
UNIV	ERSITAT POLITÈCNICA DE CATALUNYA	

BarcelonaTech
	

FACULTAT	D'INFORMÀTICA	DE	BARCELONA	

Master	in	Innovation	and	Research	in	Informatics	
Specialization	:	Data	Science	

VIRTUAL	ASSISTANT	WITH	
NATURAL	LANGUAGE	

PROCESSING	CAPABILITIES	
Applying	Natural	Language	Processing	techniques	to	retrieval-based	

question	answering	

CHARLINE	MAS	
	

	

Advisor: Lluis	Padro	Cirera, Department	of	Computer	Science	
Co-advisor	:		Imen	Megdiche,	ISIS	Engineering	school	
Supervisor	:	Gaston	Besanson,	Accenture	

	

ABSTRACT		

Text processing and analysis is increasingly becoming ubiquitous due to
the the immense amount of text data available on the internet. Indeed, experts
have estimated that this type of data represents eighty to ninety percent of data
in any organization. Therefore, techniques able to deal with unstructured data
like text need to be developed.

During this thesis, an end-to-end solution was provided, creating and
developing a Chatbot which, thanks to natural language processing techniques,
is able to answer very complex questions, often requiring even more complex
answers, in a well-defined area. To do so, Vector Space Models and Word
embedding model have been studied in order to make the system understand
a question and provide a pre-built answer based on the topic of the question.
The best results were obtained by using the Word Mover Distance, a distance
based on the Word2vec model.

 The Natural Language Processing layer has been implemented into a
solution composed of two user interfaces: a messaging application Telegram
and a dashboard. A backend has also been designed and implemented. This
project was realized entirely with Python, both the NLP study and the
implementation which ended to be a reliable programming language for these
kind of solutions.

 	

CHARLINE MAS Page 3/83

ACKNOWLEDGEMENTS	

I would like to express my gratitude to Laura Cozma my mentor at
Accenture, for her valuable guidance and extraordinary support in this thesis
process. Furthermore, I would like to thank Dr Lluis Padro Cirera, for the useful
comments, and remarks through the learning process of this master thesis. Also
thanks to and Gaston Besancon, who allowed me to do my thesis at Accenture,
in an innovative field: Natural Language Processing.

Their help has been essential to the completion of this work.

CONTENTS		

Abstract	...	2	

Acknowledgements	...	3	

Contents	..	4	

List	of	Abbreviations	..	6	

List	of	figures	...	7	

List	of	Tables	...	8	

INTRODUCTION	..	9	
1.	 Context	of	the	project	..	9	
2.	 Structure	of	the	project	..	9	
3.	 Outline	of	the	report	...	10	

Chapter	1:	Literature	study	...	12	
1.	 Chatbots	..	12	
1.1.	 Definition	..	12	
1.2.	 Type	of	Chatbot	..	12	
1.2.1.	 Retrieval	based	models	vs	Generative	models	..	12	
1.2.2.	 Open	Domain	VS	Closed	Domain	...	13	

2.	 Natural	language	processing	...	14	
2.1.	 Text	Preprocessing	...	14	
2.2.	 Lexical	analysis	...	15	
2.3.	 Semantic	analysis	..	15	
2.3.1.	 Vector	Space	Model	...	16	
2.3.2.	 Word	embedding	..	17	
2.3.3.	 Similarity	measures	based	on	Word2vec	..	20	

Chapter	2:	NLP	Approaches	...	24	
1.	 Problem	definition	..	24	
2.	 Experimental	approche	...	25	
2.1.	 Data	...	26	
2.1.1.	 Data	cleaning	..	26	
2.1.2.	 Natural	Language	Processing	cleaning	...	28	
2.1.3.	 Situation	after	the	cleaning	..	30	

2.2.	 Models	comparison	..	32	
2.2.1.	 Evaluation	methods	..	32	
2.2.2.	 Accuracy	evaluation	..	33	

2.3.	 Result	summary	and	manual	evaluation	...	38	

Chapter	3:	Implementation	...	40	
1.	 Design	process	..	40	
1.1.	 Target	group	..	40	
1.2.	 Dashboard	KPI	..	41	
1.3.	 Chat	flows	...	42	

CHARLINE MAS Page 5/83

1.3.1.	 Message	types	..	42	
1.3.2.	 Conversation	states	...	43	

1.4.	 Programming	Language	...	47	
2.	 Front-Ends	...	48	
2.1.	 Chatbot	interface	...	48	
2.1.1.	 Chatbot	channel	..	48	
2.1.2.	 Chatbot	registration	..	49	
2.1.3.	 Telegram	bot	API	..	50	

2.2.	 Dashboard	interface	...	52	
2.2.1.	 Dashboard	software	..	52	
2.2.2.	 Final	dashboard	..	53	

3.	 Back-End	Chatbot	..	55	
3.1.	 Data	structure	...	55	
3.1.1.	 Main.py	file	..	55	
3.1.2.	 Bot	functions	..	56	
3.1.3.	 Database	folder	...	57	
3.1.4.	 Models	folder	...	57	

3.2.	 Database	..	58	
3.3.	 Additional	Functionality	...	59	

Conclusion	and	future	work	...	60	
Conclusions	..	60	
Future	Work	...	61	

Appendices	...	62	
A.	 data_utils.py	..	62	
B.	 Dataset	creation	...	70	
C.	 Data	cleaning	...	71	

Bibliography	...	81	

 	

CHARLINE MAS Page 6/83

LIST	OF	ABBREVIATIONS	

AI: Artificial Intelligence

BOW: Bag of words representation

CBOW: Continuous bag-of-words model

DL: Deep Learning

DM: Dialogue Management

DTM: Document Term Matrix

FNN: Feed-Forward Neural Network

JSON: JavaScript Object Notation

KPI: Key Performance Indicator

LSA: Latent Semantic Analysis
LSI: Latent Semantic Indexing

ML: Machine learning

NN: Neural Networks

NLP: Natural Language Processing

PV-DBOW: Distributed Bag of Word version of Paragraph Vector.

PV-DM: Distributed Memory version of Paragraph Vector,

QA: Question answering

SIF: Smooth Inverse Frequency

TDM: Term Document Matrix

TF-IDF: Term Frequency-Inverse Document Frequency

VSM: Vector Space Model

CHARLINE MAS Page 7/83

LIST	OF	FIGURES	

Figure 1 : Solution to be built ... 9	

Figure 2: Chatbot Conversation Framework ... 12	

Figure 3: NLP common approach ... 14	

Figure 4: NN Structure with one hidden layer ... 18	

Figure 5: Word2vec, CBOW model ... 19	

Figure 6: Word2vec, Skip-gram model .. 20	

Figure 7:Distributed Bag of Word version of Paragraph Vector 21	

Figure 8: Distributed Memory version of Paragraph Vector 21	

Figure 9: Words distance in the Word2vec semantic space 22	

Figure 10: Data manager and NLP layer of the system .. 24	

Figure 11: Methodology process ... 25	

Figure 12: A bar chart displaying number of question per number of topics (tags) ... 26	

Figure 13: NLP cleaning pipeline .. 29	

Figure 14: Top 10 most frequent words in all the dataset. .. 32	

Figure 15: Accuracy per Dimensionality of the feature vectors 36	

Figure 16: Accuracy according to the alpha value .. 37	

Figure 17: Sum up of all the results ... 38	

Figure 18: State START .. 43	

Figure 19: Example of a conversation in the START state, with known user and
greetings input .. 43	

Figure 20: Example of a conversation in the START state, with greetings message as
input and unknown user ... 43	

Figure 21: Example of a conversation in the START state, with password as input and
unknown user ... 43	

Figure 22: Example of LOCATION state, with correct format message 44	

Figure 23: Example of a input topic selected .. 45	

Figure 24: Example of IDENTIFICATION state, with Health questions type identified
 ... 45	

Figure 25: Example of SATISFACTION state with No as input 46	

Figure 26: Example of the IDENTIFICATION state with Yes as input 46	

Figure 27: Long Polling and Webhook methods ... 50	

Figure 28: Data structure of the project ... 55	

CHARLINE MAS Page 8/83

LIST	OF	TABLES	

Table 1: Top 6 most frequents topics .. 27	

Table 2: Example of the cleaned dataset .. 31	

Table 3: Common words between two topics .. 31	

Table 4: Cosine and LSI accuracy results ... 34	

Table 5: CBOW and Skip-Gram models accuracy results .. 35	

Table 6: PV-DM and PV-DBOW accuracy results ... 36	

Table 7: Example of the manual scoring ... 38	

Table 8: Manual evaluation results .. 39	

Table 9: Dashboard software comparison ... 53	

	 	

CHARLINE MAS Page 9/83

INTRODUCTION	

1. CONTEXT	OF	THE	PROJECT		

The main goal of the project is to provide an end-to-end solution using Natural
Language Processing techniques to create and develop a virtual assistant also
designated as bot or Chatbot. The first part of the project consists of creating a bot
able to understand, treat and answer to the user question. Then, a second part
includes the creation of a system able to store the keys elements of a bot-user
conversation, in order to analyzed the data and display it into a dashboard.

The use case of this project was constrained by the data. Originally, the data was
supposed to be furnished by the client and be about warranty claims. However, due to
the poor quality of the data and the small size of the dataset (~3k rows), this data was
given up to an open source dataset that can be found at:

https://github.com/LasseRegin/medical-question-answer-data

 This dataset is a questions-answers dataset. Each row is therefore, composed of
a question, an answer but also a topic. While it will be described more precisely in this
report, let's precise that the dataset has been reduced to the questions designated by
one of the following topics: Bariatrics, Breast surgery, Cardiac Electrophysiology and
Cardiology.

2. STRUCTURE	OF	THE	PROJECT		

The solution to build is composed of different elements as presented in the figure
1 below:

Figure 1 : Solution to be built

CHARLINE MAS Page 10/83

The different elements of the figure 1 have been divided into several sub-goals,
according to the magnitude of the Master’s Thesis.

1. DATA MANAGER & NLP LAYER:
1.1. Study and build a system able to answer very complex questions in a

well-defined domain (the Healthcare area). The focus will put on answering
questions to which high-quality answers can be given by using NLP and
information retrieval techniques to retrieve the answers.

1.2. Design a chat flow, to keep track of the context of conversation and be able
to answer correctly also called Dialogue Management (DM) system in this
report.

2. USER INTERFACE & DASHBOARD:
2.1. Design and Implement the system into a front-end application to make

the Chatbot reachable by the users
2.2. Study and implement the keys KPIs into a dashboard application

3. KNOWLEDGE BASE AND DATA STORAGE
3.1. Build a back-end for the system which incorporates the system and and

facilitate the creation of KPIs for the dashboard.

3. OUTLINE	OF	THE	REPORT		

In the following, the thesis is structure as follows:

• Chapter 1: Literature Study
This Chapter presents a literature study into Chatbot and Natural
Language processing techniques. First, the definition of Chatbot is
exposed, then the various types of Chatbots are described in order to
understand which type is more appropriate and why. Second, an
overview of NLP techniques is given, with among them the vector space
and the word embedding models that can be applied in Chatbots.

• Chapter 2: Natural Language Processing Approaches
In this second chapter, the experimentation performed in order to choose
the best model, is explained. First, we will described how the data has
been preprocessed, then a comparison is realised between several
techniques of similarity measure.

CHARLINE MAS Page 11/83

• Chapter 3: Implementation:
In this chapter, the design and implementation process are presented.
This part is divided into three subparts: Design process, Front-End and
Backend. The Design Process section introduce the target user
definition, the dashboard KPI, the chat flows along with the tool
specifications. The Front-End section explains which app channel was
selected and how the Chatbot and the dashboard were created. Finally,
the Back-end section provides the development details, the data
structure of the project, as well as the functionalities implemented.

• Conclusion and Future Work
Conclusion of the project by evaluating the final solution presented and
proposing future work to do.

 	

CHARLINE MAS Page 12/83

CHAPTER	1:	LITERATURE	STUDY		

As we consider the literature study, we note that there is a wide variety of Chatbots.
In the first section we describe the different types of Chatbot. In the second section,
the NLP techniques and the vector space and word embedding models used in this
thesis are explained in details.

1. 	CHATBOTS		

1.1. Definition	
A Chat roBot, also known as a chatter bot, Bot or Artificial Conversational Entity, is

a computer program which aims to simulate human conversation or chat, through
artificial intelligence (AI). This service, powered by rules and AI, is accessible via a
chat interface (User interface).

A Chabot can be used for various practical purposes from functional such as
technical support to entertainment such as movie recommendation bot. They are
frequently used for basic customer service and marketing systems that frequent social
networking hubs and instant messaging clients such as Telegram or Messenger. They
are also often included in operating systems as intelligent virtual assistants such as
Cortana for Windows or Siri for Apple. Dedicated Chatbots appliances are also
becoming more popular such as Amazon’s Alexa. These Chatbots can perform a wide
variety of actions based on user commands.

	

1.2. Type	of	Chatbot	

In order to differentiate Chatbots, two axes of
analysis must be taken into account:

• the type of response held by the bot
• the type of conversation.

Each of these categories is divided into two
subcategories as shown in the figure 2 .

1.2.1. Retrieval	based	models	vs	Generative	models	

The answers given by the bot can be of two types, retrieval based or generated.
Bots based on the first type use a repository of predefined responses and some kind
of heuristic to pick an appropriate response based on the input and context. The

Figure 2: Chatbot Conversation
Framework

CHARLINE MAS Page 13/83

heuristic depends on the complexity of the service proposed, the area in which the bot
is used but could be as simple as a rule-based expression match, or as complex as an
ensemble of Machine learning classifiers. One could have mentioned as downside of
this type of system the limited set of possible answers that must be built upstream.
However, the fact that the set of possible responses can be controlled, guarantee its
quality and in some area such as Health and some use cases such as question
answering, this guarantee of quality is required.

 In the case of generated answers, bots are based on generative models. These
systems don’t reply on predefined responses; they generate new ones from scratch.
Typically based on Machine Translation techniques, generative models translate an
input to an output (response). This type of bot understands language not just
commands, and continuously gets smarter as it learns from conversations it has with
people. However, a problem with this model is the way the answers are generated.
Indeed, they tends to be generic, irrelevant, inconsistent or grammatically wrong.

1.2.2. Open	Domain	VS	Closed	Domain		

The conversation held by a bot can be classified as mentioned, in two
categories: Open Domain and Closed Domain. In an Open Domain, the user can take
the conversation anywhere. There isn’t necessarily a well-defined goal or intention.
This type of bot is more commonly called conversational bots.

On the other hand, in a Closed Domain, the number of possible inputs and
outputs is limited because the system is trying to achieve a very specific goal. This
category is often referring as task-oriented bots. As shown in the figure 1, in Open
Domain conversations a bot using retrieval based model is obviously impossible to
produce since imagine all the scenario of a conversation is infeasible. Using a
generative model with this type of conversations, conduct to produce a general AI
which aims to perform any intellectual tasks feasible by a human being. It is a primary
goal of some artificial intelligence research and a common topic in science fiction and
future studies. This type of AI requires a lot of means in terms of equipment (very
powerful computer), data, etc.

