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ABSTRACT		
 

Text processing and analysis is increasingly becoming ubiquitous due to 
the the immense amount of text data available on the internet. Indeed, experts 
have estimated that this type of data represents eighty to ninety percent of data 
in any organization. Therefore, techniques able to deal with unstructured data 
like text need to be developed.  

 

During this thesis, an end-to-end solution was provided, creating and 
developing a Chatbot which, thanks to natural language processing techniques, 
is able to answer very complex questions, often requiring even more complex 
answers, in a well-defined area. To do so, Vector Space Models and Word 
embedding model have been studied in order to make the system understand 
a question and provide a pre-built answer based on the topic of the question. 
The best results were obtained by using the Word Mover Distance, a distance 
based on the Word2vec model.  

 

 The Natural Language Processing layer has been implemented into a 
solution composed of two user interfaces: a messaging application Telegram 
and a dashboard.  A backend has also been designed and implemented. This 
project was realized entirely with Python, both the NLP study and the 
implementation which ended to be a reliable programming language for these 
kind of solutions.  
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INTRODUCTION	

1. CONTEXT	OF	THE	PROJECT		
 

The main goal of the project is to provide an end-to-end solution using Natural 
Language Processing techniques to create and develop a virtual assistant also 
designated as bot or Chatbot. The first part of the project consists of creating a bot 
able to understand, treat and answer to the user question. Then, a second part 
includes the creation of a system able to store the keys elements of a bot-user 
conversation, in order to analyzed the data and display it into a dashboard. 

The use case of this project was constrained by the data. Originally, the data was 
supposed to be furnished by the client and be about warranty claims. However, due to 
the poor quality of the data and the small size of the dataset (~3k rows), this data was 
given up to an open source dataset that can be found at: 

https://github.com/LasseRegin/medical-question-answer-data 

 This dataset is a questions-answers dataset. Each row is therefore, composed of 
a question, an answer but also a topic. While it will be described more precisely in this 
report, let's precise that the dataset has been reduced to the questions designated by 
one of the following topics: Bariatrics, Breast surgery, Cardiac Electrophysiology and 
Cardiology.  

2. STRUCTURE	OF	THE	PROJECT		
 

The solution to build is composed of different elements as presented in the figure 
1 below: 

 
Figure 1 : Solution to be built 
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The different elements of the figure 1 have been divided into several sub-goals, 
according to the magnitude of the Master’s Thesis.  

 

1. DATA MANAGER & NLP LAYER:  
1.1. Study and build a system able to answer very complex questions in a 

well-defined domain (the Healthcare area). The focus will put on answering 
questions to which high-quality answers can be given by using NLP and 
information retrieval techniques to retrieve the answers. 

1.2. Design a chat flow, to keep track of the context of conversation and be able 
to answer correctly also called Dialogue Management (DM) system in this 
report.  

 

2. USER INTERFACE & DASHBOARD:  
2.1. Design and Implement the system into a front-end application to make 

the Chatbot reachable by the users 
2.2. Study and implement the keys KPIs into a dashboard application  

 

3. KNOWLEDGE BASE AND DATA STORAGE 
3.1. Build a back-end for the system which incorporates the system and and 

facilitate the creation of KPIs for the dashboard. 

3. OUTLINE	OF	THE	REPORT		
 

In the following, the thesis is structure as follows: 

• Chapter 1: Literature Study 
This Chapter presents a literature study into Chatbot and Natural 
Language processing techniques. First, the definition of Chatbot is 
exposed, then the various types of Chatbots are described in order to 
understand which type is more appropriate and why. Second, an 
overview of NLP techniques is given, with among them the vector space 
and the word embedding models that can be applied in Chatbots. 

 

• Chapter 2: Natural Language Processing Approaches 
In this second chapter, the experimentation performed in order to choose 
the best model, is explained. First, we will described how the data has 
been preprocessed, then a comparison is realised between several 
techniques of similarity measure.  
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• Chapter 3: Implementation:  
In this chapter, the design and implementation process are presented. 
This part is divided into three subparts: Design process, Front-End and 
Backend. The Design Process section introduce the target user 
definition, the dashboard KPI, the chat flows along with the tool 
specifications. The Front-End section explains which app channel was 
selected and how the Chatbot and the dashboard were created. Finally, 
the Back-end section provides the development details, the data 
structure of the project, as well as the functionalities implemented. 
 

• Conclusion and Future Work  
Conclusion of the project by evaluating the final solution presented and 
proposing future work to do. 
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CHAPTER	1:	LITERATURE	STUDY		
 

As we consider the literature study, we note that there is a wide variety of Chatbots. 
In the first section we describe the different types of Chatbot. In the second section, 
the NLP techniques and the vector space and word embedding models used in this 
thesis are explained in details.  

1. 	CHATBOTS		
 

1.1. Definition	
A Chat roBot, also known as a chatter bot, Bot or Artificial Conversational Entity, is 

a computer program which aims to simulate human conversation or chat, through 
artificial intelligence (AI). This service, powered by rules and AI, is accessible via a 
chat interface (User interface). 

A Chabot can be used for various practical purposes from functional such as 
technical support to entertainment such as movie recommendation bot. They are 
frequently used for basic customer service and marketing systems that frequent social 
networking hubs and instant messaging clients such as Telegram or Messenger. They 
are also often included in operating systems as intelligent virtual assistants such as 
Cortana for Windows or Siri for Apple. Dedicated Chatbots appliances are also 
becoming more popular such as Amazon’s Alexa. These Chatbots can perform a wide 
variety of actions based on user commands.  

	

1.2. Type	of	Chatbot	
 

In order to differentiate Chatbots, two axes of 
analysis must be taken into account: 

• the type of response held by the bot  
• the type of conversation.  

Each of these categories is divided into two 
subcategories as shown in the figure 2 . 

 

1.2.1. Retrieval	based	models	vs	Generative	models	
 

The answers given by the bot can be of two types, retrieval based or generated. 
Bots based on the first type use a repository of predefined responses and some kind 
of heuristic to pick an appropriate response based on the input and context. The 

Figure 2: Chatbot Conversation 
Framework 
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heuristic depends on the complexity of the service proposed, the area in which the bot 
is used but could be as simple as a rule-based expression match, or as complex as an 
ensemble of Machine learning classifiers. One could have mentioned as downside of 
this type of system the limited set of possible answers that must be built upstream. 
However, the fact that the set of possible responses can be controlled, guarantee its 
quality and in some area such as Health and some use cases such as question 
answering, this guarantee of quality is required.  

 In the case of generated answers, bots are based on generative models. These 
systems don’t reply on predefined responses; they generate new ones from scratch. 
Typically based on Machine Translation techniques, generative models translate an 
input to an output (response). This type of bot understands language not just 
commands, and continuously gets smarter as it learns from conversations it has with 
people. However, a problem with this model is the way the answers are generated. 
Indeed, they tends to be generic, irrelevant, inconsistent or grammatically wrong.  

 

1.2.2. Open	Domain	VS	Closed	Domain		
 

The conversation held by a bot can be classified as mentioned, in two 
categories: Open Domain and Closed Domain. In an Open Domain, the user can take 
the conversation anywhere. There isn’t necessarily a well-defined goal or intention. 
This type of bot is more commonly called conversational bots. 

On the other hand, in a Closed Domain, the number of possible inputs and 
outputs is limited because the system is trying to achieve a very specific goal. This 
category is often referring as task-oriented bots. As shown in the figure 1, in Open 
Domain conversations a bot using retrieval based model is obviously impossible to 
produce since imagine all the scenario of a conversation is infeasible. Using a 
generative model with this type of conversations, conduct to produce a general AI 
which aims to perform any intellectual tasks feasible by a human being. It is a primary 
goal of some artificial intelligence research and a common topic in science fiction and 
future studies. This type of AI requires a lot of means in terms of equipment (very 
powerful computer), data, etc.  

In closed domain, on the other hand, retrieval based and generative bots 
(described previously) are more easily producible solutions provided you have the 
necessary data. 
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2. NATURAL	LANGUAGE	PROCESSING	
 

A common approach to natural language processing is to consider it as a process 
of language analysis being decomposable into several stages as presented below: 

 
Figure 3: NLP common approach 

These different stages represent different degree in the NLP analysis. Indeed, this 
idea is to first analyze the sentences in terms of their syntax. This analysis will provide 
an order and structure that is more amenable to an analysis in terms of semantics 
which is itself followed by a stage of pragmatic analysis. In this following, we will focus 
on three of five steps presented above:  Tokenization, Lexical analysis and Semantic 
analysis. We will first start with the Tokenization, which will be include in a more general 
step called Text Preprocessing.  

 

2.1. Text	Preprocessing	
Text Preprocessing is the task of converting a raw text file into well-defined 

sequence of linguistically meaningful units. It has three levels of actions: characters 
which represent the lowest level, words which consist of one or more characters, 
represent the second level. Finally, sentences which consist of one or more words, 
constitute the third level.  

An example of actions that can be realized at the second level, is the stop-word 
removal. Stop-word designate the most common words in a language. For example, 
for the English language, the stop-words can be ‘a’, ‘the’ or ‘are’, etc. The words usually 
occur very frequently and cannot be used to capture the topic of one document from 
another. Even though the stop-word process is needed to improve the performance of 
text classification, it can be difficult to create standard stop-words list because of the 
inconsistency of words being meaningful or meaningless in some specifics domains. 

