertical_mindlin_pile2pile(L,d,v,N,Pos_pile,Pos_force,i_afected,i_force); 
83                  Is_z(i_afected,i_force)=0.5*pi*d*L/N*Is_z_aux;
84                     
85             end
86             
87             
88             
89         end
90         
91         end
92     
93 else
94 end
95 
96 end
97 
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 1 %File name: vertical_mindlin_base.m
 2 %Author: Genis Majoral Oller
 3 %For Civil Engineering bachelor's degree dissertation
 4 %Date 11/06/2018
 5 function [Is_z_base_col, Is_z_base_base]=vertical_mindlin_base(L,d,v,z_afected,z_force,x_afected,x_force,cas); 
 6           if cas==2 %base upon shaft
 7              
 8                 
 9                 
10           r=@(theta) sqrt((x_afected-x_force).^2+(d/2*sin(a(theta))).^2);   
11           c=z_force;
12           h=z_afected;
13           x= (x_afected-x_force); 
14           
15           
16           z=@(c) h+c;
17           z1=@(c) h-c;
18           R2=@(c,theta) (d^2/4+x^2-x*d.*cos(theta)+z(c).^2).^0.5;
19           R1=@(c,theta) (d^2/4+x^2-x*d.*cos(theta)+z1(c).^2).^0.5;
20 
21           fun0=@(c,theta) z1(c).^2./R1(c,theta).^3;
22           fun1=@(c,theta,v) (3-4*v)./R1(c,theta);
23           fun2=@(c,theta,v) (5-12*v+8*v^2)./(R2(c,theta));
24           fun3=@(c,theta,v) ((3-4*v)*z(c).^2-2*c.*z(c)+2*c.^2)./(R2(c,theta).^3);
25           fun4=@(c,theta,v) (6*c.*z(c).^2.*(z(c)-c))./(R2(c,theta).^5);
26 
27           fun=@(r,c,theta,v) r.*( (1+v)/(8*pi*(1-v))*(fun0(c,theta)+fun1(c,theta,v)+...
28             fun2(c,theta,v)+fun3(c,theta,v)+fun4(c,theta,v)) );
29             
30           
31           Is_z_base_col=1/d*2*integral2(@(r,theta)fun(r,c,theta,v),0,d/2,0,pi); %compte  
32           Is_z_base_base=0;
33 
34                 
35           elseif cas==1 %base element upon base
36                  
37           c=z_force;
38           h=z_afected;
39           x= @(r,theta)(r.*cos(theta));
40           
41           z=@(c) h+c;
42           z1=@(c) h-c;
43           R2=@(c,theta,r) (d^2/4+x(r,theta).^2-x(r,theta)*d.*cos(theta)+z(c).^2).^0.5;
44           R1=@(c,theta,r) (d^2/4+x(r,theta).^2-x(r,theta)*d.*cos(theta)+z1(c).^2).^0.5;
45 
46           fun0=@(c,theta,r) z1(c).^2./R1(c,theta,r).^3;
47           fun1=@(c,theta,v,r) (3-4*v)./R1(c,theta,r);
48           fun2=@(c,theta,v,r) (5-12*v+8*v^2)./(R2(c,theta,r));
49           fun3=@(c,theta,v,r) ((3-4*v)*z(c).^2-2*c.*z(c)+2*c.^2)./(R2(c,theta,r).^3);
50           fun4=@(c,theta,v,r) (6*c.*z(c).^2.*(z(c)-c))./(R2(c,theta,r).^5);
51 
52           fun=@(r,theta,c,v) r.*( (1+v)/(8*pi*(1-v))*(fun0(c,theta,r)+fun1(c,theta,v,r)+...