In closed domain, on the other hand, retrieval based and generative bots
(described previously) are more easily producible solutions provided you have the
necessary data.

CHARLINE MAS Page 14/83

2. NATURAL	LANGUAGE	PROCESSING	

A common approach to natural language processing is to consider it as a process
of language analysis being decomposable into several stages as presented below:

Figure 3: NLP common approach

These different stages represent different degree in the NLP analysis. Indeed, this
idea is to first analyze the sentences in terms of their syntax. This analysis will provide
an order and structure that is more amenable to an analysis in terms of semantics
which is itself followed by a stage of pragmatic analysis. In this following, we will focus
on three of five steps presented above: Tokenization, Lexical analysis and Semantic
analysis. We will first start with the Tokenization, which will be include in a more general
step called Text Preprocessing.

2.1. Text	Preprocessing	
Text Preprocessing is the task of converting a raw text file into well-defined

sequence of linguistically meaningful units. It has three levels of actions: characters
which represent the lowest level, words which consist of one or more characters,
represent the second level. Finally, sentences which consist of one or more words,
constitute the third level.

An example of actions that can be realized at the second level, is the stop-word
removal. Stop-word designate the most common words in a language. For example,
for the English language, the stop-words can be ‘a’, ‘the’ or ‘are’, etc. The words usually
occur very frequently and cannot be used to capture the topic of one document from
another. Even though the stop-word process is needed to improve the performance of
text classification, it can be difficult to create standard stop-words list because of the
inconsistency of words being meaningful or meaningless in some specifics domains.

Some actions can also be performed at any level, such as tokenization.
Tokenization is the task of breaking down into pieces called tokens. These tokens are
used for further process such as removing text component like punctuation or white
space.

Text preprocessing is an essential part of any NLP system, since the characters,
words, and sentences identified at this stage are the fundamental units passed to all
further processing stages, from bags-of-words model through applications, such as
information retrieval systems.

 	

Tokenization Lexical	
analysis

Syntactic	
analysis

Semantic	
analysis

Pragmatic	
analysis

CHARLINE MAS Page 15/83

2.2. Lexical	analysis		
Text-oriented applications aim to register word’s structures. To learn this

representation, techniques and mechanisms of text analysis can be performed at the
word’s level. These kind of analysis are commonly called lexical analysis.

This type of analysis refers to the process of converting a sequence of
characters in to a sequence of tokens. Thus, the focus is on the word itself and not on
how it interacts with other elements of the text. The word independencies are therefore
not study in this type of analysis. Some of the most important techniques of the lexical
analysis are:

• Bag-of-word (BOW).

A bow model is a very simplified representation of the text. In this case, the text is
portrayed as the set of its words that allows multiple occurrences of the same element
disregarding the grammar and even word order. This model is often used for document
classification.

• Term Frequency-Inverse Document Frequency (TF-IDF).

TF-IDF is a numerical statistic defined by Salton and McGill in 1983. This statistic
is intended to reflect how important a word is to a document in collection or corpus.
The idea is, the more presents the word is in a text, the higher is the statistic. This
augmentation is offset by the amount of times the word appears in all texts. The formula
of the TF-IDF statistic is given below:

𝑤",$ = 𝑡𝑓",$ ∙ 	𝑙𝑜𝑔
𝐷

𝑑/ ∈ 𝐷|	𝑡 ∈ 𝑑′

In this formula,

1- 𝑡𝑓",$ Represents the term frequency (TF) of term t in document.

2- 𝑙𝑜𝑔 3
$4∈3|	"∈$/

is the inverse document frequency (IDF), with D referring to the

total number of text documents and d referring to the number of text
documents, the term appears in.

 With this definition, a word that appears in every document will have an almost
zero IDF value, which will lead to a small TF-IDF value. However, a term that only
appears in one document will have a very high IDF and thus a high TF-IDF value.

2.3. Semantic	analysis	
Semantic analysis describes the process of understanding natural language based

on meaning and context. Indeed, in this type of analysis, structures are created to
represent the meaning of words and combinations of words. In the following
paragraphs we will distinguish two types of semantic analysis: Vector Space model
and word embedding model.

CHARLINE MAS Page 16/83

2.3.1. Vector	Space	Model		

A Vector Space Model (VSM) or Term Vector Model is an algebraic model for
representing text documents as vectors. The VSM was developed for the SMART
information retrieval system (Saltin,1971) by Gerard Salton and his colleagues (Salton,
Wong & Yang, 1975). SMART pioneered many of the concepts that are used in modern
search engines.

2.3.1.1. Introduction	

VSM represents each documents and the user’s queries as V-dimensional vectors
in V-dimensional space also called document-term matrix (dtm). In this matrix, each
dimension corresponds to a separate term. A term can be a word, keywords or longer
phrases. In the case words are chosen to be the terms, the V-dimensional space is the
size of the documents vocabulary.

𝑑5 = 𝑤6,5, 𝑤7,5,𝑤8,5, … , 𝑤:,5 	𝑞< = 𝑤6,<, 𝑤7,<,𝑤8,<, … , 𝑤:,<

If a term occurs in the document, its value in the vector is non-zero. There are
several ways to compute these term occurrences also known as weights. One of the
best known is TF-IDF weighting as described previously. To compare the text
documents vector operations that can be used. These operations are also called
similarity measures. For a comparison purpose, a VSM can rank the documents based
on these similarity measures.

A major limitation of the VSM is that words in one documents must exactly match
words in another documents. However, this limitation can be overcome with different
techniques such as word embedding described in the paragraph 2.3.2 of this chapter.

In a nutshell, a VSM can be divided into three stages. The first one is the document
indexing where content bearing terms are extracted from the document text. The
second stage is the weighting of the indexed terms to enhance retrieval of document
relevant to the user. And finally the last stage means to ranks the documents with
respect to the query according to a similarity measure.

2.3.1.2. Cosine	

One of the most famous VSM based on vector operations is named cosine similarity.
This measure calculates the cosine between the vectors representation of two
documents using the following formula:

𝑐𝑜𝑠	𝜃	 = 	 $@⋅$B
$@ ⋅ $B

= $@C$BCD
CE@

$@B
D
CE@ $BB

D
CE@

Where the numerator represents the intersection of the two document vectors
and the denominator the normalization of the score by the length of the document

CHARLINE MAS Page 17/83

vectors. The normalization ensures the chance of matching independently of the length
of the documents. Thus, a document with more words, will not be privilege. A high
cosine value means a high similarity between two documents.

2.3.1.3. Latent	Semantic	Analysis	

Latent Semantic Analysis originally known as Latent Semantic Indexing (LSI)
is a powerful statistical technique. LSA is based on two main steps. The first one
concerned the construction of a term-document matrix (TDM)	𝑀. The size of 𝑀 is		
𝑛 ∗ 𝑚 where the rows correspond to 𝑚 terms, the columns correspond to 𝑛 documents
and 𝑀[<,5] corresponds to the frequency of the term 𝑖 in the document 𝑗. The second
step is the singular value decomposition where the TDM 𝑀 will be decomposed into
three matrices as follow:

𝑀	 = 	𝑈 ∗ 𝑆 ∗ 𝑉Q

U and VQ are two orthogonal matrices and 𝑆 which is a diagonal matrix. SVD is a matrix
algebra technique which essentially re-orients and ranks the dimensions in a vector
space. Because the dimensions in a vector space computed by SVD are ordered from
most to least significant, if some of the less significant dimensions are ignored, the
reduced representation is guaranteed to be the best possible for that dimensionality.
Finally, based on the equation below, only the k largest singular values and their
corresponding singular vectors from U and VQ will be used in order to reduce the
semantic space which corresponds to 𝑀U:

𝑀U = 𝑈U ∗ 𝑆U ∗ 𝑉U"

2.3.2. Word	embedding	

2.3.2.1. A	brief	history	

 The term word embedding was originally coined by Bengio et al. in 2003 who
trained them in a neural language model together with the model’s parameters. In
2008, Collobert and Weston with their paper A unified architecture for natural language
processing, were arguably the first to demonstrate the power of pre-trained word
embedding. But it was 2013, Mikolov et al who really brought word embedding to the
fore through the creation of Word2vec, a toolkit that allows the seamless training and
use of pre-trained word embedding, signaling that word embedding had reached the
mainstream.

 The aim of word embedding is to build a low dimensional vector representation
of word from a corpus of text. One of the main advantage of word embedding is a more
expressive and efficient representation maintained by the contextual similarity of words
and a low dimensional vector. Word2vec, one of the most famous word embedding
algorithm will be presented in the paragraph 2.3.2.3. But before, we will in the following
paragraph briefly described the Neural Network algorithm.

CHARLINE MAS Page 18/83

2.3.2.2. Neural	Network	(NN)	

Human brains are composed of billions of cells, working together, called neurons.
These neurons can solve complicated problems fast. The idea of the method is to
imitate the properties observed in biological neural systems through mathematical
models. This system is named neural networks.

A neural network can be represented as shown in the figure 4, where every
node represents a neuron. Each of these nodes are modulated by their corresponding
weights and applies a certain activation function over its input to determine its outputs.
An artificial neural network can consist of many more layers than in the figure 4, and
all layers between the input and output layer are called hidden layers. The input layer
has as many neurons as there are independent variables, and the output layer has as
many neurons as there are dependent variables. The amount of hidden layers, and
the amount of neurons in the hidden layers depends on the type and amount of data.

Usual activation functions are:

- Identity: 𝜎(𝑠) 	= 	𝑠

- Threshold: 𝜎(𝑠) 	= 	
1, 𝑖𝑓	𝑠 > 0
0, 𝑖𝑓	𝑠 = 0
−1, 𝑖𝑓	𝑠 < 0

- Logistic: 𝜎(𝑠) 	= 	 1
1	+𝑒−𝑠

- Hyperbolic Tangent: 𝜎(𝑠) 	= 𝑒𝑠−𝑒−𝑠
𝑒𝑠	+𝑒−𝑠

- Gaussian Radial Basis Function: 𝜎(𝑠) 	= 	𝑒−
1
2𝑠
2

During the training of neural networks, the weights on the connection links
between the neurons are modified, as to reach the optimal model for the training
dataset an element of feedback is therefore required. This element is called
backpropagation. It distributes the error term back up through the layers. The larger
the difference between the model outcome and the actual outcome, the more the

Figure 4: NN Structure with one hidden layer

CHARLINE MAS Page 19/83

connection weights will be altered. Once the network is done training, it can be
presented with new inputs to generate responses.

The network in figure 4 is a feed-forward neural network (FNN) as the
information propagates only in one direction i.e. wherein connections between the
nodes do not form a cycle as opposed to Recurrent Neural networks that can learn,
thanks to bi-directional data propagation, the vector representations from words and
can remember a huge context.

2.3.2.3. Word2vec	

	
Word2vec is one of the most popular word embedding model. Indeed, it is a

computationally-efficient predictive model for learning word embedding from row text.
The main principle of this method is to learn law dimensional vectors from the begging.

Two architectures are proposed for learning word embedding: the Continuous
Bag-Of-Words model (CBOW) and the Skip-Gram model. These models are
algorithmically similar, except that CBOW predicts target words from the surrounding
words, while the Skip-Gram does the inverse and predicts the context from the center
word.

More precisely, CBOW corresponds to the
neighboring words in the window. In this neural
network presented in the figure 5, three layers are
used.

First, the input layer corresponds to the
context, then the hidden layer corresponds to the
projection of each word from the input layer into the
weight matrix which is projected into the third layer
names output layer. The last step is then, the
comparison between the model output and the word
itself to correct its representation based on the back
propagation of the error gradient. Therefore, the
purpose of CBOW neural network is to maximize the
equation presented below, where 𝑉 is the vocabulary

size, 𝑐 corresponds to the window size of each word.

𝑚𝑎𝑥 𝑙𝑜𝑔
c

"d6

	𝑝(𝑚"|𝑚"fg7
, . . . 𝑚"ig7

)

Skip-gram is the opposite as shown in figure 5, since the input layer
corresponds this time to the target word and the output layer corresponds to the
context. Therefore, in this algorithm the last step consists of the comparison between
its output and each word of the context. Here also, this comparison aims to correct the
representation obtained, based on the back propagation of the error gradient.

Figure 5: Word2vec, CBOW model

CHARLINE MAS Page 20/83

 In this case, the maximization seeking is presented below, with 𝑉
corresponding to vocabulary size and 𝑐 corresponding to the window size of each
word.

𝑚𝑎𝑥
1
𝑉 𝑙𝑜𝑔

"ij

𝑗=𝑡−𝑐,𝑗≠𝑡

c

"d6

𝑝(𝑚5|𝑚")

The major limit of these models comes from the
learning of the output vectors which can be a difficult
and expensive task. To address this problem, two
algorithms can be used: Negative Sampling algorithm
and Hierarchical softmax.

Negative Sampling algorithm aims to limit the
number of output vectors that need to be updating.
Thus, only a sample of the output vectors is updated
based on a noise distribution. This distribution is a
probabilistic distribution which is used in the sampling
process. Hierarchical Softmax, on the other hand, is
based on Huffman tree, a binary tree resenting all
terms based on their frequencies. In this tree, each step
from the root to the target is normalized. It is the training
data which determines which algorithms works better.

2.3.3. Similarity	measures	based	on	Word2vec	

2.3.3.1. Doc2vec	

Doc2vec is an implementation of paragraph vectors, a generalization of
Word2vec to documents. This implementation was made by the authors of the Gensim
Python library, much use in the field of NLP. The goal of doc2vec is to create a numeric
representation of a document, regardless of its length. However unlike words,
documents do not come in logical structures, therefore another method had to be
found.

In 2014, Le & Mikolov proposed a method that learns fixed length feature
representations for various length texts called Paragraph2vec. This is achieved by
training a small neural network to perform prediction task. The labels required to train
such a model, are coming from the text itself. In the architecture of Paragraph2vec, the
input contains a vector that represents the document as shown in the figure 7 or in the
figure 8.

While many other methods can be used to represent sentences, paragraphs or
documents as a fixed size vector, Paragraph2vec yield vectors of a more manageable

Figure 6: Word2vec, Skip-gram model

CHARLINE MAS Page 21/83

size. As for the Word2vec model, Paragraph2vec has two ways of being computed:
PV-DM and PV-DBOW.

The PV-DM stands for Distributed Memory version of Paragraph Vector and is
an extension of the CBOW model but instead of using just words to predict the next
word, a feature vector is added as shown in the figure 7. This vector is document-
unique. In the CBOW of Word2vec, the model learns to predict a center word based
on the context. Similarly, in PV-DM, the main idea is: randomly sample consecutive
words from a paragraph and predict a center word from the randomly sampled set of
words by taking as input the embedding words and a paragraph id. The figure 7
presents the following elements: Paragraph Matrix, Average/Concatenate and
Classifier.

- The Paragraph Matrix, is a matrix 𝐷 where each column represents the vector
of a paragraph.

- Average/Concatenate signify that the word vectors and paragraph vector are
averaged/concatenated.