Some actions can also be performed at any level, such as tokenization. 
Tokenization is the task of breaking down into pieces called tokens. These tokens are 
used for further process such as removing text component like punctuation or white 
space. 

Text preprocessing is an essential part of any NLP system, since the characters, 
words, and sentences identified at this stage are the fundamental units passed to all 
further processing stages, from bags-of-words model through applications, such as 
information retrieval systems.  

 	

Tokenization Lexical	
analysis

Syntactic	
analysis

Semantic	
analysis

Pragmatic	
analysis
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2.2. Lexical	analysis		
Text-oriented applications aim to register word’s structures. To learn this 

representation, techniques and mechanisms of text analysis can be performed at the 
word’s level. These kind of analysis are commonly called lexical analysis.  

This type of analysis refers to the process of converting a sequence of 
characters in to a sequence of tokens. Thus, the focus is on the word itself and not on 
how it interacts with other elements of the text. The word independencies are therefore 
not study in this type of analysis. Some of the most important techniques of the lexical 
analysis are:  

• Bag-of-word (BOW).  

A bow model is a very simplified representation of the text. In this case, the text is 
portrayed as the set of its words that allows multiple occurrences of the same element 
disregarding the grammar and even word order. This model is often used for document 
classification.  

 

• Term Frequency-Inverse Document Frequency (TF-IDF).  

TF-IDF is a numerical statistic defined by Salton and McGill in 1983. This statistic 
is intended to reflect how important a word is to a document in collection or corpus. 
The idea is, the more presents the word is in a text, the higher is the statistic. This 
augmentation is offset by the amount of times the word appears in all texts. The formula 
of the TF-IDF statistic is given below:  

𝑤",$ = 𝑡𝑓",$ ∙ 	𝑙𝑜𝑔
𝐷

𝑑/ ∈ 𝐷|	𝑡 ∈ 𝑑′
 

 

In this formula, 

1- 𝑡𝑓",$ Represents the term frequency (TF) of term t in document.  

2- 𝑙𝑜𝑔 3
$4∈3|	"∈$/

is the inverse document frequency (IDF), with D referring to the 

total number of text documents and d referring to the number of text 
documents, the term appears in.  

 With this definition, a word that appears in every document will have an almost 
zero IDF value, which will lead to a small TF-IDF value. However, a term that only 
appears in one document will have a very high IDF and thus a high TF-IDF value. 

 

2.3. Semantic	analysis	
Semantic analysis describes the process of understanding natural language based 

on meaning and context. Indeed, in this type of analysis, structures are created to 
represent the meaning of words and combinations of words. In the following 
paragraphs we will distinguish two types of semantic analysis: Vector Space model 
and word embedding model. 
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2.3.1. Vector	Space	Model		
 

A Vector Space Model (VSM) or Term Vector Model is an algebraic model for 
representing text documents as vectors. The VSM was developed for the SMART 
information retrieval system (Saltin,1971) by Gerard Salton and his colleagues (Salton, 
Wong & Yang, 1975). SMART pioneered many of the concepts that are used in modern 
search engines. 

 

2.3.1.1. Introduction	
 

VSM represents each documents and the user’s queries as V-dimensional vectors 
in V-dimensional space also called document-term matrix (dtm). In this matrix, each 
dimension corresponds to a separate term. A term can be a word, keywords or longer 
phrases. In the case words are chosen to be the terms, the V-dimensional space is the 
size of the documents vocabulary.  

𝑑5 = 𝑤6,5, 𝑤7,5,𝑤8,5, … , 𝑤:,5 	𝑞< = 𝑤6,<, 𝑤7,<,𝑤8,<, … , 𝑤:,<  

If a term occurs in the document, its value in the vector is non-zero. There are 
several ways to compute these term occurrences also known as weights. One of the 
best known is TF-IDF weighting as described previously. To compare the text 
documents vector operations that can be used. These operations are also called 
similarity measures. For a comparison purpose, a VSM can rank the documents based 
on these similarity measures.  

A major limitation of the VSM is that words in one documents must exactly match 
words in another documents. However, this limitation can be overcome with different 
techniques such as word embedding described in the paragraph 2.3.2 of this chapter.  

In a nutshell, a VSM can be divided into three stages. The first one is the document 
indexing where content bearing terms are extracted from the document text. The 
second stage is the weighting of the indexed terms to enhance retrieval of document 
relevant to the user. And finally the last stage means to ranks the documents with 
respect to the query according to a similarity measure.  

 

2.3.1.2. Cosine	
 

One of the most famous VSM based on vector operations is named cosine similarity. 
This measure calculates the cosine between the vectors representation of two 
documents using the following formula:  

𝑐𝑜𝑠	𝜃	 = 	 $@⋅$B
$@ ⋅ $B

= $@C$BCD
CE@

$@B
D
CE@ $BB

D
CE@

  

Where the numerator represents the intersection of the two document vectors 
and the denominator the normalization of the score by the length of the document 
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vectors. The normalization ensures the chance of matching independently of the length 
of the documents. Thus, a document with more words, will not be privilege. A high 
cosine value means a high similarity between two documents.  

 

2.3.1.3. Latent	Semantic	Analysis	
 

Latent Semantic Analysis originally known as Latent Semantic Indexing (LSI) 
is a powerful statistical technique. LSA is based on two main steps. The first one 
concerned the construction of a term-document matrix (TDM)	𝑀. The size of 𝑀 is		
𝑛 ∗ 𝑚 where the rows correspond to 𝑚 terms, the columns correspond to 𝑛 documents 
and 𝑀[<,5] corresponds to the frequency of the term 𝑖 in the document 𝑗. The second 
step is the singular value decomposition where the TDM 𝑀 will be decomposed into 
three matrices as follow: 

𝑀	 = 	𝑈 ∗ 𝑆 ∗ 𝑉Q 

U and VQ are two orthogonal matrices and 𝑆 which is a diagonal matrix. SVD is a matrix 
algebra technique which essentially re-orients and ranks the dimensions in a vector 
space. Because the dimensions in a vector space computed by SVD are ordered from 
most to least significant, if some of the less significant dimensions are ignored, the 
reduced representation is guaranteed to be the best possible for that dimensionality. 
Finally, based on the equation below, only the k largest singular values and their 
corresponding singular vectors from U and VQ will be used in order to reduce the 
semantic space which corresponds to 𝑀U: 

𝑀U = 𝑈U ∗ 𝑆U ∗ 𝑉U" 

 

2.3.2. Word	embedding	
 

2.3.2.1. A	brief	history	
 

 The term word embedding was originally coined by Bengio et al. in 2003 who 
trained them in a neural language model together with the model’s parameters. In 
2008, Collobert and Weston with their paper A unified architecture for natural language 
processing, were arguably the first to demonstrate the power of pre-trained word 
embedding. But it was 2013, Mikolov et al who really brought word embedding to the 
fore through the creation of Word2vec, a toolkit that allows the seamless training and 
use of pre-trained word embedding, signaling that word embedding had reached the 
mainstream.  

 The aim of word embedding is to build a low dimensional vector representation 
of word from a corpus of text. One of the main advantage of word embedding is a more 
expressive and efficient representation maintained by the contextual similarity of words 
and a low dimensional vector. Word2vec, one of the most famous word embedding 
algorithm will be presented in the paragraph 2.3.2.3. But before, we will in the following 
paragraph briefly described the Neural Network algorithm.  
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2.3.2.2. Neural	Network	(NN)	
 

Human brains are composed of billions of cells, working together, called neurons. 
These neurons can solve complicated problems fast. The idea of the method is to 
imitate the properties observed in biological neural systems through mathematical 
models. This system is named neural networks.  

 

   

A neural network can be represented as shown in the figure 4, where every 
node represents a neuron. Each of these nodes are modulated by their corresponding 
weights and applies a certain activation function over its input to determine its outputs. 
An artificial neural network can consist of many more layers than in the figure 4, and 
all layers between the input and output layer are called hidden layers. The input layer 
has as many neurons as there are independent variables, and the output layer has as 
many neurons as there are dependent variables. The amount of hidden layers, and 
the amount of neurons in the hidden layers depends on the type and amount of data.  

      

Usual activation functions are: 

- Identity: 𝜎(𝑠) 	= 	𝑠 

- Threshold: 𝜎(𝑠) 	= 	
1, 𝑖𝑓	𝑠 > 0
0, 𝑖𝑓	𝑠 = 0
−1, 𝑖𝑓	𝑠 < 0

 

- Logistic: 𝜎(𝑠) 	= 	 1
1	+𝑒−𝑠 

- Hyperbolic Tangent: 𝜎(𝑠) 	= 𝑒𝑠−𝑒−𝑠
𝑒𝑠	+𝑒−𝑠 

- Gaussian Radial Basis Function: 𝜎(𝑠) 	= 	𝑒−
1
2𝑠
2 

 

During the training of neural networks, the weights on the connection links 
between the neurons are modified, as to reach the optimal model for the training 
dataset an element of feedback is therefore required. This element is called 
backpropagation. It distributes the error term back up through the layers. The larger 
the difference between the model outcome and the actual outcome, the more the 

Figure 4: NN Structure with one hidden layer 
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connection weights will be altered. Once the network is done training, it can be 
presented with new inputs to generate responses. 

