

Treball realitzat per:

Genís Majoral Oller

Dirigit per:

Dr. Eduardo Alonso Pérez de Ágreda
Dra. Anna Ramon Tarragona

Grau en:

Enginyeria Civil

Barcelona, setembre 2018

Departament d’Enginyeria del Terreny

 T
R

EB
A

LL
 F

IN
A

L
D

E
G

R
A

U

Study of the influence of tunnel

excavations on pile founded

buildings

Study of the influence of tunnel excavations on pile

founded buildings

Genís Majoral Oller

Cover photo “Used Drill Head of a TBM
(Tunnelbohrmaschine) IV” by Marcel Grieder licenced
under Creative Commons (CC) 2.0.

Declaració d’originalitat

L’autor d’aquest treball, Genís Majoral Oller, fa constar que aquest treball s’ha escrit fruit de la

seves pròpies paraules i raonament, a excepció d’aquelles parts que estan degudament citades o

parafrasejades, sempre amb la pertinent referència d’acord amb la normativa vigent de l’Escola

de Camins i sota la tutoria del Dr. Eduardo Alonso Pérez de Ágreda i la Dra. Anna Ramon

Tarragona.

Aquesta declaració confirma que:

• En Genís Majoral Oller estudiant del grau en Enginyeria Civil de l’Escola de Camins,

ETSECCPB, és l’exclusiu autor d’aquest treball.

• No s’ha comés cap tipus de plagi i s’han seguit les normes de citació dictades per la

ETSECCPB, Universitat Politècnica de Barcelona.

• S’han documentat de manera veraç totes les metodologies, dades i processos.

• No s’ha manipulat cap dada.

• S’han citat a totes les persones que han facilitat de manera significativa la elaboració del

present treball.

I per a que així en quedi constància signa l’autor

Genís Majoral Oller

Barcelona, a 26 de setembre de 2018.

Abstract

With the development of underground construction in urban areas, tunnelling exerts

some unavoidable influence on adjacent buildings, that may become an important

problem for many high-rise buildings, or others, that are supported by piled foundations.

This may result in additional settlement and lateral displacements, hence a change in

internal forces that may lead to structural distress or failure of the piled foundation.

Existing geotechnical software or FEM analysis may be used to solve the tunnel-pile

interactions. However, semi-analytical formulation may make it worth solving at a

reduced computational cost. To carry out this project, the following fundamental theory

has been used: the Sagaseta problem (1987) describing displacements due to an

underground soil loss point, the Mindlin problem (1921) for subsurface movements

induced by a subsurface force, and the Boussinesq problem (1885) for a surface force. The

required variables are the soil elastic modulus and Poisson ratio, the tunnel and piles

geometry, the tunnel areal ground loss and the applied forces. The fundamental solutions

used are applicable for an elastic, homogeneous, isotropic and incompressible soil.

The project aims to describe and comprehend the existing formulae, while creating a

simple semi-analytical procedure implemented in MATLAB language. Throughout the

project many subproblems arise such as the effect of a rigid pile cap, how to discretise an

advancing tunnel and the applicability of a compensation grouting option in the MATLAB

code. Afterwards, several simulations will be run to understand the response of piles to an

underground soil volume loss. Likewise, the effects of an advancing tunnel will be studied,

for different configurations and throughout the advancement of the tunnel towards and

past the foundations. Finally, the capabilities of the developed MATLAB code will be

shown with the analysis of the effects of a compensation grouting injection produced on

a certain foundations and the study of the Sagrada Família pile wall (Ledesma & Alonso,

2015).

Resum

Amb el desenvolupament de construccions en el subsol de zones urbanes, els túnels

exerceixen unes influències inevitables en les edificacions adjacents, que poden derivar en

un important problema per molts grata-cels o altres edificis que tenen pilots com a

fonamentació. Això es pot traduir en assentaments i moviments laterals addicionals, per

tant, un canvi en les forces internes que pot provocar danys estructurals i falles als pilots.

Alguns softwares geotècnics existents, o anàlisis MEF, poden ser emprats per resoldre la

interacció túnel-pilots. Tanmateix, els procediments semi-analítics poden resultar

d’interès atès el reduït cost computacional que presenten. En base això, la següent teoria

proporciona la formulació necessària per desenvolupar el treball: Sagaseta (1987) i el

problema de pèrdua de sòl en un punt, Mindlin (1921) i el problema de moviments a causa

d’una força a l’interior d’un sòl i Boussinesq (1885) i el problema de moviments a causa

d’una força en superfície. Les variables necessàries seran el mòdul elàstic i el coeficient de

Poisson del sòl, les geometries del túnel i els pilots, la pèrdua de volum per metre lineal de

túnel i les forces aplicades. Les solucions fonamentals emprades són aplicables per sòls

elàstics, homogenis, isotròpics i incompressibles.

Aquest projecte se centra en descriure i comprendre la formulació existent, crear un

procediment semi-analític i implementar-lo en el llenguatge MATLAB. Durant el projecte

apareixen sub-problemes com tenir en compte l’encepat d’un grup de pilots, com

discretitzar un túnel i l’aplicabilitat d’una funció de compensation grouting al codi

MATLAB. Més endavant, diverses simulacions es duran a terme per entendre la resposta

dels pilots envers una pèrdua de volum de sòl. A més, els efectes d’un túnel en avenç també

seran estudiats, per diferents configuracions de túnel i al llarg de l’avenç d’aquest.

Finalment, el potencial del codi MATLAB es veuran amb l’aplicabilitat d’un compensation

grouting a uns determinats fonaments (i l’estudi dels seus efectes) i amb l’estudi de la

pantalla de pilots de la Sagrada Família (Ledesma i Alonso, 2015).

TABLE OF CONTENTS

1 INTRODUCTION .. 3

2 PROBLEM MODELLING ... 5

2.1 PILE MODELLING ... 7

2.1.1 PILES LATERAL RESPONSE .. 7

2.1.2 PILES AXIAL RESPONSE .. 13

2.1.3 PILE STRUCTURE MATRIX ASSEMBLY .. 16

2.2 SOIL MODELLING ... 17

2.2.1 SAGASETA .. 17

2.2.2 BOUSSINESQ ... 19

2.2.3 MINDLIN .. 20

2.2.4 SOIL STRUCTURE MATRIX ASSEMBLY .. 23

2.3 PROBLEM SOLVING .. 25

2.4 PILE CAP EFFECT .. 27

2.5 TUNNEL VOLUME LOSS .. 29

2.6 ADVANCING TUNNEL PROBLEM ... 32

2.7 COMPENSATION GROUTING ... 34

3 MATLAB CODE ... 37

3.1 CODE FLOW CHART .. 38

4 CODE VERIFICATION ... 41

4.1 STANDARDISED SOLUTIONS .. 41

4.1.1 VERTICAL .. 41

4.1.2 HORIZONTAL LOAD FREE HEAD PILE ... 42

4.1.3 HORIZONTAL LOAD FIXED HEAD PILE .. 43

4.2 PLAXIS GROUP PILE TEST .. 44

4.2.1 HORIZONTAL ANALYSIS ... 45

4.2.2 VERTICAL ANALYSIS .. 46

5 SENSITIVITY ANALYSIS .. 49

5.1 PILE-GROUP RESPONSE TO A POINT SOIL VOLUME LOSS ... 49

5.1.1 INFLUENCE OF PILE LENGTH AND DIAMETER .. 49

5.2 ADVANCING TUNNEL .. 57

5.2.1 EFFECT OF TUNNEL AREAL LOSS .. 59

6 PROBLEMS OF INTEREST ... 69

6.1 ADVANCING TUNNEL .. 69

6.1.1 PLAXIS COMPARISON .. 77

6.1.2 COMPENSATION GROUTING ... 83

6.2 SAGRADA FAMÍLIA PILE WALL ... 91

7 CONCLUSIONS .. 99

7.1 CONCLUSIONS ON FURTHER WORK ... 100

8 BIBLIOGRAPHY ... 103

ANNEX: MATLAB CODE .. 105

1

2

3

1 INTRODUCTION

Tunnel excavations threaten building foundations, typically in massified urbanised areas

where piled foundations flood the underground space. One of the challenges this poses

consists in determining the tunnel-pile interaction, and when the structure is jeopardised,

to engineer a plan that mitigates the effects.

The structure of this work starts by detailing, in section 2, the formulation that underpins

the analyses carried out in the current project, based on authors like H.G. Poulos and E.H

Davis for the general structural approach, R.D. Mindlin and his subsurface force induced

movements, J.V. Boussinesq to account for movements due to surface forces and C.

Sagaseta the precursor with his fundamental formulation in soil movements due to a

ground point volume loss.

Afterwards, section 3 describes the structure of the code and how it flows. While section

4 verifies the output provided by the code against known solutions or commercial software

(Plaxis), section 5 actually computes results of interest to examine and learn how the piles

behave to different scenarios and to an advancing tunnel. Section 6 analyses a piled

foundation through two stages: prior and after applying a compensation grouting injection

once a tunnel excavation is completed, it is intended to provide more insight in the

response to a tunnel. Eventually, section 6 studies a real case, the Sagrada Família pile

wall.

That being said, the main objectives of this dissertation would be classified into:

• Describe and comprehend the existing formulation for pile analysis, tunnel ground

loss induced soil movements and the pile-tunnel interaction.

• Create a code that analyses pile-tunnel interaction based on exiting formulation,

while learning how to manage and structure a large-sized code.

• Actually simulate the interaction between a group of piles and a tunnel in several

situations characterized by different foundation and tunnel designs.

4

5

2 PROBLEM MODELLING

This section aims to describe the model being used, both the existing fundamental

formulae and its development and adaptation towards creating a functional code.

In the first place, use is made of Poulos and Davis (1980) handbook Pile and Foundation

Analysis Design which sets the basics on pile foundation analysis. Likewise, Sauter’s master

thesis and his code (2012), along with the posterior article (Alonso et al., 2015), developed

to analyse a swelling soil strata under Pont de Candí has helped and played a reference

role in the comprehension process.

To begin with the actual problem, let a certain pile group be bored in a soil. The

fundamental equations used constrain the analysis to be applicable for an elastic,

undrained, homogeneous, isotropic and incompressible soil. Let us start by saying that the

problem uncouples the soil and pile structures, as seen in Figure 1. On the one hand, the

pile structure becomes just a matter of elastic structural analysis. It may resemble beam

analysis in any building, considering that there may have a pile cap (or not) which will

restrain head movements in comparison to the rest of the pile group. The pile structure

accounts for the external loads and moments applied at the pile heads, these are known

data. Most importantly, the unknowns are both the piles displacements laws and the load

distribution acting along the piles shafts.

On the other hand, the soil structure may be conceived as a free field soil where

displacements and stresses at the very location of the pile structure are again unknown. In

this problem, displacements generated by both ground losses due to a tunnel and/or

surface loads are calculated. Parallelly, there is the so-called shielding effect, this is taken

into account in the form of influence coefficients calculated by means of the Mindlin

subsurface force problem (1937): the displacement of each pile induce some forces that

have an effect along the shaft of the neighbouring piles.

As stated earlier, unknowns are both stresses and displacements, which can be related in

a simple equation. In order to solve the problem, both displacements at the pile and soil

structures will be equalled to work out stresses.

Therefore it is key to comprehend that the current elastic analysis is about relative

stiffnesses and interaction between elastic bodies in contact along with a displacement

compatibility equation.

6

Solutions for horizontal and vertical analysis are also uncoupled, i.e. settlements do not

influence horizontal displacements and so forth.

Piles will be discretised into a number of elements and all the equations will be developed

in finite differences, which will derive into a system of equations assembled in matrix form,

the reason being the use of MATLAB for an easy computational resolution. Afterwards,

bending moments, shear stresses and axial compression laws are calculated for each pile.

Concerning the modelling of the tunnel, it will also be discretised into various sections,

each containing a number of points that model the associated tunnel volume loss. The

induced displacements in the free field soil due to a sink point are found according to

Sagaseta (1987).

Figure 1. Sketch representation of the problem’s approach, both pile (left) and soil (right) structures are
depicted.

7

2.1 PILE MODELLING

2.1.1 Piles lateral response

Over the following lines, the structural analysis of a single pile will be analysed, knowing

that it is extendable to a group of piles.

Deep foundations will be treated as beams where external forces and moments act at the

top of the pile either for a free or fixed head. The soil exerts an unknown distribution of

lateral and vertical stresses along the shaft of the pile, as well as a base vertical stress.

Within each discretised element of the pile, the stresses are assumed to remain constant,

the smaller the length of each discretisation, the more accurate the assumption is.

A beam’s differential bending equation is:

𝐸𝑝𝐼𝑝 ·
𝑑4𝑤

𝑑𝑧4
= −𝑞 = 𝑝𝑑

Where

𝐸𝑝 is the elastic modulus of the pile

𝐼𝑝 is the moment of inertia of the pile’s section

𝑧 is the depth in soil

𝑑 is the width or diameter of the pile

𝑤 is the pile’s deflection

𝑝 is the horizontal shear stress (kN/m2)

𝑞 is the linear load (kN/m)

Applying finite differences the equation for any element i on any pile would then be:

−𝑝𝑖𝑑 ·
ℎ𝑖
4

𝐸𝑝𝐼𝑝
= 𝛿𝑖−2 − 4𝛿𝑖−1 + 6𝛿𝑖 − 4𝛿𝑖+1 + 𝛿𝑖−1

(2)

(1)

8

There are N elements discretising the pile,

placed so that the nodes are located like shown

in Figure 2. Therefore, arising N equations to

solve. Note how the first and last nodes fall

exactly on the top and tip of the pile. Every

element has a length of ℎ𝑖 =
𝐿

𝑁−1
 and notice how

the lateral load acts upon the whole length of

the elements, except for the first and last ones

that only do so in half of it, provided the load

acts in half of the length.

Equation (2) is applied to elements 2 to N-1. It

would similarly be applied to the first and last

elements, but then two new unknowns would

come up corresponding to the virtual nodes -2

and N+2.

In order to avoid this, the analysis is completed

with the following equilibrium equations:

Force equilibrium

∑𝑝𝑖ℎ𝑖𝑑 = 𝐻

𝑁

𝑖=1

Where

𝐻 is the external horizontal force applied to the top

𝑝𝑖 is the load acting upon every element

𝑑 is the piles diameter

𝑝𝑥,𝑖
𝑝𝑖𝑙𝑒1

𝑝𝑥,1
𝑝𝑖𝑙𝑒1

𝑝𝑥,𝑁
𝑝𝑖𝑙𝑒1

Hpile1

Mpile1

Figure 2. Vertical view sketch of a discretised single pile.
Diameter (d), load (pi), element length (hi), element depth
(zi) and external forces (H and M) are depicted.

(3)

9

ℎ𝑖 is the height of each element
𝐿

𝑁−1
 for each one except the first and last

elements (1 and N) where it is halved:
1

2

𝐿

𝑁−1

Moment equilibrium

∑𝑝𝑖ℎ𝑖𝑧𝑖𝑑 +𝑀𝐸 = 𝑀ℎ𝑒𝑎𝑑

𝑁

𝑖=1

Where the new variables are

𝑀𝐸 is the external moment applied at the top

𝑧𝑖 is the distance of the centre of the load of every discretisation to the head of

the pile:

𝑧1 = 0,5 ·

0,5𝑑𝐿

𝑁 − 1

𝑧𝑖 = 0,5 ·
0,5𝐿

𝑁 − 1

𝑓𝑜𝑟 𝑖 𝜖 2, … ,𝑁 − 1

𝑧𝑁 = 0,5 ·
0,5𝐿

𝑁 − 1

𝑀ℎ𝑒𝑎𝑑 is the moment at the head of the pile

Additionally, to eliminate virtual nodes -1 and N+1, that appear in the bending equation,

depending on the type of pile cap, use is made of the following boundary conditions.

Constrained rotation at the head of the pile

For instance, if there happens to be a pile cap.

(
𝑑(𝛿)

𝑑𝑧
𝐸𝐼)

𝑧=0

= 0 = 𝛿2 − 𝛿−1

Moment at the head of the pile

A free headed pile, for example, will present null moment at the top.

𝑀ℎ𝑒𝑎𝑑
(
𝐿
𝑁)

2

𝐸𝐼
= 𝛿2 − 2𝛿1 + 𝛿−1 = 2𝛿2 − 2𝛿1

(4)

(5)

(6)

10

Moment at the tip of the pile

The pile tip will always be considered free, hence presenting null moment:

𝑀𝑡𝑖𝑝 = (
𝑑2(𝛿)

𝑑𝑧2
𝐸𝐼)

𝑧=0

= 𝛿𝑛+1 − 2𝛿𝑛 + 𝛿𝑛−1 = 0

Results in:

𝛿𝑛+1 = 2𝛿𝑛 − 𝛿𝑛−1

From here, the analysis distinguishes two different pile head cases: free head or fixed head.

Free head pile

For this case, the following boundary conditions apply:

• Null moment at the head of the pile

• Null moment at the tip of the pile

The first and last rows are used to fit in the two equilibrium equations, whereas the rest

correspond to the finite difference form of the bending equations:

[

0 0 0 0 0 … 0 0
2 5 −4 1 0
1 −4 6 −4 1

…
1 −4 6 −4 1 0
0 0 1 −4 5 −2

0 0 … 0 0 0 0 0]

[

𝛿1
𝛿2
𝛿3
𝛿4
…
…
𝛿𝑛−2
𝛿𝑛−1
𝛿𝑛]

+

[

𝐵𝐶
𝐵𝐶2
0
…
0
𝐵𝐶3]

=

=

[

0,5𝑑𝐿

𝑁 − 1

𝑑𝐿

𝑁 − 1
…

𝑑𝐿

𝑁 − 1

0,5𝑑𝐿

𝑁 − 1

0
𝑑

𝐸𝐼
(
𝐿

𝑁
)
4

0

…

0
𝑑

𝐸𝐼
(
𝐿

𝑁
)
4

0

0,5𝑑𝐿

𝑁 − 1
𝑧1

𝑑𝐿

𝑁 − 1
𝑧2 …

𝑑𝐿

𝑁 − 1
𝑧𝑁−1

0,5𝑑𝐿

𝑁 − 1
𝑧𝑁]

[

𝑝1
𝑝2
𝑝3
𝑝4
𝑝5
…
…
𝑝𝑛−2
𝑝𝑛−1
𝑝𝑛]

Where:

𝐵𝐶1 = 𝐻𝐸

(7)

(8)

11

𝐵𝐶2 =
𝑀

𝐸𝐼
(
𝐿

𝑁
)
2

𝐵𝐶3 = 𝑀𝐸

Put it in matrix form:

[𝐷𝑝𝑖𝑙𝑒]{𝛿𝑝𝑖𝑙𝑒} + [𝐵𝐶𝑝𝑖𝑙𝑒] = [𝐴𝑝𝑖𝑙𝑒]{𝑝𝑝𝑖𝑙𝑒}

Where

𝐷𝑖𝑗 𝑁 × 𝑁stiffness matrix

𝛿𝑗 𝑁 size pile displacements column vector

𝐵𝐶𝑗 𝑁 size load column vector

𝑝𝑗 𝑁 size column vector

𝐷𝑖𝑗 𝑁 × 𝑁 load coefficients matrix

Constrained or casted pile

For this case, which tends to be more common, piles are casted into a pile cap. This has

an effect on the piles of a group that compels their heads to remain in a plane and maintain

the spacing at the top (see section 2.5). Concerning the assembly of equations for a single

pile the next boundary conditions are used:

• Rotation at the head is zero.

• Moment at the end of the pile is zero.

Furthermore, the two equilibrium equations are placed in the first and last rows. In this

case, unlike the free headed problem where Mhead is zero, there is some bending moment,

namely fixing moment. It is taken into account with the following.

𝑀ℎ𝑒𝑎𝑑 = (
𝑑2(𝛿)

𝑑𝑧2
𝐸𝐼)

𝑧=0

= −2𝛿1 + 2𝛿2

Therefore, the moment equilibrium equation is:

∑𝑝𝑖ℎ𝑖𝑧𝑖𝑑 +𝑀𝐸 = 𝑀ℎ𝑒𝑎𝑑

𝑁

𝑖=1

= −2𝛿1 + 2𝛿2

(9)

(10)

12

[

0 0 0 0
−4 7 −4 1
1 −4 6 −4 1

…
1 −4 6 −4 1

1 −4 5 −2
−2 2 0 … 0 0 0 0]

[

𝛿1
𝛿2
𝛿3
𝛿4
𝛿5
…
…
𝛿𝑛−2
𝛿𝑛−1
𝛿𝑛]

+

[

𝐵𝐶1
𝐵𝐶2
0

…

0
𝐵𝐶3]

=

[

0,5𝑑𝐿

𝑁 − 1

𝑑𝐿

𝑁 − 1
…

𝑑𝐿

𝑁 − 1

0,5𝑑𝐿

𝑁 − 1

0
𝑑

𝐸𝐼
(
𝐿

𝑁
)
4

…
𝑑

𝐸𝐼
(
𝐿

𝑁
)
4

0

0,5𝑑𝐿

𝑁 − 1
𝑧1

𝑑𝐿

𝑁 − 1
𝑧2 …

𝑑𝐿

𝑁 − 1
𝑧𝑁−1

0,5𝑑𝐿

𝑁 − 1
𝑧𝑁]

[

𝑝1
𝑝2

…

𝑝𝑁−1
𝑝𝑁]

Where

𝐵𝐶1 = 𝐻𝐸

𝐵𝐶2 =
𝑀

𝐸𝐼
(
𝐿

𝑁
)
2

𝐵𝐶3 = 𝑀𝐸

Let this be put as:

[𝐷𝑝𝑖𝑙𝑒]{𝛿𝑝𝑖𝑙𝑒} + [𝐵𝐶𝑝𝑖𝑙𝑒] = [𝐴𝑝𝑖𝑙𝑒]{𝑝𝑝𝑖𝑙𝑒}

(11)

13

2.1.2 Piles axial response

For vertical pile modelling, each element measures now

ℎ𝑖 =
𝐿

𝑁
. Nodes have to be defined so that they are located

like shown in Figure 3. In this problem, N skin stresses

and 1 base stress make N+1 unknowns. Defining 𝜎𝑖 as the

axial stress at node i, it can be derived from axial

equilibrium of an element that:

𝜎𝑖 = 𝜎𝑖−1 +
𝜕𝜎

𝜕𝑧
· ℎ𝑖 = 𝜎𝑖−1 −

𝑝𝜋𝑑

𝐴𝑝
ℎ𝑖

𝜕𝜎

𝜕𝑧
= −

𝑝𝜋𝑑

𝐴𝑝
= −

4𝑝

𝑅𝐴𝑑

Where:

𝑅𝐴 =
𝐴𝑝
𝜋𝑑2

4

As defined in Poulos and Davis (1980), for circular

massive piles 𝑅𝐴 = 1.

On the other hand, from elastic theory:

𝜕𝜌

𝜕𝑧
= −

𝜎

𝐸𝑝

𝜕2𝜌

𝜕𝑧2
= −

1

𝐸𝑝

𝜕𝜎

𝜕𝑧
=
1

𝐸𝑝

4𝑝

𝑅𝐴𝑑

Having found a relationship for shaft stress p as a

function of vertical node displacements, now, by means

of finite differences:

𝑝𝑖 =
𝑅𝐴𝑑

4𝐸𝑠
·
𝜌𝑖+1 − 2𝜌𝑖 + 𝜌𝑖−1

(
𝐿
𝑁)

2

𝑝𝑧,1
𝑝𝑖𝑙𝑒1

𝑝𝑧,𝑁
𝑝𝑖𝑙𝑒1

𝑝𝑧,𝑖
𝑝𝑖𝑙𝑒1

𝑝𝑧,𝑏𝑎𝑠𝑒
𝑝𝑖𝑙𝑒1

𝑃

𝐴𝑝

Figure 3. Vertical view of single pile
subjected to settlement.

𝜌𝑥,𝑁
𝑝𝑖𝑙𝑒1

𝜌𝑧,𝑁+1
𝑝𝑖𝑙𝑒1

𝜌𝑥,1
𝑝𝑖𝑙𝑒1

(12)

(13)

(14)

14

From now on:

𝑝𝑖 = 𝐾 · [𝜌𝑖+1 − 2𝜌𝑖 + 𝜌𝑖−1]

The final form of the (N+1) system of equations for a single pile is:

[

−2 2 0 0 0 … 0 0 0 0
1 −2 1 0 0
0 1 −2 1 0

…
…
0 1 −2 1 0
0 0 0 1 −1

0 0 0 0 … 0 0 0 0 0]

[

𝛿1
𝛿2
𝛿3
𝛿4
𝛿5
…
…
𝛿𝑛−2
𝛿𝑛−1
𝛿𝑛]

+

[

𝐵𝐶1
0
0

…

0
𝑃]

=

[

1 + 𝐾 · 𝐷1 0 0 … … 0

0 1/𝐾 0 … … 0
… … … … … …
0 0 … 1/𝐾 0 0
0 0 … 0 𝐷2 1/2 · 𝐿/𝑁 · 1/𝐸𝑝

𝑝𝑖𝑑𝐿

𝑁
… … …

𝑝𝑖𝑑𝐿

𝑁
𝑝𝑖 (

𝑑

2
)
2

]

[

𝑝1
𝑝2
𝑝3

…

𝑝𝑁−1
𝑝𝑁
𝑝𝑁+1]

Let this be put as:

[𝐷]{𝛿𝑝𝑖𝑙𝑒} + [𝐵𝐶] = [𝐴]{𝑝}

Where

𝐵𝐶1 = 𝐾
𝑃

𝐴𝑝𝐸𝑠
·
𝐿

𝑁

𝐷1 = (
𝐿

𝑁
)
2

· 𝑝𝑖 ·

𝑑
𝐸𝑝

𝑝𝑖 ·
𝑑2

4

𝐷2 = (
1

2
·
𝐿

𝑁
)
2

· 𝑝𝑖 ·

𝑑
𝐸𝑝

𝑝𝑖 ·
𝑑2

4

D1 and D2 appear once imposed the equilibrium of axial forces at the first element (see

Figure 4) and displacements compatibility at the last element (see Figure 5).