53             fun2(c,theta,v,r)+fun3(c,theta,v,r)+fun4(c,theta,v,r)) );
54             
55           
56           Is_z_base_base=pi/4*2*integral2(@(r,theta)fun(r,theta,c,v),0,d/2,0,pi); %compte  
57           Is_z_base_col=0;
58            
59               
60           else
61           end
62                 
63                 
64                                
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65            
66 end
67 
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 1 %File name: vertical_mindlin_shaft.m
 2 %Author: Genis Majoral Oller
 3 %For Civil Engineering bachelor's degree dissertation
 4 %Date: 15/06/2018
 5 function [Is_z]=vertical_mindlin_shaft(L,d,v,N,Pos_pile,Pos_force,i_afected,i_force); 
 6                 
 7         
 8         %% Preparing distances
 9         if i_afected==N+1
10             z_afected=Pos_pile(i_afected-1,3);            
11             x_afected=Pos_pile(i_afected-1,1);
12             x_force=Pos_force(i_force,1);
13         else
14             z_afected=Pos_pile(i_afected,4);            
15             x_afected=Pos_pile(i_afected,1);
16             x_force=Pos_force(i_force,1);
17         end
18 
19         %%
20         if i_force==1 
21             z_force=Pos_force(i_force,4);
22             
23             lim_sup=z_force+L/(N)*0.5;
24             lim_inf=z_force-L/(N)*0.5;
25         elseif i_force==N
26             
27             z_force=Pos_force(i_force,4);
28             
29             lim_sup=z_force+L/(N)*0.5;
30             lim_inf=z_force-L/(N)*0.5;
31             
32         else
33             z_force=Pos_force(i_force,4);
34             
35             lim_sup=z_force+L/(N)*0.5; 
36             lim_inf=z_force-L/(N)*0.5;
37             
38         end
39         
40         
41         %% Mindlin formula
42        
43         
44           a=@(theta) 2*theta;    
45           r=d/2;
46           
47           h=z_afected;
48           x= x_afected-x_force+d/2;
49           y= @(theta)(d/2*sin(theta)+0.01);
50           
51           z=@(c) h+c;
52           z1=@(c) h-c;
53           R2=@(c,theta) (d^2/4+x^2-x*d*cos(2*theta)+z(c).^2).^0.5;
54           R1=@(c,theta) (d^2/4+x^2-x*d*cos(2*theta)+z1(c).^2).^0.5;
55 
56           fun0=@(c,theta) z1(c).^2./R1(c,theta).^3;
57           fun1=@(c,theta) (3-4*v)./R1(c,theta);
58           fun2=@(c,theta) (5-12*v+8*v^2)./(R2(c,theta));
59           fun3=@(c,theta) ((3-4*v)*z(c).^2-2*c.*z(c)+2*c.^2)./(R2(c,theta).^3);
60           fun4=@(c,theta) (6*c.*z(c).^2.*(z(c)-c))./(R2(c,theta).^5);
61 
62           fun=@(c,theta) ( (1+v)/(8*pi*(1-v))*(fun0(c,theta)+fun1(c,theta)+...
63               fun2(c,theta)+fun3(c,theta)+fun4(c,theta)) );
64            
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65             
66             Is_z=2*integral2(@(c,theta)fun(c,theta),lim_inf,lim_sup,0,pi/2);    
67           
68 end
69 
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 1 %File name: vertical_mindlin_pile2pile.m
 2 %Author: Genis Majoral Oller
 3 %For Civil Engineering bachelor's degree dissertation
 4 %Date 10/06/2018
 5 function [Is_z]=vertical_mindlin_pile2pile(L,d,v,N,Pos_pile,Pos_force,i_afected,i_force); 
 6                 
 7         
 8         %% Preparing distances
 9         if i_afected==N+1
10             z_afected=Pos_pile(i_afected-1,3);            
11             x_afected=Pos_pile(i_afected-1,1);
12             y_afected=Pos_pile(i_afected-1,2);
13             
14         else
15             z_afected=Pos_pile(i_afected,4);            
16             x_afected=Pos_pile(i_afected,1);
17             y_afected=Pos_pile(i_afected,2);
18             
19         end
20 
21         if i_force==N+1
22             z_force=Pos_force(i_force-1,3);
23             y_force=Pos_force(i_force-1,2);
24             x_force=Pos_force(i_force-1,1); 
25         else
26             z_force=Pos_force(i_force,4);
27             y_force=Pos_force(i_force,2);
28             x_force=Pos_force(i_force,1); 
29         end
30         
31         %% Funció en sí
32        
33         
34           c=z_force;
35           h=z_afected;
36           x=(x_afected-x_force);
37           y=(y_afected-y_force);
38           
39           
40           z=h+c;
41           z1=h-c;
42           R1=(z1^2+x^2+y^2)^0.5;
43           R2=(z^2+x^2+y^2)^0.5;
44 
45           fun0= z1^2/R1^3;
46           fun1= (3-4*v)/R1;
47           fun2= (5-12*v+8*v^2)/(R2);
48           fun3= ((3-4*v)*z^2-2*c*z+2*c^2)/(R2^3);
49           fun4= (6*c*z^2*(z-c))/(R2^5);
50 
51           Is_z=( (1+v)/(8*pi*(1-v))*(fun0+fun1+...
52               fun2+fun3+fun4) );
53            
54           
55           
56               
57         
58 end
59 
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  1 %File name: vertical_pile_cap.m
  2 %Original author: Simon Sauter (Pont de Candí, 2012)
  3 %Original file name: -
  4 %Adapted and modified by: Genis Majoral Oller
  5 %For Civil Engineering bachelor's degree dissertation
  6 %Date: 18/06/2018
  7 
  8 function [ppp,p_global_z,v_global3,BC_change_z,u_dif_u,u_dif_o,u_head_z,u_mean,Z_head,u_dif_z]=vertical_pile_cap
(p_global_z,v_global,...