- Classifier, averaged/concatenated hidden layer vector as input and predicts the
center word.

 The PV-DM acts as a memory that remembers what is missing from the
context (as the topic of the paragraph) thanks to the document’s vector. Thus, the word
vectors represent the concept of a word and the document vector intends to represent
the concept of a document.

As mentioned, there is another algorithm, which is similar to Skip-Gram named
PV-DBOW for Distributed Bag of Word version of Paragraph Vector. This model,
shows in the figure 8, is different since it ignores the context words in the input and is
forced to predict words randomly sampled from the paragraph in the output. In this
case, the algorithm is faster and consumes less memory, since there is no need to
save the word vectors and has less parameters that need to be trained.

 	

Figure 7: Distributed Memory version of Paragraph
Vector

Figure 8:Distributed Bag of Word version of Paragraph
Vector

CHARLINE MAS Page 22/83

2.3.3.2. Word	Mover	Distance		

The Word Mover’s Distance (WMD) is claimed to achieve better results than
other baselines when used to compute document similarity. WMD uses the word
embedding of the words in two texts to measure the minimum distance that the words
in one text need to “travel” in semantic space to reach the words in the other text. More
precisely, this distance is based on the Earth Mover Distance, and addresses the
transportation problem by measuring the distance between two distributions in some
regions, where the pairwise distance between points in the ground distance.

In 2015, Kusner et al. proposed a novel distance function between text
documents called Word Mover’s Distance (WMD). The Word Mover Distance is viewed
as an instance of the Earth Mover Distance. The figure 9 illustrates the concepts of the
Word Mover’s Distance, where the semantic space is learned by the Word2Vec model.

Figure 9: Words distance in the Word2vec semantic space

In the WMD computation, the dissimilarity between two words as a natural
building block is assumed to create a distance between two documents. To estimate
the distance between pairs of words, the embedding that are learned with the
Word2vec are used. The word travel cost or words dissimilarities are provided by
Euclidean distance between words in the Word2vec embedding space:

 𝑐 𝑤<, 𝑤5 = 	 𝑉(𝑤<) − 𝑉(𝑤5)

where, 𝑤< and 𝑤5 are two words, while 𝑉(𝑤<) and 𝑉(𝑤5) are their word
embeddings. The distance or travel cost between two documents is defined as the
minimum (weighted) cumulative cost required to move all words from document 𝑑6to
document 𝑑7:

𝐶mn$(𝑑6, 𝑑7) 	= min
rst

𝐹m<mv
m5∈	$Bm<∈	$@

𝑐(, 𝑤<, 𝑤5)

Subject to: 𝐹mCmvmv = 𝑑6< and 𝐹mCmvmC = 𝑑75

CHARLINE MAS Page 23/83

Where 𝐹 is a flow matrix indicating how much of 𝑤< in document 𝑑6travels to 𝑤5
in document 𝑑7. The notation 𝑑6< is the document representation by normalized BOW
(nBOW), for example, word 𝑖 appear 𝑐< times in the document, it denotes:

𝑑<	 =
jC
jvD

vE@

CHARLINE MAS Page 24/83

CHAPTER	2:	NLP	APPROACHES	

This chapter presents the study realized to accomplish the objective 1.1. of this
project: Study and build a system able to answer very complex questions. First, the
problem definition is described, then the experimental approach is presented.

1. PROBLEM	DEFINITION	

One of the goal of this project is to incorporate into the final system a dialogue
management system and a NLP layer, in order to distinguish different types of input
and treat them according to the context of the conversation. Thus, several types of
input will be considered for this system and described in the chapter three of this report.
For this study, we will only focus on one type of input and therefore considered that
the DM system already selected the incoming message as being what we will call a
Health question (also designated as query).

As shown in the figure 10, a Health question is, once being detected, sent to a
Question-Answering (QA) system. Indeed, since the answers given by the bot will
come from a Questions-Answers dataset, the idea is to build a QA system which
aims to retrieve the “best answer” from the dataset.

Is designated as “best answer”, a message answering in the most meaningful
way to the query. This answer is linked to the question designated as the most
similar to the query sent by the user. Since the data is composed of question-
answer pairs, once the most similar question is found, retrieve the best answer is
easy. The challenge is therefore, to find a model able to identify the most similar
question.

Figure 10: Data manager and NLP layer of the system

CHARLINE MAS Page 25/83

A QA system is based on similarity measures. The main idea is to compute the
similarity between a query and all the questions of the dataset. Then, the obtained
similarities measures are ranked, as shown in the figure 7, from the highest to the
smallest knowing that the higher the similarities, the better.

Textual data can be tricky to analyze depending on the context in which the
text has been written. For example, a Wikipedia article is long and well written while
discussion on Forums are mostly based on short and often not grammatically correct
Question-Answers. The challenge is therefore, to understand what the user asked. Or
in other words, to obtain words vectors describing in the most meaningful way in which
context appears the word.

In order to find the most appropriate similarity measure for the QA system, the
similarity methods presented in the chapter 1, will be study:

- Latent Semantic Indexing (LSI) weighted by TFIDF
- Cosine similarity weighted by TFIDF
- Doc2vec
- Word Mover’s Distance.

2. EXPERIMENTAL	APPROCHE	

In this part, the model described in the previous chapter, will be evaluated on the
data of the project. The methodology used for this experiments is shown in the figure
11. First the data will be collected, cleaned and explored. Then, the similarity models
will be computed. Lastly, the comparison of the different methods will be based on their
retrieval task.

Figure 11: Methodology process

CHARLINE MAS Page 26/83

2.1. Data	

As mentioned in the introduction, the data used for this project can be found on
GitHub. The dataset is open source and composed of question-answer pairs sorted by
topics which have been gathered from several health forums on 5th of May 2017:

Ø Ehealthforum: https://ehealthforum.com/
Ø Healthtap: www.healthtap.com/
Ø Icliniq: https://www.icliniq.com/
Ø questionDoctor: https://questiondoctors.com/
Ø webmd: www.webmd.com

The data is stored in six JSON files in which the following elements can be found:

- Question. The question asked by a user on the forum
- Answer. An answer gave by a health professional as pretended on the

different forums. (For this project, we assume that is true)
- Tags. One or several topic(s) of the question (and answer).
- URL. Link where can be found the discussion.

A fifth element can be found in the files, however, being different for each file,
this element will not be considered in the rest of this experiment. Same with the
URL element that we will not considered for the following. In total, the data contains
at the begin of the study, 166804 rows i.e. question-answer pairs.

2.1.1. Data	cleaning	

A first glance at the data reveals that there are many unanswered questions as
well as duplicates question-answer-topic set. Since the final model will be used to
return answers from the dataset as an answer, the set of answers needs to be as
correct as possible. Therefore, the dataset is cleaned by removing question-answer
pairs that do not meet our criteria.

Second, after removing the rows having an empty answer, a checking is
realized to visualize the number of topic per question. Following this analysis, the graph

Figure 12: A bar chart displaying number of question per
number of topics (tags)

CHARLINE MAS Page 27/83

shown figure 12 was obtained. It appears that the number of questions with a single
tag represents 90% of the data.

Therefore, it was decided to only keep the questions marked with one topic.
Among these selected questions 95826 were remaining. However most of them were
appearing only in one or two questions, therefore it was decided to select the topics
present in a majority of questions, the most 6 frequents are presented below:

Since the number of questions with the topic pregnancy and wound care are
really low compare to the first four, these topics and all the topics having a lower
frequency were discarded. This reduced the dataset to 81040 rows. The topic
remaining were the following:

- Bariatrics. Branch of medicine that deals with the causes, prevention
and treatment of obesity.

- Breast surgery. Form of surgery performed on the breast which can
included Breast reduction surgery, Augmentation mammoplasty,
Mastectomy, Lumpectomy, Breast-conserving surgery (a less radical
cancer surgery than mastectomy), Mastopexy, or breast lift surgery,
Surgery for breast abscess, (including incision and drainage as well as
excision of lactiferous ducts), Surgical breast biopsy and
Microdochectomy (removal of a lactiferous duct)

- Cardiac Electrophysiology. Science of elucidating, diagnosing and
treating the electrical activities of the heart.

- Cardiology. Branch of medicine dealing with disorders of the heart as
well as parts of the circulatory system.

After, this first cleaning some observations were made:

- There is a very large variation in question and answer length
- There are many spelling mistakes in the questions
- Some answers contain hyper-links

TOPIC NUMBER OF QUESTIONS

BARIATRICS 30516

CARDIAC
ELECTROPHYSIOLOGY

21666

CARDIOLOGY 17761

BREAST SURGERY 11142

WOUND CARE 4136

PREGNANCY 348

Table 1: Top 6 most frequents topics

CHARLINE MAS Page 28/83

- Answers are formulated for specific cases
- Some questions and some answers contain a salutation

A lot of sentences (questions and answers) contain abbreviations such as “er”
standing for “Emergency room” or “ekg” for “electrocardiogram”. Most of these
abbreviations were health related.

2.1.2. Natural	Language	Processing	cleaning		

In this section NLP techniques are applied to clean deeper the data. Indeed,
the questions need to be prepared for modelling while the answers need to be
prepared to be send to the final user. Although the answers were written by health
professional, there are some elements such as misspelled words or white space that
need to be removed.

As mentioned, some questions and answers contain noisy elements such as
salutations. To improve the dataset from which we return answers, we first remove
these noisy elements. Then, we processed the questions through a NLP pipeline to
prepare them for the modelling part.

2.1.2.1. Removing	salutations	from	questions	and	answers		

In the dataset can be found, some salutations and closings words such as
“Hello” or “Hi” or “Thank you” etc. It was decided to remove them for two reasons:
first, the salutations in the answers will confuse the user since this type of answers
is given in the middle of the Chat flow (presented in the next chapter) and therefore,
the conversation will have started already. Second, this type of words will bring
noise into our models.

The removal of these elements was done with the pseudo-code in the following
algorithm:

Algorithm 1: Replacement of words quoted as greetings
1: Define greetings_list
2: Break up each question into its sentences
3: Collect “greetings words”: for each sentence of the question,
 3.1: Detect via regex1 if one of the word of the sentence is in greetings_list
 3.2: If one or more words are detected, remove it/them.
4: Do the same for answers.
	

 	

1 Regex: A regular expression is a special sequence of characters that helps to
match or find other words or sets of words, using a specialized syntax held in a
pattern.

CHARLINE MAS Page 29/83

2.1.2.2. NLP	cleaning	pipeline		

The first cleaning phase revealed key points that needed to be take into
account. Therefore, the following NLP pipeline was built as shown below:

First each sentence went through the tolower python function. This step refers
to the lower-casing NLP technique. All the letters of the dataset are changed to lower-
case to make sure that identical words match each other, regardless of the letters
begin lower-case or upper-case.

Then, each sentence of the questions column and the answers column of the
dataset are tokenized with the NLTK python’s package and more precisely the
word_tokenize function. This tokenization, explained in the chapter 1 part 2.1, was
applied by separating all words and punctuation with comma.

The third step is where the control characters were remove thanks to the regex
functions (see Footnote in the previous page).

The step four is taking care of the spelling correction. The spelling mistakes
can influence matching a new question with the questions in the dataset. Therefore, a
spelling corrector was applied based on the algorithm 2 presented below.

Algorithm 2: Spelling correction
1: Calculate the probability of this word occurring for this specific dataset. This is
 done by dividing the frequency with which the word occurs in the dataset and
 dividing it by the total number of words in the dataset.  
2: Find all edits that are only one correction away from the word. One edit can be
 a deletion of a letter, an insertion of a letter, a swap of two adjacent letters or a
 replacement of one letter for another.  
3: Find all edits that are two corrections away from the word. This means running
 step 2 again on its own outcome.  
4: Restrict the sets of words (one and two edits away from the initial word) to only
 include words that are in our existing word list.  
5: Generate the corrected spelling candidates for the word. These candidates are
 (in order of replacement): the word itself (if it is in the word list), words in the word
list that are one edit away, words in the word list that are two edits away, and finally
if none of these exist it will be the word itself.  
6: Correct the word. This is done based on the word candidates generated in the
previous step. If the word itself is in the word list it will not be altered. If the word is
not in the word list, the first option is the words that are one edit away and in the
word list. If these exist we choose the one with the highest probability of occurring
in our dataset, as calculated in step 1. Otherwise, we look at the words that are two
edits away and in the word list, again choosing the one with the highest probability

Figure 13: NLP cleaning pipeline

To	lowercase Tokenization
To	remove	
control	

characters
Spelling	
correction

To	Remove	
duplicates	
word

To	Remove	
whitespace

CHARLINE MAS Page 30/83

In step five, we remove duplicates words present in the same sentence, next
to each other such as:

 “your doctor can tell tell you if you have thyroid problems” à “your doctor can tell you
if you have thyroid problems”.

The step six was a checking and removal of the white spaces which correspond
to two characters.

2.1.2.3. Stop-words	removal	

Finally, a last step was performed on the questions. Indeed, while they are now
cleaned, some noisy elements are remaining and will keep our models to perform
efficiently. Since the questions of the dataset won’t be seen by the final user, all the
stop-words, punctuation and other elements qualified as noise such as numbers or
hyper-links can be removed. Although essential for reading, these elements greatly
disrupt the models and must be deleted. The logic to remove the stop-words is
exposed in the algorithm below:

Algorithm 4 Stop-word removal
1: Remove all standard English words using a pre-made English-word list.  
2: Remove punctuation
4: Remove all words which contain numbers
5: Remove all hyper-links.  
6: Change all punctuation that is still present (this is only possible inside words), to
spaces. For example, "high-glycaemic" is changed to the words "hyper" and
"glycaemic".

2.1.3. Situation	after	the	cleaning		

After applying the cleaning step, the data has been reduced by 47% which
leads to a dataset with 81040 rows. A new column has been added to the dataset
names cleaned_questions. This column represents the specific cleaning apply in the
second phase of the cleaning. The table 2 below shows an example of row of the
dataset.

of occurring. If all of these options do not generate words, we just give the word that
was supplied back as this is then a rare word that is potentially important for the
meaning of the question  

CHARLINE MAS Page 31/83

Question Answer Tags Cleaned_questions

When	dieting	how	can	
you	avoid	waking	up	
throughout	the	night	

really	hungry?

Dieting	does	not	mean	
going	hungry.	Dinner	
should	have	enough	

proteins	healthy	fats	and	
some	carbs	with	plenty	of	

veg.

bariatrics

['dieting',	'avoid',	
'waking',	'throughout',	

'night',	'really',	
'hungry']

Table 2: Example of the cleaned dataset

The cleaned_questions column is going to be used to train the models.

Therefore, it is interesting to see the number of common words that can be found

between the different topics as shown in the table 3 below. For example, the topic

Bariactrics has 5106 words that also appear in some of the question of the Breast

Surgery topic. This means that the words represent a risk to be misinterpreted by our

models and attribute to a Breast Surgery question instead of a Bariatrics one.