(15)

(16)

15

For the first element:

𝜎1𝐴𝑝 = 𝑃 − 𝑝1 (𝑝𝑖 · 𝑑 ·
1

2
·
𝐿

𝑁
)

−
𝜎1
𝐸𝑝
=
𝜕𝜌

𝜕𝑧
 =

−𝜌2 + 𝜌−1

2 ·
𝐿
𝑁

Thus, the equation inserted in the first row is:

𝑝1 (1 + 𝐾𝑝𝑖 · 𝑑 ·
𝐿2

𝑁2
·
1

𝐸𝑠𝐴𝑝
) = 𝐾{−2𝜌1 + 2𝜌2} + 𝐾

𝑃

𝐴𝑝𝐸𝑠
2 ·
𝐿

𝑁

For the last element:

𝜌𝑁 = 𝜌𝐵 −
𝜕𝜌

𝜕𝑧
·
1

2
·
𝐿

𝑁

𝜎𝑁𝐴𝑝 = 𝜎𝐵𝐴𝑝 + 𝑝𝑁 (𝑝𝑖 · 𝑑 ·
1

2
·
𝐿

𝑁
)

The previous equations come to give the equation inserted in the last row of matrix [𝐷]:

𝜌𝑁 − 𝜌𝐵 = 𝜎𝐵 ·
1

𝐸𝑝
·
1

2
·
𝐿

𝑁
+ 𝑝𝑁 ·

1

𝐸𝑝
· (
1

2
·
𝐿

𝑁
)
2

· (𝑝𝑖 · 𝑑) ·
1

𝐴𝑝

Figure 5. Sketch of actions upon element N.

Figure 4. Sketch of stresses upon element 1, analysis extendable
to any pile.

16

2.1.3 Pile structure matrix assembly

Based on the previously explained equations, notation does not distinguish horizontal or

vertical analysis, so the following generalised form is valid for each direction, always

bearing in mind the intrinsic differences. Just as a reminder, in the horizontal analysis the

number of equations is (𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) · (𝑁𝑝𝑖𝑙𝑒𝑠), whereas in the vertical analysis it is

(𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 + 1) · (𝑁𝑝𝑖𝑙𝑒𝑠).

[𝐷𝑝𝑖𝑙𝑒]{𝛿𝑝𝑖𝑙𝑒} + [𝐵𝐶𝑝𝑖𝑙𝑒] = [𝐴𝑝𝑖𝑙𝑒]{𝑝𝑝𝑖𝑙𝑒}

Assembling a system of equations for 𝑁𝑝𝑖𝑙𝑒𝑠 piles would give:

[

[𝐷]𝑝𝑖𝑙𝑒1
…

[𝐷]𝑝𝑖𝑙𝑒𝑁𝑝

] {

𝛿𝑝𝑖𝑙𝑒1
…

𝛿𝑝𝑖𝑙𝑒𝑁𝑝

} + {

𝐵𝐶𝑝𝑖𝑙𝑒1
…

𝐵𝐶𝑝𝑖𝑙𝑒𝑁𝑝

} = [

[𝐴]𝑝𝑖𝑙𝑒1
…

[𝐴]𝑝𝑖𝑙𝑒𝑁𝑝

] {

𝑝𝑝𝑖𝑙𝑒1
…

𝑝𝑝𝑖𝑙𝑒𝑁𝑝
}

The final form may be written as:

[𝐷]{𝛿} + [𝐵𝐶] = [𝐴]{𝑝}

(17)

17

2.2 SOIL MODELLING

The soil is modelled as an elastic continuum, homogeneous, isotropic and incompressible.

As stated earlier, the soil displacements come from 3 sources: the tunnel excavation

volume loss, the displacements due to subsurface forces and from surface forces. Each sort

of movements is solved based on the problems presented by the following authors.

2.2.1 Sagaseta

Sagaseta (1987) presented the following solution for 3D elastic, homogeneous, isotropic

and incompressible soil. Figure 6 depicts the problem.

Let the following definitions be:

∆𝑥 = 𝑋𝑎𝑓𝑒𝑐𝑡𝑒𝑑 − 𝑋𝑣𝑙𝑜𝑠𝑠

∆𝑦 = 𝑌𝑎𝑓𝑒𝑐𝑡𝑒𝑑 − 𝑌𝑣𝑙𝑜𝑠𝑠

𝑧 = 𝑍𝑎𝑓𝑒𝑐𝑡𝑒𝑑

𝑥 = 𝑠𝑞𝑟𝑡(∆𝑥2 + ∆𝑦2)

𝑟1 = (𝑥
2 + (𝑧 − ℎ)2)

1
2

𝑟2 = (𝑥
2 + (𝑧 + ℎ)2)

1
2

Sagaseta (1987) defined the soil displacement at a

point due to a localised volume loss (or sink

point) as the sum of:

𝜌𝑥 = 𝜌𝑥,𝑝𝑎𝑣𝑒𝑑 + 𝜌𝑥,𝑓𝑟𝑒𝑒

This comes from the solving process described in

his article (Figure 7). Imposing a free surface

condition, it starts by computing displacements

in an infinite medium. Then add the contribution

of a negative image source to cancel out normal

stresses at the surface. Finally, to achieve the free

surface condition, the shear stresses due to steps

1 and 2 are removed in step 3. As formulated in

equation (18) 𝜌𝑥,𝑝𝑎𝑣𝑒𝑑 corresponds to the sum of

steps 1 and 2, called paved because as Sagaseta explains in step 2 there are no surface

Figure 6. Point sink, problem definition as
shown in Fig. 9 by Sagaseta (1987).

(18)

18

normal stresses but there are shear stresses constraining surface horizontal movement.

This may resemble a situation where there is an inextensible membrane, like an urban

pavement, hence the term paved.

Figure 7. Steps in the Sagaseta analysis extracted from Sagaseta (1987)

Equation (19) is the result of step 2,

𝜌𝑥,𝑝𝑎𝑣𝑒𝑑 = −
𝑟3

3
(
∆𝑥

𝑟1
3 −

∆𝑥

𝑟2
3)

𝜌𝑥,𝑓𝑟𝑒𝑒 =
2

𝜋
𝑟𝑎𝑑3

ℎ

𝑥
∫ 𝑟𝑏 ·

𝛼

(ℎ2 + 𝛼2)
5
2

· [𝐼𝐸 · 𝐸(𝑘) + 𝐼𝐹𝐹(𝑘)]𝑑𝛼
+∞

0

Equations above are valid for horizontal displacements, coordinate y displacement may be

similarly calculated thanks to axial symmetry.

Vertical displacements are the sum of equations (23) and (22):

𝜌𝑧 = 𝜌𝑧,𝑝𝑎𝑣𝑒𝑑 + 𝜌𝑧,𝑓𝑟𝑒𝑒

𝜌𝑧,𝑝𝑎𝑣𝑒𝑑 = −
𝑟𝑎𝑑3

3
· (
𝑧 − ℎ

𝑟1
3 −

𝑧 + ℎ

𝑟2
3)

𝜌𝑧,𝑓𝑟𝑒𝑒 =
2

𝜋
𝑟𝑎𝑑3ℎ𝑧∫

1

𝑟𝑏
·

𝛼

(ℎ2 + 𝛼2)
5
2

· [𝐽𝐸 · 𝐸(𝑘) + 𝐹(𝑘)]𝑑𝛼
+∞

0

Where for both cartesian directions, 𝐹(𝑘) and 𝐸(𝑘) are complete elliptic functions of

first and second kind respectively with;

(19)

(21)

(23)

(22)

(20)

19

𝑘 = (1 −
𝑟𝑎
2

𝑟𝑏
2)

0,5

And

𝑟𝑎 = √(𝛼 − 𝑥)
2 + 𝑧2

𝑟𝑏 = √(𝛼 + 𝑥)
2 + 𝑧2

𝐼𝐸 = 1 +
1

2
𝑧2 (

1

𝑟𝑎
2
 +

1

𝑟𝑏
2)

 𝐼𝐹 = −
1

𝑟𝑏
2
(𝛼2 + 𝑥2 + 2𝑧2)

𝐽𝐸 = −1 + 2(𝛼 · (𝛼 − 𝑥)) ·
1

𝑟𝑎
2

2.2.2 Boussinesq

The well-known Boussinesq solution (1885) for a surface horizontal point load:

𝜌𝑥 =
𝑃(1 + 𝑣𝑠)

2𝜋𝐸𝑠𝑅
· (1 +

𝑥2

𝑅2
+ (1 − 2𝑣𝑠) (

𝑅

𝑅 + 𝑧
−

𝑥2

(𝑅 + 𝑧)2
))

Where

𝑅 = √𝑥2 + 𝑦2 + 𝑧2

The Y displacement is similarly calculated by means of axial symmetry.

Similarly, for a surface vertical point load:

𝜌𝑧 =
𝑃(1 + 𝑣𝑠)

2𝜋𝐸𝑠𝑅
(2(1 − 𝑣𝑠) +

𝑧2

𝑅2
)

𝑅 = √𝑥2 + 𝑦2 + 𝑧2

(24)

(25)

Figure 8. Boussinesq surface force problem. Vertical (left), horizontal (right).

20

2.2.3 Mindlin

The Mindlin solution provides a subsurface displacement generated by a subsurface point

force. This is used to take into account the influence that in-pile displacements have in

neighbouring piles. Since the Mindlin solution is valid for point forces and the problem is

relating loads and displacements, by integrating over the area of each pile element where

the load is acting, new influence coefficients are found.

Horizontal Loading

The Mindlin problem for a horizontal load Q

relates:

𝜌𝑥 = 𝑄 ·
1 + 𝑣𝑠

8𝐸𝑠𝜋(1 − 𝑣𝑠)
(
3 − 4𝑣𝑠
𝑅1

+
1

𝑅2
+
𝑥2

𝑅13

+
(3 − 4𝑣𝑠)𝑥

2

𝑅23
+
2𝑐𝑧

𝑅23
(1 − 3

𝑥2

𝑅22
)

+ 4(1 − 𝑣𝑠)
1 − 2𝑣𝑠
𝑅2 + 𝑧 + 𝑐

· (1 −
𝑥2

𝑅2(𝑅2 + 𝑧 + 𝑐)
))

Where

𝑅1 = √𝑥2 + 𝑦2 + (𝑧 − 𝑐)2

𝑅2 = √𝑥2 + 𝑦2 + (𝑧 + 𝑐)2

𝑅2 = √𝑥2 + 𝑦2 + (𝑧 + 𝑐)2

𝐸𝑠 = 𝑠𝑜𝑖𝑙 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠

𝑣𝑠 = 𝑠𝑜𝑖𝑙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑟𝑎𝑡𝑖𝑜

Let 𝐼 be defined as the so-called influence coefficient, from equation (26):

𝜌𝑥 =
𝑄

𝐸𝑠
𝐼

Now, the integration over the area where the load acts is only done for in-pile coefficients,

i.e. for the influence that elements of one pile exert in the same pile. Let these prima

coefficients be:

Figure 9. Horizontal point-load Mindlin
problem. Extracted from Poulos and Davis
(1980).

(26)

21

𝐼𝑖,𝑗
′ = 2 · ∫ ∫ 𝐼

𝑑
2

0

𝑐𝑠𝑢𝑝

𝑐𝑖𝑛𝑓

𝑑𝑦𝑑𝑐

As for pile to pile influences, it is accurately enough to account for a load by simply

multiplying coefficients 𝐼 by the area of the element (benefitting from a reduced

computational time):

𝜌𝑥 =
1

𝐸𝑠
𝐼 · (𝑑ℎ𝑖)

Vertical Loading

Quite like the process developed in the previous section for horizontal loading, let’s define:

𝑧 = ℎ + 𝑐

𝑧1 = ℎ − 𝑐

𝑅1
2 = 𝑥2 + 𝑦2 + 𝑧1

2

𝑅2
2 = 𝑥2 + 𝑦2 + 𝑧2

Let the vertical displacement be defined in compact form, for a vertical subsurface force

Q:

𝜌𝑧 =
𝑄

𝐸𝑠
𝐼

Which is:

𝜌𝑧 = Q
(1 + 𝑣)

8𝐸𝑠𝜋(1 − 𝑣)

· [
𝑧1
2

𝑅1
3 +

3 − 4𝑣

𝑅1
+
5 − 12𝑣 + 8𝑣2

𝑅2
+
(3 − 4𝑣)𝑧2 − 2𝑐𝑧 + 2𝑐2

𝑅2
3 +

6𝑐𝑧2(𝑧 − 𝑐)

𝑅2
5]

Figure 10. Vertical Mindlin problem. Adapted
from Poulos and Davis (1980).

(27)

22

For the vertical problem, the pile is formed of N nodes all of length
𝐿

𝑁
. Like in the

horizontal problem, vertical influence coefficients will need to be integrated over the

acting area of the load. Regarding the used notation, integrated coefficients will be labelled

as 𝐼′.

For elements 𝐼𝑖,𝑗
′ , when the force is and acts on the shaft, i, jϵ[1, … , N]:

𝐼𝑖,𝑗
′ = 2 · ∫ ∫ 𝐼

𝜋
2

0

𝑐𝑠𝑢𝑝,𝑗

𝑐𝑖𝑛𝑓,𝑗

𝑑𝜃𝑑𝑐

𝑐𝑠𝑢𝑝,𝑗 = 𝑧𝑗 −
1

2
·
𝐿

𝑁

𝑐𝑠𝑢𝑝,𝑗 = 𝑧𝑗 +
1

2
·
𝐿

𝑁

Where 𝑧𝑗 is the depth of each node.

The influence coefficient resulting from the force acting on the base affecting elements on

the shaft of the pile is:

𝐼𝑖,𝑏
′ =

1

𝑑
∫ ∫ 𝑟 · 𝐼

𝑑
2

0

2𝜋

0

𝑑𝑟𝑑𝜃

Finally, for the base acting upon the base itself:

𝐼𝑏,𝑏
′ =

𝜋

4
∫ ∫ 𝑟 · 𝐼

𝑑
2

0

2𝜋

0

𝑑𝑟𝑑𝜃

As stated by Poulos and Davis (1980) a factor
𝜋

4
 must be allowed to account for an effect of

rigidity of the base. These authors remark that this corresponds to the ratio of the surface

displacement of a rigid circle on the surface of a half-space.

Again, for influence coefficients relating two piles, these are acceptable enough if

coefficients 𝐼 are multiplied by the area of the element 𝑑 ·
𝐿

𝑁
 (where 𝑑 is pile diameter).

𝐼𝑝𝑖𝑙𝑒 𝑖,𝑝𝑖𝑙𝑒 𝑗 =
1

𝐸𝑠
· (𝑑 ·

𝐿

𝑁
)

23

2.2.4 Soil structure matrix assembly

Horizontal analysis

Finally, one can build the following system of equations of size

𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 for a single pile problem. Based on the addition principle, volume loss (Sagaseta)

and surface loading (Boussinesq) displacements need to be added to the total soil

displacements.

{

𝜌𝑥,1
𝜌𝑥,2
…
𝜌𝑥,𝑁

} =
1

𝐸𝑠
[

𝐼1,1′ 𝐼1,2′ … 𝐼1,𝑁′

𝐼2,1′ 𝐼2,2′ … 𝐼2,𝑁′
… … … …
𝐼𝑁,1′ 𝐼𝑁,2′ … 𝐼𝑁,𝑁′]

· {

𝑝𝑥,1
𝑝𝑥,2
…
𝑝𝑥,𝑁

} +

{

 𝜌𝑥,1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

𝜌𝑥,2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

…

𝜌𝑥,𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}

+

{

 𝜌𝑥,1

𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

𝜌𝑥,2
𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

…

𝜌𝑥,𝑁
𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

}

Extending the problem to a group of piles, there are (𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) · (𝑁𝑝𝑖𝑙𝑒𝑠) equations, note

the use of coefficients 𝐼′ or 𝐼:

{

{𝜌𝑥,𝑝𝑖𝑙𝑒1}

{𝜌𝑥,𝑝𝑖𝑙𝑒2}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁}}

=
1

𝐸𝑠
[

[𝐼′]1,1 [𝐼]1,2 … [𝐼]1,𝑁
[𝐼]2,1 [𝐼′]2,2 … [𝐼]2,𝑁
… … … …

[𝐼]𝑁,1 [𝐼]𝑁,2 … [𝐼′]𝑁,𝑁]

·

{

{𝑝𝑥,𝑝𝑖𝑙𝑒1}

{𝑝𝑥,𝑝𝑖𝑙𝑒2}
…

{𝑝𝑥,𝑝𝑖𝑙𝑒𝑁}}

+

{

 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}

+

{

 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

}}

Vertical analysis

Eventually, similar to the horizontal direction, the final vertical displacements in a pile

group problem may be defined as:

{

{𝜌𝑥,𝑝𝑖𝑙𝑒1}

{𝜌𝑥,𝑝𝑖𝑙𝑒2}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁}}

=
1

𝐸𝑠
[

[𝐼′]1,1 [𝐼]1,2 … [𝐼]1,𝑁
[𝐼]2,1 [𝐼′]2,2 … [𝐼]2,𝑁
… … … …

[𝐼]𝑁,1 [𝐼]𝑁,2 … [𝐼′]𝑁,𝑁]

·

{

{𝑝𝑥,𝑝𝑖𝑙𝑒1}

{𝑝𝑥,𝑝𝑖𝑙𝑒2}
…

{𝑝𝑥,𝑝𝑖𝑙𝑒𝑁}}

+

{

 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}

+

{

 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞

}}

Where in this case there are (𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 + 1) · (𝑁𝑝𝑖𝑙𝑒𝑠) equations due to the extra unknown

in the base of the pile.

(30)

(28)

(29)

24

Always bearing in mind that there are differences between the definition of some

parameters depending whether it is horizontal or vertical analysis.

25

2.3 PROBLEM SOLVING

The matrix form in which the problem has been conceived allows MATLAB to easily solve

for load vector {𝑝} containing a number of 𝑁𝑝𝑖𝑙𝑒𝑠 load vectors, when pile and soil

displacements are equated. The following structure can analogously be applied either to

horizontal or vertical directions (bearing in mind the intrinsic differences between each

analysis as the vectors and matrices in equations (32)and (33) have been constructed in

previous sections):

[𝐷]{𝛿} + [𝐵𝐶] = [𝐴]{𝑝}

{𝜌𝑠} = [𝐼𝑠]{𝑝} + {𝜌𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎} + {𝜌𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞}

{𝑝} = ([𝐴] −
1

𝐸𝑠
[𝐷][𝐼𝑠])

−1

· ([𝐵𝐶] + [𝐷][{𝜌𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎} + {𝜌𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞}])

Afterwards pile deflection or settlement may be calculated, reusing equation (33).

Then, the corresponding bending moment may be found by finite differences at the Euler-

Bernoulli bending theory and boundary conditions presented in equations (5), (6) and

(7). By using 𝛿 as horizontal displacements:

𝑀𝑖,𝑝𝑖𝑙𝑒𝑗 =
𝐸𝑝𝐼𝑝

(
𝐿
𝑁)

2 [𝛿𝑖+1
𝑝𝑖𝑙𝑒𝑗

− 2𝛿𝑖
𝑝𝑖𝑙𝑒𝑗

+ 𝛿𝑖−1
𝑝𝑖𝑙𝑒𝑗

]

Using standard notation, displacements in the X direction generate a law of 𝑀𝑦 bending

moments. Likewise, displacements in the Y direction generate a law of 𝑀𝑥 bending

moments. For this project an assumption is made in that no torsion 𝑀𝑧 is considered, nor

that it is applied as an external action.

On the other hand, the axial force, now by using 𝛿 vertical displacements, can be

calculated for any element 𝑖 = 2,… ,𝑁 with equations (35):

𝑁𝑖,𝑝𝑖𝑙𝑒𝑗 = −
𝐸𝑝𝐴𝑝

2
𝐿
𝑁

[𝛿𝑖+1
𝑗
− 𝛿𝑖−1

𝑗
]

For the first element:

𝑁1,𝑝𝑖𝑙𝑒𝑗 = 𝑃𝑝𝑖𝑙𝑒𝑗 − 𝑝𝑧,1
𝑝𝑖𝑙𝑒𝑗 1

2
·
𝐿

𝑁
𝜋𝑑

For the last element:

(33)

(32)

(31)

(34)

(35)

26

𝑁𝑁,𝑝𝑖𝑙𝑒𝑗 = 𝑝𝑧,𝑁+1
𝑝𝑖𝑙𝑒𝑗

·
𝜋𝑑2

4
+ 𝑝𝑧,𝑁

𝑝𝑖𝑙𝑒𝑗 1

2
·
𝐿

𝑁
𝜋𝑑

Hereafter, according to how it has been defined, all results showing positive axial force

correspond to compression while negative refer to tensile stresses.

27

2.4 PILE CAP EFFECT

The pile cap acts as a rigid plate (rigid pile cap) that constrains horizontal movements, by

making pile head displacements equal, i.e. the pile heads may present some head

displacements albeit all the same. Differential displacements are not allowed, that is the

purpose of a rigid plate, or rafted foundation. In a similar way, vertical movements at the

head are imposed to be in a plane, i.e. heads may present different settlements as long as

they are coplanar. In order to achieve this, Sauter (2012) proposed to modify the force

acting on each pile, as if the pile group distributed the total load among its piles (which is

what in reality occurs). The procedure is iterative, where it is applicable to any time step j

(as in reference to tunnel advance steps).

Horizontal analysis

1. Calculate the mean value of the displacements at time 𝑗 at the piles’ head:

𝛿𝑥,𝑚𝑒𝑎𝑛
ℎ𝑒𝑎𝑑,𝑗

2. Change the new pile external applied force (𝑃𝑥,𝑖
𝑗

) with the following weighted

function, for pile 𝑖 and actual head displacements at current time step being

𝛿𝑥,𝑖
ℎ𝑒𝑎𝑑,𝑗

:

𝑃𝑥,𝑖
𝑗
= 𝑃𝑥,𝑖

𝑗−1
+ (𝛿𝑥,𝑚𝑒𝑎𝑛

ℎ𝑒𝑎𝑑,𝑗
− 𝛿𝑥,𝑖

ℎ𝑒𝑎𝑑,𝑗
) ·
| ∑ 𝑃𝑥,𝑖

𝑗−1𝑁𝑝𝑖𝑙𝑒𝑠
𝑖=1

|

𝑁𝑝𝑖𝑙𝑒𝑠
· 100

3. Recalculate piles deflection and stresses, with the procedure developed in section

2.3 and the new forces having changed the matrix [𝐵𝐶].

4. Iterate whether the following conditions is not fulfilled, for every pile head 𝑖:

−5 · 10−6 < [𝑚𝑎𝑥(𝛿𝑥,𝑖
ℎ𝑒𝑎𝑑,𝑗

) − min(𝛿𝑥,𝑖
ℎ𝑒𝑎𝑑,𝑗

)] < 5 · 10−6

𝑖𝜖{1, … ,𝑁𝑝𝑖𝑙𝑒𝑠}; 𝑗𝜖ℕ

For the horizontal Y direction the procedure is similarly applied.

Vertical analysis

1. Calculate the mean plane using a least-square approximation and the theoretical

head settlement:

𝛿𝑧,𝑚𝑒𝑎𝑛
ℎ𝑒𝑎𝑑

(36)

28

2. Compute the difference between the calculated pile heads and the mean plane pile

heads:

𝛿𝑧,𝑑𝑖𝑓,𝑖
ℎ𝑒𝑎𝑑 = 𝛿𝑧,𝑖

ℎ𝑒𝑎𝑑 − 𝛿𝑧,𝑚𝑒𝑎𝑛,𝑖
ℎ𝑒𝑎𝑑

3. Average the pile heads differences:

𝛿𝑧,𝑑𝑖𝑓,𝑚𝑒𝑎𝑛
ℎ𝑒𝑎𝑑

4. Change new pile external applied force with this weighted function:

𝑃𝑧,𝑖
𝑗
= 𝑃𝑧,𝑖

𝑗−1
+ (𝛿𝑧,𝑑𝑖𝑓,𝑚𝑒𝑎𝑛

ℎ𝑒𝑎𝑑,𝑗
− 𝛿𝑧,𝑑𝑖𝑓,𝑖

ℎ𝑒𝑎𝑑,𝑗
) ·
| ∑ 𝑃𝑥,𝑖

𝑗−1𝑁𝑝𝑖𝑙𝑒𝑠
𝑖=1

|

𝑁𝑝𝑖𝑙𝑒𝑠
· 100

5. Recalculate piles settlement and stresses, with the procedure developed in section

2.3 and the new forces having changed the matrix [𝐵𝐶].

6. Iterate whether the following condition is not fulfilled (limits in meters), for every

pile head 𝑖:

[−5 · 10−5 < 𝑚𝑖𝑛(𝛿𝑧,𝑑𝑖𝑓,𝑖
ℎ𝑒𝑎𝑑)] ∨ [max(𝛿𝑧,𝑑𝑖𝑓,𝑖

ℎ𝑒𝑎𝑑) < 5 · 10−5]

𝑖𝜖{1, … ,𝑁𝑝𝑖𝑙𝑒𝑠}; 𝑗𝜖ℕ

As it can be appreciated that: for the horizontal analysis the head displacements are

compared to the mean head displacements, whereas the vertical procedure compares each

head settlement to the corresponding theoretical settlement in a mean plane. With this is

made clear that the horizontal head displacements are constraint to be all equal, in

contrast with the vertical procedure that allows differential settlement as long as it is in a

plane.

(37)

29

2.5 TUNNEL VOLUME LOSS

González and Sagaseta (2001) thoroughly described the crossectional deformation

undergone by a tunnel (see Figure 11). In earlier works, Lee et al. (1992) defined the gap

parameter, which is nothing but the maximum radial distance from the final tunnel cross

section to the original, when it undergoes ground loss and vertical movement (marked as

𝑑0 − 𝑑1 in Figure 12), in other words, the maximum measurable settlement at the tunnel

crown. From Figure 11, the gap parameter would imply the consideration of the sum of

ground loss and vertical movement.

Figure 11. Adapted from González and Sagaseta (2001). Components of deformation of the tunnel.

To show insight about the sources of deformation, the Lee et al. (1992) gap parameter

definition is:

2𝑟0 = 2𝑟1 + 𝑔

𝑔 = 𝐺𝑝 + 𝑈3𝐷
∗ +𝜔

Where:

𝐺𝑝 Physical gap. The difference between the maximum outside diameter of the

tunneling machine and the outside diameter of the lining for a circular tunnel.

𝑈3𝐷
∗ 3D elastoplastic deformation into the tunnel face.

𝜔 Workmanship factor.

For this project, ovalisation as it is described by González and Sagaseta (2001) will be

neglected, therefore, the ground loss and vertical movement contributions are the

considered types, just like Lee et al. (1992) in the gap parameter. From here, equations

below were worked out to discretise a tunnel deformation in various points. Based only on

30

the initial and final geometries (see Figure 12), let’s define the following as the areal loss

ratio:

𝜀0 =
𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐴𝑓𝑖𝑛𝑎𝑙

𝐴𝑓𝑖𝑛𝑎𝑙
=
𝜋𝑟0

2 − 𝜋𝑟1
2

𝜋𝑟1
2 =

𝑟0
2

𝑟1
2 − 1

𝜀0 is nothing but the relationship between the final and initial tunnel cross section areas.