  9                           i_time,Ap_global_z,D_global_z,Is_global_z,soil_strain_aux,...
 10                           N,piles_num,coef1,d,L,Ep,ppp,piles_head_type,piles,num_elem)
 11 
 12 dir=3;
 13 i_step=1;
 14 u_head_z=zeros(piles_num,1);
 15 p_global_z=zeros(size(p_global_z(:,1)));
 16 
 17 piles_forces_top=ppp(:,:,i_time);
 18 
 19 
 20 for i=1:piles_num
 21     u_head_z(i)=v_global((i-1)*(N+1)+1,i_time);
 22 end
 23 
 24 if piles_head_type==0
 25     %no action
 26     BC_change_z='No change';
 27     u_dif_u=0;
 28     u_dif_o=0;
 29     v_global3=v_global(:,i_time);
 30     u_mean=0;
 31     Z_head=0;
 32     u_dif_z=0;
 33 else
 34     [u_mean Pos_head Z_head]=least_square(u_head_z,piles,piles_num);
 35     u_dif_z=zeros(piles_num,1);
 36     for i=1:piles_num
 37         u_dif_z(i)=u_head_z(i,1)-u_mean(i,1);
 38     end
 39     u_dif_mean=mean(u_dif_z);
 40     u_dif_u=min(u_dif_z);
 41     u_dif_o=max(u_dif_z);
 42     if (u_dif_u < -0.00005 || u_dif_o > 0.00005)&&(abs(u_dif_u-u_dif_o)>0.0001)
 43     while (u_dif_u < -0.00005 || u_dif_o > 0.00005)&&(abs(u_dif_u-u_dif_o)>0.0001)
 44         
 45         BC_change_z=zeros(piles_num*(N+1),1);
 46         for it=1:piles_num
 47             if i_step==1
 48                 if sum(piles_forces_top(:,dir))==0
 49                     Fc=(u_dif_mean-u_dif_z(it))*10000;
 50                 else
 51                     Fc=piles_forces_top(it,3)+(u_dif_mean-u_dif_z(it))*...
 52                         abs(sum(piles_forces_top(1:piles_num,3)))/piles_num*100;
 53                 end
 54             else
 55                 if sum(piles_forces_top(:,dir))>-0.01 && sum(piles_forces_top(:,dir))<0.01
 56                     Fc=piles_forces_top(it,3)+(u_dif_mean-u_dif_z(it))*10000;
 57                 else
 58                     Fc=piles_forces_top(it,3)+(u_dif_mean-u_dif_z(it))*...
 59                         abs(sum(piles_forces_top(1:piles_num,3)))/piles_num*100;
 60                 end
 61             end
 62             %B-matrix of pile displacement
 63             

Annex 37



 64             BC_change_z_aux=zeros(N+1,1);
 65             BC_change_z_aux(1,1)=coef1*Fc/(pi*d^2/4)*2*L/(N)/Ep;
 66             BC_change_z_aux(N+1,1)=Fc;
 67 
 68             ii_0=(it-1)*(num_elem+1)+1;
 69             ii=ii_0+(num_elem+1)-1;
 70             BC_change_z(ii_0:ii,1)=BC_change_z_aux;
 71 
 72             %
 73             piles_forces_top(it,dir)=Fc;
 74             
 75         end %end changing force
 76         
 77         %new stress/displacement
 78 
 79         p_global_z=(Ap_global_z-(D_global_z*Is_global_z))\(BC_change_z+D_global_z*soil_strain_aux(:,i_time));
 80         v_global3=Is_global_z*p_global_z+soil_strain_aux(:,i_time);
 81         %new condition
 82         for i=1:piles_num
 83             u_head_z(i)=v_global3((i-1)*(N+1)+1,1);
 84         end
 85         
 86         [u_mean Pos_head Z_head]=least_square(u_head_z,piles,piles_num);
 87         
 88         for i=1:piles_num
 89             u_dif_z(i)=u_head_z(i)-u_mean(i);
 90         end
 91         u_dif_mean=mean(u_dif_z);
 92         u_dif_u=min(u_dif_z);
 93         u_dif_o=max(u_dif_z);
 94         i_step=i_step+1;
 95         dir_iter=[dir i_step];
 96         
 97         if i_step>500
 98             dir_iter
 99             break
100         else
101             
102         end
103         
104     end
105     else
106         BC_change_z='No change';
107         v_global3=v_global(:,i_time);
108     end
109     
110 end
111     I_step(3)=i_step;
112     
113     
114   
115   ppp(:,3,i_time)=piles_forces_top(:,3);
116   
117   clear dir_i dir_iter piles_forces_top a
118     
119 end
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  1 %File name: results_analysis.m
  2 %Author: Genis Majoral Oller
  3 %Creation date: 20/4/2018
  4 %Description: This subroutine calculates bending moments and axial forces
  5 %               from displacements and lateral/vertical shaft loads
  6 
  7 function [Mf_final_x,Mf_final_y,Q_global_x,axial_final]...