 Bariatrics Breast
Surgery

Cardiac
Electrophysiology

Cardiology

Bariatrics - 5106 7240 6309

Breast Surgery - 4657 4224

Cardiac
Electrophysiology

- 6446

Cardiology -
Table 3: Common words between two topics

A checking was also realized a checking to see the number of common word

to all the topic: 3488 words were found. The graph figure 14 shows the most 10

frequents words of these common words.

The important numbers of shared words show that some words appear a lot in

the dataset. Since they can designate several topics, we will consider two case to treat

them in the following section: Penalize these words via TF-IDF method or rely on the

Word2vec training to learn correctly the context in which these words are appearing.

CHARLINE MAS Page 32/83

Figure 14: Top 10 most frequent words in all the dataset.

2.2. Models	comparison	

Now that we have clarified the pre-process step, in this section we are going to
focus on the models presented in section 2.3 of the chapter 1 and study which one is
the more appropriate for our project. First, we will explain the evaluation process that
has been chosen and then we will present the results.

2.2.1. Evaluation	methods	

To check the performance of a model, we used a train-test methodology, being:

§ Training Set. A fraction of the entire dataset was used for training
purpose.

§ Testing Set. The model trained with the Training Set was tested with
the Testing Set. Thereby, we checked the model performance with
observations that were not used for the training.

A common proportion used to divide a dataset into a train and test is 80-20,
with 80 % of the data going to the training set and 20% to the test set. However, the
WMD is very slow to be computed. Therefore, the test set will only be composed of
1000 questions picked randomly.

Models will be evaluated on their effectiveness of estimating similarities
between a question of the test and all the questions of the dataset. The evaluation
metric is the accuracy obtained. It is computed by comparing the topic of the question
detected by the model, to the test set query. Therefore, the accuracy will represent the
number of good topic detected. The algorithm used is shown below:

Algorithm 5: Evaluation models

CHARLINE MAS Page 33/83

1: For all the queries of the test set:
1.1: Compute the distance between the query and all the questions of the dataset
1.2: Ranked the similarities obtained from the highest to the smallest
1.3: Select the highest similarity
1.4: Retrieve the index of the question with the highest similarity
 and its tag from the dataset
1.5: Save the elements retrieved
2: Compute accuracy

A second step, performed in this study, is the evaluation of the quality of the
answers. It consists of manually checking the results. Indeed, we chose to perform a
manual evaluation for the following reasons: First, our dataset is composed of 81040
rows with a lot of questions for each topic. Manually paired questions, even a few
hundreds to allow us to have a more reproducible experiment would have taken a lot
of time and since the project was constrained by the magnitude of the thesis, it
appeared to be infeasible. Second, given the nature of the problem, (i.e. pairing
questions about one of the topic presented in the previous sections), there is not a
single answer (i.e. a single question-question pair) that could have been created.
Therefore, just paring one expected question could have been count as wrong if the
model had brought a similar and valid but not paired question.

For these reasons and because it was too long to check the 1000 questions
retrieved by each model, it was decided to manually check 300 good classified
questions. The idea was to check if the questions designated as most similar are
meaningful.

2.2.2. Accuracy	evaluation		

In this section, we present the first experiments realized to compute the
accuracy for each model.

2.2.2.1. Cosine	and	LSI	

In the paragraph 2.1.3. of this chapter we saw that some words are present in
a lot of questions independently of the topic. Therefore, it was decided to penalized
these words with the TF-IDF method explained in the section 2.3.1 of the first chapter.

For this computation we used TfidfVectorizer from the Python package Sklearn.
Basically, every time we have a new query, a document-term-matrix is built, combining
the query and all the questions of the dataset.

Then on one hand, we apply on the dtm matrix obtained the cosine similarity
between the first row of the matrix (which is the pre-processed query) to the others.

On the other hand, the LSI model was computed with the Python package
Gensim and more specifically the module concerning the Latent Semantic Analysis
(aka Latent Semantic Indexing).

CHARLINE MAS Page 34/83

The result obtained are shown in the table below:

 Cosine LSI

Accuracy 81% 80%

Average computation
time for each query

2,3 secs 3,5 secs

Total amount of
computation time

39 min 50 min

Table 4: Cosine and LSI accuracy results

From the table 4 presented above, we can see that globally our models
performed quite well since they both have about 80% of accuracy. However, in term of
time the Cosine computation is faster.

2.2.2.2. Word	Mover’s	Distance	

For this experiment, a python version of the WMD, from the Gensim package
has been used. In our implementation, word distance was estimated by the Euclidean
Distance calculated against the Word2vec vector space. We first learned a Word2Vec
model on word vector dimensions’ equals 100, and for a question from the test, we
computed its Word Mover Distance with all the question of the dataset.

The computation of the WMD is quite long, about 2min to compute the distance
query-all questions of the dataset. Therefore, calculate this distance for all the question
of the test set, is in this condition infeasible. However, one way to proceed is to use
the Prefetch and prune algorithm introduced in [2], it is a relaxation of the distance
computation problem to prune documents that are not in the number n nearest
neighbors. Therefore, the computation of the true WMD is not done for these
documents. In this experiment, we compute the WMD distance for 20 nearest
neighbors.

CHARLINE MAS Page 35/83

 WMD with skip-gram WMD with CBOW

Accuracy 87% 86.2%

Average computation
time for each query

4.124 secs 4.126 secs

Total amount of
computation time

34 h 34h

Table 5: CBOW and Skip-Gram models accuracy results

From the table 5, it seems that the model computed with the Skip-gram
algorithm performed slightly better than the one with CBOW. The computation time for
the two models, is quite long. Indeed, it took to 34h in average to compute the distance
for the 1000 questions.

Due to the very expensive computation memory and the time required to
compute these distances, it was impossible to run several times the experience to
determine the best parameters for the word2vec models.

 	

CHARLINE MAS Page 36/83

2.2.2.3. Doc2vec	

To compute the Doc2vec model, we used here also, the Gensim library.
Doc2vec is, as explained in the chapter one, a Paragraph2vec implementation in
Python. First a comparison analysis has been made with little tuning, so to make a
preliminary filtering:

- Window Size = 8
- Min_count = 2 (filters out words with frequency less than 2),
- Iteration = 20.
- dbow_words=1 (trains word-vectors (in skip-gram fashion)

simultaneous with DBOW doc-vector training)
- vector_size = 100 (Dimensionality of the feature vectors.)

We compute both type of Doc2vec model (PV-DM & PV-DBOW). For each
vector size, after the learning process, pairwise distances between posting vectors are
estimated by the Cosine Distance. The results obtained with the default parameters
are presented in the table 6.

 PV-DM PV-DBOW

Accuracy 33.5% 65.0%

Average computation
time for each query

0,01 secs 0,01 secs

Total amount of
computation time

10 secs 10 secs

Table 6: PV-DM and PV-DBOW accuracy results

 From the table above, we can see that the PV-DBOW perform way better
than the PV-DM model. Therefore, we will for the following tests, only keep the
PV-DBOW model.

Figure 15: Accuracy per Dimensionality of the
feature vectors

CHARLINE MAS Page 37/83

Since the computation of the Doc2vec models were fast (about 10 secs to compute
all the distances), we were able to train different paragraph vector sizes: 100, 200, 300,
up to 700. We could not train vectors with a dimensionality higher than 700 because
we had insufficient memory for the computation.

The results, obtained after the computation of the several models and represented
figure 15, show an improvement of the accuracy when the dimension of the paragraph
vector is a bit increased until the dimension 400 (note that the y axis is from 0.63 to
0.67 to ensure a better visibility). Therefore, we will keep the size of 400 to compute
the models in the next experimentation.

Another evaluation was made on the alpha parameter which represents the
learning rate. To determine the optimal value on alpha, the model was trained on

several values of alpha from 0.005
to 0.0095. The results are presented
on the graph present in the figure
16.

Here also the accuracy doesn’t
move a lot, however the best result
is obtained with an alpha equal to
0.07. The final accuracy obtained
was 73%.

0,5

0,55

0,6

0,65

0,7

0,75

0,
07

0,
06
5

0,
09

0,
08

0,
07
5

0,
06

0,
08
5

0,
05
5

0,
09
5

0,
04

0,
05

0,
04
5

0,
03

0,
02
5

0,
03
5

0,
02

0,
01
5

0,
01

0,
00
5

Ac
cu
ra
cy

Alpha

Figure 16: Accuracy according to the alpha value

CHARLINE MAS Page 38/83

2.3. Result	summary	and	manual	evaluation	

Finally, the different accuracies and times computation for the models are resumed
in the table below:

 Cosine LSI
WMD

Skip-gram
PV-DBOW

Accuracy 81% 80% 87% 65.0%

Average
computation time

for each query
2,3 secs 3,5 secs 4.124 secs 0,01 secs

Total amount of
computation time

39 min 50 min 34 h 10 secs

Figure 17: Sum up of all the results

We got high accuracies especially from the Word Mover Distance, computed
with the skip-gram algorithm. However, like we said these results need to be checked
to be sure that the answers gotten by the models are meaningful.

Therefore, as explained in the section 2.2.1 of this chapter, a manual evaluation
was realized. This evaluation has been made through the following process:

1- Retrieve the first 300 good classified questions for each model
2- Evaluate them

• If the question retrieved means the same as the original
question, the score is put to 1. Else, it marks as 0.

• Compute the total score for each model

An example of the manual evaluation is given below:

Query	 Questions	retrieved	by	
skip_gram_word2vec	 score	

Should	i	take	blood	pressure	medication	
to	lower	my	blood	pressure	during	the	

pregnancy?	

What	can	i	take	to	lower	my	blood	
pressure?	 1	

What	are	the	consequences	of	
forgetting	diabetic	gh	blood	pressure	

meds?	

What	are	the	consequences	of	gh	
and	low	blood	pressure?	 0	

When doing blood pressure what is
meant by systolic and diastolic?

What are the differences between
systolic and diastolic blood

pressure?
1

Table 7: Example of the manual scoring

CHARLINE MAS Page 39/83

The results for this manual scoring evaluation are presented in the table below:

 Cosine LSI
WMD

Skip-gram
PV-DBOW

Score 69% 67 % 77 % 38%

Table 8: Manual evaluation results

After the manual evaluation, from the results show in the table 8, we can say
that the Word Mover distance appears to get the better results. Between Cosine and
LSI, we can say that there is not a big difference. However, concerning the PV-DBOW
model, clearly does not retrieved a lot of meaningful questions.

However, it is important to also take into consideration the computation time of
each of the model. Technically, it is the doc2vec model which performed the best but
since it got the lowest accuracy and the lowest score this model was discard. The
second methods which can be computed quite fast is the cosine similarity. This method
got correct result to the manual evaluation and got an accuracy of 81 %, however it is
still far from the score obtained by the word mover distance.

In the end, it was decided to privilege the quality of the questions retrieved by
the bot to the detriment of time. The WMD distance was therefore chosen to be
implemented into the system to treat the input of type Health question.

Other types of input will be treated by our bot such as questions definitions or
already asked questions. We will explain in details all the types and their meaning in
the part 1.3.1. of the next chapter, however for some of the inputs, similarity measures
will need to be computed. Since the Word Mover Distance rely on the Word2vec model
and therefore require a minimum amount of data to be train, it was decided to use the
second best model, i.e. cosine similarity, for all the inputs for which we don’t have a lot
of data to compare with.

CHARLINE MAS Page 40/83

CHAPTER	3:	IMPLEMENTATION	

In this chapter three different part are presented. First, the design process of the
solution is explained. Then, the front-end implementation is presented and the
background development is showed.

1. DESIGN	PROCESS		

 While the NLP part represents the core of a Chatbot. Many things must be
taken into account when implementing it. Indeed, it is important to define the kind of
public that will use the tool in order to create interactions as simple as possible and
user friendly. But also, to build an efficient database to easily collect and retrieve the
data for further analysis. Thus, this chapter will present the design process of the
Chatbot.

1.1. Target	group		 		 	 	
The tool to develop has two different target users:

1. Bot’s users

The bot’s users are in this project, the main target. Indeed, this concerns all the
people who will ask questions and discuss with the bot. The messages coming from
this type of users should be: greetings messages to start the conversation, answer to
the bot questions and Health question(s) about one of the topics presented in the
previous chapter, part 2.1.1.

In this category, we can also distinguish two subcategories: Unknown and
known user. An Unknown user, is a user who is using the bot for the first time while a
known user already used the bot at least once. It was decided that only user knowing
the password could use the bot, therefore an unknown will be asked to give a password
to start talking with the bot.

2. Professionals

The “Professionals” type of users, represents the client or the entity for which
the bot is working. This type of user is not talking to the bot, but should be able to
access to the data gathered by the system. Therefore, the device expected for this
user is a dashboard in which, the data will be analyzed through several KPIs (Key
Performance Indicators) to provide relevant information on the data collected.

CHARLINE MAS Page 41/83

1.2. Dashboard	KPI	

As mentioned before, this project target two types of users, one of them is
called Professionals. It was decided that this type of user would have access to a
dashboard to measure the evolution of the bot. Thus, some metrics to compute and
visualize the performance needs to be defined. There are two types of information that
we are interested in:

- The traffic evolution
- The content of the messages exchange with the bot, also named trends

Therefore, the dashboard will be a trade-off of operational dashboards, which
focused on the traffic evolution and Analytical dashboards, which process data to
identify trends. In order to design the several KPI, we based our reflexion on the
AAARR start-up metrics model developed by Dave Mcclure which was partially
adapted. Thus, the following KPIs were selected and divided into three categories:

v Activation Rate: Designate all the metric related to traffic information which
includes:

o Total number of users
o New users
o User average age, to estimate the age range of the users
o User session location, to identify in which country/city the bot is used
o User global satisfaction

v User Interactions: Gather, the metrics to evaluate the interaction between the
bot and the users.

o The average holding time, indicating the average time of a discussion
between the bot and the user

o The average number of question per users
o The total number of questions

v Analytics: To analyze the user’s questions and the trends.

o Trend topic
o Most frequent words in user’s questions
o Most frequent asked questions

Some KPIs such as the user average age or the user session location require

information that cannot be retrieved from the data gathered by the system but that
need to be ask to user. Therefore, a conversation needs to be built in order to bring
the user to give us this data. Beside, to make our bot looking more human, it needs to
speak like it. In the following section, the chat flows built for this bot will be explained.

 	

CHARLINE MAS Page 42/83

1.3. Chat	flows	

In this section will be described how a bot’s conversation is built. Indeed, to ensure
the consistency in the responses sent to the user and to gather the required
information, the bot needs to be able to keep track of the context of the current
discussion and to ask the right question at the right moment.

To help the bot to keep track of this context, several States need to be defined. A
State represents a part of the conversation and indicates the type of action to be
performed. For example, the state START refers to the begin of a discussion between
the bot and the user. Thus, the bot is expecting a certain type of messages such as
“Hi” or “Hello” and will perform the action sentMessage, to reply to the user with a
welcome message. Therefore, the different type of message that could be received by
the bot will be presented first and then the different States used by the bot will be
explained.