In general, this ratio remains around 1% strongly dependant on machine shield

technology, lining characteristics and workmanship skills (Lee et al., 1992). With that

being said, the MATLAB code developed for this project only asks to input the 𝜀0 ratio and

the tunnel diameter which is 2𝑟1. Then it computes 𝑟0 from equation (39), rearranging

terms:

𝑟0 = (𝑟1
2 · (𝜀0 + 1))

1/2

As stated earlier, the tunnel cross section undergoing ground loss and vertical settlement

results in the cross section depicted in blue in Figure 12. The perimetral areal loss will be

discretised into various portions (depending on the required number of elements). If one

sets a local polar system of coordinates (𝑌′ − 𝑍′), datum on the biggest circle’s centre

(black cross), equations describing the two circumferences that represent the original and

the final tunnel cross sections may be expressed as:

𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑟0

𝑟𝑓𝑖𝑛𝑎𝑙(𝜃) = 𝑟𝑐,𝑓𝑖𝑛𝑎𝑙 cos(𝜃 − 𝜑) + √𝑎
2 − 𝑟𝑐,𝑓𝑖𝑛𝑎𝑙sin (𝜃 − 𝜑)

Where 𝑎 is the final circle’s radius, 𝜑 is 270º and:

𝑟𝑐,𝑓𝑖𝑛𝑎𝑙 = 𝑟1 − 𝑟0

Figure 12. Tunnel volume loss cross section representation (exagerated), local coordinate system.

(40)

(39)

(38)

31

Now, each of the elements that define a portion shaded in Figure 12, have varying area.

The area for each element is calculated as:

(∆𝐴)𝑗 = 𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝜃𝑖+1−𝜃𝑖 − 𝐴𝑓𝑖𝑛𝑎𝑙

𝜃𝑖+1−𝜃𝑖

𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝜃𝑖+1−𝜃𝑖 = 𝑝𝑖 ·

𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2

𝑛𝑑𝑖𝑠𝑐

𝐴𝑓𝑖𝑛𝑎𝑙
𝜃𝑖+1−𝜃𝑖 = ∫ 𝑟𝑓𝑖𝑛𝑎𝑙(𝜃)

1

2
𝑟𝑓𝑖𝑛𝑎𝑙(𝜃)𝑑𝜃

𝜃𝑖+1

𝜃𝑖

For:

𝑖𝜖[0, 𝑛𝑑𝑖𝑠𝑐𝑟]; 𝑗𝜖[1, 𝑛𝑑𝑖𝑠𝑐𝑟]; 𝜃𝑖𝜖[0,
2𝑝𝑖

𝑛𝑑𝑖𝑠𝑐𝑟
, … ,2𝑝𝑖]

Once the areal loss in known for every discretisation, these are associated to

corresponding sink points located in the middle circumference, just as marked in Figure

12. With this, proportionality is already taken into account at each point.

To recap, for any problem the variables required for the MATLAB code are 𝜀0, 𝑟0 and the

number of points. For the calculations developed further on (sections 5.2, and 6), these

are specified.

An example below, similar to the sketch in Figure 12, shows the discretisation in 10 points,

for a 𝜀0 = 1% tunnel. Since the deformation is normally almost imperceptible the zoomed-

in plots show the discretisation sink points in between the two cross sections. Note that

the bottom point coincides with both curves, whereas the maximum difference is at the

crown, that is a result of the vertical movement.

(41)

Figure 13. Tunnel cross section discretised into 10 points, local
coordinates. For 𝜀0 = 1% and radius 5m. On the right hand side, three
zoomed-in plots. In red the sink points, in blue the deformed cross
section, in black the initial cross section. Plots provided by the
MATLAB code developed for this project.

32

2.6 ADVANCING TUNNEL PROBLEM

The problem of an advancing tunnel is solved based on the development in sections 2.1,

2.2, 2.3, 2.4 and 2.5.

Firstly, the tunnel will be discretised into various sections of a certain length (Figure 14).

It is assumed that along the length of the tunnel the areal loss remains the same. As

described in section 2.6, the tunnel cross section areal loss is simulated by a number of

sink points. To account for volume, each areal loss at each point is multiplied by the

corresponding length of the section, as seen in Figure 14 it is
𝐿𝑡𝑢𝑛

𝑁𝑑𝑖𝑠𝑐
, where 𝐿𝑡𝑢𝑛 is the input

length of the tunnel in the code.

Once the location and volume loss of each point in known, soil movements at the piles are

computed for each advancing tunnel discretisation. Therefore, if 𝑁𝑑𝑖𝑠𝑐 is the number of

tunnel discretisations, there appear 𝑁𝑑𝑖𝑠𝑐 column vectors of size 𝑁𝑒𝑙𝑒𝑚 · 𝑁𝑝𝑖𝑙𝑒𝑠 that are

stored in a matrix.

For any time step 𝑗 (tunnel advance) the final soil displacements are the cumulative soil

displacements generated by the advances 1 to 𝑗. For instance, in the X direction:

{

 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑗

=∑

{

 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}

𝑖

𝑗

𝑖=1

This may be generalised to any coordinate.

Figure 14. Sketch of the tunnel discretised into several segments, each segment is discretised into several points.

(42)

33

Then, for the said 𝑗 tunnel advance, the problem is solved using cumulative soil

displacements described above and the standard solutions presented in previous sections.

Equation (31) is then, at time step 𝑗:

{𝑝}𝑗 = ([𝐴] −
1

𝐸𝑠
[𝐷][𝐼𝑠])

−1

· ([𝐵𝐶] + [𝐷] [{𝜌𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎}𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑗
+ {𝜌𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞}])

Below, a sketch of the problem geometry in MATLAB, in this example, containing 10 points

per discretised tunnel element. The number of points is deemed as a choice for the user of

the code, however, it has been found that calculations for more than 10 points provide

similar results.

The length of the tunnel is a choice of the user of the code, where they have to find a

reasonable computational time in relation to a representative simulation.

Figure 15. Sample 3D scheme output provided by the code. Black nodes represent the tunnel volume loss
discretisation points.

34

2.7 COMPENSATION GROUTING

Compensation grouting is a technique used to compensate or reverse displacements on a

structure. Injection of material expands so that its induced movements counteract the

effects of the source of unwanted displacements. In this case, the compensation grouting

nested in the code is built so that the user specifies its characteristics, it can be injected in

a strip or more than one and vary the total expansive volume, which will be negative to

account for swelling.

Each strip is formed by 𝑁𝑑𝑖𝑠𝑐 points that add up to the specified total expansion volume.

The problem is similarly solved to what has been described in previous sections. The new

volume expansion creates soil movements along the piles, both volume loss and swelling

are added, thus these final soil displacements are used to solve the problem.

Equation (42) becomes then, at time step 𝑗:

{

 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑗

=∑

(

{

 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}

𝑖

𝑣𝑜𝑙. 𝑙𝑜𝑠𝑠

+

{

 {𝜌𝑥,𝑝𝑖𝑙𝑒1

𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎
}

{𝜌𝑥,𝑝𝑖𝑙𝑒2
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}
…

{𝜌𝑥,𝑝𝑖𝑙𝑒𝑁
𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎

}}

𝑖

𝑐𝑜𝑚𝑝. 𝑔𝑟𝑜𝑢𝑡

)

𝑗

𝑖=1

Finally, the problem is again solved with Equation (31), although it can be solved for a

certain time step as if each point compensates a tunnel advance step, it is more relevant

to find the final solution, for the last time step 𝑗 = 𝑁𝑑𝑖𝑠𝑐:

{𝑝}𝑗 = ([𝐴] −
1

𝐸𝑠
[𝐷][𝐼𝑠])

−1

· ([𝐵𝐶] + [𝐷] [{𝜌𝑠𝑎𝑔𝑎𝑠𝑒𝑡𝑎}𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑗
+ {𝜌𝑏𝑜𝑢𝑠𝑠𝑖𝑛𝑒𝑠𝑞}])

35

36

37

3 MATLAB CODE

Section 3 provides an insight into the structure of the code. Having started from scratch,

the code has been inspired by the 2012 Master’s Thesis by Sauter, where the author studied

the effects of an expanding layer of soil underneath a pile group in Pont del Candí (Sauter,

2012). It must be said that although the main goal of this project was to study the tunnel-

pile interaction, a collateral consequence have been that of learning how to create and

manage a large-sized code.

After a first stage of input data, the piles’ and tunnel geometries are created. Then, a

MATLAB function computes the soil movements induced by the points discretising the

tunnel, as well as displacements due to surface loads being computed. In terms of

computational cost, this is the most expensive part, mostly due to the repetitive task done

for 𝑁 = (𝑁𝑝𝑜𝑖𝑛𝑡𝑠 · 𝑁𝑑𝑖𝑠𝑐) · (𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 · 𝑁𝑝𝑖𝑙𝑒𝑠) times of computing the integral involving

complete elliptic functions in equations (20) and (22). Where 𝑁𝑝𝑜𝑖𝑛𝑡𝑠 is the number of

points discretising each tunnel advance; 𝑁𝑑𝑖𝑠𝑐 the number of discretisations along the

tunnel length; 𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 the number of elements in each pile; 𝑁𝑝𝑖𝑙𝑒𝑠 the number of piles.

Computational time follows a linear relationship with an increase of elements (either in

the tunnel or in the piles). This means that a 20 elements pile discretisation is half as fast

as a 40 elements discretisation.

Once the vectors of soil displacements are known for each tunnel advance, they are sent

to the horizontal and vertical analyses. In each analysis, the system of equations as

described in sections 2.3 and earlier, are assembled. Working out the Mindlin’s coefficients

for the in-pile interaction absorbs most of this subprocess computational time, mainly due

to the required integration (as developed in section 2.3) for both horizontal and vertical

analyses. Nevertheless, it is far less important than the integral for the Sagaseta soil

movements involving elliptic functions, moreover, assembling the rest of matrices and

solving the actual system of equations is quickly done.

The results analysis (calculating bending moments, etc.) and the final plots entail no

significant computational effort and this is done at the end of the code.

In the following section a schematic workflow diagram of the code is presented, two

predefined subprocesses are further explained afterwards to show insight in what is called

Problem-solving and Results-analysis. The required input data is also specified.

38

3.1 CODE FLOW CHART

IN
P

U
T

D
A

T
A

Soil deformation due to volume
loss

Pile-

group

Tunnel

Soil

Soil deformation due to surface
force

Yes

No

Find cummulative volume loss
soil displacements for every

tunnel advance

Set time step = i +1

Set time step
i=1

Results analysis

Choose piles to plot

Choose time
step to plot

No

Yes

Yes

No

Advancing
tunnel exists?

Last tunnel
advance
reached?

Plot results

Problem solving Problem solving

Advancing
tunnel?

End

39

IN
P

U
T

D
A

T
A

R
E

S
U

L
T

S
-A

N
A

L
Y

S
IS

Compensation
grouting?

Yes

No

Manually add
points

Problem solving

Bending
moment

Axial force

P
R

O
B

L
E

M
-S

O
L

V
IN

G

Stresses: vector {𝑝}

No

Mindlin’s influence coeficients

Assembly of soil and piles structures matrices

End

No

Yes

Input Direction to

compute: X, Y or Z

Soil

displacements

Structure

geometry

Displacements: vector {𝛿}

Input
Displacements

Stresses

Head applied

forces

Yes

End

Add soil movements due to
comp. grouting to final soil
displacements

Pile-group:

Pile’s axis position

Length of pilie

Diameter or side dimensions

Number of pile discretisations

Elastic modulus

Moment of inertia

External forces at every pile

Pile cap

Tunnel:

Diameter of tunnel

Depth of tunnel

Eccentricity of tunnel

Number of volume loss points

discretisation

Areal loss ratio (%)

Soil:

Elastic Modulus
Poisson coefficient

Pile cap?

Tolerance
met?

40

41

4 CODE VERIFICATION

4.1 STANDARDISED SOLUTIONS

Mattes and Poulos (1969), and David and Poulos (1974) presented the following

standardised solutions. The results show the good response of the developed code.

Parameters found in subsequent figures are: 𝜈𝑆 soil Poisson ratio; H is the applied

horizontal force at the pile head, 𝐿 and 𝑑 pile length and diameter, respectively, and 𝑝 the

horizontal or vertical pressure acting along the pile shaft.

4.1.1 Vertical

In this case, different soil stiffnesses are compared. Poisson’s ratio has a small effect as it

is implied from the next figure. For the test, the soil’s elastic modulus is related to the pile’s

modulus as:

𝐸𝑆 =
𝐸𝑝
𝐾

Figure 16. Adapted from Mattes and Poulos (1969), in colour present project results.

Genis5000 v05

Genís k5000 v0

Genis50v05

Genis k50 v0

𝜈𝑆 = 0,5 ; 𝐾 = 5000

𝜈𝑆 = 0 ; 𝐾 = 5000

𝜈𝑆 = 0,5 ; 𝐾 = 50

𝜈𝑆 = 0 ; 𝐾 = 50

42

4.1.2 Horizontal load free head pile

For subsequent figures regarding horizontal behaviour, the soil elastic modulus is defined

as:

𝐸𝑆 =
𝐸𝑝𝐼𝑝
𝐿4 𝐾𝑅

Where 𝐾𝑅 relates pile and soil stiffnesses.

Figure 17. Adapted from Davis and Poulos (1974), in colour present project results.

The resulting bending moment for a pile subjected to a horizontal force H at its head.

Figure 18. Adapted from Davis and Poulos (1974), in colour present project results.

Kr1
Genís k10e-4
Kre10-4
Genis k1

Genís k10e-4

Genis k1

𝐾 = 10−4

𝐾 = 1

𝐾𝑅 = 10−4

𝐾𝑅 = 1

43

4.1.3 Horizontal load fixed head pile

Figure 19. Adapted from Davis and Poulos (1974), in colour present project results.

The resulting bending moment:

Figure 20. Adapted from Davis and Poulos (1974), in colour present project results.

Genís k10e-4

Genis k1

Genís k10e-4

Genis k1

𝐾 = 10−4

𝐾 = 1

𝐾 = 10−4

𝐾 = 1

44

4.2 PLAXIS GROUP PILE TEST

Continuing with the validation of this project code, a 9 pile group with applied external

forces will be modelled in a commercial geotechnical software, PLAXIS. Two different

analysis will be carried out, firstly, one with external horizontal loads applied at the top,

and secondly, a vertical analysis with external vertical loads, so as to see the responses in

each direction.

The most relevant information used in this section is gathered in Table 1.

Table 1. Used soil and piles parameters.

Piles Value

Length (m) 20

Diameter (m) 1.65

Spacing (m) 4

Young modulus (kN/m2) 3·107

Number of piles 9

Vertical load (kN/pile) 3000

Horizontal load (kN/pile) 3000

Soil Value

Elastic modulus (kN/m2) 100000

Poisson ratio 0,5

To configure the problem in PLAXIS, a borehole is defined with the corresponding

properties in Table 1. The size of the soil mesh is a cube that spans 100 m wide and 50 m

in depth. The software requires to input some soil properties, as defined in Table 1. As for

structures, the only ones are the embedded beams used to simulate the piles.

The code of this project will model the group of piles connected via a rigid pile cap, this

means that it constraints horizontal displacements to be equal for every pile head.

Moreover the vertical displacements at the pile heads must be coplanar. To account for

this in PLAXIS, a squared surface is generated containing every pile cap, this can later be

transformed into a plate with concrete properties similar to those of the piles. Finally, the

piles must have the rigid cap option selected. It is important to highlight that PLAXIS does

45

not calculate for any Poisson ratio of 0,5, and recommends inserting ratio values below

0,4, this will be relevant in later sections.

4.2.1 Horizontal analysis

Figure 22 shows piles displacements calculated by PLAXIS (dashed) and by the model

developed for this project (continuous line). It can be easily understood from Figure 22

that both models well capture the effect of the pile cap. All the pile heads present, at the

top, an exactly equal horizontal displacement, naturally differing downwards. There is

good correspondence between the two models.

-25,000

-20,000

-15,000

-10,000

-5,000

0,000

0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016 0,018 0,02

D
ep

th
 (

m
)

Horizontal displacement (m)

Horizontal displacements comparison

Current project P1 Current project P4 Current project P5

Plaxis P1 Plaxis P4 Plaxis P5

Figure 22. Results by PLAXIS (dashed) and this project (continuous) for horizontal displacement at different piles due
to a 2000 kN per pile vertical load.

Figure 21. PLAXIS 3D representation
of a piled group with applied
horizontal load at the head (soil
mesh not visible).

46

4.2.2 Vertical analysis

The analysis is done with the specified values above. Below, a 3D representation extracted

from PLAXIS. Results shown in this section represent settlements as negative, unlike for

the rest of the figures over the project, as stated in section 2.3. Likewise in the horizontal

direction, both models capture the effect of the cap, in this case all the pile heads present

the same settlement, hence inferring that they are in an horizontal plane. There is

acceptable correspondence.

-20,000

-18,000

-16,000

-14,000

-12,000

-10,000

-8,000

-6,000

-4,000

-2,000

0,000

-0,01 -0,009 -0,008 -0,007 -0,006 -0,005 -0,004 -0,003 -0,002 -0,001 0

D
ep

th
 (

m
)

Vertical strain (mm)

Settlement comparison

Current project P1 Current project P4 Current project P5
Plaxis P1 Plaxis P4 Plaxis P5

Figure 24. Results by PLAXIS (dashed) and this project (continuous) for vertical displacement at different piles
due to a vertical 2000 kN per pile.

Figure 23. PLAXIS 3D representation of a piled
group with applied horizontal load at the head
(soil mesh not visible).

47

48

49

5 SENSITIVITY ANALYSIS

In the following section, once the code is verified, it is time to study problems of interest

with soil volume losses. Firstly, a sensitivity analysis will be carried out for different pile-

group configurations to see their behaviour upon a point volume loss. Secondly, an

advancing tunnel will be simulated in order to study the tunnel-piles interaction as the

tunnel progresses, and how it varies for different areal loss ratios.

5.1 PILE-GROUP RESPONSE TO A POINT SOIL VOLUME LOSS

5.1.1 Influence of pile length and diameter

For this section, various tests are carried out so as to compare a 9 pile group for varying

diameters and lengths undergoing the effects of a nearby point volume loss, Figure 25

depicts the geometry of problem.

Combinations are for 15, 20, 25 and 30 m pile lengths; 0,5, 1 and 1,5 m diameters. For all the

cases, the parameters gathered in the following table remain constant.

Table 2. Piles, soil and volume loss parameters used in this section.

Piles Value

Number of piles 9

Pile cap Rigid

Young modulus (kN/m2) 3·107

Spacing (m) 4

Vertical load (kN/pile) 0

Horizontal load (kN/pile) 0

Soil Value

Elastic modulus (kN/m2) 100000

Poisson ratio 0,5

Point volume loss Value

Volume (m3) 0,5

Since the only source of distress is the point volume loss, the nearest piles are likely to be

the most affected, i.e. 1, 4 and 7 (for pile labelling see Figure 25 and thumbnails next to

50

plots). For the sake of simplicity, figures in this section show results for piles 4 and 7. An

assumption can be formulated beforehand, that the farther the piles, the less

compromised they will be, therefore the plots show two of the closest piles, hence the

most affected once. This can be corroborated with the following plots.

X direction

Right to each horizontal displacements plot one can see the corresponding bending

moment. As one could recognise beforehand, since the sink point is located at 𝑥 = 0,

horizontal X displacements for piles 4, 5 and 6 should be zero, piles 7, 8 and 9 should be

slightly deflected towards X positive direction and 1, 2 and 3 in the opposite direction.

Figure 25. Plant view of a 9 piled-raft foundation affected by a nearby point volume loss.

X

Y

Y

Z

51

A remark is made in how piles shorter than the depth of the point loss present the slightest

of the displacements, whereas the 20 m length pile (which coincides with the depth of the

sink point) is the most affected.

For piles larger than 20 m, the broadest the diameters, the least deflection they take due

to its higher inertia, at the expenses of a larger bending moment.

Notice how the only visible deflected profiles correspond to pile 7, pile 4 behaves as

expected and the results are no movement at all, hence no bending moment, since it is

horizontally aligned with the sink point.

Figure 26. Deflection in X coordinate (left plots) along corresponding bending moment (right plots) for different
pile lengths and diameters, calculated with the MATLAB code developed in this project.

52

Y direction

Again, piles 4 and 7 are depicted. In this direction, the most compromised pile is 4, the

reason being that pile 7 is located farther off. The rest of the piles are deformed similarly,

albeit less intensely owing to a farther location. Observe that the difference between both

piles grows as the length increases.

Notice that displacements are similar for increasing diameters, however, the bending

moments do vary significantly. Likewise in the X direction, the higher the dimeter, the

higher the inertia, thus bigger bending moment. So, upon the choice, a smaller diameter

would be the least expensive option regarding the small bending moment it is subjected

to, provided an hypothetical case where the only area of interest was this particular lateral

response.

The maximum bending moment occurs owing to the deflection of the pile at the sink point

depth. Observe the presence of a bending moment at the head of the piles (𝑧 = 0), this is

Figure 27. Deflection in X coordinate (left plots) along corresponding bending moment (right plots) for different
pile lengths and diameters, calculated with the MATLAB code developed in this project.

53

proof of the fixing moment due to the pile cap. As it as well happened in the X direction,

the moments at the tip of the piles are zero, corroborating the expected behaviour imposed

in the formulation of the model.

 Figure 28. Deflection in Y coordinate (left plots) along corresponding bending moment (right plots) for different
pile lengths and diameters, calculated with the MATLAB code developed in this project.

54

Z direction

For this comparison piles 4 and 5 will be used. Since coordinate Z is positive downwards,

settlement has positive values, as can be seen in subsequent figures. As stated in section

2.3, axial compression is represented as positive forces.

A remark is made in how pile 4, closest to the point volume loss, behaves: for lengths that

fall above the depth of the point sink, the vertical displacement increases with z, meaning

that pile 4 is elongating, hence the tension (negative axial force) seen in the corresponding

plot. However, pile 5, farther off in the second row, is compressed, and it appears that the

rest of the pile-group is supporting the first row, as if these were hanging from the pile

cap. Provided all the piles are located above the point, all experience an exclusive

downward displacements. The difference between the intensity of the displacements

creates a differential settlement that results in this situation, also being coherent with the

fact that there is a rigid pile cap and that there is an interaction between them.

Figure 29. Deflection in Y coordinate (left plots) along corresponding bending moment (right plots) for
different pile lengths and diameters, calculated with the MATLAB code developed in this project.

55

For longer piles, one can see that around the depth where the sink point is located, axial

force increases significantly, this is due to the fact that a sink point (as described by

Sagaseta 1987) produces downwards soil movements above the point and upwards

movements for the soil below that point, this is clearly visible for piles of 30 m length.

Also in terms of the piles length, it is clear that for longer piles the maximum axial force

increases. Perhaps owing to a larger area where the soil introduces shear stresses.

On the other hand, boarder diameters translate into smaller settlements, as expected,

owing to an increase of skin and base area, hence more subsurface load taken into account

within the Mindlin’s factors.

To summarise, this section has shown that closer piles (to the source of soil loss) tend to

be more affected and that there is a direct proportionality, and how the soil moves due to

a point volume loss.

Figure 30. Displacements in Z coordinate (left plots) along corresponding axial force (right plots) for different
pile lengths and diameters, calculated with the MATLAB code developed in this project.

56

Figure 31. Displacements in Z coordinate (left plots) along corresponding axial force (right plots) for different pile
lengths and diameters, calculated with the MATLAB code developed in this project.

57

5.2 ADVANCING TUNNEL

The aim of the current section is to simulate an advancing tunnel and to study the

response of a 9 pile group for two different tunnel areal loss ratios, the geometry in both

simulations remains the same. A sketch of the problem geometry shows that there is a 4

m gap between the outermost part of the tunnel and the closest pile axis. The group of

piles are connected via a rigid pile cap.

Figure 32. Plant and vertical views of the adjacent tunnel and the 9 piled-raft foundation. The tunnel starts at -
50 and ends at 50 m along X direction.

Table 3 and

Table 4 gather the values that would need to be input in this project code.

Table 3. Piles, soil and tunnel relevant parameters used for the current simulation.

Piles Value

Length (m) 25

Diameter (m) 1

Young modulus (kN/m2) 3·107

Number of piles 9

Z

Y

Y

X

58

Soil Value

Elastic modulus (kN/m2) 50000

Poisson modulus 0,3

Tunnel Value

Tunnel areal loss (%) 1

Tunnel initial diameter (m) 10

Tunnel centreline depth (m) 20

Table 4. Piles location of the 9 piled-raft for the problem in this section.

Group X Y

Pile 1 -4 9

Pile 2 -4 13

Pile 3 -4 17

Pile 4 0 9

Pile 5 0 13

Pile 6 0 17

Pile 7 4 9

Pile 8 4 13

Pile 9 4 17

Tunnel-wise, it will be discretised into 100 segments, its trajectory goes from -100 to 100 m

in the X direction, spanning 200 m. This choice is a compromise between accuracy and

computational time. As it is supported by subsequent figures and argued later on, a start

100 m away from the piles is accurate enough, provided that the farther it is, the less

influence on the foundation it has and the more insignificant the contribution grows. The

tunnel will be discretised into 100 parts (2 m long each one), to illustrate this, Figure 33

shows the meaning of what time steps mean in successive graphs. For instance, a plot that

represents results for time step 25/100, shows the behaviour when the tunnel has advanced

50 m, from -100 to -50 m in the X direction. Time step 85/100 infers that the tunnel has

advanced 170 m, from -100 m to +70 m in the X direction, and so forth.

59

For this particular problem, the associated volume loss will be distributed among 15 points

for each tunnel segment. In terms of accuracy, more tunnel slices or points are found to

give similar results at the expenses of an increase in computational time.

5.2.1 Effect of tunnel areal loss

Getting down to the problem itself, it consists of a comparison between the effects of a

0.5% and 1% tunnel volume loss ratio. Parallelly, a first glance at the general response of

piles due to a tunnel is cast. Subsequent graphs will show displacements, bending

moments and axial forces plotted along the vertical profile of the piles for different time

steps, and a second typology of plot illustrates the varying behaviour of the maximum

value of some variables of interest (maximum bending moments, maximum axial forces…).

Lateral response

Concerning the X direction, while the tunnel is approaching the group of piles these are

deformed towards the source of the volume loss, in this case, towards negative X direction.

When then tunnel moves away, piles slowly return to its original position by being

deformed in the opposite direction, i.e at time step 100/100 the final displacements are

zero with null bending moment (Figure 34). This is due to the tunnel’s symmetry in the

YZ plane: for an infinitely long tunnel the final displacements should, theoretically, be

zero. At time step 1/100, the displacements are also zero (negligible), as a consequence,

endorsing the hypothesis that the tunnel exerts a very small influence already 100 m away

from the foundations, and the modelling approximation is sufficiently representative of

an infinitely long tunnel.

There is quite a contrast between the maximum deflection of piles 4 and 5. The shielding

effect of the group of piles, or rather the interaction considered by the Mindlin problem,

makes pile number 5 (in the centre of the group) to be less affected, whereas outer piles

seem to receive a greater influence from the tunnel.