  8     =results_analysis(...
  9     piles_num,piles_length,piles_dia,piles_I,piles_E,piles_forces_top,...
 10     num_elem,w_global_x,w_global_y,v_global,p_global_z2,time_step,...
 11     piles_head_type,ppp,find_surface);
 12 
 13 %% %-------------------------RESULTS' ANALYSIS--------------------------%%%
 14 % ----------------------------------------------------------------------- %
 15 if find_surface==0
 16 N=num_elem;
 17 for i_time=1:time_step
 18     
 19 for i_pile=1:piles_num
 20 
 21     %-------------------------------------------------Bending Moment
 22     ii_0=N*(i_pile-1)+1;
 23     ii=ii_0+(N-1);
 24     kk_0=(N+1)*(i_pile-1)+1;
 25     kk=kk_0+(N+1-1);
 26     
 27     w_aux_x=w_global_x(ii_0:ii,i_time);
 28     w_aux_y=w_global_y(ii_0:ii,i_time);
 29     v_aux=v_global(kk_0:kk,i_time);
 30     
 31     for r=1:length(w_aux_x)
 32 
 33     if r==1
 34         if piles_head_type==1
 35         Mf_aux(r,r:r+1)=[-2 2]*piles_E*piles_I/(piles_length/(N-1))^2; 
 36         elseif piles_head_type==0
 37         Mf_aux(r,r:r+1)=[0 0]*piles_E*piles_I/(piles_length/(N-1))^2; 
 38         else
 39         end
 40 
 41     elseif r==length(w_aux_x)
 42         Mf_aux(r,r-3:r)=[-1 4 -5 2]*piles_E*piles_I/(piles_length/(N-1))^2;
 43     else
 44        Mf_aux(r,r-1:r+1)=[1 -2 1]*piles_E*piles_I/(piles_length/(N-1))^2;
 45     end
 46         
 47     end
 48 
 49     Mf_final_x(:,1,i_pile,i_time)=Mf_aux*w_aux_x;
 50     Mf_final_y(:,1,i_pile,i_time)=Mf_aux*w_aux_y;
 51     %-------------------------------------------------------Shear Stress
 52     
 53     Q_aux=zeros(N,N);
 54     BC_V=zeros(N,1);
 55     BC_V(1,1)=-piles_forces_top(i_pile,1,1);
 56 
 57     for r=1:N
 58         
 59             if r==1
 60               Q_aux(r,r:r+1)=[-1,1]*2; %only in head-casted
 61             elseif r==2
 62                 Q_aux(r,r-1:r+1)=[-1, 0, 1];
 63             elseif r==N
 64                 Q_aux(r,r-3:r)=[-1 4 -5 2]*2;
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 65             else
 66                Q_aux(r,r-1:r+1)=[-1, 0, 1];
 67             end
 68         
 69     end
 70     
 71     
 72     Q_global_x(:,1,i_pile,i_time)=-1/(2*piles_length/(N-1))*...
 73         Q_aux*Mf_final_x(:,1,i_pile,i_time);
 74     
 75     
 76 
 77     %------------------------------------------------------------- Axial
 78     auxiliar=zeros(num_elem,num_elem);
 79     L=piles_length;
 80     BC_axial=zeros(num_elem,1);
 81     BC_axial(1,1)=ppp(i_pile,3,i_time)-p_global_z2(kk_0,i_time)*...
 82                                                     L/N*0.5*pi*piles_dia;
 83     BC_axial(num_elem,1)=p_global_z2(kk,i_time)*pi*piles_dia^2/4+...
 84                             p_global_z2(kk-1,i_time)*L/N*0.5*pi*piles_dia;
 85 
 86     for i=2:num_elem-1
 87             auxiliar(i,i-1:i+1)=-[-1,0,1];
 88     end
 89 
 90     axial_final(:,1,i_pile,i_time)=piles_E*pi*piles_dia^2/4/...
 91                                     (2*L/N)*auxiliar*v_aux(1:N)+BC_axial;
 92 
 93 end
 94 end
 95 
 96 else
 97     Mf_final_x=0;
 98     Mf_final_y=0;
 99     Q_global_x=0;
100     axial_final=0;
101 end
102 
103 end
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  1 %File name: results_plots.m
  2 %Author: Genis Majoral Oller
  3 %Creation date: 20/3/2018
  4 %Description: bending moment plots. Piles to plot can be choosen in
  5 %interesting_piles below, as well as timesteps at vector "last"
  6              
  7 function results_plots(num_elem,piles,w_final_x,w_final_y,v_final,...