The network in figure 4 is a feed-forward neural network (FNN) as the 
information propagates only in one direction i.e. wherein connections between the 
nodes do not form a cycle as opposed to Recurrent Neural networks that can learn, 
thanks to bi-directional data propagation, the vector representations from words and 
can remember a huge context. 

 

2.3.2.3. Word2vec	

	
Word2vec is one of the most popular word embedding model. Indeed, it is a 

computationally-efficient predictive model for learning word embedding from row text. 
The main principle of this method is to learn law dimensional vectors from the begging. 

Two architectures are proposed for learning word embedding: the Continuous 
Bag-Of-Words model (CBOW) and the Skip-Gram model. These models are 
algorithmically similar, except that CBOW predicts target words from the surrounding 
words, while the Skip-Gram does the inverse and predicts the context from the center 
word.  

More precisely, CBOW corresponds to the 
neighboring words in the window. In this neural 
network presented in the figure 5, three layers are 
used.  

First, the input layer corresponds to the 
context, then the hidden layer corresponds to the 
projection of each word from the input layer into the 
weight matrix which is projected into the third layer 
names output layer. The last step is then, the 
comparison between the model output and the word 
itself to correct its representation based on the back 
propagation of the error gradient. Therefore, the 
purpose of CBOW neural network is to maximize the 
equation presented below, where 𝑉 is the vocabulary 

size, 𝑐 corresponds to the window size of each word. 

𝑚𝑎𝑥 𝑙𝑜𝑔
c

"d6

	𝑝(	𝑚"|𝑚"fg7
, . . . 𝑚"ig7

) 

  

Skip-gram is the opposite as shown in figure 5, since the input layer 
corresponds this time to the target word and the output layer corresponds to the 
context. Therefore, in this algorithm the last step consists of the comparison between 
its output and each word of the context. Here also, this comparison aims to correct the 
representation obtained, based on the back propagation of the error gradient. 

Figure 5: Word2vec, CBOW model 
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  In this case, the maximization seeking is presented below, with 𝑉 
corresponding to vocabulary size and 𝑐 corresponding to the window size of each 
word.  

𝑚𝑎𝑥
1
𝑉 𝑙𝑜𝑔

"ij

𝑗=𝑡−𝑐,𝑗≠𝑡

c

"d6

𝑝(	𝑚5|𝑚") 

 

The major limit of these models comes from the 
learning of the output vectors which can be a difficult 
and expensive task. To address this problem, two 
algorithms can be used: Negative Sampling algorithm 
and Hierarchical softmax.  

Negative Sampling algorithm aims to limit the 
number of output vectors that need to be updating. 
Thus, only a sample of the output vectors is updated 
based on a noise distribution. This distribution is a 
probabilistic distribution which is used in the sampling 
process. Hierarchical Softmax, on the other hand, is 
based on Huffman tree, a binary tree resenting all 
terms based on their frequencies. In this tree, each step 
from the root to the target is normalized. It is the training 
data which determines which algorithms works better. 

 

2.3.3. Similarity	measures	based	on	Word2vec	
 

2.3.3.1. Doc2vec	
 

Doc2vec is an implementation of paragraph vectors, a generalization of 
Word2vec to documents. This implementation was made by the authors of the Gensim 
Python library, much use in the field of NLP. The goal of doc2vec is to create a numeric 
representation of a document, regardless of its length. However unlike words, 
documents do not come in logical structures, therefore another method had to be 
found. 

In 2014, Le & Mikolov proposed a method that learns fixed length feature 
representations for various length texts called Paragraph2vec. This is achieved by 
training a small neural network to perform prediction task. The labels required to train 
such a model, are coming from the text itself. In the architecture of Paragraph2vec, the 
input contains a vector that represents the document as shown in the figure 7 or in the 
figure 8.  

While many other methods can be used to represent sentences, paragraphs or 
documents as a fixed size vector, Paragraph2vec yield vectors of a more manageable 

Figure 6: Word2vec, Skip-gram model 
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size. As for the Word2vec model, Paragraph2vec has two ways of being computed: 
PV-DM and PV-DBOW.  

The PV-DM stands for Distributed Memory version of Paragraph Vector and is 
an extension of the CBOW model but instead of using just words to predict the next 
word, a feature vector is added as shown in the figure 7. This vector is document-
unique. In the CBOW of Word2vec, the model learns to predict a center word based 
on the context. Similarly, in PV-DM, the main idea is: randomly sample consecutive 
words from a paragraph and predict a center word from the randomly sampled set of 
words by taking as input the embedding words and a paragraph id. The figure 7 
presents the following elements: Paragraph Matrix, Average/Concatenate and 
Classifier. 

- The Paragraph Matrix, is a matrix 𝐷 where each column represents the vector 
of a paragraph.  

- Average/Concatenate signify that the word vectors and paragraph vector are 
averaged/concatenated.  

- Classifier, averaged/concatenated hidden layer vector as input and predicts the 
center word.  

 

 The PV-DM acts as a memory that remembers what is missing from the 
context (as the topic of the paragraph) thanks to the document’s vector. Thus, the word 
vectors represent the concept of a word and the document vector intends to represent 
the concept of a document.  

As mentioned, there is another algorithm, which is similar to Skip-Gram named 
PV-DBOW for Distributed Bag of Word version of Paragraph Vector. This model, 
shows in the figure 8, is different since it ignores the context words in the input and is 
forced to predict words randomly sampled from the paragraph in the output. In this 
case, the algorithm is faster and consumes less memory, since there is no need to 
save the word vectors and has less parameters that need to be trained.  

 

 	

Figure 7: Distributed Memory version of Paragraph 
Vector 

 

Figure 8:Distributed Bag of Word version of Paragraph 
Vector 
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2.3.3.2. Word	Mover	Distance		
 

The Word Mover’s Distance (WMD) is claimed to achieve better results than 
other baselines when used to compute document similarity. WMD uses the word 
embedding of the words in two texts to measure the minimum distance that the words 
in one text need to “travel” in semantic space to reach the words in the other text. More 
precisely, this distance is based on the Earth Mover Distance, and addresses the 
transportation problem by measuring the distance between two distributions in some 
regions, where the pairwise distance between points in the ground distance.  

In 2015, Kusner et al. proposed a novel distance function between text 
documents called Word Mover’s Distance (WMD). The Word Mover Distance is viewed 
as an instance of the Earth Mover Distance. The figure 9 illustrates the concepts of the 
Word Mover’s Distance, where the semantic space is learned by the Word2Vec model. 

 
Figure 9: Words distance in the Word2vec semantic space 

 

In the WMD computation, the dissimilarity between two words as a natural 
building block is assumed to create a distance between two documents. To estimate 
the distance between pairs of words, the embedding that are learned with the 
Word2vec are used. The word travel cost or words dissimilarities are provided by 
Euclidean distance between words in the Word2vec embedding space: 

 𝑐 𝑤<, 𝑤5 = 	 𝑉(𝑤<) − 𝑉(𝑤5)  

where, 𝑤< and 𝑤5 are two words, while 𝑉(𝑤<) and 𝑉(𝑤5) are their word 
embeddings. The distance or travel cost between two documents is defined as the 
minimum (weighted) cumulative cost required to move all words from document 𝑑6to 
document 𝑑7: 

𝐶mn$(	𝑑6, 𝑑7) 	= min
rst

𝐹m<mv
m5∈	$Bm<∈	$@

𝑐(, 𝑤<, 𝑤5) 

Subject to: 𝐹mCmvmv = 𝑑6< and 𝐹mCmvmC = 𝑑75 
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Where 𝐹 is a flow matrix indicating how much of 𝑤< in document 𝑑6travels to 𝑤5 
in document 𝑑7. The notation 𝑑6< is the document representation by normalized BOW 
(nBOW), for example, word 𝑖 appear 𝑐< times in the document, it denotes: 

𝑑<	 =
jC
jvD

vE@
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CHAPTER	2:	NLP	APPROACHES	
 

This chapter presents the study realized to accomplish the objective 1.1. of this 
project: Study and build a system able to answer very complex questions. First, the 
problem definition is described, then the experimental approach is presented.  

1. PROBLEM	DEFINITION	
 

One of the goal of this project is to incorporate into the final system a dialogue 
management system and a NLP layer, in order to distinguish different types of input 
and treat them according to the context of the conversation. Thus, several types of 
input will be considered for this system and described in the chapter three of this report. 
For this study, we will only focus on one type of input and therefore considered that 
the DM system already selected the incoming message as being what we will call a 
Health question (also designated as query).  

 

 

 

 

  

As shown in the figure 10, a Health question is, once being detected, sent to a 
Question-Answering (QA) system. Indeed, since the answers given by the bot will 
come from a Questions-Answers dataset, the idea is to build a QA system which 
aims to retrieve the “best answer” from the dataset.  

Is designated as “best answer”, a message answering in the most meaningful 
way to the query. This answer is linked to the question designated as the most 
similar to the query sent by the user. Since the data is composed of question-
answer pairs, once the most similar question is found, retrieve the best answer is 
easy. The challenge is therefore, to find a model able to identify the most similar 
question. 

Figure 10: Data manager and NLP layer of the system 
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A QA system is based on similarity measures. The main idea is to compute the 
similarity between a query and all the questions of the dataset. Then, the obtained 
similarities measures are ranked, as shown in the figure 7, from the highest to the 
smallest knowing that the higher the similarities, the better.  