Figure 33. Lateral view of the current problem with its corresponding tunnel discretisations. Samples are 25/100,
50/100, 80/100 and 100/100, showing the interpretation of time steps.

60

In terms of the areal loss, although similar in shape, it is patented the existing correlation

between greater displacements and greater ratios. Notice, for instance, the head

displacements in the X direction for 1% that double those at 0,5%.

Figure 35, depicts the varying maximum X displacement and bending moment 𝑀𝑌 as the

tunnel approaches and moves away from the piles. It must be said that these figures

represent the maximum numbers in absolute value.

The behaviour in the X direction fulfils the presumed intuitive ideas. The maximum

displacement in this direction occurs when the tunnel is exactly located horizontally with

the pile in question, thus the recognisable peaks in Figure 35. In a similar way, the

maximum bending moment also tops when the tunnel is at the X location of the

corresponding pile. It appears that in every displacement curve there is a change of slope

about 5 m before the maximum, which is interesting to analyse. In relation to that, a

remark is made in how there is a lag between the largest maximum displacement and

bending moment, the latter occurring more or less 8 m before the former.

Figure 34. Comparison of displacements in the X coordinate (left plots) along corresponding bending moment
(right plots) generated by 0,1% and 0,5% areal loss tunnels, calculated with the MATLAB code developed in this
project.

61

The reason of this marked slope variation is due to the change in the location where this

takes place within the pile. The idea is that in the first stages of the tunnel excavation, the

maximum bending moment takes place at the head of the pile (also the maximum

displacement), when the tunnel gets closer there is more influence around the excavation

depth (for this particular case 𝑧 = 17,8 𝑚) creating a sort of belly-shaped deflected beam

(see Figure 36). At that point, the maximum bending moment also takes place at 𝑧 =

17,8 𝑚.

Take for instance pile number 1 for 1% tunnel volume loss ratio (Figure 35 in purple). There

is a maximum at around 𝑥 = −14 𝑚 (time step 45/100 in Figure 36) happening at the head.

When the tunnel keeps approaching the pile (time step 50/100 in Figure 36), the maximum

deflection does indeed increase in contrast with the decreasing maximum bending

moment. When this occurs, the head gains in verticality, reducing the bending moment

at the cap while the maximum now occurs at the tunnel depth (time step 50/100 Figure

36), much smaller than before.

Figure 35. Variation of the maximum lateral X deflection and corresponding bending moment as a tunnel is
advancing (both in absolute value). Comparison for 0,5 and 1% areal loss ratio, calculated with the MATLAB
code developed in this project.

62

Having seen this and continuing with pile 1 as an example, it is easy to understand the dip

in bending moment when the tunnel is around 𝑥 = 0 𝑚 which is due to the verticality the

pile presents at that point. Afterwards, the maximum bending moment increases again

until around 𝑥 = 18 𝑚, once more owing to a maximum bending moment taking place at

the head (time step 59/100 in cyan, Figure 36).

In conclusion, throughout this process there are two critical parts in every pile, the head

and at the depth halfway through the tunnel crown and centreline axis, in this case 𝑧 =

17,8 𝑚. Let us also remark that in general, the maximum bending moment ever at that

depth (𝑧 = 17,8 𝑚) is much smaller than that at the head.

Figure 36. Displacements and corresponding bending moment for relevant time steps, calculated with the
MATLAB code developed in this project.

Coming to the response in the Y direction, the differences between the X direction analysis

emerge towards the last half of the tunnel excavation. In this case, piles are always

influenced towards negative Y in contrast with the changing direction as for the X

response.

63

It is clever to realise again how pile 5 is less affected than the rest. In general, piles are to

remain unchanged once the tunnel has passed, then the critical parts would be the head

and at 𝑧 = 17,8 𝑚, where both present the largest bending moments. Therefore, it is

crucial to analyse these results against the resistance of the piles, because they will remain

like this for the rest of their lifespan.

In Figure 38 it is clearly seen that most of the displacement is gained when the tunnel is

within 20 m from the piles.

If one takes a close look, there is a small dip in 𝑀𝑋 just before the tunnel meets the pile.

Again, this owes to a change in the location of the most affected part. Similar to what

happens in the X direction, if the maximum bending moment at the 100/100 takes place at

17,8 m of depth, before that dip, it occurs at the head of the piles, check Figure 37.

Figure 37.Comparison of displacements in the Y coordinate (left plots) along corresponding bending moment
(right plots) generated by 0,1% and 0,5% areal loss tunnel, calculated with the MATLAB code developed in this
project.

64

Vertical response

Likewise, the vertical displacements reflect the differences between the 0,5% and 1% ratios

as both horizontal analysis have demonstrated. The greater the ratio, the greater the

settlement and consequent axial forces undergone.

In the following figure (Figure 39), piles 4 and 5 are represented showing that due to the

interaction between the group, number 5 being at the centre surrounded by 8 other piles

it presents half the maximum axial force.

Figure 38. Variation of the maximum lateral X deflection and corresponding bending moment as a tunnel is
advancing. Comparison for 0,5 and 1% areal loss ratio, calculated with the MATLAB code developed in this
project.

65

Timestep-wise, the settlement and axial force, gradually build up, especially when the

tunnel is close to the piles. The maximum axial force soon stabilises: 20 m after the tunnel

has passed (𝑥 = 10 𝑚 in Figure 40), showing no further changes. As it was commented

earlier, pile 5 compared to the rest appears to have the least settlement. Moreover, pile 4

compared to pile 1 also has smaller maximum axial force. This will remain a constant for

any squared group of piles (9, 16…), further analysis in section 6.1.

In Figure 39 note how the maximum compression takes place at about 𝑧 = 17,8 𝑚. This is

not coincidental with what happened in the horizontal directions. In terms of the vertical

stresses, Figure 41 confirms what could be a first assumption and was argued in section 5.1:

the soil movements induced by the tunnel create downwards shear stresses from the top

Figure 39. Comparison of displacements in the Z coordinate (left plots) along corresponding bending moment
(right plots) generated by 0,1% and 0,5% areal loss tunnels, calculated with the MATLAB code developed in this
project.

66

to 𝑧 = 17,8 𝑚 and upward lift below that point, in the plot negative and positive

respectively.

In Figure 41, a drastic increase at the tip of the pile stands out, this represents the load at

the base, which obviously is completely different from the shaft stress. The chosen time

steps in Figure 41 is irrelevant, insofar the most important fact to grasp in this lines is the

general behaviour of the said loads. Besides, the regularity derived from Figure 39 and

Figure 40 implies that the vertical shear stress the pile is subjected to, would only increase

with time maintaining the same shape of the load distribution law.

Figure 40. Variation of the maximum lateral X deflection and corresponding bending moment as a tunnel is
advancing. Comparison for 0,5 and 1% areal loss ratio, calculated with the MATLAB code developed in this
project.

67

Finally, to justify the choice of the

length of the advancing tunnel (200 m),

it has been made clear from figures 35,

38 and 40 that the maximum responses

are already stabilised when the tunnel

crosses the 100 m mark. Even if a longer

excavation is preferred, the results

would not significantly change.

Figure 41. Vertical shear stress along the piles of interest,
for key some steps and 1% tunnel areal loss ratio,
calculated with the MATLAB code developed in this
project.

68

69

6 PROBLEMS OF INTEREST

After studying the tunnel-pile interaction, this chapter will go through two different case

studies so as to showcase the applicability of the developed code. In the first place, an

advancing tunnel is again calculated, then compared with the commercial software

PLAXIS and finally the effect of applying compensation grouting is simulated. In the

second place, based on the work by Ledesma and Alonso (2015), the Sagrada Família pile

wall, which was executed on occasion of the approaching Spanish high velocity railway

tunnel, will be studied.

6.1 ADVANCING TUNNEL

Similar to what has been simulated in section 5.2, the following problem varies in that

there is an external vertical load, which could well represent the weight of a building. In

fact, the geometry is the same as the previous problem. Below, the specifications are

recalled in the form of Figure 42, Table 5 and Table 6. It is important to highlight that, as

depicted below, the group of piles are connected via a rigid pile cap (a pile cap as defined

in section 2.4).

Figure 42. Plant and vertical views of the adjacent tunnel and the 9 piled-raft foundation. The tunnel starts at -
50 and ends at 50 m along X direction.

Z

Y

Y

X

70

Table 5. Piles, soil and tunnel relevant parameters used for the current simulation.

Piles Value

Length (m) 25

Diameter (m) 1

Young modulus (kN/m2) 3·107

Number of piles 9

Vertical load per pile (kN) 2000

Soil Value

Elastic modulus (kN/m2) 50000

Poisson modulus 0,5

Tunnel Value

Tunnel areal loss (%) 1

Tunnel initial diameter (m) 10

Tunnel centreline depth (m) 20

Table 6. Piles location at the 9 piled-raft.

Group X Y

Pile 1 -4 9

Pile 2 -4 13

Pile 3 -4 17

Pile 4 0 9

Pile 5 0 13

Pile 6 0 17

Pile 7 4 9

Pile 8 4 13

Pile 9 4 17

Upon this occasion, the pile group is bearing a total 18000 kN of vertical force, hence 2000

kN per pile.

71

Again, as in section 5.2, the tunnel is discretised into 100 segments, its trajectory goes from

-100 to 100 m in the X direction, spanning 200 m. Figure 43 has been coloured accordingly

with the plots in the following pages.

The associated volume loss will be distributed among 15 points for each tunnel segment.

Figure 43. Lateral view of the tunnel and the pile group, depicted in blue, orange, yellow, magenta and green the
represented time steps in subsequent plots.

Lateral response

Given that the structure of the problem is exactly the same as the 1% tunnel areal loss ratio

problem, described in the sensitivity analysis (section 5.2.1), one can expect beforehand

that these results must be identical. Bear in mind that the analysis in each direction is

uncoupled, therefore, the fact that there is vertical load should not alter the lateral

behaviour. The following figures prove the robustness of the code by supporting this

previous assumption.

72

As it is expected from previous knowledge, there are two critical parts of a pile where

maximum bending moment occurs, the head and that at the tunnel’s depth, again 17,8 m.

It is paramount to supervise the maximum bending moment occurring at the head, since

it puts at risk the stability of the structure, given the hypothetical scenario of head

detachment. At that point the pile would become worthless, by not contributing to the

transmission of the superstructure load. This is represented below. Note how 𝑀𝑌 varies

from negative to positive, corresponding to before and after the tunnel overcomes the pile

in question. From Figure 46 it can be concluded that for closer piles (to the tunnel) 𝑀𝑋 is

far more relevant at the end of the tunnel excavation than 𝑀𝑌, although the latter must

not be dismissed. On the contrary, for farther rows of piles, for instance piles 5 and 6, the

temporal nature of 𝑀𝑋 (it diminishes when the tunnel is completed) must not be

overlooked, since it represents the maximum bending moment these piles experience, 𝑀𝑌

remains small.

Figure 44. Displacements in X coordinate (left plots) along corresponding bending moment (right plots)
generated by a tunnel excavation represented for different time steps, calculated with the MATLAB code
developed in this project.

73

Figure 46. Varying 𝑀𝑌 (above) and 𝑀𝑋 (below) at the piles head as a tunnel excavation passes by, calculated
with the MATLAB code developed in this project.

Figure 45. Displacements in Y coordinate (left plots) along corresponding bending moment (right plots)
generated by a tunnel excavation represented for different time steps, calculated with the MATLAB code
developed in this project.

74

Vertical response

The vertical response is similar to that in the previous section, albeit not identical since

there are external forces. This fact is useful to provide more insight about the behaviour

of a group of piles. These are now loaded, hence producing greater settlement. Comparing

vertical results from section 5.2 (Figure 39) and this section (Figure 47) the maximum

settlement after the tunnel is gone, at time step 100/100, increases from about 5 to 15 mm.

Consequently, the contribution of the loading translates in an additional 10 mm of

settlement.

Focusing in the axial force diagrams, the results for the head (where the loading is applied)

are around 2000 kN. This is coherent insofar as the applied load was exactly 2000 kN per

pile. However, pile 5 presents a far smaller value around 1500 kN, owing to the presence of

a pile cap and the shielding effect of neighbouring piles.

Figure 47. Displacements in Z coordinate (left plots) along corresponding axial force (right plots) generated by
a tunnel excavation represented for different time steps, calculated with the MATLAB code developed in this
project.

75

To show more insight in how the total load is distributed among piles, Figure 48 illustrates

the axial force both at the head (above) and where the maximum occurs, at 𝑧 = 17,8 𝑚

(below).

There is a general rule of thumb for a loaded pile group. Imagine the said group without

the presence of a nearby tunnel, the beginning (𝑥 = −100 𝑚) of Figure 48 well represents

the said situation, at that point the tunnel influence is imperceptible. Keeping in mind

how the piles are labelled above, generally, the corner piles 1, 3, 7 and 9 absorb the greatest

amount of external load coming from the superstructure. The side piles 2, 4, 6 and 8 are

the next in order, whereas pile 5, which is completely surrounded by the rest of the piles

presents the smallest value. This is due to both the interaction between piles, namely the

shielding effect, and most importantly the presence of a rigid pile cap. The general lines of

this rule of thumb is maintained throughout the whole tunnel excavation, with some

nuances. For instance, note how pile 5 increases its head axial force (Figure 48), the reason

it gains in compression is due to a growing shaft shear stress at a certain depth, provoked

by the soil movements and taken into account by means of the Mindlin factors. This is

purely due to a direct drag force that does not go through the pile cap, therefore it loses

the effect of redistribution among the rest of the piles.

In the lower graph in Figure 48, the aforementioned rule of thumb is clearly altered. At

𝑥 = 100 𝑚: the closest piles 1, 4 and 7 are subjected to the greatest compression; piles 2, 5

and 8 (second closest row) form the second most affected group, although pile 5 is less

influenced; the third group is a bit below the second, formed by piles 3, 6 and 9 (third

row). Observe how they are in order of closest rows. The reason of this new results is

obviously due to the presence of a tunnel, whose soil movements are greater for closer

locations. Therefore, the basic idea changes so far as the relevant factor becomes the

distance to the tunnel.

In a nutshell, it is important to comprehend and distinguish the two sources of the

difference in maximum compression. On the one hand, the proximity to the tunnel, on

the other hand the interaction between piles.

76

Figure 48. Varying head axial force (above) and axial force at z=17,8 m (below) as a tunnel excavation passes by
calculated with the MATLAB code developed in this project. Notice, they are always subjected to compression
(positive axial force).

77

6.1.1 PLAXIS comparison

The same problem is modelled and analysed in PLAXIS. For the sake of simplicity, only

the last step is compared, i.e. when the tunnel is already 100 m away.

The tunnel has been modelled following the next steps:

1. In the structures screen, click create tunnel.

2. In the cross section box define the tunnel cross section.

3. In the properties box select the perimetric line defining the tunnel cross section

and add a plate.

4. Do as step 3 but add a negative interface.

5. Do as step 3 but add a surface contraction and insert 𝐶𝑟𝑒𝑓 = 0,99%

Figure 49. Sketch of PLAXIS interpretation of a volume loss due to a tunnel.

Figure 49 shows how PLAXIS interprets volume loss generated by a tunnel. Using notation

from section 2.7, the new parameter 𝐶𝑟𝑒𝑓 is a percentage that relates initial and final areas.

Knowing that in this project:

𝜀0 =
𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐴𝑓𝑖𝑛𝑎𝑙

𝐴𝑓𝑖𝑛𝑎𝑙
=
𝜋𝑟0

2 − 𝜋𝑟1
2

𝜋𝑟1
2 =

𝑟0
2

𝑟1
2 − 1

𝑟0 = (𝑟1
2 · (𝜀0 + 1))

1/2

For PLAXIS:

𝜋 · 𝑟0
2 · 𝐶𝑟𝑒𝑓 = 𝜋𝑟1

2

𝐶𝑟𝑒𝑓 =
𝑟1
2

𝑟0
2

𝐶𝑟𝑒𝑓 =
𝑟1
2

(𝑟1
2 · (𝜀0 + 1))

=
1

𝜀0 + 1

78

In the particular case of this simulation:

𝐶𝑟𝑒𝑓 =
1

1
100

+ 1
= 0,99 %

Which confirms what PLAXIS states in its Manuals that for small values 𝜀0 ≅ 𝐶𝑟𝑒𝑓

The soil model is a cube 200 m of side and 100 m of depth. Moreover, like it was introduced

in the MATLAB code developed in this project, the tunnel spans 200 m (from 𝑥 = −100 𝑚

to 𝑥 = 100 𝑚).

Figure 50. 3D representation of the PLAXIS model. On the left hand side the deformed mesh, on the right hand
side a view of the structural elements: tunnel and group of piles. Extracted from the OUTPUT PLAXIS mode.

Figure 51. Front (left) and plant (right) view of the PLAXIS model extracted from the OUTPUT PLAXIS mode.

79

Horizontal response

As for the horizontal X displacements, these are zero at the last step as it has been

extensively proven earlier, the following figure shows the comparison for Y displacements.

These results present an acceptable correspondence.

Figure 52. Horizontal displacements at time step 100/100 calculated with the MATLAB code developed in this
project (continuous lines) and PLAXIS (dashed lines).

Vertical response

In this comparison, it is clear that piles do not present the same settlement at the cap, this

is due to the fact that they are forming an inclined plane, not a horizontal one. Results

provided by this project code: piles 1, 4 and 7 present the same settlement, 14,5 mm; piles

2, 5 and 8 also present the same settlement, 13,8 mm; so do piles 3, 6 and 9 with 13 mm.

However, the plane formed by both PLAXIS and this project is not the same, the former

being a bit more tilted. Figure 54 may help in further comprehending the previous results.

-25,000

-20,000

-15,000

-10,000

-5,000

0,000

-0,016 -0,014 -0,012 -0,01 -0,008 -0,006 -0,004 -0,002 0

D
ep

th
 (

m
)

Vertical strain (m)

Horizontal displacement comparison

Current project P1 Current project P4 Current project P5 Current project P6

Plaxis P1 Plaxis P4 Plaxis P5 Plaxis P6

80

Figure 53. Vertical displacements at time step 100/100 calculated with the MATLAB code developed in this project
(continuous lines) and PLAXIS (dashed lines).

It is important to bear in mind

throughout this project, that the

elemental theory for soil movements

from Sagaseta is constraint to

incompressible soils. Whereas PLAXIS

uses a FEM model only being able to

accept a maximum 0,4 Poisson ratio as

input. Moreover, the sheer nature of

the FEM model taking into account the

physical presence of piles and a tunnel

is in contrast with the uncoupled

approach of the formulae used in this

project.

In view of the following comparison, the settlement curves resemble, although at a certain

depth, the vertical displacements at the location of the piles (𝑥𝜖[9,17]) is larger for PLAXIS

than for this project.

-25,000

-20,000

-15,000

-10,000

-5,000

0,000

-0,018 -0,016 -0,014 -0,012 -0,01 -0,008 -0,006 -0,004 -0,002 0
D

ep
th

 (
m

)

Vertical displacement (mm)

Settlement comparison

Current project P1 Current project P4 Current project P5 Current project P6
Plaxis P1 Plaxis P4 Plaxis P5 Plaxis P6

Z
Y

Figure 54. Sketch of settlement between PLAXIS results
(dashed red) and this project results (continuous black), not
to scale.

81

Figure 55. Vertical displacements profiles at surface (blue) and 15 m of depth (orange) calculated with the
MATLAB code developed in this project (continuous lines) and PLAXIS (dashed lines).

As for the horizontal displacements, the boundary rigidity effect in PLAXIS comes into

action with more relevance, at coordinates 𝑥 = −100 𝑚 and 𝑥 = 100 𝑚 the displacements

are made zero. Nevertheless, both models provide the same results for the central region

(between -50 and 50).

At the group of piles location, just after 𝑥 = 13 𝑚, PLAXIS tends to present more lateral

displacements, also influenced by its taking into account the physical presence of the piles.

Which is coherent with results in Figure 53 were the PLAXIS results at 𝑧 = 15 𝑚 tend to

be larger than those for this dissertation code. On the contrary, the situation for the first

row of piles is reversed, since at 𝑥 = 9 𝑚 the MATLAB code results are bigger. The

remarkable peaks at 𝑧 = 15 𝑚 that take place close to the centre (𝑥 = 0 𝑚), are due to the

proximity to the tunnel, whose crown is actually at those coordinates. However, on the

whole, both models do present symmetric horizontal displacements, i.e. as much positive

as negative movements.

Therefore, it is important to realise the increase in discrepancy between PLAXIS and the

MATLAB code, is attributable to a different calculation approach. It might as well be due

to the sum of several differences: the taking into account the presence of the tunnel in the

-0,021

-0,02

-0,019

-0,018

-0,017

-0,016

-0,015

-0,014

-0,013

-0,012

-0,011

-0,01

-0,009

-0,008

-0,007

-0,006

-0,005

-0,004

-0,003

-0,002

-0,001

0

0,001

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Se
tt

le
m

en
t

(m
)

X (m)

Soil vertical movements comparison

Plaxis at surface

Plaxis at 15 m depth

This project at surface

This project at 15 m depth

82

PLAXIS FEM model, the way of dealing with the interaction between piles, possibly the

rigidity effect that a mesh implies within close piles and perhaps approximation errors or

assumptions in the developed MATLAB code that may explain the differences between

both models in Figure 52 and Figure 53.

Figure 56. Horizontal displacements profiles at surface (blue) and 15 m of depth (orange) calculated with the
MATLAB code developed in this project (continuous lines) and PLAXIS (dashed lines).

-0,021
-0,019
-0,017
-0,015
-0,013
-0,011
-0,009
-0,007
-0,005
-0,003
-0,001
0,001
0,003
0,005
0,007
0,009
0,011
0,013
0,015
0,017
0,019
0,021

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

H
o

ri
zo

n
ta

l d
is

p
la

ce
m

en
t

(m
)

X (m)

Soil horizontal movements comparison

Plaxis at surface
Plaxis at 15 m depth
This project at surface

This project at 15 m depth

83

6.1.2 Compensation grouting

One of the applications for what the code could be used for, is to figure out the utility of

compensation grouting or to work out an efficient injection. Continuing with the problem

of section 6.2, a compensation grouting injection is added between the tunnel and the

closest piles (there is a 2 meters gap at each side) as seen in Figure 57. It has been modelled

as a strip of expanding points, moving parallel to the tunnel, with the following

characteristics:

Table 7. Values used for compensation grouting in this section.

Piles Value

Start X coordinate (m) -20

End X coordinate (m) 20

Y coordinate (m) 7

Depth, Z coordinate (m) 17,8

Total volume (m3) 5

Figure 57. Vertical and plant view of the problem including a strip of compensation grouting points. In red the
compensation grouting injection.

 Y

Z

X

 Y

84

In fact, there is no apparent previously known good solution, the choice in this section is

genuinely personal. It all boils down to what the user inputs in the MATLAB code

developed for this project. With that being said, the results below are just an example of

the capabilities of the code. In a hypothetical real case scenario, it would all depend on

what the engineer would be able to refine until a certain configuration would be deemed

as acceptable so as to ameliorate the at risk foundations.

Lateral Response

Below, the final results (time step 100/100) before and after applying the compensation

grouting injection are represented. In fact, one could expect a priori that these results

should be zero, which is corroborated in Figure 58.

Since the worse situation takes place when the tunnel approaches the pile in question, it

would be wise to see what happens then, approximately at 𝑥 = 0. Especially for piles in the

first row, provided previous knowledge says these are the more in distress. The maximum

bending moment at 𝑧 = 17,8 𝑚 diminishes, however, those at the head remain more or

less the same (Figure 59).

Figure 58. Compensation grouting effects X direction for time step 100/100, calculated with the MATLAB code
developed in this project.

85

Figure 59. Compensation grouting effects X direction at time step 50/100, calculated with the MATLAB code
developed in this project.

It is interesting to observe the effects in the Y direction. In an orange tone, piles

displacements at some depth are reduced. At the same time, the bending moment laws

also ameliorate, especially at its maximum where pile 1 (representing the first row) reduces

from a maximum of 450 kNm to 3 local maximums of around 200-250 kNm. However, it

is worth noticing how the fixing moment at the pile head remains the same. On the other

hand, piles 5 and 6 are less benefited from the compensation grouting.

It was found that a higher volume injection would result in excessive bending, thus turning

the other way around by creating an even larger bending moment. Here lies the

importance of finding a reasonable compensation grouting configuration, somehow by

means of the trial and error method.

86

Vertical Response

Concerning the vertical response, there is slightly less settlement, the reason being that

the vertical load still induces a great portion of the settlement.

It is quite interesting to see how the maximum axial force indeed decreases. If the aim of

the compensation grouting was to reduce the settlement, as if to comply with an allowable

settlement requirement, this configuration would not be optimum.

Figure 60. Compensation grouting effects Y direction for time step 100/100, calculated with the MATLAB code
developed in this project.

87

Alternative injection

If the main objective was to reduce the settlement, one straightforward idea could be that

of injecting grout right below the group of piles. The current section shows these

alternative results so as to prove the previous hypothesis and show the capabilities of the

developed MATLAB code, in spite of the fact that providing a realistic compensation

grouting is not the main goal of this section.

Table 8. Alternative compensation grouting characteristics.

Piles Value

Start X coordinate (m) -20

End X coordinate (m) 20

Y coordinate (m) 13

Depth, Z coordinate (m) 26

Total volume (m3) 10

Figure 61. Compensation grouting effects Z direction for time step 100/100, calculated with the MATLAB code
developed in this project.

88

The settlement gets indeed reduced considerably more than 5 mm, at the expenses of a

great compression for the piles right above the strip: 2, 5 and 8. Pile 5 serves as an example

since it nearly reaches 9000 kN.

Figure 62. Compensation grouting effects Z direction for time step 100/100, calculated with the MATLAB code
developed in this project.

Given the main objective was to reduce the settlement, it should not be surprising to find

out there is an increase in the bending moment for some piles. 𝑀𝑌 gets worse for both

critical stages: 50/100 and 100/100. There is an extreme maximum bending moment

especially for piles in the middle row (represented by pile 5) of up to 2000 kNm.

As for the Y direction, it is clear how piles in the first and last row are really influenced by

the compensation grouting strip especially at the tip. In contrast with the “before”

scenario, pile 1 moves towards the negative Y and pile 6 moves towards the positive Y.

Although pile 1 situation is surprisingly enhanced, pile 6 bending moment increases

significantly, from 50 to a maximum of 500 kNm.

89

As a conclusion, this would not be a realistic compensation grouting injection provided

their drawbacks, but has demonstrated to achieve the expected goal of drastically reducing

the settlement. Therefore, this exposes even more the need to find a compromise between

improved and worsened piles.

 Figure 63. Compensation grouting effects X direction at time step 50/100, calculated with the MATLAB code
developed in this project.

90

Figure 64. Compensation grouting effects X direction at time step 100/100, calculated with the MATLAB code
developed in this project.