  8     Mf_final_x,Mf_final_y,axial_final,V_loss_pts,dia_0,find_surface,piles_length,soil_strain_auxz,soil_strain_auxy)
  9 if find_surface==0
 10 N=num_elem;
 11 figure(99)
 12 fig_aux=gcf;
 13 fig_aux.Name='Tunnel';
 14 hold on
 15 grid minor
 16 
 17 [X_S,Y_S]=meshgrid(-20:5:20,-50:5:50);
 18 Z=X_S*0;
 19 surf(X_S,Y_S,Z,'FaceAlpha',0.5,'EdgeColor','none');
 20 
 21 for i_time=1:length(V_loss_pts(1,1,:))
 22 plot3(V_loss_pts(:,2,i_time),V_loss_pts(:,1,i_time),...
 23     -V_loss_pts(:,3,i_time),'o','MarkerSize',8,'MarkerFaceColor',...
 24                                             'black','Markeredge','none');
 25 end
 26 
 27 for i=1:length(piles(1,1,:))
 28     plot3([piles(1,2,i),piles(N,2,i)],[piles(1,1,i),piles(N,1,i)],...
 29         -[piles(1,3,i),piles(N,3,i)],'o-','LineWidth',5,'MarkerSize',...
 30                                             6,'MarkerFaceColor','black')
 31 end
 32 
 33 
 34  [X,Y]=meshgrid(-50:1:50,-dia_0/2:0.2:dia_0/2);
 35  Z=20-sqrt(dia_0^2/4-Y.^2);
 36  Z2=20+sqrt(dia_0^2/4-Y.^2);
 37  s=surf(Y,X,-Z);
 38  s.EdgeColor='none';
 39  s.FaceAlpha=0.75;
 40  s2=surf(Y,X,-Z2);
 41  s2.EdgeColor='none';
 42  s2.FaceAlpha=0.75;
 43  xlabel('HORIZONTAL "Y"')
 44  ylabel('HORIZONTAL "X"')
 45  zlabel('VERTICAL "Z"')
 46  title('Scheme: Surface + Tunnel + Piles')
 47 
 48  campos([495, -1562, 57])
 49  drawnow
 50 
 51 hold off
 52 
 53 
 54 
 55 
 56 
 57 %%
 58 
 59 a=length(w_final_x(1,:,1));
 60 
 61 switch a
 62     case 2
 63         interesting_piles=[1,2];
 64     case 4

Annex 41



 65         interesting_piles=[1,2,3,4];
 66     case 9
 67         interesting_piles=[1,4,5];
 68     case 13
 69         interesting_piles=[1,7];
 70     case 25
 71         interesting_piles=[1,2,3,4,8,13,25];
 72     otherwise
 73         interesting_piles=[1];
 74 end
 75         
 76     final=length(w_final_x(1,1,:));
 77     if final ==1
 78         k=1;
 79     else
 80     k=4;
 81     end
 82     
 83     final=round(linspace(1,final,k));
 84 %% X    
 85 for j=1:length(interesting_piles)
 86     figure(200)
 87     
 88     
 89     l=1;
 90     for i=final
 91         
 92         subplot(length(interesting_piles),2,2*(j-1)+1)
 93         hold on
 94         grid on
 95         plot(w_final_x(:,interesting_piles(j),i)*1000,-[piles(:,3,1)],...
 96                                     '.-','LineWidth',1.5,'MarkerSize',12);
 97         st(l)='Tunnel advance # '+string(i)+'/'+...
 98                                         string(length(w_final_x(1,1,:)));
 99         hold off
100         
101         xlabel('Horizontal displacement (mm)')
102         ylabel('Depth (m)')
103         st_title(j)='Horizontal X displacement of pile num. '...
104                                             +string(interesting_piles(j));
105         
106         
107         subplot(length(interesting_piles),2,2*(j-1)+2)
108         hold on
109         grid on
110         plot(Mf_final_x(:,1,interesting_piles(j),i),-[piles(:,3,1)],...
111                                     '.-','LineWidth',1.5,'MarkerSize',12);
112         hold off
113         
114         xlabel('M_y (kNm)')
115         ylabel('Depth (m)')
116         st_title2(j)='Bending moment in pile num. '...