Textual data can be tricky to analyze depending on the context in which the 
text has been written. For example, a Wikipedia article is long and well written while 
discussion on Forums are mostly based on short and often not grammatically correct 
Question-Answers. The challenge is therefore, to understand what the user asked. Or 
in other words, to obtain words vectors describing in the most meaningful way in which 
context appears the word.  

In order to find the most appropriate similarity measure for the QA system, the 
similarity methods presented in the chapter 1, will be study: 

- Latent Semantic Indexing (LSI) weighted by TFIDF 
- Cosine similarity weighted by TFIDF 
- Doc2vec 
- Word Mover’s Distance.  

  

2. EXPERIMENTAL	APPROCHE	
 

In this part, the model described in the previous chapter, will be evaluated on the 
data of the project. The methodology used for this experiments is shown in the figure 
11. First the data will be collected, cleaned and explored. Then, the similarity models 
will be computed. Lastly, the comparison of the different methods will be based on their 
retrieval task.  

 

  

Figure 11: Methodology process 
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2.1. Data	
 

As mentioned in the introduction, the data used for this project can be found on 
GitHub. The dataset is open source and composed of question-answer pairs sorted by 
topics which have been gathered from several health forums on 5th of May 2017: 

Ø Ehealthforum: https://ehealthforum.com/  
Ø Healthtap: www.healthtap.com/   
Ø Icliniq: https://www.icliniq.com/   
Ø questionDoctor: https://questiondoctors.com/  
Ø webmd: www.webmd.com   

The data is stored in six JSON files in which the following elements can be found:  

- Question. The question asked by a user on the forum 
- Answer. An answer gave by a health professional as pretended on the 

different forums. (For this project, we assume that is true) 
- Tags. One or several topic(s) of the question (and answer).  
- URL. Link where can be found the discussion.  

A fifth element can be found in the files, however, being different for each file, 
this element will not be considered in the rest of this experiment. Same with the 
URL element that we will not considered for the following. In total, the data contains 
at the begin of the study, 166804 rows i.e. question-answer pairs.  

2.1.1. Data	cleaning	
 

A first glance at the data reveals that there are many unanswered questions as 
well as duplicates question-answer-topic set. Since the final model will be used to 
return answers from the dataset as an answer, the set of answers needs to be as 
correct as possible. Therefore, the dataset is cleaned by removing question-answer 
pairs that do not meet our criteria.  

Second, after removing the rows having an empty answer, a checking is 
realized to visualize the number of topic per question. Following this analysis, the graph 

Figure 12: A bar chart displaying number of question per 
number of topics (tags) 
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shown figure 12 was obtained. It appears that the number of questions with a single 
tag represents 90% of the data. 

Therefore, it was decided to only keep the questions marked with one topic. 
Among these selected questions 95826 were remaining. However most of them were 
appearing only in one or two questions, therefore it was decided to select the topics 
present in a majority of questions, the most 6 frequents are presented below: 

 

  

 

 

 

 

 

 

 

 

 

 

 

Since the number of questions with the topic pregnancy and wound care are 
really low compare to the first four, these topics and all the topics having a lower 
frequency were discarded. This reduced the dataset to 81040 rows. The topic 
remaining were the following:  

- Bariatrics. Branch of medicine that deals with the causes, prevention 
and treatment of obesity. 

- Breast surgery. Form of surgery performed on the breast which can 
included Breast reduction surgery, Augmentation mammoplasty, 
Mastectomy, Lumpectomy, Breast-conserving surgery (a less radical 
cancer surgery than mastectomy), Mastopexy, or breast lift surgery, 
Surgery for breast abscess, (including incision and drainage as well as 
excision of lactiferous ducts), Surgical breast biopsy and 
Microdochectomy (removal of a lactiferous duct) 

- Cardiac Electrophysiology. Science of elucidating, diagnosing and 
treating the electrical activities of the heart. 

- Cardiology. Branch of medicine dealing with disorders of the heart as 
well as parts of the circulatory system.  

 
After, this first cleaning some observations were made:  

- There is a very large variation in question and answer length 
- There are many spelling mistakes in the questions 
- Some answers contain hyper-links 

TOPIC NUMBER OF QUESTIONS 

BARIATRICS 30516 

CARDIAC 
ELECTROPHYSIOLOGY 

21666 

CARDIOLOGY 17761 

BREAST SURGERY 11142 

WOUND CARE 4136 

PREGNANCY 348 

Table 1: Top 6 most frequents topics 
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- Answers are formulated for specific cases 
- Some questions and some answers contain a salutation 

A lot of sentences (questions and answers) contain abbreviations such as “er” 
standing for “Emergency room” or “ekg” for “electrocardiogram”. Most of these 
abbreviations were health related. 

    

2.1.2. Natural	Language	Processing	cleaning		
 

In this section NLP techniques are applied to clean deeper the data. Indeed, 
the questions need to be prepared for modelling while the answers need to be 
prepared to be send to the final user. Although the answers were written by health 
professional, there are some elements such as misspelled words or white space that 
need to be removed.  

As mentioned, some questions and answers contain noisy elements such as 
salutations. To improve the dataset from which we return answers, we first remove 
these noisy elements. Then, we processed the questions through a NLP pipeline to 
prepare them for the modelling part.  

 

2.1.2.1. Removing	salutations	from	questions	and	answers		
 

In the dataset can be found, some salutations and closings words such as 
“Hello” or “Hi” or “Thank you” etc. It was decided to remove them for two reasons: 
first, the salutations in the answers will confuse the user since this type of answers 
is given in the middle of the Chat flow (presented in the next chapter) and therefore, 
the conversation will have started already. Second, this type of words will bring 
noise into our models.  

The removal of these elements was done with the pseudo-code in the following 
algorithm: 

Algorithm 1: Replacement of words quoted as greetings 
1: Define greetings_list 
2: Break up each question into its sentences 
3: Collect “greetings words”: for each sentence of the question, 
 3.1: Detect via regex1 if one of the word of the sentence is in greetings_list  
 3.2: If one or more words are detected, remove it/them.  
4: Do the same for answers.  
	

 	

                                                
 
1 Regex: A regular expression is a special sequence of characters that helps to 
match or find other words or sets of words, using a specialized syntax held in a 
pattern. 
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2.1.2.2. NLP	cleaning	pipeline		
 

The first cleaning phase revealed key points that needed to be take into 
account. Therefore, the following NLP pipeline was built as shown below:  

 

First each sentence went through the tolower python function. This step refers 
to the lower-casing NLP technique. All the letters of the dataset are changed to lower-
case to make sure that identical words match each other, regardless of the letters 
begin lower-case or upper-case. 

Then, each sentence of the questions column and the answers column of the 
dataset are tokenized with the NLTK python’s package and more precisely the 
word_tokenize function. This tokenization, explained in the chapter 1 part 2.1, was 
applied by separating all words and punctuation with comma.  

The third step is where the control characters were remove thanks to the regex 
functions (see Footnote in the previous page).  

The step four is taking care of the spelling correction. The spelling mistakes 
can influence matching a new question with the questions in the dataset. Therefore, a 
spelling corrector was applied based on the algorithm 2 presented below. 

 

Algorithm 2: Spelling correction  
1: Calculate the probability of this word occurring for this specific dataset. This is 
 done by dividing the frequency with which the word occurs in the dataset and 
 dividing it by the total number of words in the dataset.   
2: Find all edits that are only one correction away from the word. One edit can be 
 a deletion of a letter, an insertion of a letter, a swap of two adjacent letters or a 
 replacement of one letter for another.   
3: Find all edits that are two corrections away from the word. This means running 
 step 2 again on its own outcome.   
4: Restrict the sets of words (one and two edits away from the initial word) to only 
 include words that are in our existing word list.   
5: Generate the corrected spelling candidates for the word. These candidates are 
 (in order of replacement): the word itself (if it is in the word list), words in the word 
list that are one edit away, words in the word list that are two edits away, and finally 
if none of these exist it will be the word itself.   
6: Correct the word. This is done based on the word candidates generated in the 
previous step. If the word itself is in the word list it will not be altered. If the word is 
not in the word list, the first option is the words that are one edit away and in the 
word list. If these exist we choose the one with the highest probability of occurring 
in our dataset, as calculated in step 1. Otherwise, we look at the words that are two 
edits away and in the word list, again choosing the one with the highest probability 

Figure 13: NLP cleaning pipeline 

To	lowercase Tokenization
To	remove	
control	

characters
Spelling	
correction

To	Remove	
duplicates	
word

To	Remove	
whitespace
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In step five, we remove duplicates words present in the same sentence, next 
to each other such as: 

 “your doctor can tell tell you if you have thyroid problems” à “your doctor can tell you 
if you have thyroid problems”.  

The step six was a checking and removal of the white spaces which correspond 
to two characters.  

  

2.1.2.3. Stop-words	removal	
 

Finally, a last step was performed on the questions. Indeed, while they are now 
cleaned, some noisy elements are remaining and will keep our models to perform 
efficiently. Since the questions of the dataset won’t be seen by the final user, all the 
stop-words, punctuation and other elements qualified as noise such as numbers or 
hyper-links can be removed. Although essential for reading, these elements greatly 
disrupt the models and must be deleted. The logic to remove the stop-words is 
exposed in the algorithm below: 

Algorithm 4 Stop-word removal  
1: Remove all standard English words using a pre-made English-word list.    
2: Remove punctuation  
4: Remove all words which contain numbers  
5: Remove all hyper-links.    
6: Change all punctuation that is still present (this is only possible inside words), to 
spaces. For example, "high-glycaemic" is changed to the words "hyper" and 
"glycaemic".  
 