Figure 65. Compensation grouting effects Y direction for time step 100/100, calculated with the MATLAB code
developed in this project.

91

6.2 SAGRADA FAMÍLIA PILE WALL

Another interesting application of the

developed code is that of analysing the

behaviour of the piling screen constructed

to shield the Sagrada Família.

Measurements confirm the safety of the

cathedral by only observing a maximum 2

mm vertical displacement, which can be

calibrated to a 0,04% tunnel volume loss

(Ledesma and Alonso, 2015), clearly

meaning a great execution job of the

excavation.

This 2 mm maximum settlement trough has

been fitted, within this project code, to a

value of 0,14% volume loss tunnel by an

iterative approach. We have to consider the

differences between the two models, to

understand the variation in these results.

The calculation for this project was done for

a greenfield scenario as plotted in Figure 67

which can be compared to the

measurements in magenta and blue. The

effect of the pile wall upon the soil cannot

be taken into account due to the way the

developed MATLAB code was originally

created. Unlike in the Ledesma & Alonso

article, as can be seen in Figure 67, where this interaction is indeed considered, note how

computed results in black do take into account the retaining effect of the wall a drop in

settlement is recognisable.

To simulate the Sagrada Família pile wall problem, a hypothesis is made in order to

simplify the more than 100 piles executed along 230 m. Only 13 piles are simulated aiming

to analyse the middle one (number 7), which would be representative of the majority of

the wall, except for those piles at the ends (which are represented by the rest of the piles:

Figure 66. Sagrada Família pile wall problem.

Vertical view

92

1,2,3…). The reason of this simplification is to dismiss farther piles, that become less

influent with distance, hence redundant. In this case, a reasonable computational time

was the limiting factor that arose the formulation of this hypothesis. In order for it to be

true, one should be able to find convergence in the results. By convergence meaning that

the final responses (last time step) for the middle piles tend to be equal, either for lateral

or vertical results.

The nature of the set-up is a row or piles whereas it was a squared group for the previous

cases (sections 6.1 for example), however, the learnt knowledge can similarly be applied

with some nuances. The lateral deflection behaves as expected. From the variation of the

maximum bending moments 𝑀𝑌 tops the 300 kNm (Figure 70), whereas 𝑀𝑋 reaches the

400 kNm, slightly more at the extremes (pile 1). From Figure 68 and Figure 69 the fixing

moment at the head is relatively small, less than 100 kNm in any time step for both 𝑀𝑌 and

𝑀𝑋.

Again the abrupt change in slope around 5 m before the tunnel meets the pile (Figure 70),

defines the region where the maximum displacement occurs at the head versus that

occurring at around the tunnel’s depth, in this case 23 m (see Figure 69).

In what concerns deflection in the Y direction, it is interesting to see how the maximum

final displacement of pile 1 is slightly bigger than for piles 3, 5 and 7. What is more

important is the convergence of piles 3, 5 and 7 after the tunnel has passed. Especially piles

This project 0.14%

Figure 67. Adapted from Ledesma & Alonso (2015). Superposed in blue are the results calculated with this project
code.

93

5 and 7 that present the exact same results for both displacements and bending moment.

Consequently, it can be inferred that the interaction behaviour between piles is already

well taken into account after pile 3. This fact supports the simplification that was assumed

before, in simulating the whole pile wall with 13 piles.

On this matter, as for the X direction, the same reasoning applies, despite the fact that the

last time step is less important given all the piles return to its original position and null

bending moment for a sufficiently long tunnel. However, what is relevant is that all the

piles present a maximum bending moment 𝑀𝑌 around 300 kNm when the tunnel meets

them and a bit over 2 mm of maximum displacement (Figure 70).

As for the settlement analysis, it provides more insight where one can see how the

maximum final settlement of pile 3 is slightly above piles 5 and 7, yet these two do converge

(Figure 73). These last piles vary in no more than 0,015 mm for the settlement analysis.

Therefore, a minimally realistic pile setup model would be that of at least 9 piles, provided

that pile number 5 would be representative of the piles in the middle of the wall and the

rest would correspond to those at the extremes.

As it would be expected from the experience of tunnel-pile interactions (for example

section 5.2), the maximum compression takes place a bit above the tunnel centreline, 23

m down in this case. Observe how the said maximum axial force is bigger at the end piles

(pile 1) than at pile 7, which is benefited from being surrounding by some piles, 1050 kN

versus 700 kN, respectively. Finally, the maximum settlement takes place at the head: 0,47

mm for pile 1 and 0,33 mm for pile 7. Corroborating the article’s conclusion, that the boring

machine induced so little movements that were almost imperceptible; at the accuracy

degree of the measuring instruments.

94

Figure 69. Displacements in the Y coordinate (left plots) along corresponding bending moment (right plots)
generated by a tunnel excavation represented for different time steps, calculated with the MATLAB code
developed in this project.

Figure 68. Displacements in the X coordinate (left plots) along corresponding bending moment (right plots)
generated by a tunnel excavation represented for different time steps, calculated with the MATLAB code
developed in this project.

95

Figure 70. Variation of the maximum lateral X deflection and corresponding bending moment for the Sagrada
Família analysis, calculated with the MATLAB code developed in this project.

Figure 71. Variation of the maximum lateral Y deflection and corresponding bending moment for the
Sagrada Família analysis, calculated with the MATLAB code developed in this project.

96

Figure 73. Variation of the maximum settlement and corresponding axial force for the Sagrada Família analysis,
calculated with the MATLAB code developed in this project.

Figure 72. Displacements in the Z coordinate (left plots) along corresponding bending moment (right plots)
generated by a tunnel excavation represented for different time steps, calculated with the MATLAB code
developed in this project.

97

98

99

7 CONCLUSIONS

An operational code has been developed to analyse piled foundations response due to a

nearby tunnel excavation. Conclusions may be formulated over three areas: firstly in terms

of the author’s learning process as this dissertation seen as a milestone upon completion

of his civil engineering studies; secondly, in relation to the project objectives; and thirdly,

regarding further work.

Throughout the dissertation, the process of creating a functional code has been the core

element. Not only in view of the computational engineering-skills side of it, but most

importantly in relation to the soil mechanics and structural knowledge. The MATLAB

language has served both as a means and as an end, in learning terms. Good

comprehension of the presented formulae is evidenced when it is, indeed, manipulated

and fitted into an algorithm, especially when it has to properly work along with other

formulation.

The performance of the developed code is deemed as satisfactory, as it can function for a

number of different case studies. For instance, greenfield surface displacements, squared

or asymmetrical piled-groups, pile walls and for a swelling injection of compensation

grouting. Even more, it could be used to simulate an expanding layer of soil.

As for the actual tunnel-pile interaction, the basic mechanisms have been thoroughly

described, such as it is a directly proportional function to the proximity and intensity of

the ground loss source. The rigidity effect of the pile cap strongly affects the distribution

of external loads coming from the superstructure, and finally, the shielding effect of a

group of piles just boils down to the subsurface soil movements due to subsurface forces,

as in the Mindlin problem (1937). Results have been computed for an advancing tunnel,

and it has been interesting to analyse the piles behaviour along the tunnel advancement.

From a safety point of view, conclusions point towards two critical parts in any pile: the

head and a region around the tunnel centreline axis depth. The most affected parts change

location, as the tunnel moves in the vicinity of the group of piles.

The results provided by the MATLAB code are quite good when verified against existing

software. However, there are some intrinsic limitations in the fundamental elastic theory

used. For instance, the Sagaseta point ground volume loss formulation is constraint to an

elastic, undrained, homogeneous, isotropic and incompressible soil. In this case, let us

remark that the calculations are independent of the soil elastic modulus. The fact that it

100

was developed for an incompressible soil translates that the Poisson ratio must be 0,5,

which limits the applicability in real case scenarios. In terms of further work and

enhancement of the MATLAB code, Sagaseta itself discusses (1998) a new formulation

published in 1996 by A. Verruijt & J.R. Booker under the name of Surface settlements due

to deformation of a tunnel in an elastic half plane where the Poisson ratio is a variable to

introduce. Therefore, it would be reasonable to explore and incorporate a 3D formulation

applicable to the existing MATLAB code.

In a nutshell, the tunnel-pile interaction study has been proven to be reliably calculated

with the developed code, that could as well be used as a real first approach tool in some

geotechnical applications, making clear the effectiveness of simplified semi-analytical

procedures.

7.1 CONCLUSIONS ON FURTHER WORK

Aiming beyond the objectives of the current dissertation, the code is open to further work,

which may be channelled, for example, towards the refinement of the soil model. For

instance, to account for different soil strata, thus different elastic modulus. Or just a

linearly increasing soil modulus, nevertheless, in this regard, the sole fact that the Mindlin

subsurface force equation is only applicable to a soil with constant modulus, would still

make the solution an approximation.

Another area where to enhance the performance of the code, would be in including an

option to analyse end-bearing piles or even battered piles, Poulos & Davis (1980) provide

basic theory in relation to that. This dissertation has carried out an analysis for floating

piles.

Tunnel-wise, the assumptions taken can be improved by following the precise formulation

developed by C. González & C. Sagaseta (2001), that accounts for tunnel ovalisation. Along

the same lines, the tunnel modelling may be expanded by including changes in direction

or pitch, i.e. a tunnel with trajectory.

In view of the analysis of the Sagrada Família pile wall, it would be interesting to adapt the

code so that for any soil line profile, the movements take into account the effect of a pile

or piles.

With that being said, the essence of a simplified semi-analytical procedure is to provide a

first realistic calculation for any problem in question. Therefore, in engineering terms, it

101

would be more interesting to expand the applicability of the developed code rather than

unbalancing the compromise between computational-costs-results, only for the benefit of

small refinements in the results. On the other hand, it is indeed relevant to consider the

limitations of the Sagaseta fundamental theory, as described in the conclusions section,

and deepen into the improvement of the formulation for any Poisson ratio soil.

102

103

8 BIBLIOGRAPHY

Alonso, E., Sauter, S., & Ramon, A. (2015). Pile groups under deep expansion: a case history.

Canadian geotechnical journal, 1111 - 1121.

Brinkgrever, R., Kumarswamy, S., Swolfs, W., & Foria, F. (2017). Plaxis 2017 Manual.

Netherlands: PLAXIS.

Broere, W., & Brinkgreve, R. (2002). Phased simulation of a tunnel boring proces in soft

soil. Numerical Methods in Geotechnical Engineering, 529-536.

González, C., & Sagaseta, C. (2001). Patterns of soil deformations around tunnels.

Application to the extension of Madrid Metro. Computers and Geotechnics, 445-

468.

Huang, M., Zhang, C., & Li, Z. (2008). A simplified analysis method for the influence of

tunneling on grouped piles. Tunnelling and Underground Space Technology, 410-

422.

Ledesma, A., & Alonso, E. E. (2015). Protecting sensitive constructions from tunnelling: the

case of World Heritage buildings in Barcelona. Géotechnique, 914-925.

Lee, K., Rowe, K., & Lo, K. (1992). Subsidence owing to tunnelling. Estimating the gap

parameter. Canadian Geotechnique, 929-940.

Poulos, H., & Davis, E. (1991). Elasic Solutions For Soil And Rock Mechanics. Sydney,

Australia: Center for Geotechnical Research, The University Of Sidney.

Poulos., H., & Davis, E. (1980). Pile Foundation Analysis and Design. Sydney: The University

of Sydney.

Sagaseta, C. (1987). Analysis of Undarined Soil Deformation Due To Ground Loss.

Géotechnique, 301-320.

Sauter, S. (2012). Analysis of Pile Group Foundations Using Elastic Solutions. Barcelona:

ETSECCPB.

Verruijt, A., & Booker, J. (1996). Surface settlements due to deformation of a tunnel in an

elastic half plane. Géotechnique, 753-756.

104

Annex 1

ANNEX: MATLAB CODE

Below, the developed routines and subroutines, the different list levels indicate the nested

degrees of each function.

1. Main.m

1.1. Assemble_piles.m

1.2. V_loss_points.m

1.2.1. Tunnel_global_coords.m

1.2.2. Tunnel_local_coord.m

1.3. Boussinesq.m

1.4. Sagaseta_3D.m

1.4.1. Sagaseta_3D_integral.m

1.5. Horizontal_analysis.m

1.5.1. Horizontal_assemble_pile_structure.m

1.5.2. Horionztal_assemble_mindlin.m

1.5.2.1. Horizontal_mindlin_inpile.m

1.5.2.2. Horizontal_mindlin_pile2pile.m

1.6. Vertical_analysis.m

1.6.1. Vertical_assemble_mindlin.m

1.6.1.1. Vertical_mindlin_base.m

1.6.1.2. Vertical_mindlin_shaft.m

1.6.1.3. Vertical_mindlin_pile2pile.m

1.6.2. Vertical_pile_cap.m

1.7. Results_analysis.m

1.8. Results_plots.m

2. Compensation_grouting.m

 1 clear all; clc; close all;
 2 % File name: Main.m
 3 % Author: Genis Majoral Oller
 4 % Date: 16/7/2018
 5 % For Civil Engineering bachelor's degree dissertation
 6 % Computation of group of piles' displacements and stresses due to a tunnel
 7 % excavation using Boussinesq, Mindlin and Sagaseta theory
 8
 9 tic
 10 %% %------------------------------SOIL-------------------------------%%%
 11 % ----------------------------- INPUT DATA
 12 soil_E=100000; %kN/m2
 13 soil_v=0.5;
 14 soil=[soil_E,soil_v];
 15
 16 %% %------------------------------PILES-------------------------------%%%
 17 % ----------------------------- INPUT DATA
 18
 19 piles_num = 9; %number of piles
 20 piles_head_type = 1; % "0" for free, "1" for casted
 21 piles_length = 20; %m
 22 piles_dia=1; %m
 23 piles_E= 3*10^7; %kN/m2
 24 piles_I= pi/4*(piles_dia/2)^4;
 25 num_elem = 50; % Number of elements per pile: minimum 10
 26 find_surface=0; % Find surface settlement defined by
 27 % surface_pts below, no piles. 1-> YES. 0-> NO
 28
 29 surface_pts=[zeros(1,num_elem); %1st row is X coordinate 2nd Y coord Z depth
 30 linspace(-100,100,num_elem);
 31 15*ones(1,num_elem)];
 32
 33 piles_input = [-4 9 0.1; % Head coords [x,y,z(@ cap)] (m) 1row per pile
 34 -4 13 0.1;
 35 -4 17 0.1;
 36 0 9 0.1;
 37 0 13 0.1;
 38 0 17 0.1;
 39 4 9 0.1;
 40 4 13 0.1;
 41 4 17 0.1;];
 42
 43
 44 piles_forces_top = [0 0 0 0 0;
 45 0 0 0 0 0;
 46 0 0 0 0 0;
 47 0 0 0 0 0;
 48 0 0 0 0 0;
 49 0 0 0 0 0;
 50 0 0 0 0 0;
 51 0 0 0 0 0;
 52 0 0 0 0 0;];
 53
 54
 55 % units: piles_froces_top=[Fx, Fy, Fz, Mx, My] (in kN)
 56
 57 surface_forces=[0 0 0 0 0 0 0 0];
 58
 59 % units: surface_forces=[Fx Fy Fz x1 x2 y1 y2 0/1/2]
 60 % 0 there are no surface forces
 61 % 1 there is surface force
 62 % 2 thre is regtangular surface load defined by corners x1 x2 y1 y2
 63 %--
 64

Annex 2

 65 piles=assemble_piles(piles_input,piles_forces_top,piles_num,num_elem,...
 66 piles_length,find_surface,surface_pts);
 67
 68 %% %------------------------------TUNNEL--------------------------------%%%
 69 % ----------------------------- INPUT DATA
 70
 71 depth=20; %meters - depth of tunnel axis
 72 tun_coord=[0,0,depth]; % Coordinates it must be at x=0; y=0;
 73 time_step=1; % number of tunnel discretizations
 74 dia_0=10; % Tunnel diameter
 75 V_loss = 1/100; % Percentage of areal volume loss: e0
 76 n_points=10; % Points in every XS
 77 v=linspace(-50,50,time_step); % [coord X, coord X,#discretisations]
 78 % tunnel length of action
 79
 80 [V_loss_pts]=V_loss_pts(depth,tun_coord,time_step,dia_0,V_loss,n_points,v);
 81
 82 time_geom=toc;
 83 fprintf('Geometry created --> ok!\n')
 84 fprintf(' Elapsed time: %.1f s \n',time_geom);
 85
 86
 87 %% %---------------BOUSSINESQ AND SAGASETA DISPLACEMENTS----------------%%%
 88 % --- %
 89 tic
 90
 91 soil_bous=boussinesq(piles, num_elem,soil, surface_forces,time_step,piles_num,V_loss_pts);
 92
 93 if V_loss==0
 94
 95 soil_sagaseta=zeros(num_elem,4,piles_num,time_step);
 96 else
 97 [soil_sagaseta]=sagaseta_3D(piles,V_loss_pts,...
 98 time_step); %total soil displacement
 99 end
100 soil_strain=soil_bous+soil_sagaseta;
101 % soil_strain: [num_elem,(x,y,z),piles_num,time_step]
102 time_soil=toc;
103 fprintf('Soil displacements computed --> ok!\n')
104 fprintf(' Elapsed time: %.1f s \n',time_soil);
105
106
107 %% %----------------------PILE-GROUP HORIZONTAL "X" AND "Y" PROBLEM----------------------%%%
108 % --- %
109 [a,b]=size(piles_forces_top);
110 ppp=zeros(a,b,length(soil_strain(1,1,1,:)));
111
112 coord=1; %x direction
113 tic
114 [Is_global_x,BC_global_x,Ap_global_x,D_global_x,p_global_x,...
115 w_global_x,w_final_x,w_head_x,BC_change_x,ppp,w_dif_x2,...
116 soil_strain_auxx] = horizontal_analysis(piles,soil,piles_dia,...
117 piles_forces_top,piles_E,piles_I,piles_head_type,piles_num,...
118 soil_strain,coord,num_elem,time_step,ppp);
119
120 time_x=toc;
121 fprintf('Horizontal X analysis computed --> ok!\n')
122 fprintf(' Elapsed time: %.1f s \n',time_x);
123
124
125 coord=2; %y direction
126 tic
127 [Is_global_y,BC_global_y,Ap_global_y,D_global_y,p_global_y,...
128 w_global_y,w_final_y,w_head_y,BC_change_y,ppp,w_dif_y2,...

Annex 3

129 soil_strain_auxy] = horizontal_analysis(piles,soil,piles_dia,...
130 piles_forces_top,piles_E,piles_I,piles_head_type,piles_num,...
131 soil_strain,coord,num_elem,time_step,ppp);
132
133 time_y=toc;
134 fprintf('Horizontal Y analysis computed --> ok!\n')
135 fprintf(' Elapsed time: %.1f s \n\n',time_y);
136
137 %% %----------------------PILE-GROUP VERTICAL "Z" PROBLEM----------------------%%%
138 % --- %
139 tic;
140 [p_global_z,p_global_z2,v_global,v_global2,v_global3,v_final,...
141 D_global_z,Ap_global_z,Is_global_z,BC_z,BC_change_z,u_dif_u,u_dif_o,...
142 ppp,u_head_z,u_mean,Z_head,u_dif_z,soil_strain_auxz]=...
143 vertical_analysis(piles,piles_num,piles_dia,piles_head_type,...
144 piles_length,soil,piles_E,soil_strain,num_elem,piles_forces_top,ppp,find_surface);
145 time_z=toc;
146 fprintf('Vertical Z analysis computed --> ok!\n');
147 fprintf(' Elapsed time: %.1f s \n',time_z);
148
149
150 %% %-------------------------RESULTS' ANALYSIS--------------------------%%%
151 % --- %
152
153 [Mf_final_x,Mf_final_y,Q_global_x,axial_final]=results_analysis(...
154 piles_num,piles_length,piles_dia,piles_I,piles_E,piles_forces_top,...
155 num_elem,w_global_x,w_global_y,v_global3,p_global_z2,time_step,...
156 piles_head_type,ppp,find_surface);
157
158 %% %-----------------------------PLOTTINGS------------------------------%%%
159 % --- %
160
161 results_plots(num_elem,piles,w_final_x,w_final_y,v_final,...
162 Mf_final_x,Mf_final_y,axial_final,V_loss_pts,dia_0,find_surface,piles_length,soil_strain_auxz,soil_strain_auxy);
163
164 %% %----------------------------SAVE WORKSPACE VARIABLES
165
166 s_name="sample_name";
167 save(s_name)
168
169
170
171

Annex 4

 1 % File name: assemble_piles.m
 2 % Author: Genis Majoral Oller
 3 % Date: 1/3/2018
 4 % For Civil Engineering bachelor's degree dissertation
 5 % Enambling the "piles" matrix containing the elements of each pile
 6 % OUTPUT: piles=size[num_elem,4,piles_num]
 7 function piles=assemble_piles(piles_input,piles_forces_top,piles_num,num_elem,piles_length,find_surface,surface_pts);
 8
 9 if find_surface==0
10
11 [rows,waste]=size(piles_input);
12 [rows1, waste1]=size(piles_forces_top);
13
14 if piles_num==rows && rows==rows1
15
16 else
17 error('Please check number of piles and piles´ position');
18
19 end
20
21 clear rows waste rows1 waste1;
22
23 piles=zeros(num_elem,3,piles_num); %Prelocating pile global tensor
24
25 % -- %
26 %Generating a global pile-group matrix
27 tic
28
29 for k=1:piles_num
30
31 v=linspace(piles_input(k,3),piles_length+piles_input(k,3),num_elem)';
32 vv=linspace(piles_input(k,3)+piles_length/num_elem/2,...
33 piles_length-piles_length/num_elem/2+piles_input(k,3),num_elem)';
34 piles(:,3,k)=v;
35 piles(:,4,k)=vv;
36 piles(:,1,k)=piles_input(k,1);
37 piles(:,2,k)=piles_input(k,2);
38
39 end
40 clear v;
41 else
42
43 piles=zeros(num_elem,3); %Prelocating pile's global tensor
44
45 % --- %
46 %Generating a global pile-group matrix
47 tic
48
49 for k=1:num_elem
50
51 piles(:,3)=surface_pts(3,k)*ones(num_elem,1);
52 piles(:,4)=surface_pts(3,k)*ones(num_elem,1);
53
54 piles(k,1)=surface_pts(1,k);
55 piles(k,2)=surface_pts(2,k);
56
57 end
58 clear v;
59 end
60
61 end

Annex 5

 1 % File name: V_loss_pts.m
 2 % Author: Genis Majoral Oller
 3 % Date final version: 29/03/2018
 4 % For Civil Engineering bachelor's degree dissertation
 5 % [OUTPUT]: Matrix of Vloss points discretising the tunnel
 6
 7 function [V_loss_pts] = V_loss_pts(depth,tun_coord,time_step,dia_0,...
 8 V_loss,n_points,v)
 9
10
11
12 tunnel_adv_coord = zeros(time_step,3); % tunnel advance coordinates
13
14
15 for i=1:time_step
16 if time_step==1
17 tunnel_adv_coord(i,1:3) = [tun_coord(1:3)];
18 else
19 tunnel_adv_coord(i,1:3) = [v(i),tun_coord(2:3)] ;
20 end
21 end
22
23 clear v i
24
25 % --- %
26 % Generating the global points' coords containing volume loss (in a matrix)
27
28
29 [V_loss_pts]=tunnel_glob_coord(V_loss,dia_0,n_points,tunnel_adv_coord,...
30 time_step,depth);
31 % [V_loss_pts]=["X", "Y", "Z", "dV"]
32
33
34 end
35
36

Annex 6

 1 %File name: tunnel_glob_coord
 2 %Author: Genis Majoral Oller
 3 %Creation date: 29/03/2018
 4 %INPUT: [V_loss, dia_0,control,n_point] - [known loss volume, original diameter,
 5 % - depth of tunnel's axis, control variable]
 6 %OUTPUT: [V_loss_pts] - [coordinates of points that contain a loss of volume]
 7
 8 function [V_loss_pts]=tunnel_glob_coord(V_loss, dia_0,n_points,...
 9 tunnel_adv_coord,num_tun,depth)
10
11 % Creating the local coordinates "Y" and "Z" of the loss points in the
12 % tunnel crossection
13
14 V_loss_aux=tunnel_local_coord(V_loss, dia_0,n_points);
15 %V_loss_aux=[y,z,dA]
16
17 % Prelocating the final V_loss_pts matrix
18
19 V_loss_pts = zeros(n_points,4,num_tun);
20
21 for i=1:num_tun; %for all different tunnel advancing crossections
22
23 x=tunnel_adv_coord(i,1)*ones(n_points,1); % X coordinate XS.
24 z=(depth-V_loss_aux(:,2));
25
26 if i==1 || i==num_tun
27
28 if num_tun==1
29 delta_x=1; %For m3/m
30 else
31 if i==1
32 delta_x=(tunnel_adv_coord(i+1)-tunnel_adv_coord(i))/2;
33 elseif i==num_tun
34 delta_x=(tunnel_adv_coord(i)-tunnel_adv_coord(i-1))/2;
35 end
36 end
37
38 else
39 delta_x=((tunnel_adv_coord(i+1)-tunnel_adv_coord(i)))/2+...
40 ((tunnel_adv_coord(i)-tunnel_adv_coord(i-1)))/2;
41 end
42
43 dV=V_loss_aux(:,3)*(delta_x);
44 V_loss_pts(:,:,i)=[x, V_loss_aux(:,1), z, dV];
45
46 end
47
48 end

Annex 7

 1 %File name: tunnel_local_coord
 2 %Author: Genis Majoral Oller
 3 %Creation date: 29/03/2018
 4
 5 %INPUT: [V_loss, dia_0,control,n_point] - [known loss volume, original diameter,
 6 % - depth of tunnel's axis, control variable]
 7 %OUTPUT: [V_loss_aux] - [coordinates of points that contain a loss of volume]
 8
 9 function [V_loss_aux]=tunnel_local_coord(V_loss, dia_0,n_points)
10
11 if n_points==1
12 V_loss_aux=[0,0,V_loss*pi*(dia_0/2)^2];
13 else
14
15 tram=linspace(0,2*pi,n_points+1);
16 r_ini=sqrt((dia_0/2)^2*(V_loss+1));
17 r_final=dia_0/2;
18 r0=(r_ini-r_final);
19 fi=-pi/2; % Where the second circle is located (angle)
20 rad=r_ini-r0; %final radius
21 rmed=r0/2;
22 radmed=r_ini-rmed; %Medium radius to colocate sink points
23
24 c1=@(r0,theta,fi,rad) (r0*cos(theta-fi)+sqrt(r_ini^2-r0^2*sin(theta-fi).^2));
25 cmed=@(rmed,radmed,theta,fi,rad) (rmed*cos(theta-fi)+sqrt(radmed^2-rmed^2*sin(theta-fi).^2));
26 cint=@(r0,theta,fi,rad) 1/2*(0*r0*cos(theta-fi)+sqrt(rad^2-0*r0^2*sin(theta-fi).^2)).^2;
27
28 for i=1:length(tram);
29 r2(i)=c1(r0,tram(i),fi,rad);
30 end
31
32 for i=1:length(tram)-1;
33 dA(i)=((pi*(r_ini)^2)/n_points)-integral(@(theta)cint(r0,theta,fi,rad),tram(i),tram(i+1));
34
35 end
36 A_loss=sum(dA);
37 for i=1:length(tram)-1;
38 dV(i)=dA(i);
39 end
40
41 % Coordinates of Vloss points
42 tram2=tram+(tram(2)-tram(1))/2;
43 points_theta=tram2(1:length(tram2)-1);
44
45 for i=1:length(points_theta);
46 r_points(i)=cmed(rmed,radmed,points_theta(i),fi,rad);
47 V_loss_y(i)=r_points(i)*cos(points_theta(i));
48 V_loss_z(i)=r_points(i)*sin(points_theta(i));
49 end
50
51 V_loss_aux=zeros(length(V_loss_y),3);
52
53 V_loss_aux(:,1)=V_loss_y(:)'; % 1st column y coord of Vloss point
54 V_loss_aux(:,2)=V_loss_z(:)'; % 2nd column z coord of Vloss point
55
56 V_loss_aux(:,3)=dV(:); %only area
57
58
59 end
60
61 end