117                                             +string(interesting_piles(j));
118         l=l+1;
119     end
120     
121   
122 end
123     for j=1:length(interesting_piles)
124     subplot(length(interesting_piles),2,2*(j-1)+1)
125     hold on
126     title(st_title(j))
127     plot([0 0],[-30 0],'k--','LineWidth',1)
128     axis([-100 0.5 -piles_length 0])
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129     legend(st,'Location','northwest')
130     
131     subplot(length(interesting_piles),2,2*(j-1)+2)
132     hold on
133     title(st_title2(j))
134     plot([0 0],[-30 0],'k--','LineWidth',1)
135     axis([-1600 1800 -piles_length 0])
136     legend(st)
137     end
138     set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
139 
140 
141 %% Y Cumulative   
142 
143     for j=1:length(interesting_piles)
144     figure(250)
145     
146     
147     l=1;
148     for i=final
149         
150         subplot(length(interesting_piles),2,2*(j-1)+1)
151         hold on
152         grid on
153         plot(w_final_y(:,interesting_piles(j),i)*1000,-[piles(:,3,1)],...
154                                     '.-','LineWidth',1.5,'MarkerSize',12);
155         st(l)='Tunnel advance # ' + string(i)+'/'+...
156                                         string(length(w_final_x(1,1,:)));
157         hold off
158         
159         xlabel('Horizontal displacement (mm)')
160         ylabel('Depth (m)')
161         st_title(j)='Horizontal Y displacement of pile num. '...
162                                             +string(interesting_piles(j));
163         
164         
165         
166         subplot(length(interesting_piles),2,2*(j-1)+2)
167         hold on
168         grid on
169         plot(Mf_final_y(:,1,interesting_piles(j),i),-[piles(:,3,1)],...
170                                     '.-','LineWidth',1.5,'MarkerSize',12);
171         hold off
172         
173         xlabel('M_x (kNm)')
174         ylabel('Depth (m)')
175         st_title2(j)='Bending moment in pile num. ' ...
176                                             +string(interesting_piles(j));
177         
178         l=l+1;
179     end
180     
181     end
182     for j=1:length(interesting_piles)
183     subplot(length(interesting_piles),2,2*(j-1)+1)
184     hold on
185     title(st_title(j))
186     plot([0 0],[-30 0],'k--','LineWidth',1)
187     axis([-10 0.5 -piles_length 0])
188     legend(st,'Location','northwest')
189     
190     subplot(length(interesting_piles),2,2*(j-1)+2)
191     hold on
192     title(st_title2(j))
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193     plot([0 0],[-30 0],'k--','LineWidth',1)
194     axis([-2000 2000 -piles_length 0])
195     legend(st)
196     end
197     set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
198 
199     
200     %% Z Cumulative   
201 
202     for j=1:length(interesting_piles)
203     figure(300)
204     
205     l=1;
206     for i=final
207         
208         subplot(length(interesting_piles),2,2*(j-1)+1)
209         hold on
210         grid on
211         s=(interesting_piles(j)-1)*(N+1)+1;
212         e=s+N;
213         plot(v_final(:,interesting_piles(j),i)*1000,...
214                         -[piles(:,3,1);piles(N,3,1)],'.-','LineWidth',...
215                                                       1.5,'MarkerSize',12);
216         st(l)='Tunnel advance # ' + string(i)+'/'+...
217                                           string(length(w_final_x(1,1,:)));
218         hold off
219         
220         xlabel('Vertical displacement (mm)')
221         ylabel('Depth (m)')
222        st_title(j)='Settlement of pile num. '+string(interesting_piles(j));
223         
224         
225         
226         subplot(length(interesting_piles),2,2*(j-1)+2)
227         hold on
228         grid on
229         plot(axial_final(1:N,1,interesting_piles(j),i),...
230                     -[piles(:,3,1)],'.-','LineWidth',1.5,'MarkerSize',12);
231         hold off
232         
233         xlabel('Axial force (kN)')
234         ylabel('Depth (m)')
235         st_title2(j)='Axial force in pile num. '+...