 

 

2.1.3. Situation	after	the	cleaning		
 

After applying the cleaning step, the data has been reduced by 47% which 
leads to a dataset with 81040 rows. A new column has been added to the dataset 
names cleaned_questions. This column represents the specific cleaning apply in the 
second phase of the cleaning. The table 2 below shows an example of row of the 
dataset. 

  

of occurring. If all of these options do not generate words, we just give the word that 
was supplied back as this is then a rare word that is potentially important for the 
meaning of the question  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Question Answer Tags Cleaned_questions 

When	dieting	how	can	
you	avoid	waking	up	
throughout	the	night	

really	hungry? 

Dieting	does	not	mean	
going	hungry.	Dinner	
should	have	enough	

proteins	healthy	fats	and	
some	carbs	with	plenty	of	

veg. 

bariatrics 

['dieting',	'avoid',	
'waking',	'throughout',	

'night',	'really',	
'hungry'] 

Table 2: Example of the cleaned dataset 

 

The cleaned_questions column is going to be used to train the models. 

Therefore, it is interesting to see the number of common words that can be found 

between the different topics as shown in the table 3 below. For example, the topic 

Bariactrics has 5106 words that also appear in some of the question of the Breast 

Surgery topic. This means that the words represent a risk to be misinterpreted by our 

models and attribute to a Breast Surgery question instead of a Bariatrics one.  

 

 Bariatrics Breast 
Surgery 

Cardiac 
Electrophysiology 

Cardiology 

Bariatrics - 5106 7240 6309 

Breast Surgery - 4657 4224 

Cardiac 
Electrophysiology 

- 6446 

Cardiology - 
Table 3: Common words between two topics 

 

A checking was also realized a checking to see the number of common word 

to all the topic: 3488 words were found. The graph figure 14 shows the most 10 

frequents words of these common words.  

The important numbers of shared words show that some words appear a lot in 

the dataset. Since they can designate several topics, we will consider two case to treat 

them in the following section: Penalize these words via TF-IDF method or rely on the 

Word2vec training to learn correctly the context in which these words are appearing.   
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Figure 14: Top 10 most frequent words in all the dataset. 

 

2.2. Models	comparison	
 

Now that we have clarified the pre-process step, in this section we are going to 
focus on the models presented in section 2.3 of the chapter 1 and study which one is 
the more appropriate for our project. First, we will explain the evaluation process that 
has been chosen and then we will present the results.  

 

2.2.1. Evaluation	methods	
 

To check the performance of a model, we used a train-test methodology, being: 

§ Training Set. A fraction of the entire dataset was used for training 
purpose. 

§  Testing Set. The model trained with the Training Set was tested with 
the Testing Set. Thereby, we checked the model performance with 
observations that were not used for the training.  

A common proportion used to divide a dataset into a train and test is 80-20, 
with 80 % of the data going to the training set and 20% to the test set. However, the 
WMD is very slow to be computed. Therefore, the test set will only be composed of 
1000 questions picked randomly. 

Models will be evaluated on their effectiveness of estimating similarities 
between a question of the test and all the questions of the dataset. The evaluation 
metric is the accuracy obtained. It is computed by comparing the topic of the question 
detected by the model, to the test set query. Therefore, the accuracy will represent the 
number of good topic detected. The algorithm used is shown below: 

Algorithm 5: Evaluation models  
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1: For all the queries of the test set: 
1.1: Compute the distance between the query and all the questions of the dataset  
1.2: Ranked the similarities obtained from the highest to the smallest  
1.3: Select the highest similarity  
1.4: Retrieve the index of the question with the highest similarity  
 and its tag from the dataset 
1.5: Save the elements retrieved 
2: Compute accuracy  

 

A second step, performed in this study, is the evaluation of the quality of the 
answers. It consists of manually checking the results. Indeed, we chose to perform a 
manual evaluation for the following reasons: First, our dataset is composed of 81040 
rows with a lot of questions for each topic. Manually paired questions, even a few 
hundreds to allow us to have a more reproducible experiment would have taken a lot 
of time and since the project was constrained by the magnitude of the thesis, it 
appeared to be infeasible. Second, given the nature of the problem, (i.e. pairing 
questions about one of the topic presented in the previous sections), there is not a 
single answer (i.e. a single question-question pair) that could have been created. 
Therefore, just paring one expected question could have been count as wrong if the 
model had brought a similar and valid but not paired question.  

For these reasons and because it was too long to check the 1000 questions 
retrieved by each model, it was decided to manually check 300 good classified 
questions. The idea was to check if the questions designated as most similar are 
meaningful.  

2.2.2. Accuracy	evaluation		
 

In this section, we present the first experiments realized to compute the 
accuracy for each model.  

 

2.2.2.1. Cosine	and	LSI	
  

In the paragraph 2.1.3. of this chapter we saw that some words are present in 
a lot of questions independently of the topic. Therefore, it was decided to penalized 
these words with the TF-IDF method explained in the section 2.3.1 of the first chapter. 

For this computation we used TfidfVectorizer from the Python package Sklearn. 
Basically, every time we have a new query, a document-term-matrix is built, combining 
the query and all the questions of the dataset.  

Then on one hand, we apply on the dtm matrix obtained the cosine similarity 
between the first row of the matrix (which is the pre-processed query) to the others.  

On the other hand, the LSI model was computed with the Python package 
Gensim and more specifically the module concerning the Latent Semantic Analysis 
(aka Latent Semantic Indexing). 
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The result obtained are shown in the table below:  

 Cosine LSI 

Accuracy 81% 80% 

Average computation 
time for each query 

2,3 secs 3,5 secs 

Total amount of 
computation time 

39 min 50 min  

Table 4: Cosine and LSI accuracy results 

From the table 4 presented above, we can see that globally our models 
performed quite well since they both have about 80% of accuracy. However, in term of 
time the Cosine computation is faster.  

 

2.2.2.2. Word	Mover’s	Distance	
 

For this experiment, a python version of the WMD, from the Gensim package 
has been used. In our implementation, word distance was estimated by the Euclidean 
Distance calculated against the Word2vec vector space. We first learned a Word2Vec 
model on word vector dimensions’ equals 100, and for a question from the test, we 
computed its Word Mover Distance with all the question of the dataset.  

 

The computation of the WMD is quite long, about 2min to compute the distance 
query-all questions of the dataset. Therefore, calculate this distance for all the question 
of the test set, is in this condition infeasible. However, one way to proceed is to use 
the Prefetch and prune algorithm introduced in [2], it is a relaxation of the distance 
computation problem to prune documents that are not in the number n nearest 
neighbors. Therefore, the computation of the true WMD is not done for these 
documents. In this experiment, we compute the WMD distance for 20 nearest 
neighbors.  
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 WMD with skip-gram WMD with CBOW 

Accuracy 87% 86.2% 

Average computation 
time for each query 

4.124 secs 4.126 secs 

Total amount of 
computation time 

34 h  34h  

Table 5: CBOW and Skip-Gram models accuracy results 

From the table 5, it seems that the model computed with the Skip-gram 
algorithm performed slightly better than the one with CBOW. The computation time for 
the two models, is quite long. Indeed, it took to 34h in average to compute the distance 
for the 1000 questions.  

Due to the very expensive computation memory and the time required to 
compute these distances, it was impossible to run several times the experience to 
determine the best parameters for the word2vec models.  
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2.2.2.3. Doc2vec	

 

To compute the Doc2vec model, we used here also, the Gensim library. 
Doc2vec is, as explained in the chapter one, a Paragraph2vec implementation in 
Python. First a comparison analysis has been made with little tuning, so to make a 
preliminary filtering: 

- Window Size = 8  
- Min_count = 2 (filters out words with frequency less than 2),  
- Iteration = 20. 
- dbow_words=1 (trains word-vectors (in skip-gram fashion) 

simultaneous with DBOW doc-vector training) 
- vector_size = 100 (Dimensionality of the feature vectors.) 

We compute both type of Doc2vec model (PV-DM & PV-DBOW). For each 
vector size, after the learning process, pairwise distances between posting vectors are 
estimated by the Cosine Distance. The results obtained with the default parameters 
are presented in the table 6.  

 PV-DM PV-DBOW 

Accuracy 33.5% 65.0% 

Average computation 
time for each query 

0,01 secs  0,01 secs  

Total amount of 
computation time 

10 secs 10 secs 

Table 6: PV-DM and PV-DBOW accuracy results 

 

 From the table above, we can see that the PV-DBOW perform way better 
than the PV-DM model. Therefore, we will for the following tests, only keep the 
PV-DBOW model. 

Figure 15: Accuracy per Dimensionality of the 
feature vectors 



         

CHARLINE MAS                 Page 37/83 

Since the computation of the Doc2vec models were fast (about 10 secs to compute 
all the distances), we were able to train different paragraph vector sizes: 100, 200, 300, 
up to 700. We could not train vectors with a dimensionality higher than 700 because 
we had insufficient memory for the computation.  

The results, obtained after the computation of the several models and represented 
figure 15, show an improvement of the accuracy when the dimension of the paragraph 
vector is a bit increased until the dimension 400 (note that the y axis is from 0.63 to 
0.67 to ensure a better visibility). Therefore, we will keep the size of 400 to compute 
the models in the next experimentation. 