1.3.1. Message	types	

In this project, several categories of messages have been identified as possible
type of input for our bot as presented below:

v Greetings. Includes all messages such as “Hi”, “Hello”, “Good morning”, etc.

v User personal information. As seen in the previous part, several personal
information from user are required to display the KPIs. The expected data are
the birth date, the current city and country of the user. The user’s location
information could be recovered via the phone’s location; however, the bot will
also be accessible via a web interface so it was decided to directly ask the user.

v Topic related. Includes the topic selected and all messages indicating the topic

select is not the topic desired.

v Question. Includes, the questions about the definitions of the topics such as
“What does Bariatrics mean?”, these types of questions will be called
Questions definitions. Another type is the questions about Health such as the
ones with have in the dataset. These questions will be called Health question.
Finally, a last type of questions that can be identifying by the bot: the already
asked question which designate a question that have been asked before by the
user as much in terms of meaning (question with the same idea but asked with
different words) as in terms of words ((question asked with the same words).

v Satisfaction. Boolean message: Yes/No

v Bye. Includes messages such as “Bye”, “Good bye”.

v Command. Two command are used for this project: /start and /done.

v Password. An unknown user must know the password in order to converse

with the bot.

CHARLINE MAS Page 43/83

1.3.2. Conversation	states		

As mentioned previously, a conversation is divided into states which work as
gates. Once the user gave the type of answer waited, the state is changed for another
one and so on. If the user has not answered the question in the expected way, the
state won’t change. In this project, four main States were defined:

1. START.
2. LOCATION.
3. IDENTIFICATION.
4. FALLBACK.

In the following section will be described the operation of each state.

1.3.2.1. START	

The state START is responsible of checking the user identity as shown in the figure
18. Three types of scenarios can be seen in this state. First, the user is known. In this
case, a welcome message will be sent
and the state will be changed to
IDENTIFICATION. Second, the user is
unknown, and the message received is
the password. In this case, User
personal information are asked to the
user and the state is changed to
LOCATION. Finally, if the user is
unknown and the message is of
greetings type, the password is asked
and the state remained unchanged.

Figure 20: Example of a conversation in the
START state, with greetings message as

input and unknown user

Figure 21: Example of a conversation in the START state, with password as input and

unknown user

 	

Figure 18: State START

Figure 19: Example of a conversation in the START state,
with known user and greetings input	

CHARLINE MAS Page 44/83

1.3.2.2. LOCATION	

The state LOCATION aims to check the format of the personal information
given by the user. Thus, two
scenarios can happen. First, if the
birth date has been given with the
correct format, a welcome message is
sent and the state is modified to
IDENTIFICATION. Second, the date
format was incorrect. In this case, the
user personal information is asked
again with a reminder on the expected
format.

Figure 22: Example of LOCATION state, with correct format message

1.3.2.3. IDENTIFICATION	

The state IDENTIFICATION is the main the state of the conversation. Indeed,
once the conversation is in this phase, the following types of messages can be treated:
Topic related, Question, and Satisfaction. This state is therefore, in charge of analyzing
the incoming message and detect in which category it belongs to. Several scenarios
can happen here.

1.3.2.3.1. Topic	related	messages	

First, the incoming is identifying as Topic related. In this case the message
could either be the name of one of the topics or a sentence indicating that the chosen
topic is actually not the desired one. First, If the input is a topic’s name then a global
variable will be implemented in background with the name of the topic and the user is
asked to ask his question. Second, a message indicating that a wrong topic has been
chosen, will lead the bot the ask again the topic desired.

In the case, the global variable is not filled but the detected input is Question
or Satisfaction the user will be asked to choose a topic.

CHARLINE MAS Page 45/83

 Figure 23: Example of a input topic selected

1.3.2.3.2. Questions	

Second, A Question type input is identified and the global variable concerning
the chosen topic is filled. In this case, the input is pre-processed using the same NLP
pipeline as explained in the section 2.1.2 of the chapter 2, the similarity between the
pre-processed incoming message and some predefined questions are evaluated with
the cosine similarity measure. If the measure is above the threshold, then the question
is identified as a Question definition and an answer is sent to the user. On the other
hand, if the question is not identified as Question definition then cosine similarity is
applied again but on all the questions previously asked the user. If the user is of type
Unknown or if the user did not ask a threshold number of question, this step is skipped.
After measure of the similarities between the old user questions and the new query, if
the highest similarity found is above a threshold then the question is identify as already
asked question, otherwise the question is considered as Health Question and will be
analyzed via Word Mover’s distance (WMD). Again, if the measure is above the
threshold then an answer is sent. Else, the bot is sending an apology and asks the
user to rephrase his question.

Figure 24: Example of IDENTIFICATION state, with Health questions type identified

 In the case of a Health questions type, we can see in the figure 24 that several
messages are sent before, sending the actual answer. It is explained by the very long
computation time required by the wmd. Indeed, this messages are here to make the
use wait and leave the application.

 	

CHARLINE MAS Page 46/83

1.3.2.3.3. Satisfactions	

Third, a Yes/No message is identified. If the input is a Yes, then a Thank you
message is sent. But if it is a No, then the bot we will send the answer of the second
most similar question identified by the WMD and so on. The number of No is recorded
and if this number reaches the threshold then an apology is sent to the user with
indications about how to contact a professional.

Figure 25: Example of SATISFACTION state with No as input

Figure 26: Example of the IDENTIFICATION state with Yes as input

1.3.2.4. FALLBACK	

The FALLBACK state is a closing state. It is going to end the conversation when
the incoming message is of type Bye. In this case, only one scenario is possible: a Bye
message is sent to the user and the state is changed to START.

The states START and FALLBACK represent the begin and end of the chat
flow, which means that a conversation will always begin in the START state and end
in the start FALLBACK. This implies that every time a user is going to send a greeting
message, the conversation will be placed in the state START, even if the current the
state was LOCATION or IDENTIFICATION. Same with the FALLBACK states, a bye
message will always end the conversation. This was made to make the bot looking
more like a Human. Indeed, if for example, the user leaves the chat without sending a
bye message. The state of the conversation is therefore still IDENTIFICATION. In this
case if the user come back, the possible inputs would have been Topic related,
Question or Satisfaction. Or when you chat with a person, the first thing you say before
starting a new conversation is “Hi” or “Hello”.

 	

CHARLINE MAS Page 47/83

1.4. Programming	Language	
Now that the key elements have been defined for each interface, a

programming language needs to be selected for the backend and for the connection
between the backend and the bot interface. For creating Chatbots, there are various
options to choose in programming language. Some of the most popular languages to
build Chatbots are presented below:

- Python. Well known for its simplicity, Python has a straightforward
syntax and it’s object-oriented. This language is one of the most widely
used in programming languages in the field of Artificial Intelligence.

- Java. Provides all the high-level features needed in AI project. Java has
the most important features for a sophisticated interface, like facilitated
visualization and standard Widget toolkit.

- Ruby. Very simple syntax which allows beginners to create a Chatbot
easily. It is a dynamic and object-oriented language.

- Javascript. High-level interpreted programming language. This
language is widely in AI platforms. It supports real-time messages and
is easy to learn.

For this project a simple, flexible and easy language is sought. Since the NLP
part is the core of the Chatbots, a programming language with a NLP functions is
required. Therefore, Python was chosen for the following reasons:

- Easy to use: Python is to read which make it easy to pass the project from one
colleague to another

- Productivity: It is a great language for building scalable multiprotocol network
applications. Therefore, it is very suitable for building Chatbots.

- Machine Learning and Deep Learning Framework: Python has wide array
of open-source libraries including Scikit-learn and Tensorflow. It also includes
state-of-the-art AI algorithms.

- NLP libraries: It is the most popular language for natural language processing
and the biggest community. Indeed, one of the reason is Natural Language
Toolkit (NLTK) which was developed for Python and is one of the best
framework for text mining.

 	

CHARLINE MAS Page 48/83

2. FRONT-ENDS	

This part will focus on the realization of the two interfaces: Chatbot and the dashboard.

2.1. Chatbot	interface	
Messaging platforms are becoming universal mobile apps. Since, businesses

look for a way to deliver their messages and services where the consumers are, chat
platforms are becoming more and more popular for the companies and Chatbots give
them a way to do this. For this a project, it was decided to use an existent messaging
application and the following aspects were taken into account when selecting the app:

- Device Support: The app must be available on mobile and computer.
- Channel Usability: The priority will be given to the most commonly used

channels, in order to give more visibility and easier access to the Chabot.
- Development Flexibility: The channel must allow the most flexible way of

development.
- Security: The chosen channel, must make sure that communication between

two parties cannot be intercepted, altered, forged, or read by unauthorized third
parties.

2.1.1. Chatbot	channel	

There are several channel commonly used as presented in the list below:

- Facebook Messenger. Facebook, one the most popular social networks,
possesses one of the larger amount of user with different age range.

- Skype and Skype business. With the same idea as Facebook, Skype bots are
generally used in group chats for functional and business purposes.

- Telegram. Telegram is a multi-platform instant messaging created by Pavel
Durov. It is unique in its openness, as it has open-source client applications and
an open, flexible protocol. However, Telegram is mostly popular for its focus on
the users privacy, point that most of the other instant messaging clients put aside.

- Slack. Slack is an instant messaging client and foremost a workplace
communication tool. However, it can also be used for customer support, online
communities and in some cases even communication between social groups
from the real world.

In this project, the Chatbot aims to answer patient’s questions, therefore a one-
to-one, private conversation is considered. This first criterion discards the channels
Slack, Skype and Skype Business, since the group oriented is not wanted here. This
lead to a comparison of the Messenger and the Telegram channels.

CHARLINE MAS Page 49/83

At the end, it was decided to use Telegram as the front-end up for the following
reasons:

§ Telegram Messenger is accessible from multiple devices (mobile,
computer, tablet) and platforms (Android, iPhone, iPad, Microsoft Windows,
Web-version, macOS, PC, Mac, Linux), which makes it very reachable.

§ Although it has less active users than Facebook Messenger, it still has got
100 million daily active users and it is growing at a rate of more than 50%
annually.

§ Finally, and the most decisive factor, is its flexibility. The Telegram Bot has
got multiple functionalities that enriches the user experience, provides a
huge range of possibilities when developing a Chatbot and allows us to
implement the NLP layer built in the chapter two.

§

2.1.2. Chatbot	registration	

Now that the channel has been chosen, the bot must be created on it. In fact,
to allow the bot to be seen and reachable on Telegram it needs to be register. Telegram
provides a very simple way to create bots, indeed after a simple conversation with the
bot called BotFather, the bot can be registered.

The registration process required two
elements:

Bot’s Name. The name of the bot will be
displayed in the contact details and elsewhere. In
this project, it was decided to name the bot Ava.

Bot’s Username. The Username is a
short name, to be used in mentions and telegram
links. Usernames are 5-32 characters long and
are case insensitive, but may only include Latin
characters, numbers, and underscores. It is also
important to notice that the username must end
in ‘bot’. For this project the usernames used is
Ava_alpha_bot.

At the end of this procedure a token is
delivered. A token is a string along the lines of
110201543:AAHdqTcvCH1vGWJxfSeofSAs0K5PALDsaw that is required to authorize
the bot and send requests to the Bot API. The token delivered for Ava bot is the
following 609524466:AAGGjUBh7zFHpx3OfrdOzJzJEIkGz9eCwAw.

CHARLINE MAS Page 50/83

2.1.3. Telegram	bot	API	

As described on the Telegram Bot API Web Documentation, the Bot API is an
HTTP-based interface created for developer keen on building bots for Telegram.
Therefore, a bot is controlled by HTTP requests to the Bot API indicating the Bot’s
token as follow: https://api.telegram.org/bot<token>/METHOD_NAME. In the following
section will be described: API requests operations and the python wrapper used.

We will describe how works the API requests and then explained the Python
wrapper used in this project.

2.1.3.1. Telegram	bot	API	

Two ways of receiving updated can be used: The Polling method or the
Webhooks as shown in the figure 27.

- The Long Polling through the getUpdates method is sending an
HTTPS GET request to the API. Long Polling allows the connection to
stay open until updates are received. This connection is ruled by a
timeout argument which defines the time that can stay a connection
open.

- The Webhook method requires to specify the URL and the incoming
updates received via an outgoing webhook. Every time there is an
update for the Bot, the Telegram API will send an HTTPS POST request
to the specified URL, containing the update.

 Regardless of the chosen option, the update comes as a JSON-serialized
objects. These objects contain the information about the messages sent by the user to
the bot. Incoming updates are stored for 24 hours on the server.

In this project, the Long Polling method was used as it was easier to set up with
the chosen programming language.

Figure 27: Long Polling and Webhook methods

CHARLINE MAS Page 51/83

2.1.3.2. Python	wrapper	

To manage the Bot with python, the python-telegram-bot library was used, and
more precisely the submodule telegram.ext. This library provides a python interface
for Telegram Bot API and will take care to send and get message from the Bot API
thanks to the token.

Several classes can be found in this package, among them Updater,
Dispatcher, ConversationHandler, CommandHandler, MessageHandler and Filters.
These classes have used in the project and are described below:

- Updater. The purpose of the Updater is to receive updates from
Telegram and give it to the Dispatcher. This class contain the getUpdate
described in the previous paragraph.

- Dispatcher. This class dispatches all kinds of updates to its registered
handlers. In this project, the updates will be send to the
ConversationHandler.

- Handlers. The Handlers aim to handle the different type of messages
that the bot will have to deal with. Among them, we used
ConversationHandler, CommandHandler, MessageHandler .

- ConversationHandler. This class is charge to keep track of the
context of the discussion with the different states described in
the paragraph 1.3.2 of this chapter.

- CommandHandler. This class will handle the command
message, i.e. the message written after the slash symbol such
as /start.

- MessageHandler. This class will handle all the non-command
messages.

- Filters. This class filter out the non-command messages and specified
type of text. It is used with MessageHandler , to defined the input that
will accept the class.

A documentation of this library is also available at https://python-telegram-
bot.readthedocs.io/en/stable/telegram.html

 	

CHARLINE MAS Page 52/83

2.2. Dashboard	interface				 	 	

Now that the bot’s user front-end has been defined, the professionals interface
needs to be built. In the first part of this chapter, the KPIs for this dashboard have been
selected. In this paragraph, we will first focus on the software used to build our
dashboard and then, a presentation of the final interface will be done.

2.2.1. Dashboard	software	

Nowadays, modern dashboards use data visualization to improve the user
experience of traditional business intelligence. Data visualization is one of the most
popular business intelligence tools. Indeed, it helps people to effectively see and
understand data. As the industry continues to grow, so does the push for design-
focused, thoughtful, user-friendly dashboards. In order to choose, the more
appropriate dashboard software for this project, a comparison was made based on the
following criteria:

v Free Trial
v Free Version Available
v Automated Visualizations
v Visualization Option / User Palette
v Customizable Dashboards
v Sharing / Publish Tool
v Community Marketplace / Gallery

To realize the comparison, the most common dashboards software were selected
and presented below:

Ø Microsoft Power Bi:
A extremely powerful platform with a lot of data source connectors, a
user-friendly interface and good data visualization capabilities.