Annex 8

 1 % File name: boussinesq.m
 2 % Author: Genis Majoral Oller
 3 % Date: 1/8/2018
 4 % For Civil Engineering bachelor's degree dissertation
 5 % Boussinesq displacements due to surface load
 6
 7 function soil_bous=boussinesq(piles, num_elem, soil, surface_forces,time_step,piles_num,V_loss_pts);
 8
 9 %% PRELOCATING VARIABLES
10 [aa,bb,c]=size(V_loss_pts);
11 [a,b,k]=size(piles);
12
13 soil_bous=zeros(a,b,k,c);
14 soil_bous_aux=zeros(a,b,k);
15
16 %%
17 Es=soil(1);
18 vs=soil(2);
19 form=surface_forces(8);
20 %local coordinates
21
22 num_forces=length(surface_forces(:,1));% number of applied loads/forces
23
24
25
26
27 %%
28 for i_pile=1:piles_num
29 for i_element=1:num_elem
30 for i_forces=1:num_forces
31
32 %% Actual Boussinesq formulation
33 z=piles(i_element,4,i_pile);
34 R=@(x,y)sqrt(x.^2+y.^2+z^2);
35
36
37
38 Ibous_x=@(x,y)((1+vs)./(2*pi*R(x,y))).*...
39 (...
40 1+x.^2./(R(x,y).^2)+...
41 (1-2*vs)*(R(x,y)./(R(x,y)+z)-...
42 x.^2./(R(x,y)+z).^2)...
43);
44 Ibous_y=@(x,y)((1+vs)./(2*pi*R(x,y))).*...
45 (...
46 1+y.^2./(R(x,y).^2)+...
47 (1-2*vs)*(R(x,y)./(R(x,y)+z)-...
48 y.^2./(R(x,y)+z).^2)...
49);
50 Ibous_z=@(x,y)(1+vs)./(2*pi*R(x,y)).*...
51 (2*(1-vs)+z^2./R(x,y).^2);
52
53 %% Depending on the type of force/load
54 if form==0
55 w_bous_x=0;
56 w_bous_y=0;
57 w_bous_z=0;
58
59 elseif form==1
60 x=piles(i_element,1,i_pile)-surface_forces(i_forces,4);
61 y=piles(i_element,2,i_pile)-surface_forces(i_forces,6);
62
63
64 w_bous_x=surface_forces(i_forces,1)/Es*Ibous_x(x,y);

Annex 9

65 w_bous_y=surface_forces(i_forces,2)/Es*Ibous_y(x,y);
66 w_bous_z=surface_forces(i_forces,3)/Es*Ibous_z(x,y);
67 elseif form==2
68 x1=piles(i_element,1,i_pile)-surface_forces(i_forces,4);
69 x2=piles(i_element,1,i_pile)-surface_forces(i_forces,5);
70 y1=piles(i_element,2,i_pile)-surface_forces(i_forces,6);
71 y2=piles(i_element,2,i_pile)-surface_forces(i_forces,7);
72
73
74 w_bous_x=surface_forces(i_forces,1)/Es*integral2(@(x,y)Ibous_x(x,y),min(x1,x2),max(x1,x2),min(y1,y2),max(y1,y2));
75 w_bous_y=surface_forces(i_forces,2)/Es*integral2(@(x,y)Ibous_y(x,y),min(x1,x2),max(x1,x2),min(y1,y2),max(y1,y2));
76 w_bous_z=surface_forces(i_forces,3)/Es*integral2(@(x,y)Ibous_z(x,y),x1,x2,y1,y2);
77 else
78 end
79
80
81 soil_bous_aux(i_element,1,i_pile)=soil_bous_aux(i_element,1,i_pile)+w_bous_x;
82 soil_bous_aux(i_element,2,i_pile)=soil_bous_aux(i_element,2,i_pile)+w_bous_y;
83 soil_bous_aux(i_element,3,i_pile)=soil_bous_aux(i_element,3,i_pile)+w_bous_z;
84
85 clear w_bous_x w_bous_y w_bous_z
86 end
87 end
88 end
89
90
91
92 %% Finally
93
94 for i_time=1:time_step
95 soil_bous(:,:,:,i_time)=soil_bous_aux;
96 end
97
98
99 end

Annex 10

 1 %File name: sagaseta_3D
 2 %Author: Genis Majoral Oller
 3 %Creation date: 1/4/2018
 4 %Description: This routine calculates the displacement in 3D for a pile or
 5 % group of piles for a given point or points, this includes a
 6 % tunnel as long as it is discretised in several points.
 7
 8 %INPUT: [piles, V_loss_pts]->Pile-group matrix
 9 % [x,y,z] dim=(N_elem x 3 x N_piles)
10
11 % dV points matrix [x,y,z,dV]
12 %OUTPUT: [piles_sagaseta]->[x_new,y_new,z_new] dim=(N_elem x 3 x N_piles)
13
14 function [soil_sagaseta_strain]=sagaseta_3D(piles,V_loss_pts,time_step)
15
16 %% PRELOCATING VARIABLES
17 [aa,bb,c]=size(V_loss_pts);
18 [a,b,k]=size(piles);
19
20 %piles_sagaseta=piles;
21 soil_sagaseta_strain=zeros(a,b,k,c);
22
23
24 %% ADVANCING TUNNEL
25
26 fprintf('Soil strain calculations start here\n');
27
28 for i_time=1:time_step % number of tunnel advances
29 piles_sagaseta=zeros(a,b,k);
30 for i_pile=1:length(piles(1,1,:)) % number of piles
31 tic
32 for i_element=1:length(piles(:,1,1)) % elements on piles
33
34 x_0=piles(i_element,1,i_pile);
35 y_0=piles(i_element,2,i_pile);
36 z_0=piles(i_element,3,i_pile);
37 z_1=piles(i_element,4,i_pile);
38 piles_sagaseta_x=zeros(1,length(V_loss_pts(:,1,1)));
39 piles_sagaseta_y=zeros(1,length(V_loss_pts(:,1,1)));
40 piles_sagaseta_z=zeros(1,length(V_loss_pts(:,1,1)));
41
42 parfor i_point=1:length(V_loss_pts(:,1,1))
43
44 % Pile element to volume-loss-point distances
45 Delta_x=x_0-V_loss_pts(i_point,1,i_time);
46 Delta_y=y_0-V_loss_pts(i_point,2,i_time);
47 Delta_z=z_0-V_loss_pts(i_point,3,i_time);
48
49 % Point
50 h= V_loss_pts(i_point,3,i_time);% Coordinate "Z" of the loss-vol-point
51
52 rad=sign(V_loss_pts(i_point,4,i_time))*...
53 (abs(V_loss_pts(i_point,4,i_time))*3/4/pi)^(1/3); %sphere
54
55 %% COORDINATE "X" --
56 control_coord=1;% To assign sagaseta_3D_integral a calculation for coord "X"
57
58 [Sx_paved,Sx_free,Sy_paved,Sy_free]=sagaseta_3D_integral...
59 (Delta_x,Delta_y,Delta_z,rad,h,control_coord);
60
61 piles_sagaseta_x(i_point)=Sx_paved + Sx_free;
62
63
64 %% COORDINATE "Y" --

Annex 11

65
66 piles_sagaseta_y(i_point)=Sy_paved+ Sy_free;
67
68 %% COORDINATE "Z" ---
69 control_coord=3;% To assign sagaseta_3D_integral a calculation for coord "Z"
70 Delta_z=z_1-V_loss_pts(i_point,3,i_time);%Because for the vertical analysis pile nodes are different
71 [Sz_paved,Sz_free,S_paved2,S_free2]=sagaseta_3D_integral...
72 (Delta_x,Delta_y,Delta_z,rad,h,control_coord);
73
74 %Final "Z" displacement
75 piles_sagaseta_z(i_point)=Sz_paved + Sz_free;
76
77
78 end
79 piles_sagaseta(i_element,1,i_pile)=sum(piles_sagaseta_x);
80 piles_sagaseta(i_element,2,i_pile)=sum(piles_sagaseta_y);
81 piles_sagaseta(i_element,3,i_pile)=sum(piles_sagaseta_z);
82 clear piles_sagaseta_x piles_sagaseta_y piles_sagaseta_z
83 end
84 temps=toc;
85 fprintf(' Soil strain of pile %i/%i at time...%i/%i calculated in %.1f s\n',i_pile,k,i_time,c,temps);
86 end
87
88 soil_sagaseta_strain(:,:,:,i_time)=piles_sagaseta;
89 clear piles_sagaseta;
90 end
91
92
93 end

Annex 12

 1 %File name: sagaseta_3D_integral
 2 %Author: Genis Majoral Oller
 3 %Date final version: 1/8/2018
 4 %Description: This routine implements the Sagaseta solution for a sink point
 5 % to a particular point in space in 3D
 6 % group of piles for a given point or points.
 7
 8 %INPUT: [Delta_x,Delta_y,Delta_z,rad,h,control_coord]
 9 %
10 % rad --> radius of vol-loss sphere
11 % h --> depth of vol-loss point
12 % control_coord --> internal variable to decide what coord
13 % "X,Y,Z" to calculate
14 %
15
16 %OUTPUT: [S_paved,S_free]->(in meters)
17
18 function [S_paved,S_free,S_paved2,S_free2]=sagaseta_3D_integral(Delta_x,Delta_y,Delta_z,rad,h,control_coord)
19
20 %% Common data
21
22 z=Delta_z+h;%Returning z to being the original coordinate of the element afected by Vloss
23 x=sqrt(Delta_x^2+Delta_y^2);
24 r1=sqrt(x^2+(z-h)^2);
25 r2=sqrt(x^2+(z+h)^2);
26 r=sqrt(Delta_x^2+Delta_y^2+Delta_z^2);
27
28
29 if control_coord == 1 || control_coord == 2
30 %% For COORDINATES "X" AND "Y"
31 ra=@(a) ((a-x).^2+z^2).^0.5;
32 rb=@(a) ((a+x).^2+z^2).^0.5;
33 k=@(a) ((1-(ra(a).^2)./(rb(a).^2)).^0.5).^2;
34 E=@(a) ellipticE(k(a));% complete elliptic integral of 2nd kind
35 F=@(a) ellipticK(k(a)); % complete elliptic integral of 1st kind
36 IE=@(a) 1+1/2*z^2*(1./(ra(a).^2) + 1./(rb(a).^2)) ;
37 IF=@(a) -1./(rb(a).^2).*(a.^2+x^2+2*z^2);
38 f_integral = @(a) rb(a).*a.*1./((h^2+a.^2).^(5/2)).*(IE(a).*E(a)+IF(a).*F(a));
39
40 Sx_free=2/pi*rad^3*h/x*(integral(@(a)f_integral(a),0,inf));
41
42
43
44 S_paved=-rad^3/3*(Delta_x/r1^3-Delta_x/r2^3);
45 S_free=Sx_free*Delta_x/x;
46
47
48
49 S_paved2=-rad^3/3*(Delta_y/r1^3-Delta_y/r2^3);
50 S_free2=Sx_free*Delta_y/x;
51
52
53
54 elseif control_coord ==3
55 %% For COORDINATE "Z"
56 ra=@(a) ((a-x).^2+z^2).^0.5;
57 rb=@(a) ((a+x).^2+z^2).^0.5;
58 k=@(a) ((1-(ra(a).^2)./(rb(a).^2)).^0.5).^2;
59 E=@(a) ellipticE(k(a));
60 F=@(a) ellipticK(k(a));
61
62 JE=@(a) -1 + 2*(a.*(a-x)).*1./(ra(a).^2);
63
64 fz_integral = @(a) 1./(rb(a).^2).*a.*1./((h^2+a.^2).^(5/2)).*...

Annex 13

65 (JE(a).*E(a)+F(a)) ;
66
67
68 Sz_free=2/pi*rad^3*h*z*(integral(@(a)fz_integral(a),0,inf));
69
70
71 S_paved=-rad^3/3*((z-h)/r1^3-(z+h)/r2^3);
72 S_free=Sz_free;
73 S_paved2=0;
74 S_free2=0;
75 else
76 fprintf('Error while calculating sagaseta displacements. Check control_coordinates')
77 end
78
79 end

Annex 14

 1 %File name: horizontal_analysis
 2 %Author: Genis Majoral Oller
 3 %Date final version: 25/4/2018
 4 %Description: Horizontal analysis of a group of piles, either free headed
 5 % or with pile cap
 6 function [Is_global_x,BC_global_x,Ap_global_x,D_global_x,p_global_x,...
 7 w_global_x,w_final,w_head_x,BC_change_x,ppp,w_dif_x2,...
 8 soil_strain_aux] = horizontal_analysis(piles,soil,piles_dia,...
 9 piles_forces_top,piles_E,piles_I,piles_head_type,piles_num,...
 10 soil_strain,coord,num_elem,time_step,ppp)
 11
 12 [Is_global_x]=horizontal_assemble_mindlin...
 13 (piles,soil,piles_dia,coord);
 14
 15
 16 if sum(piles_forces_top(:,coord))==0
 17 ppp(:,coord,1)=piles_forces_top(:,coord);
 18 else
 19 for i=1:length(soil_strain(1,1,1,:))
 20 ppp(:,coord,i)=piles_forces_top(:,coord);
 21 end
 22 end
 23
 24
 25 for i_pile=1:length(piles(1,1,:))
 26
 27 iii_0=(i_pile-1)*(num_elem)+1; %
 28 iii=iii_0+(num_elem)-1;
 29
 30 Is_global_x_aux=Is_global_x(iii_0:iii,iii_0:iii);
 31 % Assembling the global system of equations for one pile - pile-structure
 32
 33 [BC_x, Ap_x, D_x]=horizontal_assemble_pile_structure...
 34 (piles(:,:,i_pile),piles_forces_top(i_pile,:),piles_dia,...
 35 piles_E,piles_I,piles_head_type,soil);
 36
 37 ii_0=(i_pile-1)*(length(Ap_x(:,1)))+1;
 38 ii=ii_0+(length(Ap_x(:,1)))-1;
 39
 40 D_global_x(ii_0:ii,iii_0:iii)=D_x;
 41 Ap_global_x(ii_0:ii,iii_0:iii)= Ap_x;
 42 BC_global_x(ii_0:ii,1)=BC_x;
 43
 44 end
 45 clear row_end col col_end iii iii_0 ii ii_0
 46
 47 N=num_elem;
 48 soil_strain_aux=zeros(N*piles_num,length(soil_strain(1,1,1,:)));
 49 w_head_x=zeros(piles_num,length(soil_strain(1,1,1,:)));
 50
 51 for i_time=1:length(soil_strain(1,1,1,:))
 52
 53
 54 for i_pile=1:length(soil_strain(1,1,:,1))
 55 iii_0=(i_pile-1)*(num_elem)+1;
 56 iii=iii_0+(num_elem)-1;
 57 for j=1:i_time
 58 soil_strain_aux(iii_0:iii,i_time)=...
 59 soil_strain_aux(iii_0:iii,i_time)+soil_strain(:,coord,i_pile,j);
 60 %coordinate x or y defined by control variable "coord"
 61 end
 62 end
 63
 64 p_global_x_aux=(Ap_global_x-D_global_x*Is_global_x)\...

Annex 15

 65 (D_global_x*soil_strain_aux(:,i_time)+BC_global_x);
 66
 67
 68 w_global_x(:,i_time)=Is_global_x*p_global_x_aux+...
 69 soil_strain_aux(:,i_time);
 70 p_global_x(:,i_time)=p_global_x_aux;
 71
 72
 73
 74 %% iteration x-dir %%%
 75
 76 piles_forces_top=ppp(:,:,i_time);
 77 dir=coord;
 78 i_step=1;
 79
 80 for i=1:piles_num
 81 w_head_x(i,i_time)=w_global_x((i-1)*num_elem+1,i_time);
 82 end
 83
 84 if piles_head_type==0
 85 BC_change_x='No change';%no action
 86 w_dif_x2=0;
 87 else
 88 w_dif_x=max(w_head_x(:,i_time))-min(w_head_x(:,i_time));
 89 w_dif_x2(:,i_time)=w_dif_x;
 90 w_mean=mean(w_head_x(:,i_time));
 91 F_change=zeros(piles_num,1);
 92
 93 if w_dif_x < -0.00005 || w_dif_x > 0.00005
 94 while w_dif_x < -0.00005 || w_dif_x > 0.00005
 95 BC_change_x=zeros(piles_num*num_elem,1);
 96 for it=1:piles_num
 97 if i_step==1
 98 if sum(piles_forces_top(:,dir))==0
 99 Fc=(w_mean-w_head_x(it,i_time))*100000;
100 else
101 Fc=piles_forces_top(it,dir)+(w_mean-w_head_x(it,i_time))*...
102 abs(sum(piles_forces_top(:,dir)))/piles_num*100;
103 end
104 else
105 condition=sum(piles_forces_top(:,dir));
106 if condition>-0.01 && condition<0.01
107 Fc=piles_forces_top(it,dir)+...
108 (w_mean-w_head_x(it,i_time))*100000;
109 else
110 Fc=piles_forces_top(it,dir)+...
111 (w_mean-w_head_x(it,i_time))*...
112 abs(sum(piles_forces_top(:,dir)))/piles_num*100;
113 end
114 end
115 %B-matrix of pile displacement
116 N=num_elem;
117 Bp=zeros(N,1);
118 Bp(1,1)=Fc;
119 BC_change_x((it-1)*(N)+1:it*(N),1)=Bp;
120 F_change(it,1)=Fc;
121 end %end changing force
122 piles_forces_top(:,dir)=F_change;
123
124 %new shear/displacement
125 p_global_x(:,i_time)=(Ap_global_x-D_global_x*Is_global_x)\...
126 (D_global_x*soil_strain_aux(:,i_time)+BC_change_x);
127
128 w_global_x(:,i_time)=Is_global_x*p_global_x(:,i_time)+...

Annex 16

129 soil_strain_aux(:,i_time);
130
131 %new condition
132 for i=1:piles_num
133 w_head_x(i,i_time)=w_global_x((i-1)*num_elem+1,i_time);
134 end
135 w_dif_x=max(w_head_x(:,i_time))-min(w_head_x(:,i_time));
136 w_dif_x2(:,i_time)=w_dif_x;
137 w_mean=mean(w_head_x(i,i_time));
138 i_step=i_step+1;
139 dir_iter=[dir i_step];
140 end
141 else
142 BC_change_x='No change';
143
144 end
145
146 end
147
148 ppp(:,coord,i_time)=piles_forces_top(:,coord);
149
150 clear dir_i dir_iter piles_forces_top a Fc
151 for i_pile=1:piles_num
152
153 kk_0=(N)*(i_pile-1)+1;
154 kk=kk_0+(N-1);
155
156 w_final(:,i_pile,i_time)=w_global_x(kk_0:kk,i_time);
157
158 end
159
160 end
161
162
163 end
164
165

Annex 17

 1 %File name: horizontal_assemble_pile_structure.m
 2 % Author: Genis Majoral Oller
 3 %For Civil Engineering bachelor's degree dissertation
 4
 5 %INPUT: pile, piles_forces_top, dia
 6 % [x,y,z](100x3) [Fx,Fy,Fz,Mx] diameter or width
 7
 8
 9 function [BC_x, Ap_x, D_x]=horizontal_assemble_pile_structure(pile,...
 10 piles_forces_top,piles_dia,piles_E,piles_I,piles_head_type,...
 11 soil)
 12
 13 %Preparing the external horizontal load and Moment in "x" direction
 14 %[kNm]
 15
 16 H=piles_forces_top(1); %[kN]
 17 M=piles_forces_top(5); %[kNm]
 18
 19
 20 %pile position and properties
 21
 22 Ep=piles_E; %[kN/m2]
 23 N=length(pile(:,1)); %[-]
 24 L=pile(N,3); %[m]
 25
 26
 27 %soil properties
 28 Es=soil(1); %[kN/m2]
 29 vs=soil(2); %[-]
 30
 31 %%%
 32 %Ip - moment of inertia
 33 Ip=piles_I; %b of a square is equal to b=(3*pi)^0.25/2*d
 34 h=(3*pi)^0.25/2*piles_dia; %square,
 35 d=h;
 36
 37 %% PILE PROBLEM %%
 38 % Bending equation finite difference matrix
 39 D_x=zeros(N,N);
 40 EI=Ep*Ip;
 41
 42 if piles_head_type==0
 43
 44
 45
 46 for r=1:N
 47 if r==1
 48 D_x(r,:)=0;
 49 elseif r==2
 50 D_x(r,1:4)=[-2, 5, -4, 1];
 51 elseif r==N-1
 52 D_x(r,N-3:N)=[1, -4, 5, -2];
 53 elseif r==N
 54 D_x(r,:)=0;
 55 else
 56 D_x(r,r-2:r+2)=[1, -4, 6, -4, 1];
 57 end
 58 end
 59
 60
 61 %B-matrix of pile BC
 62 BC_x=zeros(N,1);
 63 for r=1:N
 64 if r==1

Annex 18

 65 BC_x(r,1)=H;
 66 elseif r==2
 67 BC_x(r,1)=M*L^2/(N-1)^2/EI;
 68 elseif r==3
 69 BC_x(r,1)=0;
 70 elseif r==4
 71 BC_x(r,1)=0;
 72 elseif r==N
 73 BC_x(r,1)=-M;
 74 else
 75 end
 76 end
 77
 78
 79 elseif piles_head_type==1 %head-casted
 80
 81
 82
 83 for r=1:N %fill except two last rows, where BC apply
 84 if r==1
 85 D_x(r,:)=0;
 86 elseif r==2
 87 D_x(r,1:4)=[-4, 7, -4, 1];
 88 elseif r==N-1
 89 D_x(r,N-3:N)=[1, -4, 5, -2];
 90 elseif r==N
 91 D_x(r,1:4)=-[2, -5, 4, -1]*EI/(L^2/(N-1)^2);
 92 else
 93 D_x(r,r-2:r+2)=[1, -4, 6, -4, 1];
 94 end
 95 end
 96
 97
 98 %B-matrix of pile BC
 99 BC_x=zeros(N,1);
100 for r=1:N
101 if r==1
102 BC_x(r,1)=H;
103 elseif r==2
104 BC_x(r,1)=0;
105 elseif r==N
106 BC_x(r,1)=-M;
107 else
108 end
109 end
110 else
111 end
112
113
114 %Distribution of shear
115 Ap_x=zeros(N,N);
116 coef=-d/(EI)*((L/(N-1))^4);
117
118 for r=1:N
119 if r==1
120 Ap_x(r,1)=1*0.5*(L)/(N-1)*d;
121 Ap_x(r,2:N-1)=1*L/(N-1)*d;
122 Ap_x(r,N)=1*0.5*(L)/(N-1)*d;
123 elseif r==N
124 if piles_head_type==0
125 Ap_x(r,1)=0.25*L^2/(N-1)^2*d;
126 for j=2:N-1
127 Ap_x(r,j)=(j-1)*L^2/(N-1)^2*d;
128 end

Annex 19

129 Ap_x(r,N)=(0.5*(N-1)-0.125)*L^2/(N-1)^2*d;
130 elseif piles_head_type==1
131 Ap_x(r,1)=0.5*d*L/(N-1)*(0.5*0.5*L/(N-1));
132 Ap_x(r,2:N-1)=d*L/(N-1)*(pile(2:N-1,3)-pile(1,3));
133 Ap_x(r,N)=0.5*d*L/(N-1)*(pile(N,3)-pile(1,3)-0.5*0.5*L/(N-1));
134
135
136 else
137 end
138 else
139 Ap_x(r,r)=1*coef;
140 end
141 end
142
143
144 end
145

Annex 20

 1 %File name: horizontal_assemble_mindlin.m
 2 %Author: Genis Majoral Oller
 3 %For Civil Engineering bachelor's degree dissertation
 4 %Date: 15/05/2018
 5 %OUTPUT: Is_global_x
 6 % A matrix (Num_elements*Num_piles)x(Num_elements*Num_piles)
 7
 8 function [Is_global_x]=horizontal_assemble_mindlin(piles,...
 9 soil,piles_dia,coord)
10 %% Preparing input data for mindlin problem
11
12 N_piles = length(piles(1,1,:));
13
14 %Soil properties
15 Es=soil(1); %[kN/m2]
16 vs=soil(2); %[-]
17
18 %Ip - moment of inertia
19 %Ip=pi/4*(dia/2)^4; %b of a square is equal to b=(3*pi)^0.25/2*d
20 h=(3*pi)^0.25/2*piles_dia; %square,
21 d=h;
22
23 pile_acting=piles(:,:,1);
24 pile_afected=piles(:,:,1);
25 N=length(pile_afected(:,1)); %[num]
26 L=piles(N,3);
27
28
29 [Is_temporal_inpile]=horizontal_mindlin_in_pile...
30 (pile_acting,pile_afected,d,L,N,vs,Es);
31
32 for i_acting=1:N_piles;
33
34 %Acting pile
35 pile_acting=piles(:,:,i_acting);
36
37 for i_afected=1:N_piles;
38
39 %Afected pile
40
41 pile_afected=piles(:,:,i_afected);
42
43
44
45 N=length(pile_afected(:,1)); %[num]
46 L=piles(N,3); %[m]
47
48
49
50 %% SOIL PROBLEM %%
51 %soil displacement due to shear force
52
53 row=(i_acting-1)*N+1;
54 row_end=row+N-1;
55 col=(i_afected-1)*N+1;
56 col_end=col+N-1;
57
58 %Is it pile2pile or pile within itself?
59
60 if i_acting==i_afected %diagonal terms
61
62
63 Is_global_x(row:row_end,col:col_end)=1/Es*Is_temporal_inpile;
64 else

Annex 21

65 [Is_temporal]=horizontal_mindlin_pile2pile...
66 (pile_acting,pile_afected,vs,coord);
67
68 Is_global_x(row:row_end,col:col_end)=d*L/(N-1)/Es*Is_temporal;
69
70 end
71
72
73 end
74 end
75 end
76

Annex 22

 1 %Author: Genís Majoral Oller
 2 %File name: horizontal_mindlin_in_pile
 3 %Date: 25/05/2018
 4 %Mindlin coeficients to find displacement due to a
 5 %horizontal load acting upon a rectangular area (i.e. discretisation of the
 6 %pile)
 7
 8
%%%
%%%%%%
 9 %Input
10 function [Is_hor]=horizontal_mindlin_in_pile(Pos_force,Pos_pile,d,L,N,vs,Es)
11
12 % Pos_force - pile(x,y,z) "N" rows
13 % Pos_pile - pile(x,y,z)
14
%%%
%%%%%%
15 z_afected=Pos_pile(:,3); % column vector
16 z_acting=Pos_force(:,3); % column vector
17 Is_hor=zeros(length(z_afected),length(z_acting));
18 x=0;
19 for i_afected=1:length(z_afected)
20 z=z_afected(i_afected);
21
22 for i_force=1:length(z_acting)
23
24 if i_force==1 %for 1st and last elements half length
25
26 cc=z_acting(i_force);
27
28 y_inf=0;
29 y_sup=d/2;
30 c_inf=cc;
31 c_sup=cc+((L)/(N-1)*0.5);
32
33 elseif i_force==length(z_acting)
34
35 cc=z_acting(i_force);
36
37 y_inf=0;
38 y_sup=d/2;
39 c_inf=cc-((L)/(N-1)*0.5);
40 c_sup=cc;
41
42 else
43 cc=z_acting(i_force);
44
45 y_inf=0;
46 y_sup=d/2;
47 c_inf=cc-((L)/(N-1)*0.5);
48 c_sup=cc+((L)/(N-1)*0.5);
49 end
50
51 %%
52
53
54 R1=@(y,c) sqrt(x^2+y.^2+(z-c).^2);
55 R2=@(y,c) sqrt(x^2+y.^2+(z+c).^2);
56
57 Is_aux=@(y,c) (1+vs)/(8*pi*(1-vs))*((3-4*vs)./R1(y,c)+...
58 1./R2(y,c)+...
59 x^2./R1(y,c).^3+...
60 (3-4*vs)*x^2./R2(y,c).^3+...