Another evaluation was made on the alpha parameter which represents the 
learning rate. To determine the optimal value on alpha, the model was trained on 

several values of alpha from 0.005 
to 0.0095. The results are presented 
on the graph present in the figure 
16.  

Here also the accuracy doesn’t 
move a lot, however the best result 
is obtained with an alpha equal to 
0.07. The final accuracy obtained 
was 73%.  
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Figure 16: Accuracy according to the alpha value 
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2.3. Result	summary	and	manual	evaluation	
 

Finally, the different accuracies and times computation for the models are resumed 
in the table below:  

 Cosine LSI 
WMD 

Skip-gram 
PV-DBOW 

Accuracy 81% 80% 87% 65.0% 

Average 
computation time 

for each query 
2,3 secs 3,5 secs 4.124 secs 0,01 secs  

Total amount of 
computation time 

39 min 50 min  34 h  10 secs 

Figure 17: Sum up of all the results 

We got high accuracies especially from the Word Mover Distance, computed 
with the skip-gram algorithm. However, like we said these results need to be checked 
to be sure that the answers gotten by the models are meaningful.  

Therefore, as explained in the section 2.2.1 of this chapter, a manual evaluation 
was realized. This evaluation has been made through the following process:  

1- Retrieve the first 300 good classified questions for each model  
2- Evaluate them  

• If the question retrieved means the same as the original 
question, the score is put to 1. Else, it marks as 0.  

• Compute the total score for each model  

An example of the manual evaluation is given below:  

 

 

Query	 Questions	retrieved	by	
skip_gram_word2vec	 score	

Should	i	take	blood	pressure	medication	
to	lower	my	blood	pressure	during	the	

pregnancy?	

What	can	i	take	to	lower	my	blood	
pressure?	 1	

What	are	the	consequences	of	
forgetting	diabetic	gh	blood	pressure	

meds?	

What	are	the	consequences	of	gh	
and	low	blood	pressure?	 0	

When doing blood pressure what is 
meant by systolic and diastolic? 

What are the differences between 
systolic and diastolic blood 

pressure? 
1 

Table 7: Example of the manual scoring 
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The results for this manual scoring evaluation are presented in the table below:  

 Cosine LSI 
WMD 

Skip-gram 
PV-DBOW 

Score 69% 67 % 77 %  38%  

Table 8: Manual evaluation results 

 

After the manual evaluation, from the results show in the table 8, we can say 
that the Word Mover distance appears to get the better results. Between Cosine and 
LSI, we can say that there is not a big difference. However, concerning the PV-DBOW 
model, clearly does not retrieved a lot of meaningful questions.  

 

However, it is important to also take into consideration the computation time of 
each of the model. Technically, it is the doc2vec model which performed the best but 
since it got the lowest accuracy and the lowest score this model was discard. The 
second methods which can be computed quite fast is the cosine similarity. This method 
got correct result to the manual evaluation and got an accuracy of 81 %, however it is 
still far from the score obtained by the word mover distance.  

 

In the end, it was decided to privilege the quality of the questions retrieved by 
the bot to the detriment of time. The WMD distance was therefore chosen to be 
implemented into the system to treat the input of type Health question.  

 

Other types of input will be treated by our bot such as questions definitions or 
already asked questions. We will explain in details all the types and their meaning in 
the part 1.3.1. of the next chapter, however for some of the inputs, similarity measures 
will need to be computed. Since the Word Mover Distance rely on the Word2vec model 
and therefore require a minimum amount of data to be train, it was decided to use the 
second best model, i.e. cosine similarity, for all the inputs for which we don’t have a lot 
of data to compare with.   
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CHAPTER	3:	IMPLEMENTATION	
 

In this chapter three different part are presented. First, the design process of the 
solution is explained. Then, the front-end implementation is presented and the 
background development is showed.  

1. DESIGN	PROCESS		
    

 While the NLP part represents the core of a Chatbot. Many things must be 
taken into account when implementing it. Indeed, it is important to define the kind of 
public that will use the tool in order to create interactions as simple as possible and 
user friendly. But also, to build an efficient database to easily collect and retrieve the 
data for further analysis. Thus, this chapter will present the design process of the 
Chatbot.    

1.1. Target	group		 		 	 	
The tool to develop has two different target users:  

1. Bot’s users 
 

The bot’s users are in this project, the main target. Indeed, this concerns all the 
people who will ask questions and discuss with the bot. The messages coming from 
this type of users should be: greetings messages to start the conversation, answer to 
the bot questions and Health question(s) about one of the topics presented in the 
previous chapter, part 2.1.1. 

In this category, we can also distinguish two subcategories: Unknown and 
known user. An Unknown user, is a user who is using the bot for the first time while a 
known user already used the bot at least once. It was decided that only user knowing 
the password could use the bot, therefore an unknown will be asked to give a password 
to start talking with the bot.  

 

2. Professionals 
 

The “Professionals” type of users, represents the client or the entity for which 
the bot is working. This type of user is not talking to the bot, but should be able to 
access to the data gathered by the system. Therefore, the device expected for this 
user is a dashboard in which, the data will be analyzed through several KPIs (Key 
Performance Indicators) to provide relevant information on the data collected.   
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1.2. Dashboard	KPI	
 

As mentioned before, this project target two types of users, one of them is 
called Professionals. It was decided that this type of user would have access to a 
dashboard to measure the evolution of the bot. Thus, some metrics to compute and 
visualize the performance needs to be defined. There are two types of information that 
we are interested in:  

- The traffic evolution  
- The content of the messages exchange with the bot, also named trends 

Therefore, the dashboard will be a trade-off of operational dashboards, which 
focused on the traffic evolution and Analytical dashboards, which process data to 
identify trends. In order to design the several KPI, we based our reflexion on the 
AAARR start-up metrics model developed by Dave Mcclure which was partially 
adapted. Thus, the following KPIs were selected and divided into three categories:  

v Activation Rate: Designate all the metric related to traffic information which 
includes:  

o Total number of users 
o New users 
o User average age, to estimate the age range of the users 
o User session location, to identify in which country/city the bot is used 
o User global satisfaction  

v User Interactions: Gather, the metrics to evaluate the interaction between the 
bot and the users.  

o The average holding time, indicating the average time of a discussion 
between the bot and the user 

o The average number of question per users 
o The total number of questions 

 
v Analytics: To analyze the user’s questions and the trends. 

o Trend topic  
o Most frequent words in user’s questions 
o Most frequent asked questions 

 
Some KPIs such as the user average age or the user session location require 

information that cannot be retrieved from the data gathered by the system but that 
need to be ask to user. Therefore, a conversation needs to be built in order to bring 
the user to give us this data. Beside, to make our bot looking more human, it needs to 
speak like it. In the following section, the chat flows built for this bot will be explained. 
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1.3. Chat	flows	
 

In this section will be described how a bot’s conversation is built. Indeed, to ensure 
the consistency in the responses sent to the user and to gather the required 
information, the bot needs to be able to keep track of the context of the current 
discussion and to ask the right question at the right moment.  

To help the bot to keep track of this context, several States need to be defined. A 
State represents a part of the conversation and indicates the type of action to be 
performed. For example, the state START refers to the begin of a discussion between 
the bot and the user. Thus, the bot is expecting a certain type of messages such as 
“Hi” or “Hello” and will perform the action sentMessage, to reply to the user with a 
welcome message. Therefore, the different type of message that could be received by 
the bot will be presented first and then the different States used by the bot will be 
explained.  

 

1.3.1. Message	types	
 

In this project, several categories of messages have been identified as possible 
type of input for our bot as presented below: 

v Greetings. Includes all messages such as “Hi”, “Hello”, “Good morning”, etc. 
 

v User personal information. As seen in the previous part, several personal 
information from user are required to display the KPIs. The expected data are 
the birth date, the current city and country of the user. The user’s location 
information could be recovered via the phone’s location; however, the bot will 
also be accessible via a web interface so it was decided to directly ask the user.  

 
v Topic related. Includes the topic selected and all messages indicating the topic 

select is not the topic desired.  
 

v Question. Includes, the questions about the definitions of the topics such as 
“What does Bariatrics mean?”, these types of questions will be called 
Questions definitions. Another type is the questions about Health such as the 
ones with have in the dataset. These questions will be called Health question. 
Finally, a last type of questions that can be identifying by the bot: the already 
asked question which designate a question that have been asked before by the 
user as much in terms of meaning (question with the same idea but asked with 
different words) as in terms of words ((question asked with the same words).  

 
v Satisfaction. Boolean message: Yes/No 

 
v Bye. Includes messages such as “Bye”, “Good bye”. 

 
v Command. Two command are used for this project: /start and /done.  

 
v Password. An unknown user must know the password in order to converse 

with the bot.   



         

CHARLINE MAS                 Page 43/83 

1.3.2. Conversation	states		
 

As mentioned previously, a conversation is divided into states which work as 
gates. Once the user gave the type of answer waited, the state is changed for another 
one and so on. If the user has not answered the question in the expected way, the 
state won’t change. In this project, four main States were defined: 

1. START.  
2. LOCATION. 
3. IDENTIFICATION. 
4. FALLBACK.  

 

In the following section will be described the operation of each state. 