Ø Tableau:
A good platform with a lot of data connectors and visualizations. The
design is here also very user-friendly. This product has large community of
user.

Ø Google Analytics:
Due to its brand recognition and the fact that it’s free, Google Analytics is
the biggest name website and mobile app intelligence.

Ø Charito:
Processing engine with a powerful analytics platform, which possesses a
good query optimization system on SQL. It is entirely web-based.

CHARLINE MAS Page 53/83

 Microsoft
Power Bi Tableau Google

Analytics Charito

Free Trial Yes Yes Yes Yes

Free Version Available Yes No Yes No

Automated Visualizations Yes Yes No Yes

Visualization Option / User
Palette Yes Yes Yes Yes

Customizable Dashboards Yes Yes Yes Yes

Sharing / Publish Tool Yes Yes Yes Yes
Table 9: Dashboard software comparison

The table 9 presents the comparison realized between the different dashboard
software. The one which corresponds the most to the criteria is the software Microsoft
Power Bi.

2.2.2. Final	dashboard	

The final dashboard is composed of two pages: 	
Ø Global indicators
Ø Bot Analytics

The Global indicators page is designed to ensure an overall view of the general
metrics gather from the bot database. Thus, are present in this first page the following
indicators:

1. The total number of users of the application
2. The new users having been registered during the current month
3. The average age of the users
4. The total number of questions
5. The average number of question per users
6. The user sessions location, showing the location of each users.
7. The average holding time, indicating the average time of a conversation

with the bot
8. The average abandoned rate, evaluating the number of user having

been registered but didn’t ask any questions.
9. The global satisfaction, showing the general user’s satisfaction
10. The membership evolution (per month), which plot the evolution of the

number of new user per month.

A filter was added to this page, in order to filter by time, the following data displayed.

CHARLINE MAS Page 54/83

The Bot Analytics page, also having a time filter, is designed to allow an analytic
study of the questions asked by the users. Thus, are present in this first page the
following indicators:

1. The trend topic, indicating the most popular question’s topic asked per
month

2. The latest questions asked
3. The top 10 words occurrence, which show the keywords usually

mentioned in the questions
4. The words location (per country), indicating where the question(s)

having the selected keyword, were asked.
5. The words cloud, showing the top 50 most frequent words

1 2 3 4 5

7 6 8 9

10

1
2

3 4 5

CHARLINE MAS Page 55/83

3. BACK-END	CHATBOT		 		
3.1. Data	structure		

In this part, the Data structure of the project will be presented.

Figure 28: Data structure of the project

There are three folders in this python project:

- Bot functions: All the scripts responsible of the communication with the user
and the Telegram API.

- Database: All the files related to the data management and storage.
- Models: Contains the scripts related to the training, models computations and

models files.

In the following sections, all the files will be briefly described.

3.1.1. Main.py	file	

This script is core of the Chatbot. Indeed, all the functions, objects and data are
loaded into this files. The bot object and the conversation object are created here. The
conversation object is composed of three elements:

v Entry-points: It is the state START presented in paragraph 1.3.2 of this chapter.
The entry_points is a python list, which can be composed of one or many
elements. In this project a CommandHandler is added in order to allow the input
/start. A RegexHandler is added, which allow the state to accept the message

CHARLINE MAS Page 56/83

of type greetings. If the input match one of the two mentioned elements, the
command start is called.

v States: Dictionary dealing with the different states previously defined. Each
state is defined by the MessageHandler. When the state is LOCATION and the
input match the MessageHandler requirement, the command newUser is
called, while for the IDENTIFICATION state the command identifyIntent is called.

v Fallback: Defines the closing states and it is composed as the Entry-points of
a CommandHandler accepting this time the input /done and a RegexHandler
accepting inputs of type bye.

3.1.2. Bot	functions	

Here we store the auxiliary scripts that contain all necessary functions to make the Bot
work. These scripts are:

v Bot Command: Function designated as command. These are the functions
called by the conversation object. The specificity of these functions is that the
arguments must be bot and update and nothing else.

v Bot Function: Functions which are not depending on the objects previously
mentioned bot and update, such as 'buildMenu' which is not using any of the
objects parameters

v Global var: File used as a setting script. It allows to change the model used to
look for the answer, change the thresholds of the project and the waiting time.

v Handlers Folder: In this folder can be found the script dedicated to the different
types of object need to build a dialog with the telegram python package.

- The file speakerHelper.py is used to code all the method directly
related to interact with the user.

- The file checkerHelper.py is used to code all the method in charge of
the checking.

- The file actionsHelper.py is used to code all the method related to the
action the bot should realise. For example, the welcome function is in
charge of a welcome message to the user. Depending on type of user
(unkown/known) variable, the message will change.

- The file botHelper.py is used to code a 'block' object. This object is
required to build a command. Indeed, each command is actually a block
in which we are executing actions. These actions used some checking
functions and speaker functions.

In the end, adding a new skill to the bot, is actually adding a new command.
This command must be located in the bot_commands.py file. It should be a function
with the argument bot and update which are the arguments required by the telegram
package. Each command deals with a specific type of message and uses, as
mentioned before, actions function to treat them.

CHARLINE MAS Page 57/83

3.1.3. Database	folder	

We can find the necessary data for the running of the Bot, including:

v Ava.sqlite. It is the SQLite DB in which the data contained will be explained in
the section 3.2. of this chapter.

v Two python files. The first one (data_utils) gathers the functions related to the
data preprocessing. The second (dataHandler) groups all the functions used to
deal with the database.

v A jupyter notebook. To manually add data into the database

3.1.4. Models	folder	

All the necessary functions and data related to the models computation can be
found in this folder:

v models files. The files with the model and instances trained. They are external
files which are loaded only when the Bot is started.

v Python scripts. Contain all the function to compute the models
v A jupyter notebook. To train the word2vec model.

 	

CHARLINE MAS Page 58/83

3.2. Database	
It has been decided to manage the backend with a sqlite database. Indeed,

SQLite is a very light-weight relational database management system contained in a
C programming library. Rather to be a client-server database engine, it is embedded
into the end program.

To build the database, the python’s package sqlite3 was used. This package
allows us to create and open a connection to the database from python.

The structure of the database was designed to facilitate the following points:

v the data extraction for the dashboard
v the saving of key elements of a conversation bot-user
v the training of model

Therefore, the data gather from the conversation is saving into one of the following
tables:

- User. Containing the user information.
- Id: User id, a unique id delivered by telegram for each user.
- Birthdata: The birth date of the user gathers during the first

connection.
- Allowed: binary variable used to check if the user is allowed to talk

with the bot or no.
- Date_creation: The date of the user registration to the bot system.
- City: User’s current city.
- Country: User’s current country.

- Conversations. Record of all the conversations with the users.

CHARLINE MAS Page 59/83

- Id: conversation id, which is unique.
- Date: date of the conversation.
- Duration: duration of the conversation, from the first greeting to the

last user answer.
- Satisfaction: User’s satisfaction.
- Id_quesiton: foreign key of the Health question id saved into the

Questions table.
- Userid: foreign key of the user id of the Users table.
- Id_topic: foreign key of the topic id saved into the Topics table.

- Questions. Contains the questions of the dataset used in this project, but

also the Health question gathered from the conversations with the users.
- Id: unique id given to each each question.
- Subindex: none unique id given for each topic. For example, four ids

equal to 1 can be found into the sub-index column.
- Cleaned_q: pre-processed questions as explained in the chapter 2, in

the stop-words removal part.
- Original_q: non pre-processed questions
- inModel: Binary variable which aims to facilitate the selection of the

questions to train the model.
- Id_answer: foreign key of the answer’s id to which is linked the

question.
- Id_topic: Foreign key of the topic id.

- Topics: Gather the information related to the dataset’s topics.
- Id: unique id for each topic.
- Name: name of the topic.

- Definitions:

- Id: unique id for each question.
- Question: the question of type question definition.
- Answer: the definition of each topic

The reason why the question definition type of messages was put in a
separated table, is due to the way the data was created. Indeed, it was more
convenient to create a table in which all the manually created were put together. 	

3.3. Additional	Functionality	

We noticed that it was important for the bot to be able to detect the language in
which the user is talking. To do so, we implemented a function in the checkerHelper
script, to check the words inside the input. These words will then be compared to a list
of stops-words in different languages. A score is computed for each possible language
and the one having the highest score is selected. If this language corresponds to
English the chat flow continue, however if the language detected is not English, a
message is sent to the user to remember him to speak in English.

CHARLINE MAS Page 60/83

CONCLUSION	AND	FUTURE	WORK		

In this final chapter, the conclusions are exposed, as well as the contributions
made in this project and the future work proposed.

CONCLUSIONS	

The initial goals of the project have been reached even though some data
problems occur during the first two months and half. First, we will make a recap on the
different aspects of the project done:

Ø NLP approaches: We have been able to build a system that is able to
understand the meaning of the questions by using the Word Mover’s Distance
for the Health questions type and the Cosine similarity for the questions
definitions and already asked questions.

Ø Front-end Applications. We have been able to implement this system into an
actual text messaging application, Telegram, which is widely used, thus giving
the opportunity to reach our system a huge range of users. As well as building
a dashboard, using Power Bi, which shows the key elements gathered by the
system.

Ø Back-end Development. We have implemented a wide range of functionalities
for our Chatbot, which enriches the user experience and provides a useful
service.

Ø Python performance. Now that the solution is built, we can conclude that
given all what has been seen during the project, python is a very good option
to develop Chatbot, both for its flexibility and the performance provided for
natural language processing tasks.

Furthermore, a considerable autonomous learning has been done all along the
project, which has provided lots of knowledge about many different fields and about
the natural language processing world.

Taking a step back, it looks like we could have dedicated an entire Master
Thesis to the natural languages approaches and another one for the Chatbot
implementation. Of course, we have not been able to enter to all of these aspects at a
full level of detail, but an an effort was made to build an overall solution with high
performance considering the magnitude of this thesis.

 	

CHARLINE MAS Page 61/83

FUTURE	WORK	

Like in all project, there are always parts that could be improved or done
differently. Several axes of for improvement will be discussed here.

First concerning the NLP layer of the implemented solution, a work is currently
done to improve the computation time of the Word Mover distance. This improvement
is based on the paper Linear-Complexity Relaxed Word Mover's Distance with GPU
Acceleration by Kubilay Atasu, Thomas Parnell, Celestine Dünner, Manolis Sifalakis,
Haralampos Pozidis, Vasileios Vasileiadis, Michail Vlachos, Cesar Berrospi, Abdel
Labbi. They transformed the Relaxed Word Mover Distance into a low-complexity
implementation that reduces the average time complexity to linear. Their solution maps
well onto GPUs. We tried to implement their solutions in C++ but so far, no
improvement in term of computation have been realized yet.

Another idea to improve the quality of the model, is trying to find similar dataset
with a similar vocabulary in order to improvement the training of the Word2vec model.

A deep learning solution, has been tried in order to generate the answers
instead of retrieved. The idea is to go into a more personal conversation with the users.
So far, the results didn’t reach the result of the implemented model. But this could be
a way to improve the bot.

From a technical point of view, it could be considered to migrate the solution to
the cloud. Indeed, right now the bot is running in local and while it is a demo project,
to propose a solution running into the cloud.

.

CHARLINE MAS Page 62/83

APPENDICES	

For privacy issues, only code regarding the data cleaning process will be
attached. Code from the Chatbot implementation can be asked for consultation for the
thesis evaluation.

 	

A. data_utils.py	

This script provides the functions used to clean, analyse and correct string/words in
cells of dataframe.

---#
List of imports
---#

import warnings
warnings.filterwarnings(action='ignore', category=UserWarning,
module='gensim')
import re
from nltk import word_tokenize,wordpunct_tokenize
from nltk.corpus import stopwords,wordnet

Text Pre-processing

def preprocess(textVariable, dictionary=None,
removeApostrophes=True, special_element=None,removeNumbers=True,
 removePunctuation=True, removeControlChars=True,
removeWhiteSpace=True,
 removeExtraSpace=True,
toLower=True,singleLetter=True,removeUnderscore=True,outSpace=False,
cleanwords=True):
 """
 This function takes as input a text variable and optionally a
dictionary. The function computes
 basic text mining pre-processing.

 :param textVariable: string used as input
 :param dictionary: only required for cleanwords
 :param removeApostrophes: Boolean variable
 :param removeNumbers: Boolean variable
 :param removePunctuation: Boolean variable
 :param singleLetter : Boolean variable
 :param removeControlChars: Boolean variable
 :param removeWhiteSpace: Boolean variable
 :param removeExtraSpace:Boolean variable

CHARLINE MAS Page 63/83

 :param toLower: Boolean variable
 :param removeUnderscore : Boolean variable
 :param outSpace : Boolean variable
 :param cleanwords: correct misspelled words

 :return textVariable : A preprocess text variable

 """
 temp = textVariable
 # remove Apostrophes
 if removeApostrophes:
 temp = re.sub("'", "", temp)
 # remove Accent grave
 if special_element is not None:
 for elt in special_element:
 pattern = re.compile(r'\b{0}\b'.format(elt),
re.IGNORECASE)
 if re.findall(pattern, temp):
 sentence = re.sub(pattern, " ", temp)
 temp = temp.replace(elt, " ")

 # replace punctuation with space
 if removePunctuation:
 temp = re.sub(r'[^\w\s]', '', temp)
 # remove numbers
 if removeNumbers:
 temp = re.sub("\d", " ", temp)

 # remove single letter in the text
 if singleLetter:
 temp = re.sub('(\\b[A-Za-z] \\b|\\b [A-Za-z]\\b)', '', temp)

 # replace control characters with space
 if removeControlChars:
 temp = re.sub(r'[\x00-\x1f\x7f-\x9f-\xa0]', ' ', temp)

 # remove whitespace at beginning and ending of cells
 if removeWhiteSpace:
 temp = temp.strip()

 # remove extra space in the document
 if removeExtraSpace:
 temp = re.sub("\s{2,}", " ", temp)

 # force to lowercase
 if toLower:
 temp = temp.lower()

 # remove underscore of the textVariable
 if removeUnderscore:
 temp = re.sub("_", " ", temp)

 # remove all the space of the textVariable
 if outSpace:
 temp = re.sub(" ", "_", temp)

 # correct misspelled words
 if cleanwords:
 if dictionary:
 for key in list(dictionary.keys()):

CHARLINE MAS Page 64/83

 pattern = re.compile(r'\b{0}\b'.format(key),
re.IGNORECASE)
 if re.findall(pattern, temp):
 temp = re.sub(pattern, dictionary[key], temp)
 else:
 return print('Please add a dictionary to correct
misspelled words or mark cleanwords=False')

 return temp

---#
General Cleaning
---#
def calculate_languages_ratios(sentence,language_used=None,stop_list=None):
 """
 Calculate probability of given text to be written in several
languages and
 return a dictionary that looks like {'french': 2, 'spanish':
4, 'english': 0}

 :param sentence: Text whose language want to be detected
 :type text: str

 :return: Dictionary with languages and unique stopwords seen
in analyzed text
 :rtype: dict

 nltk.wordpunct_tokenize() splits all punctuations into
separate tokens
 """
 languages_ratios = {}
 tokens = wordpunct_tokenize(sentence)
 words = [word.lower() for word in tokens]

 # Compute per language included in nltk number of unique
stopwords appearing in analyzed text
 for language in stopwords.fileids():
 if language_used is not None and stop_list is not None:
 stopwords_set = set(stop_list +
stopwords.words(language))
 else:
 stopwords_set = set(stopwords.words(language))

 words_set = set(words)
 common_elements = words_set.intersection(stopwords_set)
 languages_ratios[language] = len(common_elements)

 return languages_ratios

def detect_language(text, language=None,stop_list=None):
 """
 Calculate probability of given text to be written in several
languages and
 return the highest scored.