Annex 23

61 2*c.*z./R2(y,c).^3.*(1-3*x^2./R2(y,c).^2)+...
62 4*(1-vs)*(1-2*vs)./(R2(y,c)+z+c).*...
63 (1 -x^2./(R2(y,c).*(R2(y,c)+z+c))));
64
65
66 Is_hor(i_afected,i_force)=2*integral2...
67 (@(y,c)Is_aux(y,c),y_inf,y_sup,c_inf,c_sup);
68
69
70
71 end
72 end
73
74
75
76 end

Annex 24

 1 %Author: Genís Majoral Oller
 2 %Date: 25/5/2018
 3 %File name: horizontal_mindlin_pile2pile
 4
 5
 6
%%%
%%%%%%
 7 %Input
 8 function [Is_hor]=horizontal_mindlin_pile2pile(Pos_force,Pos_pile,vs,direction)
 9
10
%%%
%%%%%%
11 %direction (1=x,2=y)
12 Is_hor=zeros(length(Pos_pile(:,3)),length(Pos_force(:,3)));
13
14 for i_afected=1:length(Pos_pile(:,3))
15 for i_force=1:length(Pos_force(:,3))
16 z=Pos_pile(i_afected,3);
17 c=Pos_force(i_force,3);
18 x=Pos_pile(i_afected,1)-Pos_force(i_force,1);
19 y=Pos_pile(i_afected,2)-Pos_force(i_force,2);
20 R1=sqrt(x^2+y^2+(z-c)^2);
21 R2=sqrt(x^2+y^2+(z+c)^2);
22 if direction==1
23 if i_force==1 || i_force==length(Pos_force(:,3))
24 Is_hor(i_afected,i_force)=(0.5)*(1+vs)/(8*pi*(1-vs))*...
25 ((3-4*vs)/R1+1/R2+x^2/...
26 R1^3+(3-4*vs)*x^2/R2^3+2*c*z/R2^3*(1-3*x^2/R2^2)+...
27 4*(1-vs)*(1-2*vs)/(R2+z+c)*(1-x^2/(R2*(R2+z+c))));
28 %0.5 accounts for half the discretisation, it will be
29 %multiplied later by d*L/(N-1)
30 else
31 Is_hor(i_afected,i_force)=(1+vs)/(8*pi*(1-vs))*...
32 ((3-4*vs)/R1+1/R2+x^2/...
33 R1^3+(3-4*vs)*x^2/R2^3+2*c*z/R2^3*(1-3*x^2/R2^2)+...
34 4*(1-vs)*(1-2*vs)/(R2+z+c)*(1-x^2/(R2*(R2+z+c))));
35 end
36 elseif direction==2
37 Is_hor(i_afected,i_force)=(1+vs)/(8*pi*(1-vs))*...
38 ((3-4*vs)/R1+1/R2+y^...
39 2/R1^3+(3-4*vs)*y^2/R2^3+2*c*z/R2^3*(1-3*y^2/R2^2)+...
40 4*(1-vs)*(1-2*vs)/(R2+z+c)*(1-y^2/(R2*(R2+z+c))));
41 else
42 %no action
43 end
44 end
45 end

Annex 25

 1 %Author: Genís Majoral Oller
 2 %Date: 12/6/2018
 3 %File name: vertical_analysis
 4
 5 function [p_global_z,p_global_z2,v_global,v_global2,v_global3,v_final,D_global_z,Ap_global_z,...
 6 Is_global_z,BC_z,BC_change_z,u_dif_u,u_dif_o, ppp,u_head_z,u_mean,Z_head,u_dif_z,...
 7 soil_strain_aux]=vertical_analysis(piles,...
 8 piles_num,piles_dia,piles_head_type,piles_length,soil,piles_E,soil_strain,num_elem,piles_forces_top,ppp,find_surface)
 9 %% Pile structure
 10 if find_surface==0
 11 Ep=piles_E;
 12 Es=soil(1);
 13 L=piles_length;
 14 d=piles_dia;
 15 N=num_elem;
 16 Ra=1;
 17 coef1=Ra*d*Ep/(4*((L)/(N))^2);
 18 [a,b]=size(piles_forces_top);
 19
 20 if sum(piles_forces_top(:,3))==0
 21 ppp(:,3,1)=piles_forces_top(:,3);
 22 else
 23 for i=1:length(soil_strain(1,1,1,:))
 24 ppp(:,3,i)=piles_forces_top(:,3);
 25 end
 26 end
 27
 28 D_global_z_aux=zeros(N+1,N+1);
 29
 30 for r=1:N+1
 31 if r==1
 32 D_global_z_aux(r,1:2)=[-2 2];
 33 elseif r==N+1
 34 D_global_z_aux(r,:)=0;
 35 elseif r==N
 36 D_global_z_aux(r,N:N+1)=[1,-1];
 37 else
 38 D_global_z_aux(r,r-1:r+1)=[1, -2, 1];
 39 end
 40 end
 41
 42 D_global_z_aux=coef1*D_global_z_aux;
 43
 44
 45 Ap_global_z_aux=zeros(N+1,N+1);
 46
 47 for i=1:N+1
 48 if i==N+1
 49 Ap_global_z_aux(i,:)=pi*d*(L/(N));
 50 Ap_global_z_aux(i,N+1)=pi*(d/2)^2;
 51 elseif i==N
 52 Ap_global_z_aux(i,N)=(0.5*L/(N))^2*pi*d/Ep/(pi*d^2/4);
 53 Ap_global_z_aux(i,N+1)=1/2*L/(N)/Ep;
 54 elseif i==1
 55 Ap_global_z_aux(i,1)=1+coef1*(L/(N))^2*pi*d/Ep/(pi*d^2/4);
 56 else
 57 Ap_global_z_aux(i,i)=1;
 58 end
 59
 60 end
 61
 62 for i_pile=1:piles_num
 63 BC_z_aux=zeros(N+1,1);
 64 P=piles_forces_top(i_pile,3);

Annex 26

 65 BC_z_aux(1,1)=coef1*P/(pi*d^2/4)*2*L/(N)/Ep;
 66 BC_z_aux(N+1,1)=P;
 67
 68 BC_z_aux2=zeros(N+1,1);
 69 BC_z_aux2(1,1)=0;
 70 BC_z_aux2(N+1,1)=0;
 71
 72 ii_0=(i_pile-1)*(num_elem+1)+1;
 73 ii=ii_0+(num_elem+1)-1;
 74 BC_z(ii_0:ii,1)=BC_z_aux;
 75 BC_z2(ii_0:ii,1)=BC_z_aux2;
 76
 77 D_global_z(ii_0:ii,ii_0:ii)=D_global_z_aux;
 78 Ap_global_z(ii_0:ii,ii_0:ii)=Ap_global_z_aux;
 79
 80 end
 81
 82
 83 %% Soil Structure
 84
 85 %Mindlin matrix
 86
 87 for i_pile=1:piles_num %pile afected
 88
 89 Pos_pile=piles(:,:,i_pile);
 90
 91 for j_pile=1:length(piles(1,1,:))%pile acting
 92
 93 Pos_force=piles(:,:,j_pile);
 94
 95 %------------------------------------
 96
 97 col_0=(num_elem+1)*(j_pile-1)+1;
 98 col=col_0+(num_elem+1)-1;
 99 row_0=(num_elem+1)*(i_pile-1)+1;
100 row=row_0+(num_elem+1)-1;
101
102
103
104 if j_pile==1 && j_pile==i_pile
105
106 control=1;%inpile coefficients
107 [Is_z_diagonal]=vertical_assemble_mindlin(Pos_pile,Pos_force,...
108 soil,piles_dia,piles_length,num_elem,control);
109 Is_global_z(row_0:row,col_0:col)=Is_z_diagonal;
110
111 elseif i_pile==j_pile && j_pile>1 %so that Is_Z_diagonal is not computed unnecessary times
112
113 Is_global_z(row_0:row,col_0:col)=Is_z_diagonal;
114
115
116 else
117 control=2;%pile to pile coefficients
118 [Is_z]=vertical_assemble_mindlin(Pos_pile,Pos_force,...
119 soil,piles_dia,piles_length,num_elem,control);
120 Is_global_z(row_0:row,col_0:col)=Is_z;
121 end
122
123
124
125 end
126 end
127
128 Is_global_z=1/Es*Is_global_z;

Annex 27

129
130 %% Finding p
131
132 p_global_z=zeros((num_elem+1)*(piles_num),length(soil_strain(1,1,1,:)));
133 v_global=zeros((num_elem+1)*(piles_num),length(soil_strain(1,1,1,:)));
134 soil_strain_aux=zeros((N+1)*piles_num,length(soil_strain(1,1,1,:)));
135
136 for i_time=1:length(soil_strain(1,1,1,:))
137
138 for i_pile=1:piles_num
139 row_0=(num_elem+1)*(i_pile-1)+1;
140 row=row_0+(num_elem+1)-1;
141 for j=1:i_time
142 soil_strain_aux(row_0:row,i_time)=soil_strain_aux(row_0:row,i_time)+[soil_strain(:,3,i_pile,j);...
143 soil_strain(N,3,i_pile,j)];
144 end
145 end
146
147 if i_time==1
148 p_global_z(:,i_time)=(Ap_global_z-(D_global_z*Is_global_z))\(BC_z+D_global_z*soil_strain_aux(:,i_time));
149 v_global(:,i_time)=Is_global_z*p_global_z(:,i_time)+soil_strain_aux(:,i_time);
150
151 else
152
153 p_global_z(:,i_time)=(Ap_global_z-(D_global_z*Is_global_z))\(BC_z+D_global_z*soil_strain_aux(:,i_time));
154 v_global(:,i_time)=Is_global_z*p_global_z(:,i_time)+soil_strain_aux(:,i_time);
155
156
157 end
158 end
159
160 %%
161 v_global2=v_global;
162 v_global3=zeros(size(v_global));
163
164
165 for i_time=1:length(soil_strain(1,1,1,:))
166
167
168
169 [ppp,p_global_z2(:,i_time),v_global3(:,i_time),BC_change_z,u_dif_u(i_time),...
170 u_dif_o(i_time),u_head_z(:,i_time),u_mean(:,i_time),Z_head,u_dif_z(:,i_time)]=...
171 vertical_pile_cap(p_global_z,v_global2,...
172 i_time,Ap_global_z,D_global_z,Is_global_z,...
173 soil_strain_aux,N,piles_num,coef1,d,L,Ep,ppp,...
174 piles_head_type,piles,num_elem);
175
176
177
178
179 for i_pile=1:piles_num
180
181 kk_0=(N+1)*(i_pile-1)+1;
182 kk=kk_0+(N+1-1);
183
184 v_final(:,i_pile,i_time)=v_global3(kk_0:kk,i_time);
185
186 end
187 end
188
189 else
190 N=num_elem;
191 soil_strain_aux=zeros((N+1)*piles_num,length(soil_strain(1,1,1,:)));
192

Annex 28

193 for i_time=1:length(soil_strain(1,1,1,:))
194
195 for i_pile=1:piles_num
196 row_0=(num_elem+1)*(i_pile-1)+1;
197 row=row_0+(num_elem+1)-1;
198 for j=1:i_time
199 soil_strain_aux(row_0:row,i_time)=soil_strain_aux(row_0:row,i_time)+[soil_strain(:,3,i_pile,j);...
200 soil_strain(N,3,i_pile,j)];
201 end
202 end
203
204
205 end
206 p_global_z=0;
207 p_global_z2=0;
208 v_global=0;
209 v_global2=0;
210 v_global3=0;
211 v_final=0;
212 D_global_z=0;
213 Ap_global_z=0;
214 Is_global_z=0;
215 BC_z=0;
216 BC_change_z=0;
217 u_dif_u=0;
218 u_dif_o=0;
219 ppp=0;
220 u_head_z=0;
221 u_mean=0;
222 Z_head=0;
223 u_dif_z=0;
224 end
225 end

Annex 29

 1 %File name: vertical_assemble_mindlin.m
 2 %Author: Genis Majoral Oller
 3 %For Civil Engineering bachelor's degree dissertation
 4 %Date: 5/06/2018
 5
 6 function [Is_z]=vertical_assemble_mindlin(Pos_pile,Pos_force,soil,...
 7 piles_dia,piles_length,num_elem,control)
 8 %% Preparing input data for mindlin problem
 9
10 Is_z=zeros(length(Pos_pile(:,4)),length(Pos_force(:,4)));
11 d=piles_dia;
12 v=soil(2);
13 L=piles_length;
14 N=num_elem;
15 if control==1 %for inpile influence coefficients
16
17 for i_afected=1:length(Pos_pile(:,4))+1 %this is the afected discretisation
18 % of the afected pile
19
20 for i_force=1:length(Pos_force(:,4))+1 %this is the acting discretisation
21 % of the force due to the acting pile
22
23
24
25 if i_force==length(Pos_pile(:,3))+1 && i_afected==length(Pos_pile(:,3))+1
26 cas=1; % base against base
27
28 z_afected=Pos_pile(i_afected-1,3);
29 z_force=Pos_force(i_force-1,3);
30 x_afected=Pos_pile(i_afected-1,1);
31 x_force=Pos_force(i_force-1,1);
32 [Is_z_base_col, Is_z_base_base]=vertical_mindlin_base(L,d,v,z_afected,z_force,x_afected,x_force,cas);
33 Is_z(i_afected,i_force)=Is_z_base_base;
34 elseif i_force==length(Pos_pile(:,3))+1
35 cas=2; %base against shaft
36
37 z_afected=Pos_pile(i_afected,4);
38 z_force=Pos_force(i_force-1,3);
39 x_afected=Pos_pile(i_afected,1);
40 x_force=Pos_force(i_force-1,1);
41
42 [Is_z_base_col, Is_z_base_base]=vertical_mindlin_base(L,d,v,z_afected,z_force,x_afected,x_force,cas);
43 Is_z(i_afected,i_force)=Is_z_base_col;
44
45 else %ij and bj cases
46
47 %Numerical integration over theta
48
49 [Is_z_aux]=vertical_mindlin_shaft(L,d,v,N,Pos_pile,Pos_force,i_afected,i_force);
50 Is_z(i_afected,i_force)=Is_z_aux;
51 end
52
53
54
55 end
56
57 end
58 elseif control==2 %for pile to pile influence coefficients
59
60 for i_afected=1:length(Pos_pile(:,4))+1 %this is the afected discretisation
61 % of the afected pile
62
63 for i_force=1:length(Pos_force(:,4))+1 %this is the acting discretisation
64 % of the force due to the acting pile

Annex 30

65
66
67
68 if i_force==length(Pos_pile(:,3))+1 && i_afected==length(Pos_pile(:,3))+1
69 % base against base
70
71 [Is_z_aux]=vertical_mindlin_pile2pile(L,d,v,N,Pos_pile,Pos_force,i_afected,i_force);
72 Is_z(i_afected,i_force)=pi*d^2/4*Is_z_aux;
73 elseif i_force==length(Pos_pile(:,3))+1
74 %acting base affecting the rest of discretisations
75
76 [Is_z_aux]=vertical_mindlin_pile2pile(L,d,v,N,Pos_pile,Pos_force,i_afected,i_force);
77 Is_z(i_afected,i_force)=pi*d^2/4*Is_z_aux;
78
79 else %ij cases and bj cases
80
81
82 [Is_z_aux]=vertical_mindlin_pile2pile(L,d,v,N,Pos_pile,Pos_force,i_afected,i_force);
83 Is_z(i_afected,i_force)=0.5*pi*d*L/N*Is_z_aux;
84
85 end
86
87
88
89 end
90
91 end
92
93 else
94 end
95
96 end
97

Annex 31

 1 %File name: vertical_mindlin_base.m
 2 %Author: Genis Majoral Oller
 3 %For Civil Engineering bachelor's degree dissertation
 4 %Date 11/06/2018
 5 function [Is_z_base_col, Is_z_base_base]=vertical_mindlin_base(L,d,v,z_afected,z_force,x_afected,x_force,cas);
 6 if cas==2 %base upon shaft
 7
 8
 9
10 r=@(theta) sqrt((x_afected-x_force).^2+(d/2*sin(a(theta))).^2);
11 c=z_force;
12 h=z_afected;
13 x= (x_afected-x_force);
14
15
16 z=@(c) h+c;
17 z1=@(c) h-c;
18 R2=@(c,theta) (d^2/4+x^2-x*d.*cos(theta)+z(c).^2).^0.5;
19 R1=@(c,theta) (d^2/4+x^2-x*d.*cos(theta)+z1(c).^2).^0.5;
20
21 fun0=@(c,theta) z1(c).^2./R1(c,theta).^3;
22 fun1=@(c,theta,v) (3-4*v)./R1(c,theta);
23 fun2=@(c,theta,v) (5-12*v+8*v^2)./(R2(c,theta));
24 fun3=@(c,theta,v) ((3-4*v)*z(c).^2-2*c.*z(c)+2*c.^2)./(R2(c,theta).^3);
25 fun4=@(c,theta,v) (6*c.*z(c).^2.*(z(c)-c))./(R2(c,theta).^5);
26
27 fun=@(r,c,theta,v) r.*((1+v)/(8*pi*(1-v))*(fun0(c,theta)+fun1(c,theta,v)+...
28 fun2(c,theta,v)+fun3(c,theta,v)+fun4(c,theta,v)));
29
30
31 Is_z_base_col=1/d*2*integral2(@(r,theta)fun(r,c,theta,v),0,d/2,0,pi); %compte
32 Is_z_base_base=0;
33
34
35 elseif cas==1 %base element upon base
36
37 c=z_force;
38 h=z_afected;
39 x= @(r,theta)(r.*cos(theta));
40
41 z=@(c) h+c;
42 z1=@(c) h-c;
43 R2=@(c,theta,r) (d^2/4+x(r,theta).^2-x(r,theta)*d.*cos(theta)+z(c).^2).^0.5;
44 R1=@(c,theta,r) (d^2/4+x(r,theta).^2-x(r,theta)*d.*cos(theta)+z1(c).^2).^0.5;
45
46 fun0=@(c,theta,r) z1(c).^2./R1(c,theta,r).^3;
47 fun1=@(c,theta,v,r) (3-4*v)./R1(c,theta,r);
48 fun2=@(c,theta,v,r) (5-12*v+8*v^2)./(R2(c,theta,r));
49 fun3=@(c,theta,v,r) ((3-4*v)*z(c).^2-2*c.*z(c)+2*c.^2)./(R2(c,theta,r).^3);
50 fun4=@(c,theta,v,r) (6*c.*z(c).^2.*(z(c)-c))./(R2(c,theta,r).^5);
51
52 fun=@(r,theta,c,v) r.*((1+v)/(8*pi*(1-v))*(fun0(c,theta,r)+fun1(c,theta,v,r)+...
53 fun2(c,theta,v,r)+fun3(c,theta,v,r)+fun4(c,theta,v,r)));
54
55
56 Is_z_base_base=pi/4*2*integral2(@(r,theta)fun(r,theta,c,v),0,d/2,0,pi); %compte
57 Is_z_base_col=0;
58
59
60 else
61 end
62
63
64

Annex 32

65
66 end
67

Annex 33

 1 %File name: vertical_mindlin_shaft.m
 2 %Author: Genis Majoral Oller
 3 %For Civil Engineering bachelor's degree dissertation
 4 %Date: 15/06/2018
 5 function [Is_z]=vertical_mindlin_shaft(L,d,v,N,Pos_pile,Pos_force,i_afected,i_force);
 6
 7
 8 %% Preparing distances
 9 if i_afected==N+1
10 z_afected=Pos_pile(i_afected-1,3);
11 x_afected=Pos_pile(i_afected-1,1);
12 x_force=Pos_force(i_force,1);
13 else
14 z_afected=Pos_pile(i_afected,4);
15 x_afected=Pos_pile(i_afected,1);
16 x_force=Pos_force(i_force,1);
17 end
18
19 %%
20 if i_force==1
21 z_force=Pos_force(i_force,4);
22
23 lim_sup=z_force+L/(N)*0.5;
24 lim_inf=z_force-L/(N)*0.5;
25 elseif i_force==N
26
27 z_force=Pos_force(i_force,4);
28
29 lim_sup=z_force+L/(N)*0.5;
30 lim_inf=z_force-L/(N)*0.5;
31
32 else
33 z_force=Pos_force(i_force,4);
34
35 lim_sup=z_force+L/(N)*0.5;
36 lim_inf=z_force-L/(N)*0.5;
37
38 end
39
40
41 %% Mindlin formula
42
43
44 a=@(theta) 2*theta;
45 r=d/2;
46
47 h=z_afected;
48 x= x_afected-x_force+d/2;
49 y= @(theta)(d/2*sin(theta)+0.01);
50
51 z=@(c) h+c;
52 z1=@(c) h-c;
53 R2=@(c,theta) (d^2/4+x^2-x*d*cos(2*theta)+z(c).^2).^0.5;
54 R1=@(c,theta) (d^2/4+x^2-x*d*cos(2*theta)+z1(c).^2).^0.5;
55
56 fun0=@(c,theta) z1(c).^2./R1(c,theta).^3;
57 fun1=@(c,theta) (3-4*v)./R1(c,theta);
58 fun2=@(c,theta) (5-12*v+8*v^2)./(R2(c,theta));
59 fun3=@(c,theta) ((3-4*v)*z(c).^2-2*c.*z(c)+2*c.^2)./(R2(c,theta).^3);
60 fun4=@(c,theta) (6*c.*z(c).^2.*(z(c)-c))./(R2(c,theta).^5);
61
62 fun=@(c,theta) ((1+v)/(8*pi*(1-v))*(fun0(c,theta)+fun1(c,theta)+...
63 fun2(c,theta)+fun3(c,theta)+fun4(c,theta)));
64

Annex 34

65
66 Is_z=2*integral2(@(c,theta)fun(c,theta),lim_inf,lim_sup,0,pi/2);
67
68 end
69

Annex 35

 1 %File name: vertical_mindlin_pile2pile.m
 2 %Author: Genis Majoral Oller
 3 %For Civil Engineering bachelor's degree dissertation
 4 %Date 10/06/2018
 5 function [Is_z]=vertical_mindlin_pile2pile(L,d,v,N,Pos_pile,Pos_force,i_afected,i_force);
 6
 7
 8 %% Preparing distances
 9 if i_afected==N+1
10 z_afected=Pos_pile(i_afected-1,3);
11 x_afected=Pos_pile(i_afected-1,1);
12 y_afected=Pos_pile(i_afected-1,2);
13
14 else
15 z_afected=Pos_pile(i_afected,4);
16 x_afected=Pos_pile(i_afected,1);
17 y_afected=Pos_pile(i_afected,2);
18
19 end
20
21 if i_force==N+1
22 z_force=Pos_force(i_force-1,3);
23 y_force=Pos_force(i_force-1,2);
24 x_force=Pos_force(i_force-1,1);
25 else
26 z_force=Pos_force(i_force,4);
27 y_force=Pos_force(i_force,2);
28 x_force=Pos_force(i_force,1);
29 end
30
31 %% Funció en sí
32
33
34 c=z_force;
35 h=z_afected;
36 x=(x_afected-x_force);
37 y=(y_afected-y_force);
38
39
40 z=h+c;
41 z1=h-c;
42 R1=(z1^2+x^2+y^2)^0.5;
43 R2=(z^2+x^2+y^2)^0.5;
44
45 fun0= z1^2/R1^3;
46 fun1= (3-4*v)/R1;
47 fun2= (5-12*v+8*v^2)/(R2);
48 fun3= ((3-4*v)*z^2-2*c*z+2*c^2)/(R2^3);
49 fun4= (6*c*z^2*(z-c))/(R2^5);
50
51 Is_z=((1+v)/(8*pi*(1-v))*(fun0+fun1+...
52 fun2+fun3+fun4));
53
54
55
56
57
58 end
59