 

1.3.2.1. START	
 

The state START is responsible of checking the user identity as shown in the figure 
18. Three types of scenarios can be seen in this state. First, the user is known. In this 
case, a welcome message will be sent 
and the state will be changed to 
IDENTIFICATION. Second, the user is 
unknown, and the message received is 
the password. In this case, User 
personal information are asked to the 
user and the state is changed to 
LOCATION. Finally, if the user is 
unknown and the message is of 
greetings type, the password is asked 
and the state remained unchanged.  

 

 

Figure 20: Example of a conversation in the 
START state, with greetings message as 

input and unknown user 

 
Figure 21: Example of a conversation in the START state, with password  as input and 

unknown user 

 	

Figure 18: State START 

Figure 19: Example of a conversation in the START state, 
with known user and greetings input	



         

CHARLINE MAS                 Page 44/83 

1.3.2.2. LOCATION	
 

The state LOCATION aims to check the format of the personal information 
given by the user. Thus, two 
scenarios can happen. First, if the 
birth date has been given with the 
correct format, a welcome message is 
sent and the state is modified to 
IDENTIFICATION. Second, the date 
format was incorrect. In this case, the 
user personal information is asked 
again with a reminder on the expected 
format.  

 
Figure 22: Example of LOCATION state, with correct format message 

 

1.3.2.3. IDENTIFICATION	
 

The state IDENTIFICATION is the main the state of the conversation. Indeed, 
once the conversation is in this phase, the following types of messages can be treated: 
Topic related, Question, and Satisfaction. This state is therefore, in charge of analyzing 
the incoming message and detect in which category it belongs to. Several scenarios 
can happen here.  

1.3.2.3.1. Topic	related	messages	
 

First, the incoming is identifying as Topic related. In this case the message 
could either be the name of one of the topics or a sentence indicating that the chosen 
topic is actually not the desired one. First, If the input is a topic’s name then a global 
variable will be implemented in background with the name of the topic and the user is 
asked to ask his question. Second, a message indicating that a wrong topic has been 
chosen, will lead the bot the ask again the topic desired.  

In the case, the global variable is not filled but the detected input is Question 
or Satisfaction the user will be asked to choose a topic.  
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   Figure 23: Example of a input topic selected 

 

1.3.2.3.2. Questions	
 

Second, A Question type input is identified and the global variable concerning 
the chosen topic is filled. In this case, the input is pre-processed using the same NLP 
pipeline as explained in the section 2.1.2 of the chapter 2, the similarity between the 
pre-processed incoming message and some predefined questions are evaluated with 
the cosine similarity measure. If the measure is above the threshold, then the question 
is identified as a Question definition and an answer is sent to the user. On the other 
hand, if the question is not identified as Question definition then cosine similarity is 
applied again but on all the questions previously asked the user. If the user is of type 
Unknown or if the user did not ask a threshold number of question, this step is skipped. 
After measure of the similarities between the old user questions and the new query, if 
the highest similarity found is above a threshold then the question is identify as already 
asked question, otherwise the question is considered as Health Question and will be 
analyzed via Word Mover’s distance (WMD). Again, if the measure is above the 
threshold then an answer is sent. Else, the bot is sending an apology and asks the 
user to rephrase his question.  

 
Figure 24: Example of IDENTIFICATION state, with Health questions type identified 

 In the case of a Health questions type, we can see in the figure 24 that several 
messages are sent before, sending the actual answer. It is explained by the very long 
computation time required by the wmd. Indeed, this messages are here to make the 
use wait and leave the application.  
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1.3.2.3.3. Satisfactions	
 

Third, a Yes/No message is identified. If the input is a Yes, then a Thank you 
message is sent. But if it is a No, then the bot we will send the answer of the second 
most similar question identified by the WMD and so on. The number of No is recorded 
and if this number reaches the threshold then an apology is sent to the user with 
indications about how to contact a professional.  

 
Figure 25: Example of SATISFACTION state with No as input 

 

 
Figure 26: Example of the IDENTIFICATION state with Yes as input 

 

1.3.2.4. FALLBACK	
 

The FALLBACK state is a closing state. It is going to end the conversation when 
the incoming message is of type Bye. In this case, only one scenario is possible: a Bye 
message is sent to the user and the state is changed to START.  

 

The states START and FALLBACK represent the begin and end of the chat 
flow, which means that a conversation will always begin in the START state and end 
in the start FALLBACK. This implies that every time a user is going to send a greeting 
message, the conversation will be placed in the state START, even if the current the 
state was LOCATION or IDENTIFICATION. Same with the FALLBACK states, a bye 
message will always end the conversation. This was made to make the bot looking 
more like a Human. Indeed, if for example, the user leaves the chat without sending a 
bye message. The state of the conversation is therefore still IDENTIFICATION. In this 
case if the user come back, the possible inputs would have been Topic related, 
Question or Satisfaction. Or when you chat with a person, the first thing you say before 
starting a new conversation is “Hi” or “Hello”.  

 

 	



         

CHARLINE MAS                 Page 47/83 

1.4. Programming	Language	
Now that the key elements have been defined for each interface, a 

programming language needs to be selected for the backend and for the connection 
between the backend and the bot interface. For creating Chatbots, there are various 
options to choose in programming language. Some of the most popular languages to 
build Chatbots are presented below:  

- Python. Well known for its simplicity, Python has a straightforward 
syntax and it’s object-oriented. This language is one of the most widely 
used in programming languages in the field of Artificial Intelligence.  

- Java. Provides all the high-level features needed in AI project. Java has 
the most important features for a sophisticated interface, like facilitated 
visualization and standard Widget toolkit. 

- Ruby. Very simple syntax which allows beginners to create a Chatbot 
easily. It is a dynamic and object-oriented language.  

- Javascript. High-level interpreted programming language. This 
language is widely in AI platforms. It supports real-time messages and 
is easy to learn. 

 

For this project a simple, flexible and easy language is sought. Since the NLP 
part is the core of the Chatbots, a programming language with a NLP functions is 
required. Therefore, Python was chosen for the following reasons:  

 

- Easy to use: Python is to read which make it easy to pass the project from one 
colleague to another 

- Productivity: It is a great language for building scalable multiprotocol network 
applications. Therefore, it is very suitable for building Chatbots.  

- Machine Learning and Deep Learning Framework: Python has wide array 
of open-source libraries including Scikit-learn and Tensorflow. It also includes 
state-of-the-art AI algorithms.  

- NLP libraries: It is the most popular language for natural language processing 
and the biggest community. Indeed, one of the reason is Natural Language 
Toolkit (NLTK) which was developed for Python and is one of the best 
framework for text mining.  

 

 	



         

CHARLINE MAS                 Page 48/83 

2. FRONT-ENDS	
 

This part will focus on the realization of the two interfaces: Chatbot and the dashboard.  

 

2.1. Chatbot	interface	
Messaging platforms are becoming universal mobile apps. Since, businesses 

look for a way to deliver their messages and services where the consumers are, chat 
platforms are becoming more and more popular for the companies and Chatbots give 
them a way to do this. For this a project, it was decided to use an existent messaging 
application and the following aspects were taken into account when selecting the app: 

- Device Support: The app must be available on mobile and computer.  
- Channel Usability: The priority will be given to the most commonly used 

channels, in order to give more visibility and easier access to the Chabot. 
- Development Flexibility: The channel must allow the most flexible way of 

development.  
- Security: The chosen channel, must make sure that communication between 

two parties cannot be intercepted, altered, forged, or read by unauthorized third 
parties. 

 

2.1.1. Chatbot	channel	
 

There are several channel commonly used as presented in the list below: 

- Facebook Messenger. Facebook, one the most popular social networks, 
possesses one of the larger amount of user with different age range.  

 

- Skype and Skype business. With the same idea as Facebook, Skype bots are 
generally used in group chats for functional and business purposes.  

 

- Telegram. Telegram is a multi-platform instant messaging created by Pavel 
Durov. It is unique in its openness, as it has open-source client applications and 
an open, flexible protocol. However, Telegram is mostly popular for its focus on 
the users privacy, point that most of the other instant messaging clients put aside.  

- Slack. Slack is an instant messaging client and foremost a workplace 
communication tool. However, it can also be used for customer support, online 
communities and in some cases even communication between social groups 
from the real world.  

 

In this project, the Chatbot aims to answer patient’s questions, therefore a one-
to-one, private conversation is considered. This first criterion discards the channels 
Slack, Skype and Skype Business, since the group oriented is not wanted here. This 
lead to a comparison of the Messenger and the Telegram channels. 



         

CHARLINE MAS                 Page 49/83 

 

At the end, it was decided to use Telegram as the front-end up for the following 
reasons: 

§ Telegram Messenger is accessible from multiple devices (mobile, 
computer, tablet) and platforms (Android, iPhone, iPad, Microsoft Windows, 
Web-version, macOS, PC, Mac, Linux), which makes it very reachable.  

§ Although it has less active users than Facebook Messenger, it still has got 
100 million daily active users and it is growing at a rate of more than 50% 
annually. 

§ Finally, and the most decisive factor, is its flexibility. The Telegram Bot has 
got multiple functionalities that enriches the user experience, provides a 
huge range of possibilities when developing a Chatbot and allows us to 
implement the NLP layer built in the chapter two.  