236                                             string(interesting_piles(j));
237         
238         
239         l=l+1;
240     end
241       
242     end
243     
244     for j=1:length(interesting_piles)
245     subplot(length(interesting_piles),2,2*(j-1)+1)
246     hold on
247     title(st_title(j))
248     plot([0 0],[-30 0],'k-','LineWidth',2)
249     axis([-3 10 -piles_length 0])
250     legend(st,'Location','northeast')
251     
252     subplot(length(interesting_piles),2,2*(j-1)+2)
253     hold on
254     title(st_title2(j))
255     plot([0 0],[-30 0],'k-','LineWidth',2)
256     axis([0 5500 -piles_length 0])
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257     legend(st)
258     end
259     
260 set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
261 
262 
263 
264 
265 
266 
267 else
268 %%  Surface settlement plots
269 %%
270 N=num_elem;
271 a=length(w_final_x(1,:,1));
272 
273 switch a
274     case 2
275         interesting_piles=[1,2];
276     case 4
277         interesting_piles=[1,2,3,4];
278     case 9
279         interesting_piles=[1,4,5];
280     case 16
281         interesting_piles=[1,2,3,6,7,16];
282     case 25
283         interesting_piles=[1,2,3,4,8,13,25];
284     otherwise
285         interesting_piles=[1];
286 end
287         
288     final=length(w_final_x(1,1,:));
289     if final ==1
290         k=1;
291     else
292     k=4;
293     end
294     
295     final=round(linspace(1,final,k));
296      %% Z Cumulative   
297 
298     
299     figure(300)
300     plot(piles(:,2),-soil_strain_auxz(1:N,length(soil_strain_auxz(1,:))) );
301     start='[X='+string(piles(1,1))+', Y='+string(piles(1,2))+'] ';
302     final='[X='+string(piles(N,1))+', Y='+string(piles(N,2))+']'
303     t='Surface settlement in XS: start '+start+' end '+final;
304     title(t)
305     ylabel('Settlement')
306     xlabel('Horizontal XS')
307     grid on
308 set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
309 
310     %% Y Cumulative   
311 
312     
313     figure(301)
314     plot(piles(:,2),-soil_strain_auxy(:,length(soil_strain_auxy(1,:))) );
315     start='[X='+string(piles(1,1))+', Y='+string(piles(1,2))+'] ';
316     final='[X='+string(piles(N,1))+', Y='+string(piles(N,2))+']'
317     t='Y surface disp in XS: start '+start+' end '+final;
318     title(t)
319     ylabel('Disp mm')
320     xlabel('Horizontal XS')
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321     grid on
322 set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
323 end
324 
325 end
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  1 % File name: compensation_grouting.m
  2 % Author: Genis Majoral Oller
  3 % Date: 16/7/2018
  4 % For Civil Engineering bachelor's degree dissertation
  5 % Computation of group of piles' displacements and stresses due to a tunnel
  6 % excavation using Boussinesq, Mindlin and Sagaseta theory
  7 
  8 clear all;
  9 
 10 load('sample_filename.mat')%load existing problem to which comp. grout is applied
 11 
 12 
 13 %% %---------------------COMPENSATION GROUTING
 14 %% INPUT UP TO THE USER
 15 % Define num of comp grout strips
 16 num_strip=1;
 17 
 18 %X of the strips
 19 
 20 x1=linspace(-10,10,time_step);
 21 x2=linspace(-20,20,time_step);
 22 x3=linspace(-20,20,time_step);
 23 %%% Depth of the strips
 24 dp1=ones(length(x1),1)*(piles_length+1);
 25 dp2=ones(length(x1),1)*(depth+0.5);
 26 dp3=ones(length(x1),1)*(18+3);
 27 dp4=10;
 28 
 29 %%% Y of the strips
 30 y=piles(1,2,2);
 31 yy=piles(1,2,1);
 32 yyy=0;
 33 yyyy=2;
 34 
 35 y1=ones(length(x1),1)*y;
 36 y2=ones(length(x1),1)*yy;
 37 y3=ones(length(x1),1)*yyy;
 38 y4=ones(length(x1),1)*yyyy;
 39 
 40 
 41 %%% Total volume of each strip
 42 V1=-10/time_step*ones(size(x1));
 43 V2=V1*3;
 44 V3=V1/2;
 45 V4=V1;
 46 
 47 %%
 48 V_comp_pts=zeros(num_strip,4,time_step);
 49 
 50 for i=1:time_step
 51     if num_strip==1
 52     V_comp_pts(1,:,i)=[x1(1,i),y1(i),dp1(i),V1(1,i)];
 53     elseif num_strip==2
 54         V_comp_pts(1,:,i)=[x1(1,i),y1(i),dp1(i),V1(1,i)];
 55         V_comp_pts(2,:,i)=[x2(1,i),y2(i),dp2(i),V2(1,i)];
 56     elseif num_strip==3
 57          V_comp_pts(1,:,i)=[x1(1,i),y1(i),dp1(i),V1(1,i)];
 58         V_comp_pts(2,:,i)=[x2(1,i),y2(i),dp2(i),V2(1,i)];
 59          V_comp_pts(3,:,i)=[x3(1,i),y3(i),dp3(i),V3(1,i)];
 60     elseif num_strip==4
 61          V_comp_pts(1,:,i)=[x1(1,i),y1(i),dp1(i),V1(1,i)];
 62         V_comp_pts(2,:,i)=[x2(1,i),y2(i),dp2(i),V2(1,i)];
 63          V_comp_pts(3,:,i)=[x3(1,i),y3(i),dp3(i),V3(1,i)];
 64          V_comp_pts(4,:,i)=[x4(1,i),y4(i),dp4(i),V4(1,i)];
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 65     end
 66 end
 67 
 68 %% %%%%%
 69 
 70 tic
 71 
 72 [soil_strain_comp]=sagaseta_3D(piles,V_comp_pts,time_step); %soil displacement around the piles
 73 
 74 
 75                             time_soil=toc;
 76                             fprintf('Soil displacements computed --> ok!\n')
 77                             fprintf('   Elapsed time: %.1f s \n',time_soil);
 78                             
 79 %% %%%%%%%%%%% SINK + COMPENSATION SOIL DISPLACEMENTS
 80 
 81 soil_strain_final=soil_strain+soil_strain_comp;
 82 %% %%%%%%%%%%%%%%%%%%% HORIOZONTAL X ANALYSIS
 83 
 84 [a,b]=size(piles_forces_top);
 85 ppp_comp=zeros(a,b,length(soil_strain(1,1,1,:)));  
 86 
 87 coord=1; %x direction
 88 tic
 89 [cIs_global_x,cBC_global_x,cAp_global_x,cD_global_x,p_global_x_comp,...