Annex 36

 1 %File name: vertical_pile_cap.m
 2 %Original author: Simon Sauter (Pont de Candí, 2012)
 3 %Original file name: -
 4 %Adapted and modified by: Genis Majoral Oller
 5 %For Civil Engineering bachelor's degree dissertation
 6 %Date: 18/06/2018
 7
 8 function [ppp,p_global_z,v_global3,BC_change_z,u_dif_u,u_dif_o,u_head_z,u_mean,Z_head,u_dif_z]=vertical_pile_cap
(p_global_z,v_global,...
 9 i_time,Ap_global_z,D_global_z,Is_global_z,soil_strain_aux,...
 10 N,piles_num,coef1,d,L,Ep,ppp,piles_head_type,piles,num_elem)
 11
 12 dir=3;
 13 i_step=1;
 14 u_head_z=zeros(piles_num,1);
 15 p_global_z=zeros(size(p_global_z(:,1)));
 16
 17 piles_forces_top=ppp(:,:,i_time);
 18
 19
 20 for i=1:piles_num
 21 u_head_z(i)=v_global((i-1)*(N+1)+1,i_time);
 22 end
 23
 24 if piles_head_type==0
 25 %no action
 26 BC_change_z='No change';
 27 u_dif_u=0;
 28 u_dif_o=0;
 29 v_global3=v_global(:,i_time);
 30 u_mean=0;
 31 Z_head=0;
 32 u_dif_z=0;
 33 else
 34 [u_mean Pos_head Z_head]=least_square(u_head_z,piles,piles_num);
 35 u_dif_z=zeros(piles_num,1);
 36 for i=1:piles_num
 37 u_dif_z(i)=u_head_z(i,1)-u_mean(i,1);
 38 end
 39 u_dif_mean=mean(u_dif_z);
 40 u_dif_u=min(u_dif_z);
 41 u_dif_o=max(u_dif_z);
 42 if (u_dif_u < -0.00005 || u_dif_o > 0.00005)&&(abs(u_dif_u-u_dif_o)>0.0001)
 43 while (u_dif_u < -0.00005 || u_dif_o > 0.00005)&&(abs(u_dif_u-u_dif_o)>0.0001)
 44
 45 BC_change_z=zeros(piles_num*(N+1),1);
 46 for it=1:piles_num
 47 if i_step==1
 48 if sum(piles_forces_top(:,dir))==0
 49 Fc=(u_dif_mean-u_dif_z(it))*10000;
 50 else
 51 Fc=piles_forces_top(it,3)+(u_dif_mean-u_dif_z(it))*...
 52 abs(sum(piles_forces_top(1:piles_num,3)))/piles_num*100;
 53 end
 54 else
 55 if sum(piles_forces_top(:,dir))>-0.01 && sum(piles_forces_top(:,dir))<0.01
 56 Fc=piles_forces_top(it,3)+(u_dif_mean-u_dif_z(it))*10000;
 57 else
 58 Fc=piles_forces_top(it,3)+(u_dif_mean-u_dif_z(it))*...
 59 abs(sum(piles_forces_top(1:piles_num,3)))/piles_num*100;
 60 end
 61 end
 62 %B-matrix of pile displacement
 63

Annex 37

 64 BC_change_z_aux=zeros(N+1,1);
 65 BC_change_z_aux(1,1)=coef1*Fc/(pi*d^2/4)*2*L/(N)/Ep;
 66 BC_change_z_aux(N+1,1)=Fc;
 67
 68 ii_0=(it-1)*(num_elem+1)+1;
 69 ii=ii_0+(num_elem+1)-1;
 70 BC_change_z(ii_0:ii,1)=BC_change_z_aux;
 71
 72 %
 73 piles_forces_top(it,dir)=Fc;
 74
 75 end %end changing force
 76
 77 %new stress/displacement
 78
 79 p_global_z=(Ap_global_z-(D_global_z*Is_global_z))\(BC_change_z+D_global_z*soil_strain_aux(:,i_time));
 80 v_global3=Is_global_z*p_global_z+soil_strain_aux(:,i_time);
 81 %new condition
 82 for i=1:piles_num
 83 u_head_z(i)=v_global3((i-1)*(N+1)+1,1);
 84 end
 85
 86 [u_mean Pos_head Z_head]=least_square(u_head_z,piles,piles_num);
 87
 88 for i=1:piles_num
 89 u_dif_z(i)=u_head_z(i)-u_mean(i);
 90 end
 91 u_dif_mean=mean(u_dif_z);
 92 u_dif_u=min(u_dif_z);
 93 u_dif_o=max(u_dif_z);
 94 i_step=i_step+1;
 95 dir_iter=[dir i_step];
 96
 97 if i_step>500
 98 dir_iter
 99 break
100 else
101
102 end
103
104 end
105 else
106 BC_change_z='No change';
107 v_global3=v_global(:,i_time);
108 end
109
110 end
111 I_step(3)=i_step;
112
113
114
115 ppp(:,3,i_time)=piles_forces_top(:,3);
116
117 clear dir_i dir_iter piles_forces_top a
118
119 end

Annex 38

 1 %File name: results_analysis.m
 2 %Author: Genis Majoral Oller
 3 %Creation date: 20/4/2018
 4 %Description: This subroutine calculates bending moments and axial forces
 5 % from displacements and lateral/vertical shaft loads
 6
 7 function [Mf_final_x,Mf_final_y,Q_global_x,axial_final]...
 8 =results_analysis(...
 9 piles_num,piles_length,piles_dia,piles_I,piles_E,piles_forces_top,...
 10 num_elem,w_global_x,w_global_y,v_global,p_global_z2,time_step,...
 11 piles_head_type,ppp,find_surface);
 12
 13 %% %-------------------------RESULTS' ANALYSIS--------------------------%%%
 14 % --- %
 15 if find_surface==0
 16 N=num_elem;
 17 for i_time=1:time_step
 18
 19 for i_pile=1:piles_num
 20
 21 %---Bending Moment
 22 ii_0=N*(i_pile-1)+1;
 23 ii=ii_0+(N-1);
 24 kk_0=(N+1)*(i_pile-1)+1;
 25 kk=kk_0+(N+1-1);
 26
 27 w_aux_x=w_global_x(ii_0:ii,i_time);
 28 w_aux_y=w_global_y(ii_0:ii,i_time);
 29 v_aux=v_global(kk_0:kk,i_time);
 30
 31 for r=1:length(w_aux_x)
 32
 33 if r==1
 34 if piles_head_type==1
 35 Mf_aux(r,r:r+1)=[-2 2]*piles_E*piles_I/(piles_length/(N-1))^2;
 36 elseif piles_head_type==0
 37 Mf_aux(r,r:r+1)=[0 0]*piles_E*piles_I/(piles_length/(N-1))^2;
 38 else
 39 end
 40
 41 elseif r==length(w_aux_x)
 42 Mf_aux(r,r-3:r)=[-1 4 -5 2]*piles_E*piles_I/(piles_length/(N-1))^2;
 43 else
 44 Mf_aux(r,r-1:r+1)=[1 -2 1]*piles_E*piles_I/(piles_length/(N-1))^2;
 45 end
 46
 47 end
 48
 49 Mf_final_x(:,1,i_pile,i_time)=Mf_aux*w_aux_x;
 50 Mf_final_y(:,1,i_pile,i_time)=Mf_aux*w_aux_y;
 51 %---Shear Stress
 52
 53 Q_aux=zeros(N,N);
 54 BC_V=zeros(N,1);
 55 BC_V(1,1)=-piles_forces_top(i_pile,1,1);
 56
 57 for r=1:N
 58
 59 if r==1
 60 Q_aux(r,r:r+1)=[-1,1]*2; %only in head-casted
 61 elseif r==2
 62 Q_aux(r,r-1:r+1)=[-1, 0, 1];
 63 elseif r==N
 64 Q_aux(r,r-3:r)=[-1 4 -5 2]*2;

Annex 39

 65 else
 66 Q_aux(r,r-1:r+1)=[-1, 0, 1];
 67 end
 68
 69 end
 70
 71
 72 Q_global_x(:,1,i_pile,i_time)=-1/(2*piles_length/(N-1))*...
 73 Q_aux*Mf_final_x(:,1,i_pile,i_time);
 74
 75
 76
 77 %--- Axial
 78 auxiliar=zeros(num_elem,num_elem);
 79 L=piles_length;
 80 BC_axial=zeros(num_elem,1);
 81 BC_axial(1,1)=ppp(i_pile,3,i_time)-p_global_z2(kk_0,i_time)*...
 82 L/N*0.5*pi*piles_dia;
 83 BC_axial(num_elem,1)=p_global_z2(kk,i_time)*pi*piles_dia^2/4+...
 84 p_global_z2(kk-1,i_time)*L/N*0.5*pi*piles_dia;
 85
 86 for i=2:num_elem-1
 87 auxiliar(i,i-1:i+1)=-[-1,0,1];
 88 end
 89
 90 axial_final(:,1,i_pile,i_time)=piles_E*pi*piles_dia^2/4/...
 91 (2*L/N)*auxiliar*v_aux(1:N)+BC_axial;
 92
 93 end
 94 end
 95
 96 else
 97 Mf_final_x=0;
 98 Mf_final_y=0;
 99 Q_global_x=0;
100 axial_final=0;
101 end
102
103 end

Annex 40

 1 %File name: results_plots.m
 2 %Author: Genis Majoral Oller
 3 %Creation date: 20/3/2018
 4 %Description: bending moment plots. Piles to plot can be choosen in
 5 %interesting_piles below, as well as timesteps at vector "last"
 6
 7 function results_plots(num_elem,piles,w_final_x,w_final_y,v_final,...
 8 Mf_final_x,Mf_final_y,axial_final,V_loss_pts,dia_0,find_surface,piles_length,soil_strain_auxz,soil_strain_auxy)
 9 if find_surface==0
 10 N=num_elem;
 11 figure(99)
 12 fig_aux=gcf;
 13 fig_aux.Name='Tunnel';
 14 hold on
 15 grid minor
 16
 17 [X_S,Y_S]=meshgrid(-20:5:20,-50:5:50);
 18 Z=X_S*0;
 19 surf(X_S,Y_S,Z,'FaceAlpha',0.5,'EdgeColor','none');
 20
 21 for i_time=1:length(V_loss_pts(1,1,:))
 22 plot3(V_loss_pts(:,2,i_time),V_loss_pts(:,1,i_time),...
 23 -V_loss_pts(:,3,i_time),'o','MarkerSize',8,'MarkerFaceColor',...
 24 'black','Markeredge','none');
 25 end
 26
 27 for i=1:length(piles(1,1,:))
 28 plot3([piles(1,2,i),piles(N,2,i)],[piles(1,1,i),piles(N,1,i)],...
 29 -[piles(1,3,i),piles(N,3,i)],'o-','LineWidth',5,'MarkerSize',...
 30 6,'MarkerFaceColor','black')
 31 end
 32
 33
 34 [X,Y]=meshgrid(-50:1:50,-dia_0/2:0.2:dia_0/2);
 35 Z=20-sqrt(dia_0^2/4-Y.^2);
 36 Z2=20+sqrt(dia_0^2/4-Y.^2);
 37 s=surf(Y,X,-Z);
 38 s.EdgeColor='none';
 39 s.FaceAlpha=0.75;
 40 s2=surf(Y,X,-Z2);
 41 s2.EdgeColor='none';
 42 s2.FaceAlpha=0.75;
 43 xlabel('HORIZONTAL "Y"')
 44 ylabel('HORIZONTAL "X"')
 45 zlabel('VERTICAL "Z"')
 46 title('Scheme: Surface + Tunnel + Piles')
 47
 48 campos([495, -1562, 57])
 49 drawnow
 50
 51 hold off
 52
 53
 54
 55
 56
 57 %%
 58
 59 a=length(w_final_x(1,:,1));
 60
 61 switch a
 62 case 2
 63 interesting_piles=[1,2];
 64 case 4

Annex 41

 65 interesting_piles=[1,2,3,4];
 66 case 9
 67 interesting_piles=[1,4,5];
 68 case 13
 69 interesting_piles=[1,7];
 70 case 25
 71 interesting_piles=[1,2,3,4,8,13,25];
 72 otherwise
 73 interesting_piles=[1];
 74 end
 75
 76 final=length(w_final_x(1,1,:));
 77 if final ==1
 78 k=1;
 79 else
 80 k=4;
 81 end
 82
 83 final=round(linspace(1,final,k));
 84 %% X
 85 for j=1:length(interesting_piles)
 86 figure(200)
 87
 88
 89 l=1;
 90 for i=final
 91
 92 subplot(length(interesting_piles),2,2*(j-1)+1)
 93 hold on
 94 grid on
 95 plot(w_final_x(:,interesting_piles(j),i)*1000,-[piles(:,3,1)],...
 96 '.-','LineWidth',1.5,'MarkerSize',12);
 97 st(l)='Tunnel advance # '+string(i)+'/'+...
 98 string(length(w_final_x(1,1,:)));
 99 hold off
100
101 xlabel('Horizontal displacement (mm)')
102 ylabel('Depth (m)')
103 st_title(j)='Horizontal X displacement of pile num. '...
104 +string(interesting_piles(j));
105
106
107 subplot(length(interesting_piles),2,2*(j-1)+2)
108 hold on
109 grid on
110 plot(Mf_final_x(:,1,interesting_piles(j),i),-[piles(:,3,1)],...
111 '.-','LineWidth',1.5,'MarkerSize',12);
112 hold off
113
114 xlabel('M_y (kNm)')
115 ylabel('Depth (m)')
116 st_title2(j)='Bending moment in pile num. '...
117 +string(interesting_piles(j));
118 l=l+1;
119 end
120
121
122 end
123 for j=1:length(interesting_piles)
124 subplot(length(interesting_piles),2,2*(j-1)+1)
125 hold on
126 title(st_title(j))
127 plot([0 0],[-30 0],'k--','LineWidth',1)
128 axis([-100 0.5 -piles_length 0])

Annex 42

129 legend(st,'Location','northwest')
130
131 subplot(length(interesting_piles),2,2*(j-1)+2)
132 hold on
133 title(st_title2(j))
134 plot([0 0],[-30 0],'k--','LineWidth',1)
135 axis([-1600 1800 -piles_length 0])
136 legend(st)
137 end
138 set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
139
140
141 %% Y Cumulative
142
143 for j=1:length(interesting_piles)
144 figure(250)
145
146
147 l=1;
148 for i=final
149
150 subplot(length(interesting_piles),2,2*(j-1)+1)
151 hold on
152 grid on
153 plot(w_final_y(:,interesting_piles(j),i)*1000,-[piles(:,3,1)],...
154 '.-','LineWidth',1.5,'MarkerSize',12);
155 st(l)='Tunnel advance # ' + string(i)+'/'+...
156 string(length(w_final_x(1,1,:)));
157 hold off
158
159 xlabel('Horizontal displacement (mm)')
160 ylabel('Depth (m)')
161 st_title(j)='Horizontal Y displacement of pile num. '...
162 +string(interesting_piles(j));
163
164
165
166 subplot(length(interesting_piles),2,2*(j-1)+2)
167 hold on
168 grid on
169 plot(Mf_final_y(:,1,interesting_piles(j),i),-[piles(:,3,1)],...
170 '.-','LineWidth',1.5,'MarkerSize',12);
171 hold off
172
173 xlabel('M_x (kNm)')
174 ylabel('Depth (m)')
175 st_title2(j)='Bending moment in pile num. ' ...
176 +string(interesting_piles(j));
177
178 l=l+1;
179 end
180
181 end
182 for j=1:length(interesting_piles)
183 subplot(length(interesting_piles),2,2*(j-1)+1)
184 hold on
185 title(st_title(j))
186 plot([0 0],[-30 0],'k--','LineWidth',1)
187 axis([-10 0.5 -piles_length 0])
188 legend(st,'Location','northwest')
189
190 subplot(length(interesting_piles),2,2*(j-1)+2)
191 hold on
192 title(st_title2(j))

Annex 43

193 plot([0 0],[-30 0],'k--','LineWidth',1)
194 axis([-2000 2000 -piles_length 0])
195 legend(st)
196 end
197 set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
198
199
200 %% Z Cumulative
201
202 for j=1:length(interesting_piles)
203 figure(300)
204
205 l=1;
206 for i=final
207
208 subplot(length(interesting_piles),2,2*(j-1)+1)
209 hold on
210 grid on
211 s=(interesting_piles(j)-1)*(N+1)+1;
212 e=s+N;
213 plot(v_final(:,interesting_piles(j),i)*1000,...
214 -[piles(:,3,1);piles(N,3,1)],'.-','LineWidth',...
215 1.5,'MarkerSize',12);
216 st(l)='Tunnel advance # ' + string(i)+'/'+...
217 string(length(w_final_x(1,1,:)));
218 hold off
219
220 xlabel('Vertical displacement (mm)')
221 ylabel('Depth (m)')
222 st_title(j)='Settlement of pile num. '+string(interesting_piles(j));
223
224
225
226 subplot(length(interesting_piles),2,2*(j-1)+2)
227 hold on
228 grid on
229 plot(axial_final(1:N,1,interesting_piles(j),i),...
230 -[piles(:,3,1)],'.-','LineWidth',1.5,'MarkerSize',12);
231 hold off
232
233 xlabel('Axial force (kN)')
234 ylabel('Depth (m)')
235 st_title2(j)='Axial force in pile num. '+...
236 string(interesting_piles(j));
237
238
239 l=l+1;
240 end
241
242 end
243
244 for j=1:length(interesting_piles)
245 subplot(length(interesting_piles),2,2*(j-1)+1)
246 hold on
247 title(st_title(j))
248 plot([0 0],[-30 0],'k-','LineWidth',2)
249 axis([-3 10 -piles_length 0])
250 legend(st,'Location','northeast')
251
252 subplot(length(interesting_piles),2,2*(j-1)+2)
253 hold on
254 title(st_title2(j))
255 plot([0 0],[-30 0],'k-','LineWidth',2)
256 axis([0 5500 -piles_length 0])

Annex 44

257 legend(st)
258 end
259
260 set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
261
262
263
264
265
266
267 else
268 %% Surface settlement plots
269 %%
270 N=num_elem;
271 a=length(w_final_x(1,:,1));
272
273 switch a
274 case 2
275 interesting_piles=[1,2];
276 case 4
277 interesting_piles=[1,2,3,4];
278 case 9
279 interesting_piles=[1,4,5];
280 case 16
281 interesting_piles=[1,2,3,6,7,16];
282 case 25
283 interesting_piles=[1,2,3,4,8,13,25];
284 otherwise
285 interesting_piles=[1];
286 end
287
288 final=length(w_final_x(1,1,:));
289 if final ==1
290 k=1;
291 else
292 k=4;
293 end
294
295 final=round(linspace(1,final,k));
296 %% Z Cumulative
297
298
299 figure(300)
300 plot(piles(:,2),-soil_strain_auxz(1:N,length(soil_strain_auxz(1,:))));
301 start='[X='+string(piles(1,1))+', Y='+string(piles(1,2))+'] ';
302 final='[X='+string(piles(N,1))+', Y='+string(piles(N,2))+']'
303 t='Surface settlement in XS: start '+start+' end '+final;
304 title(t)
305 ylabel('Settlement')
306 xlabel('Horizontal XS')
307 grid on
308 set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
309
310 %% Y Cumulative
311
312
313 figure(301)
314 plot(piles(:,2),-soil_strain_auxy(:,length(soil_strain_auxy(1,:))));
315 start='[X='+string(piles(1,1))+', Y='+string(piles(1,2))+'] ';
316 final='[X='+string(piles(N,1))+', Y='+string(piles(N,2))+']'
317 t='Y surface disp in XS: start '+start+' end '+final;
318 title(t)
319 ylabel('Disp mm')
320 xlabel('Horizontal XS')

Annex 45

321 grid on
322 set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]);
323 end
324
325 end

Annex 46

 1 % File name: compensation_grouting.m
 2 % Author: Genis Majoral Oller
 3 % Date: 16/7/2018
 4 % For Civil Engineering bachelor's degree dissertation
 5 % Computation of group of piles' displacements and stresses due to a tunnel
 6 % excavation using Boussinesq, Mindlin and Sagaseta theory
 7
 8 clear all;
 9
 10 load('sample_filename.mat')%load existing problem to which comp. grout is applied
 11
 12
 13 %% %---------------------COMPENSATION GROUTING
 14 %% INPUT UP TO THE USER
 15 % Define num of comp grout strips
 16 num_strip=1;
 17
 18 %X of the strips
 19
 20 x1=linspace(-10,10,time_step);
 21 x2=linspace(-20,20,time_step);
 22 x3=linspace(-20,20,time_step);
 23 %%% Depth of the strips
 24 dp1=ones(length(x1),1)*(piles_length+1);
 25 dp2=ones(length(x1),1)*(depth+0.5);
 26 dp3=ones(length(x1),1)*(18+3);
 27 dp4=10;
 28
 29 %%% Y of the strips
 30 y=piles(1,2,2);
 31 yy=piles(1,2,1);
 32 yyy=0;
 33 yyyy=2;
 34
 35 y1=ones(length(x1),1)*y;
 36 y2=ones(length(x1),1)*yy;
 37 y3=ones(length(x1),1)*yyy;
 38 y4=ones(length(x1),1)*yyyy;
 39
 40
 41 %%% Total volume of each strip
 42 V1=-10/time_step*ones(size(x1));
 43 V2=V1*3;
 44 V3=V1/2;
 45 V4=V1;
 46
 47 %%
 48 V_comp_pts=zeros(num_strip,4,time_step);
 49
 50 for i=1:time_step
 51 if num_strip==1
 52 V_comp_pts(1,:,i)=[x1(1,i),y1(i),dp1(i),V1(1,i)];
 53 elseif num_strip==2
 54 V_comp_pts(1,:,i)=[x1(1,i),y1(i),dp1(i),V1(1,i)];
 55 V_comp_pts(2,:,i)=[x2(1,i),y2(i),dp2(i),V2(1,i)];
 56 elseif num_strip==3
 57 V_comp_pts(1,:,i)=[x1(1,i),y1(i),dp1(i),V1(1,i)];
 58 V_comp_pts(2,:,i)=[x2(1,i),y2(i),dp2(i),V2(1,i)];
 59 V_comp_pts(3,:,i)=[x3(1,i),y3(i),dp3(i),V3(1,i)];
 60 elseif num_strip==4
 61 V_comp_pts(1,:,i)=[x1(1,i),y1(i),dp1(i),V1(1,i)];
 62 V_comp_pts(2,:,i)=[x2(1,i),y2(i),dp2(i),V2(1,i)];
 63 V_comp_pts(3,:,i)=[x3(1,i),y3(i),dp3(i),V3(1,i)];
 64 V_comp_pts(4,:,i)=[x4(1,i),y4(i),dp4(i),V4(1,i)];

Annex 47

 65 end
 66 end
 67
 68 %% %%%%%
 69
 70 tic
 71
 72 [soil_strain_comp]=sagaseta_3D(piles,V_comp_pts,time_step); %soil displacement around the piles
 73
 74
 75 time_soil=toc;
 76 fprintf('Soil displacements computed --> ok!\n')
 77 fprintf(' Elapsed time: %.1f s \n',time_soil);
 78
 79 %% %%%%%%%%%%% SINK + COMPENSATION SOIL DISPLACEMENTS
 80
 81 soil_strain_final=soil_strain+soil_strain_comp;
 82 %% %%%%%%%%%%%%%%%%%%% HORIOZONTAL X ANALYSIS
 83
 84 [a,b]=size(piles_forces_top);
 85 ppp_comp=zeros(a,b,length(soil_strain(1,1,1,:)));
 86
 87 coord=1; %x direction
 88 tic
 89 [cIs_global_x,cBC_global_x,cAp_global_x,cD_global_x,p_global_x_comp,...
 90 w_global_x_comp,w_final_x_comp,w_head_x_comp,BC_change_x_comp,ppp_comp,w_dif_x2_comp,soil_strain_auxx_comp] =
horizontal_analysis(piles,soil,piles_dia,...
 91 piles_forces_top,piles_E,piles_I,piles_head_type,piles_num,soil_strain_final,coord,num_elem,time_step,ppp_comp);
 92
 93 time_x=toc;
 94 fprintf('Horizontal X analysis computed --> ok!\n')
 95 fprintf(' Elapsed time: %.1f s \n',time_x);
 96 clear cIs_global_x cBC_global_x cAp_global_x cD_global_x
 97
 98 %% %%%%%%%%%%%%%%%%%%% HORIZONTAL Y ANALYSIS
 99
100 [a,b]=size(piles_forces_top);
101 ppp_comp=zeros(a,b,length(soil_strain(1,1,1,:)));
102
103 coord=2; %y direction
104 tic
105 [cIs_global_x,cBC_global_x,cAp_global_x,cD_global_x,p_global_y_comp,...
106 w_global_y_comp,w_final_y_comp,w_head_y_comp,BC_change_y_comp,ppp_comp,w_dif_y2_comp,soil_strain_auxy_comp]
= horizontal_analysis(piles,soil,piles_dia,...
107 piles_forces_top,piles_E,piles_I,piles_head_type,piles_num,soil_strain_final,coord,num_elem,time_step,ppp_comp);
108
109 time_y=toc;
110 fprintf('Horizontal Y analysis computed --> ok!\n')
111 fprintf(' Elapsed time: %.1f s \n',time_y);
112 clear cIs_global_x cBC_global_x cAp_global_x cD_global_x
113
114 %% %%%%%%%%%%%%%%%%%%% VERTICAL Z ANALYSIS
115
116 tic;
117 [p_global_z_comp,p_global_z2_comp,v_global_comp,v_global2_comp,v_global3_comp,v_final_comp,cD_global_z,
cAp_global_z,...
118 cIs_global_z,cBC_z,cBC_change_z,u_dif_u_comp,u_dif_o_comp,ppp_comp,u_head_z_comp,u_mean_comp,Z_head_comp,
u_dif_z_comp,soil_strain_auxz_comp]=...
119 vertical_analysis(piles,piles_num,piles_dia,piles_head_type,...
120 piles_length,soil,piles_E,soil_strain_final,num_elem,piles_forces_top,ppp_comp,find_surface);
121 time_z=toc;
122 fprintf('Vertical Z analysis computed --> ok!\n');
123 fprintf(' Elapsed time: %.1f s \n',time_z);
124

Annex 48

125 clear cIs_global_x cBC_global_x cAp_global_x cD_global_x
126
127
128
129
130 %% %-------------------------RESULTS' ANALYSIS--------------------------%%%
131 % --- %
132
133 [Mf_final_x_comp,Mf_final_y_comp,Q_global_x_comp,axial_final_comp]...
134 =results_analysis(piles_num,...
135 piles_length,piles_dia,piles_I,piles_E,piles_forces_top,num_elem,...
136 w_global_x_comp,w_global_y_comp,v_global3_comp,p_global_z2_comp,time_step,piles_head_type,ppp_comp,
find_surface);
137
138 %% %-----------------------------PLOTTINGS------------------------------%%%
139 % --- %
140
141 results_plots_comp(w_final_x,w_final_y,v_final,...
142 Mf_final_x,Mf_final_y,axial_final,num_elem,piles,w_final_x_comp,w_final_y_comp,v_final_comp,...
143 Mf_final_x_comp,Mf_final_y_comp,axial_final_comp,V_loss_pts,dia_0,p_global_z2,p_global_z2_comp,p_global_x,
p_global_x_comp,p_global_y,p_global_y_comp);
144
145 save('sample_filename');
146

Annex 49