 It uses a stopwords based approach, counting how many unique
stopwords
 are seen in analyzed text.

 :param text: Text whose language want to be detected
 :type text: str

CHARLINE MAS Page 65/83

 :return: Most scored language guessed
 :rtype: str
 """

 #list of language to consider as english text
 as_english = ['azerbaijani','danish', 'dutch']

 ratios =
calculate_languages_ratios(text,language_used=language,stop_list=sto
p_list)
 most_rated_language=max(ratios, key=ratios.get)

 if len(set(ratios.values()))==1 or most_rated_language in
as_english:
 most_rated_language=language

 return most_rated_language,ratios

defGeneralCleaning(index,listText,check_reject,language=None,stop_list=Non
e):
 # remove repeated character (which are not alphanumeric)
 listText = [re.sub('([^\w\s]{2,})', '', str(sentence)) for
sentence in listText]

 # remove repeated character in list [a-z] and replace it with
just one ex aaaaaaaah --> ah
 listText = [re.sub('((?![o])[a-z])\1{1,}',
'\1',str(sentence))for sentence in listText]

 # remove date and time
 listText = [re.sub('[0-9]{2}[\/,:.][0-9]{2}[\/,:.][0-9]{2,4}',
'', str(sentence))
 for sentence in listText]

 # remove special character <>#{}€%~€™
 listText = [re.sub('[<>#{}€%~€™Ã©Â¨Ãª]', '', str(sentence))
 for sentence in listText]

 # replace \b(Ã©|Ãª|Ã¨)\b by e
 listText = [re.sub('\b(Ã©|Ãª|Ã¨)\b', 'e', str(sentence))
 for sentence in listText]

 # remove special character]{>()}<[*?
 listText = [re.sub('[]{>()}<[*?]', '', str(sentence))
 for sentence in listText]

 listText = [preprocess(str(sentence), removeApostrophes=False,
 removeNumbers=False,
removePunctuation=False,
 removeControlChars=True,
removeWhiteSpace=True,
 removeExtraSpace=True,
toLower=False, singleLetter=False,
 removeUnderscore=True,
outSpace=False, cleanwords=False)
 for sentence in listText]

CHARLINE MAS Page 66/83

 if language is not None:
 if check_reject is None:
 check_reject={}
 listText_checking=[]
 # detect sentence with none english language
 for i,sentence in enumerate(listText):
 language_detected,ratios=detect_language(sentence,
language=language,stop_list=stop_list)
 if language_detected == language :
 listText_checking.append(sentence)
 else:
 print("#-------------------------#")
 print(language_detected)
 print("#-------------------------#")
 print()
 key=check_reject.setdefault(i,None)
 if key is not None:
 check_reject[i].append(language_detected)
 else:
 check_reject[i]=[language_detected]

 # return empty list if one of the sentence written in
language
 if len(listText)!= len(listText_checking):
 for i in range(len(listText)):
 listText[i]=""

 return listText,check_reject

def misspelled_words(tokens):
 '''
 function to correct the spelling of words(tokens)
 :param tokens: list of token to check
 :return: tokens_correct list of token with correct spelling
 '''
 import re
 from autocorrect import spell
 tokens_correct = []
 for token in tokens:
 if not re.findall(re.compile(r'[^\w\s]'), token):
 tokens_correct.append(spell(token))
 else:
 if len(tokens_correct) > 1:

tokens_correct.append(''.join([tokens_correct.pop(tokens_correct.ind
ex(tokens_correct[-1])), token]))

 # tokens_correct=[spell(token)for token in tokens if not
re.findall(re.compile(r'[^\w\s]'),token)]
 return tokens_correct

def removeElement(sentence, replaceObj, dict_arg=None):
 import re
 if isinstance(replaceObj, dict):
 # case 1 : replaceDict={'by':'toReplace'}
 # -->replace one word/expression('toReplace') by a specific
word/expression ('by')
 # case 2 : replaceDict={by:'[toReplace1,toReplace2]'}
 # -->replace list of

CHARLINE MAS Page 67/83

words/expressions8[toReplace1,toReplace2]) by a specific
word/expression ('by')
 # toReplace can be a regex expression like [\(\)\{\}<>]
 for by in replaceObj.keys():
 toReplace = replaceObj[by]
 if isinstance(toReplace, list): # case 2
 pattern = re.compile("|".join(toReplace),
re.IGNORECASE) # "({})".format(x) for x in toReplace)
 sentence = re.sub(pattern, by, sentence)
 else:
 sentence = re.sub(re.compile(toReplace,
re.IGNORECASE), by, sentence)

 if callable(replaceObj):
 def replace_with_function(sentence,replaceObj,*args):
 if len(args) < 2:
 return print('Please give me a regex expression and
a word to replace')
 if replaceObj.__name__ == 'search':
 if len(args) == 3: # args =['regex
expression','by',index]
 elt = re.search(args[0], sentence,re.M |
re.IGNORECASE)
 if elt is not None:
 elt=elt.group(args[2])
 else:
 return print(
 "-->Please add a boolean value (0 or 1) for
the group function. Ex: removeElement(tt,re.search,r'[0-
9]','feet',1)")
 else:
 elt = replaceObj(args[0], sentence,re.M |
re.IGNORECASE)

 if isinstance(elt, list) and elt is not None:
 pattern = re.compile("|".join(elt), re.IGNORECASE)

 else:
 if elt is None or elt=='':
 pattern = ''
 else:
 pattern = re.compile(elt, re.IGNORECASE)

 sentence = re.sub(pattern, args[1], sentence)
 return sentence

 def reformatList(key, listValues):
 if len(listValues) > 1:
 index = listValues[1]
 elt_list = [listValues[0], key, index]
 else:
 elt_list = [listValues[0], key]
 return elt_list

 if dict_arg is not None:
 for by in dict_arg.keys():
 values = dict_arg[by]
 if isinstance(values,list): # dict type =
{'key':[values],[values],..]
 for i in values:
 if isinstance(i,list):# dict type =

CHARLINE MAS Page 68/83

{'key':[[value1,value2],[value1,value2],..]
 elt_list=reformatList(by, i)
 sentence =
replace_with_function(sentence, replaceObj, *elt_list)
 else:
 elt_list=[i,by]
 sentence =
replace_with_function(sentence, replaceObj, *elt_list)
 else:
 elt_list = [values, by]
 sentence =
replace_with_function(sentence,replaceObj, *elt_list)
 return sentence

---#
Replacing Words Matching Regular Expressions
---#

replacement_patterns = [
 (r'won\'t', 'will not'),
 (r'can\'t', 'cannot'),
 (r'i\'m', 'i am'),
 (r'ain\'t', 'is not'),
 (r'(\w+)\'ll', '\g<1> will'),
 (r'(\w+)n\'t', '\g<1> not'),
 (r'(\w+)\'ve', '\g<1> have'),
 (r'(\w+)\'s', '\g<1> is'),
 (r'(\w+)\'re', '\g<1> are'),
 (r'(\w+)\'d', '\g<1> would'),
]

class RegexpReplacer(object):
 """ Replaces regular expression in a text.
 replacer = RegexpReplacer()
 replacer.replace("can't is a contraction")
 'cannot is a contraction'
 replacer.replace("I should've done that thing I didn't do")
 'I should have done that thing I did not do'
 """

 def __init__(self, patterns=replacement_patterns):
 self.patterns = [(re.compile(regex), repl) for (regex, repl)
in patterns]

 def replace(self, text):
 s = text

 for (pattern, repl) in self.patterns:
 s = re.sub(pattern, repl, s)

 return s

class RepeatReplacer(object):
 """ Removes repeating characters until a valid word is found.
 >>> replacer = RepeatReplacer()
 >>> replacer.replace('looooove')
 'love'
 >>> replacer.replace('oooooh')
 'ooh'

CHARLINE MAS Page 69/83

 >>> replacer.replace('goose')
 'goose'
 """

 def __init__(self):
 self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)')
 self.repl = r'\1\2\3'

 def replace(self, word):
 if wordnet.synsets(word):
 return word

 repl_word = self.repeat_regexp.sub(self.repl, word)

 if repl_word != word:
 return self.replace(repl_word)
 else:
 return repl_word

def preprocess_doc(documents, language='english'):
 '''
 Function to clean the messages.
 :param documents: message (string) to clean
 :param language: language to use for stop_word
 :return: cleand tokenized message
 '''
 # Lower the text.
 doc = documents.lower()

 replacer = RegexpReplacer()
 replacer.replace(str(doc))

 # Remove stopwords.
 stop_words = stopwords.words(language)
 doc = word_tokenize(doc) # Split into words.
 doc = [w for w in doc if not w in stop_words] # Remove
stopwords.
 doc = [w for w in doc if w.isalpha()] # Remove numbers and
punctuation.

 return doc

CHARLINE MAS Page 70/83

B. Dataset	creation	

In this part, the python steps to create the extract the data from the json files and
create a csv file are presented :

Import packages

import os, json
import pandas as pd

Load files and create dataset
path_to_json = './json/'

Load files' names into a list
json_files = [pos_json for pos_json in os.listdir(path_to_json) if
pos_json.endswith('.json')]
print("Files' names: ",json_files)

Create an empty dataset
jsons_data = pd.DataFrame(columns=['question', 'answer', 'tags'])

Fill dataset

#initialised indexes of dataset
index = 0

loop over names' files
for js in json_files:
 with open(os.path.join(path_to_json, js)) as json_file:
 json_text = json.load(json_file)

 #Look for considered elements
 for elt in json_text:
 question = elt['question']
 answer = elt['answer']
 tags = elt['tags']

 # Push a list of data into the DataFrame at row given by
'index'
 jsons_data.loc[index] = [question, answer, tags]
 index+=1

#save dataset
jsons_data.to_csv('dataset_QnA.csv', sep=';', encoding='utf-8',
index=False)

	 	

	 	

CHARLINE MAS Page 71/83

C. Data	cleaning		

This part exposed the functions and steps realised to clean the data, corresponding to
the part 2.1. of the second chapter.

a. Functions	used	in	the	cleaning	process	

In this part, funcitons used for the cleaning realised on the extracted data.

---#
List of imports
---#
#package
import pandas as pd
#import bot_data.data_utils
import data_utils

---#
Functions
---#

def removeRows(dataframe,columns):
 '''
 function to remove rows where one of the variables contained in
columns list is empty
 :param dataframe: pandas dataframe
 :param columns: columns to consider
 GoodDataFrame and BadDataFrame a
 :return: -
 '''
 #initialize list toRemove
 index_list_toRemove=[]

 # cell with len <=1 replace by ""
 for index, row in dataframe.iterrows():
 add = False
 toCheck = row[columns].tolist()
 for i,sentence in enumerate(toCheck):
 if (len(str(sentence))<=1) or sentence=="N/a" or
sentence==' ' :
 dataframe.loc[index, columns[i]] = ""
 add = True
 if pd.isnull(sentence):
 dataframe.loc[index, columns[i]] = ""
 add = True
 if add and index not in index_list_toRemove:
 index_list_toRemove.append(index)

 #remove element contained in index_list_toRemove
 dataframe.drop(dataframe.index[index_list_toRemove],
inplace=True)
 print('rows removed')
 return dataframe

CHARLINE MAS Page 72/83

def removeDuplicateRow(dataframe,path, *args,merge=True):
 '''
 function to remove duplicate row having same element in column A
and B
 :param dataframe: pandas dataframe
 :param columns: columns to consider
 :param args: list of two columns to be considered

 save dataframe without duplicate rows
 :return: -
 '''

 df = pd.read_csv('{0}/'.format(path) + dataframe, sep=";")

 columnA = args[0]
 columnB = args[1]

 # first drop rows with Q and A equal (we keep the last)
 newdf = df.drop_duplicates(subset=[columnA, columnB],
keep='last')

 # merge question duplicate with different answer
 list_trueFalse= newdf.duplicated([columnA], keep=False).tolist()
 index_duplicate_row=[index for index, elt in
enumerate(list_trueFalse) if elt]

 dict_treat_row = {}
 index_list_toRemove = []
 for index in index_duplicate_row:
 question = newdf.loc[newdf.index[index], columnA]
 answer = newdf.loc[newdf.index[index], columnB]

 if question in dict_treat_row.keys():
 dict_treat_row[question].append(answer)
 index_list_toRemove.append(index)
 else:
 dict_treat_row[question] = [answer]

 # remove element contained in index_list_toRemove
 newdf = newdf.drop(newdf.index[index_list_toRemove])

 #fill the new dataset
 for index,row in newdf.iterrows():
 question = row[columnA]
 if question in dict_treat_row.keys():
 if merge:
 row[columnB] = '/'.join(str(v) for v in
dict_treat_row[question]) #merge all answer into a string
 else:
 row[columnB]= dict_treat_row[question][-1] #take the
last element

 newdf.to_csv('{0}/3_removeDuplicateRow.csv'.format(path),
sep=';', encoding='utf-8', index=False)
 print('You removed {0} rows'.format(df.shape[0] -
newdf.shape[0]))

CHARLINE MAS Page 73/83

def spellingCorrection(dataframe, columns, path, name=None):
 '''
 :param dataframe: pandas dataframe
 :param columns: columns to check
 :param path: where to save dataframe
 :param name: if name not none, save the dataframe in path
 :return: dataframe with correct spelling in columns
 '''
 from data_utils import misspelled_words
 import nltk
 dataframe.reset_index()
 for index, row in dataframe.iterrows():
 to_check = row[columns].tolist()
 for column, sentence in enumerate(to_check):
 tokens = nltk.tokenize.word_tokenize(sentence)
 tokens_correct = misspelled_words(tokens)
 dataframe.at[index, columns[column]] = ' '.join(str(v)
for v in tokens_correct)
 print('Row : %s corrected' % str(index), 'Shape dataframe',
dataframe.shape[0])

 dataframe = removeRows(dataframe, columns)

 print('-----------------------------------')
 print('All the columns have been corrected')
 print('-----------------------------------')

 if name is not None:
 dataframe.to_csv('{0}'.format(path) + name + '.csv',
sep=';', encoding='utf-8', index=False)
 print('Dataframe saved')

 return dataframe

def NameDictionary(dataframe,columns,path,name_dict=None):
 '''
 Function to identify the name in a sentence
 :param dataframe: pandas dataframe
 :param columns: columns list to check
 :param path: where to save the dictionary
 :param name_dict: name of dictionary to save
 :return: dictionary {'Jo':[(23,'Q')]} = {'Name':[(index in
dataframe,column)]}
 '''
 import nltk
 import numpy as np
 from nltk.tag.stanford import StanfordNERTagger