 90     w_global_x_comp,w_final_x_comp,w_head_x_comp,BC_change_x_comp,ppp_comp,w_dif_x2_comp,soil_strain_auxx_comp] = 
horizontal_analysis( piles,soil,piles_dia,...
 91     piles_forces_top,piles_E,piles_I,piles_head_type,piles_num,soil_strain_final,coord,num_elem,time_step,ppp_comp);
 92 
 93                             time_x=toc;
 94                             fprintf('Horizontal X analysis computed --> ok!\n')
 95                             fprintf('   Elapsed time: %.1f s \n',time_x);
 96 clear cIs_global_x cBC_global_x cAp_global_x cD_global_x
 97 
 98 %% %%%%%%%%%%%%%%%%%%% HORIZONTAL Y ANALYSIS
 99 
100 [a,b]=size(piles_forces_top);
101 ppp_comp=zeros(a,b,length(soil_strain(1,1,1,:)));  
102 
103 coord=2; %y direction
104 tic
105 [cIs_global_x,cBC_global_x,cAp_global_x,cD_global_x,p_global_y_comp,...
106     w_global_y_comp,w_final_y_comp,w_head_y_comp,BC_change_y_comp,ppp_comp,w_dif_y2_comp,soil_strain_auxy_comp] 
= horizontal_analysis( piles,soil,piles_dia,...
107     piles_forces_top,piles_E,piles_I,piles_head_type,piles_num,soil_strain_final,coord,num_elem,time_step,ppp_comp);
108 
109                             time_y=toc;
110                             fprintf('Horizontal Y analysis computed --> ok!\n')
111                             fprintf('   Elapsed time: %.1f s \n',time_y);
112 clear cIs_global_x cBC_global_x cAp_global_x cD_global_x
113 
114 %% %%%%%%%%%%%%%%%%%%% VERTICAL Z ANALYSIS 
115 
116 tic;
117 [p_global_z_comp,p_global_z2_comp,v_global_comp,v_global2_comp,v_global3_comp,v_final_comp,cD_global_z,
cAp_global_z,...
118     cIs_global_z,cBC_z,cBC_change_z,u_dif_u_comp,u_dif_o_comp,ppp_comp,u_head_z_comp,u_mean_comp,Z_head_comp,
u_dif_z_comp,soil_strain_auxz_comp]=...
119     vertical_analysis(piles,piles_num,piles_dia,piles_head_type,...
120     piles_length,soil,piles_E,soil_strain_final,num_elem,piles_forces_top,ppp_comp,find_surface);
121                             time_z=toc;
122                             fprintf('Vertical Z analysis computed --> ok!\n');
123                             fprintf('  Elapsed time: %.1f s \n',time_z);
124                             
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125 clear cIs_global_x cBC_global_x cAp_global_x cD_global_x
126 
127 
128 
129 
130 %% %-------------------------RESULTS' ANALYSIS--------------------------%%%
131 % ----------------------------------------------------------------------- %
132 
133 [Mf_final_x_comp,Mf_final_y_comp,Q_global_x_comp,axial_final_comp]...
134     =results_analysis(piles_num,...
135     piles_length,piles_dia,piles_I,piles_E,piles_forces_top,num_elem,...
136     w_global_x_comp,w_global_y_comp,v_global3_comp,p_global_z2_comp,time_step,piles_head_type,ppp_comp,
find_surface);
137 
138 %% %-----------------------------PLOTTINGS------------------------------%%%
139 % ----------------------------------------------------------------------- %
140 
141 results_plots_comp(w_final_x,w_final_y,v_final,...
142     Mf_final_x,Mf_final_y,axial_final,num_elem,piles,w_final_x_comp,w_final_y_comp,v_final_comp,...
143     Mf_final_x_comp,Mf_final_y_comp,axial_final_comp,V_loss_pts,dia_0,p_global_z2,p_global_z2_comp,p_global_x,
p_global_x_comp,p_global_y,p_global_y_comp);
144 
145 save('sample_filename');
146 
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