 # Change the path according to your system
 stanford_classifier = 'C:/Users/charline.mas/stanford-ner-2018-
02-27/classifiers/english.all.3class.distsim.crf.ser.gz'
 stanford_ner_path = 'C:/Users/charline.mas/stanford-ner-2018-02-
27/stanford-ner.jar'

 # Creating Tagger Object
 st = StanfordNERTagger(stanford_classifier, stanford_ner_path,
encoding='utf-8')

 #creation dicitonary of the found names
 dict_name = {}
 dataframe.reset_index()

CHARLINE MAS Page 74/83

 for index,row in dataframe.iterrows():
 to_check= row[columns].tolist()
 for column,sentence in enumerate(to_check):
 for sent in nltk.sent_tokenize(sentence):
 tokens = nltk.tokenize.word_tokenize(sent)
 tags = st.tag(tokens)
 for tag in tags:
 if tag[1] == 'PERSON':
 print(tag,index,columns[column])
 name=tag[0]
 if name in dict_name.keys():
 dict_name_temp={}
 old_val=dict_name[name]
 value_toAdd=[(index,columns[column])]
 dict_name_temp[name]=old_val+value_toAdd
 dict_name.update(dict_name_temp)
 else:

dict_name[name]=[(index,columns[column])]

 np.save('{0}{1}.npy'.format(path,name_dict), dict_name)
 print('-----------------------------------')
 print('Dictionary names saved')
 print('-----------------------------------')
 return dict_name

def deleteElement
(dataframe,columns,replaceObj,dict_args=None,name=None,removeSentenc
e=False):

 import nltk
 from data_utils import removeElement
 dataframe.reset_index()
 for index, row in dataframe.iterrows():
 to_check = row[columns].tolist()
 for column, sentence in enumerate(to_check):

 if removeSentence:
 new_text=[]
 for sent in nltk.sent_tokenize(sentence):
 if dict_args is not None:
 s =
removeElement(sent,replaceObj,dict_arg=dict_args)
 else:
 s = removeElement(sent, replaceObj)
 if not len(s)<len(sent):
 new_text.append(sent.capitalize())

 sentence= ' '.join(new_text)
 else:
 if dict_args is not None:
 sentence = removeElement(sentence, replaceObj,
dict_arg=dict_args)
 else:
 sentence = removeElement(sentence, replaceObj)

 dataframe.at[index, columns[column]] = sentence

 if removeSentence:

CHARLINE MAS Page 75/83

 print('-----------------------------------')
 print('Sentence(s) removed')
 print('-----------------------------------')
 else:
 print('-----------------------------------')
 print('Element(s) removed')
 print('-----------------------------------')

 if name is not None:
 dataframe.to_csv('./data/'+name + '.csv', sep=';',
encoding='utf-8', index=False)
 print('Dataframe saved')

 return dataframe

 	

CHARLINE MAS Page 76/83

b. Cleaning	steps	

Import packages

import pandas as pd
import re
import nltk
from nltk import word_tokenize
from collections import Counter
import collections
from data_extraction import *
from data_utils import *

Load Data
df = pd.read_csv('dataset_QnA.csv', sep=";")

General cleaning

Remove all the duplicate and empty rows
path = './'
removeDuplicateRow('dataset_QnA.csv',path, 'question',
'answer',merge=False)

import the previous cleaning dataset
df1 = pd.read_csv('{0}3_removeDuplicateRow.csv'.format(path),
sep=";")

NLP cleaning
'''
Clean sentences from misspelled words, control characters, whitespace
at beginning and ending of sentence,
extra space and underscore
'''

Remove the sentence in answer variable containing the following
elements
elt_forSentenceRemoving=['regards', 'thanks', "pictures","thankyou",
"thnkayou", 'thank you','Thnkayou','sincerely','take care']
df2 = deleteElement
(df1,['answer'],{'':elt_forSentenceRemoving},name=None,removeSentenc
e=True)

Replace elements in the question and answer columns
courtesy = ["good afternoon", "good morning", "best regards",
"hello",
 "hi", "good evening","as above","Sorry","please"]
courtesy = [r'\bw\b' for w in courtesy]

dd={'and': '&', 'emergency room':r'\ber\b', 'you':r'\bu\b',

'which':r'\bwch\b','radiotherapy':r'\brt\b','toxicity':r'\btx\b','th
anks':r'\btxs\b','I have':r'\bive\b',
 'doctor':'dr.','feet':'ft','primary care
physician':r'\bpcp\b','electrocardiogram':[r'\bekg\b',r'\becg\b',r'\
bekgs\b'],

CHARLINE MAS Page 77/83

 'problems':r'\bpblms\b','problem':r'\bpblm\b','weight
management':r'\bwt
mngmt\b','years':[r'\byrs\b',r'\byr\b'],'i.e.':r'\b i. e \b',
 'hour':r'\bhr\b',"I don't know":r'\bidk\b','wide local
excision':r'\bwle\b','please':r'\bplz\b','abut':r'\babout\b',
 '':courtesy+[r'[\(\)\{\}<>]',"'",'-'],' ':'/'}

df3 = deleteElement
(df2,['question','answer'],dd,removeSentence=False)

Columns to consider in the cleaning
columns=['question','answer']

Create a copy of the previous cleaned dataset
df4 = df3.copy()
df4.reset_index()

Apply the preprocess function to each column and each row of the
selected column.
for column in columns:
 # Select the column and defined it as a list
 S = df4[column].tolist()
 # Apply functions
 new_s = [preprocess(sentence,
removeApostrophes=False,special_element=["``",'"'],
removeNumbers=False,
 removePunctuation=False, removeControlChars=True,
removeWhiteSpace=True,
 removeExtraSpace=True,
toLower=False,singleLetter=False,removeUnderscore=True,
 outSpace=False,cleanwords=False) for
sentence in S]
 new_s=[' '.join([s.capitalize() for s in
nltk.sent_tokenize(sentence)])
 for sentence in new_s]
 # Finally we add back the cleaned column to the dataset
 df4[column]=new_s

'''
Remove duplicate words ex you mention is is rated --> you mention is
rated
'''
Columns to consider in the cleaning
columns=['question','answer']

Create a copy of the previous cleaned dataset
df5 = df4.copy()
df5.reset_index()

for column in columns:
 S = df5[column].tolist()
 new_sentence=[]
 for index,sentence in enumerate(S):
 new_sent=[]
 for sent in nltk.sent_tokenize(sentence):
 words = sent.split(' ')
 words_copy = words.copy()
 for i in range(len(words)):
 if i != len(words)-1 and words[i]==words[i+1]:

CHARLINE MAS Page 78/83

 words_copy.remove(words[i])
 new_sent.append(' '.join(words_copy))
 new_sentence.append(' '.join(new_sent))
 df5[column]=new_sentence

'''
Remove the whitespace created by the previous cleaning
'''
Columns to consider in the cleaning
columns=['question','answer']

Create a copy of the previous cleaned dataset
df6 = df5.copy()
df6.reset_index()

for column in columns:
 S = df6[column].tolist()
 new_s = [preprocess(sentence, dictionary=None,
removeApostrophes=False,special_element=None, removeNumbers=False,
 removePunctuation=False, removeControlChars=True,
removeWhiteSpace=True,
 removeExtraSpace=True,
toLower=False,singleLetter=False,removeUnderscore=True,
 outSpace=False, cleanwords=False) for
sentence in S]
 new_s=[' '.join([s.capitalize() for s in
nltk.sent_tokenize(sentence)])
 for sentence in new_s]
 df6[column]=new_s

Remove the empty rows created by the previous cleaning
df7 = removeRows(df6, columns)

delete the following elements in the tags columns
df8 = deleteElement
(df7,['tags'],{'':[r'[\(\)\{\}\[\]]',"'"]},removeSentence=False)

'''
Remove the whitespace created by the previous cleaning
'''

Create a copy of the previous cleaned dataset
df9 = df8.copy()
df9.reset_index()

S = df9['tags'].tolist()
new_s=[[word for word in elt.split(', ')] for elt in S]
new_s=[' '.join([s.capitalize() for s in sentence])
 for sentence in new_s]
df9['tags']=new_s

'''
Final checking to find empty rows
'''
Columns to consider in the cleaning
columns=['tags']

CHARLINE MAS Page 79/83

Create a copy of the previous cleaned dataset
df10 = df9.copy()
df10.reset_index()

Initialisation of the index list of the element to remove
index_list_toRemove=[]
Iterate through the dataset to find index of empty rows
for index, row in df10.iterrows():
 add = False
 toCheck = row[columns].tolist()
 toCheck = toCheck[0].split(', ')
 if not toCheck or ' '.join(toCheck)==' ':
 index_list_toRemove.append(index)

#remove element contained in index_list_toRemove
df10.drop(df10.index[index_list_toRemove], inplace=True)

 	

CHARLINE MAS Page 80/83

c. Data	selection	

In this section, it is showed how we selected only the rows having one topic

Transform tags columns into list
tags = df10['tags'].tolist()
new_tags = [[word for word in tag.split(', ')] for tag in tags]

Compute lenght of each tag_list
tag_list_lenght = list(map(len,new_tags))

Dictionary of topics frequency
count = Counter(tag_list_lenght)

Sorted the previously found dictionary
od = collections.OrderedDict(sorted(count.items()))

Create index dictionary key = number of tag, values = list of
index
dd_index={}
for i in count.keys():
 dd_index[i]=[n for n, x in enumerate(tag_list_lenght) if x == i]

Select the rows with just one tag
dataset_one_tag = df1.loc[dd_index[1],:]

#List of retained tag
tags_retained=['bariatrics','cardiac
electrophysiology','cardiology','breast surgery']

Select rows which contained only the tags in tags_retained
dataset_retained_tags=dataset_one_tag.loc[dataset_one_tag['tags'].is
in(tags_retained)]

Transform topic name into cluster number
df_final = dataset_retained_tags.copy()

#Create dictionary with the topics code
dict_cluster={'bariatrics':0,'breast surgery':1,'cardiac
electrophysiology':2,'cardiology':3}

Change the tag name by the cluster number
df_final['tags'] = df_final['tags'].map(dict_cluster)

Save dataset
df_final.to_csv('labeled_data.csv', sep=';', encoding='utf-8',
index=False)

	

CHARLINE MAS Page 81/83

BIBLIOGRAPHY	

[1] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems (TiiS), 5(4):19, 2016.  

[2] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger. From word embeddings to
document distances. In Proceedings of the 32nd International Conference on
Machine Learning (ICML 2015), pages 957–966, 2015  

[3] Q. V. Le and T. Mikolov. Distributed representations of sentences and documents. In
ICML, volume 14, pages 1188–1196, 2014.  

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representa- tions in vector space. arXiv preprint arXiv:1301.3781, 2013.  

[5] C. Musto, G. Semeraro, M. de Gemmis, and P. Lops. Learning word embeddings
from wikipedia for content-based recommender systems. In European Conference on
Informa- tion Retrieval, pages 729–734. Springer, 2016.  

[6] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for
image retrieval. International journal of computer vision, 40(2):99–121, 2000.  

[7] Tomoyosi Akiba, Katunobu Itou, and Atsushi Fujii. “Question Answering Us- ing"
Common Sense" and Utility Maximization Principle.” In: NTCIR. 2004.  

[8] Amara D. Angelica. “How Watson Works: a conversation with Eric Brown, IBM
Research Manager”. In: Kurzweil Accelerating Intelligence (2011). URL:
http://www.kurzweilai.net/how-watson-works-a- conversation-with-eric-brown-ibm-
research-manager.  

[9] Ricardo Baeza-Yates and William Bruce Frakes. Information retrieval: data struc-
tures & algorithms. Prentice Hall, 1992.

[10] Yoshua Bengio et al. “A neural probabilistic language model”. In: Journal of machine
learning research 3.Feb (2003), pp. 1137–1155.  

[11] Mark Clark. A Chatbot Framework. 2016. URL: http://info.contactsolutions.
com/digital-engagement-blog/a-chatbot-framework.

[12]  Ralf Herbrich and Thore Graepel, Handbook of natural language processing second
edition. Microsoft research, Cambridge, UK. Part I: Classical approaches.

[13] Document-term matrix. (2015, December 23). Document-term matrix — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/wiki/Document-term_matrix

CHARLINE MAS Page 82/83

[14] Card, S. K., Robertson, G. G., and Mackinlay, J. D. (1991). The information
visualizer: An information workspace. Proc. ACM CHI’91 Conf. (New Orleans, LA, 28
April-2 May), 181-188.

[15] Miller, R. B. (1968). Response time in man-computer conversational transactions.
Proc. AFIPS Fall Joint Computer Conference Vol. 33, 267-277.

[16] Myers, B. A. (1985). The importance of percent-done progress indicators for
computer-human interfaces. Proc. ACM CHI’85 Conf. (San Francisco, CA, 14-18
April), 11-17.

[17] Miteva, S. (2017, August 21). 5 Programming Languages You Can Use to Create
Chatbots. http://valosohub.com/blog/2017/08/21/programming-languages-chatbots/

[18] Willems, K. (2015, May 12). Choosing R or Python for Data Analysis? An Infographic.
https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis

[19] Kopf, D. (2017, September 22). If you want to upgrade your data analysis skills,
which programming language should you learn ?. https://qz.com/1063071/the-great-
r-versus-python-for-data-science-debate/

[20] Lobo, J. (2017, August 16). How to choose the best channel for your chatbot.
https://www.inbenta.com/en/blog/chatbot-choose-best-channel-chatbot/

[21] Briz, V. (2017, March 29). The 3 Best Platforms for your ChatBot.
https://chatbotslife.com/the-3-best-platforms-for-your-chatbot-d2693289950d

[22] Bearon, J. (2016, December 2). How to choose the best channel for your chatbot.
https://recast.ai/blog/how-to-choose-the-best-channel-for-your-bot-the- ultimate-
cheat-sheet/

[23] Brisson, K. (2016, August 25). 11 best messaging platforms for your chatbot or
conversational app. https://blog.init.ai/pick-your-platform-wisely-c5ab5bc7555d

[24] Dogtiev, A. (2017, December 5). Telegram Revenue and Usage Statistics.
http://www.businessofapps.com/data/telegram-statistics/

[25] Telegram (messaging service). (2018, January 1). Telegram (messaging service) —
Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Telegram_(messaging_service)

[26] Karush–Kuhn–Tucker conditions. (2017, December 1). Karush–Kuhn–Tucker
conditions — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Karush-
Kuhn-Tucker_conditions

CHARLINE MAS Page 83/83

[27] Dwyer, G. (2016, November 10). Building a Chatbot using Telegram and Python
(Part 1). https://www.codementor.io/garethdwyer/building-a-telegram-bot-using-
python- part-1-goi5fncay

[28] Push technology. (2018, January 2). Push technology — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/wiki/Push_technology#Long_polling