§  

2.1.2. Chatbot	registration	
 

Now that the channel has been chosen, the bot must be created on it. In fact, 
to allow the bot to be seen and reachable on Telegram it needs to be register. Telegram 
provides a very simple way to create bots, indeed after a simple conversation with the 
bot called BotFather, the bot can be registered.  

 

The registration process required two 
elements: 

Bot’s Name. The name of the bot will be 
displayed in the contact details and elsewhere. In 
this project, it was decided to name the bot Ava.  

Bot’s Username. The Username is a 
short name, to be used in mentions and telegram 
links. Usernames are 5-32 characters long and 
are case insensitive, but may only include Latin 
characters, numbers, and underscores. It is also 
important to notice that the username must end 
in ‘bot’. For this project the usernames used is 
Ava_alpha_bot. 

 

At the end of this procedure a token is 
delivered. A token is a string along the lines of 
110201543:AAHdqTcvCH1vGWJxfSeofSAs0K5PALDsaw that is required to authorize 
the bot and send requests to the Bot API. The token delivered for Ava bot is the 
following 609524466:AAGGjUBh7zFHpx3OfrdOzJzJEIkGz9eCwAw. 
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2.1.3. Telegram	bot	API	
 

As described on the Telegram Bot API Web Documentation, the Bot API is an 
HTTP-based interface created for developer keen on building bots for Telegram. 
Therefore, a bot is controlled by HTTP requests to the Bot API indicating the Bot’s 
token as follow: https://api.telegram.org/bot<token>/METHOD_NAME. In the following 
section will be described: API requests operations and the python wrapper used.  

We will describe how works the API requests and then explained the Python 
wrapper used in this project.  

 

2.1.3.1. Telegram	bot	API	
 

Two ways of receiving updated can be used: The Polling method or the 
Webhooks as shown in the figure 27.  

 

- The Long Polling through the getUpdates method is sending an 
HTTPS GET request to the API. Long Polling allows the connection to 
stay open until updates are received. This connection is ruled by a 
timeout argument which defines the time that can stay a connection 
open.  

- The Webhook method requires to specify the URL and the incoming 
updates received via an outgoing webhook. Every time there is an 
update for the Bot, the Telegram API will send an HTTPS POST request 
to the specified URL, containing the update. 

 

 Regardless of the chosen option, the update comes as a JSON-serialized 
objects. These objects contain the information about the messages sent by the user to 
the bot. Incoming updates are stored for 24 hours on the server. 

In this project, the Long Polling method was used as it was easier to set up with 
the chosen programming language.  

Figure 27: Long Polling and Webhook methods 
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2.1.3.2. Python	wrapper	
 

To manage the Bot with python, the python-telegram-bot library was used, and 
more precisely the submodule telegram.ext. This library provides a python interface 
for Telegram Bot API and will take care to send and get message from the Bot API 
thanks to the token.  

Several classes can be found in this package, among them Updater, 
Dispatcher, ConversationHandler, CommandHandler, MessageHandler and Filters. 
These classes have used in the project and are described below:  

 

- Updater. The purpose of the Updater is to receive updates from 
Telegram and give it to the Dispatcher. This class contain the getUpdate 
described in the previous paragraph.  

- Dispatcher. This class dispatches all kinds of updates to its registered 
handlers. In this project, the updates will be send to the 
ConversationHandler.  

- Handlers. The Handlers aim to handle the different type of messages 
that the bot will have to deal with. Among them, we used 
ConversationHandler, CommandHandler, MessageHandler .  

- ConversationHandler. This class is charge to keep track of the 
context of the discussion with the different states described in 
the paragraph 1.3.2 of this chapter.  

- CommandHandler. This class will handle the command 
message, i.e. the message written after the slash symbol such 
as /start. 

- MessageHandler. This class will handle all the non-command 
messages. 

- Filters. This class filter out the non-command messages and specified 
type of text. It is used with MessageHandler , to defined the input that 
will accept the class.  

 

A documentation of this library is also available at https://python-telegram-
bot.readthedocs.io/en/stable/telegram.html  
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2.2. Dashboard	interface				 	 	
 

Now that the bot’s user front-end has been defined, the professionals interface 
needs to be built. In the first part of this chapter, the KPIs for this dashboard have been 
selected. In this paragraph, we will first focus on the software used to build our 
dashboard and then, a presentation of the final interface will be done.  

 

2.2.1. Dashboard	software	
 

Nowadays, modern dashboards use data visualization to improve the user 
experience of traditional business intelligence. Data visualization is one of the most 
popular business intelligence tools. Indeed, it helps people to effectively see and 
understand data. As the industry continues to grow, so does the push for design-
focused, thoughtful, user-friendly dashboards. In order to choose, the more 
appropriate dashboard software for this project, a comparison was made based on the 
following criteria: 

v Free Trial 
v Free Version Available 
v Automated Visualizations 
v Visualization Option / User Palette 
v Customizable Dashboards 
v Sharing / Publish Tool 
v Community Marketplace / Gallery  

To realize the comparison, the most common dashboards software were selected 
and presented below: 

 

Ø Microsoft Power Bi:  
A extremely powerful platform with a lot of data source connectors, a 
user-friendly interface and good data visualization capabilities.  

Ø Tableau: 
A good platform with a lot of data connectors and visualizations. The 
design is here also very user-friendly. This product has large community of 
user.  

Ø Google Analytics: 
Due to its brand recognition and the fact that it’s free, Google Analytics is 
the biggest name website and mobile app intelligence.  

Ø Charito: 
Processing engine with a powerful analytics platform, which possesses a 
good query optimization system on SQL. It is entirely web-based.  
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 Microsoft 
Power Bi Tableau Google 

Analytics Charito 

Free Trial Yes Yes Yes Yes 

Free Version Available Yes No Yes No 

Automated Visualizations Yes Yes No Yes 

Visualization Option / User 
Palette Yes Yes Yes Yes 

Customizable Dashboards Yes Yes Yes Yes 

Sharing / Publish Tool Yes Yes Yes Yes 
Table 9: Dashboard software comparison 

The table 9 presents the comparison realized between the different dashboard 
software. The one which corresponds the most to the criteria is the software Microsoft 
Power Bi.  

 

2.2.2. Final	dashboard	
 

The final dashboard is composed of two pages: 	
Ø Global indicators 
Ø Bot Analytics  

 

The Global indicators page is designed to ensure an overall view of the general 
metrics gather from the bot database. Thus, are present in this first page the following 
indicators: 

1. The total number of users of the application  
2. The new users having been registered during the current month  
3. The average age of the users  
4. The total number of questions  
5. The average number of question per users  
6. The user sessions location, showing the location of each users. 
7. The average holding time, indicating the average time of a conversation 

with the bot 
8. The average abandoned rate, evaluating the number of user having 

been registered but didn’t ask any questions. 
9. The global satisfaction, showing the general user’s satisfaction 
10. The membership evolution (per month), which plot the evolution of the 

number of new user per month. 

A filter was added to this page, in order to filter by time, the following data displayed.  
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The Bot Analytics page, also having a time filter, is designed to allow an analytic 
study of the questions asked by the users. Thus, are present in this first page the 
following indicators: 

1. The trend topic, indicating the most popular question’s topic asked per 
month  

2. The latest questions asked 
3. The top 10 words occurrence, which show the keywords usually 

mentioned in the questions  
4. The words location (per country), indicating where the question(s) 

having the selected keyword, were asked. 
5. The words cloud, showing the top 50 most frequent words   

1 2 3 4 5 

7 6 8 9

10

1 
2 

3 4 5 
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3. BACK-END	CHATBOT		 		
3.1. Data	structure		

 

In this part, the Data structure of the project will be presented.  

 

 
Figure 28: Data structure of the project 

 

There are three folders in this python project:  

- Bot functions: All the scripts responsible of the communication with the user 
and the Telegram API. 

- Database: All the files related to the data management and storage. 
- Models: Contains the scripts related to the training, models computations and 

models files. 
 

In the following sections, all the files will be briefly described.  

3.1.1. Main.py	file	
 

This script is core of the Chatbot. Indeed, all the functions, objects and data are 
loaded into this files. The bot object and the conversation object are created here. The 
conversation object is composed of three elements:  

v Entry-points: It is the state START presented in paragraph 1.3.2 of this chapter. 
The entry_points is a python list, which can be composed of one or many 
elements. In this project a CommandHandler is added in order to allow the input 
/start. A RegexHandler is added, which allow the state to accept the message 
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of type greetings. If the input match one of the two mentioned elements, the 
command start is called. 

v States: Dictionary dealing with the different states previously defined. Each 
state is defined by the MessageHandler. When the state is LOCATION and the 
input match the MessageHandler requirement, the command newUser is 
called, while for the IDENTIFICATION state the command identifyIntent is called.  

v Fallback: Defines the closing states and it is composed as the Entry-points of 
a CommandHandler accepting this time the input /done and a RegexHandler 
accepting inputs of type bye. 

 

3.1.2. Bot	functions	
 

Here we store the auxiliary scripts that contain all necessary functions to make the Bot 
work. These scripts are: 

v Bot Command: Function designated as command. These are the functions 
called by the conversation object. The specificity of these functions is that the 
arguments must be bot and update and nothing else.  

v Bot Function: Functions which are not depending on the objects previously 
mentioned bot and update, such as 'buildMenu' which is not using any of the 
objects parameters 

v Global var: File used as a setting script. It allows to change the model used to 
look for the answer, change the thresholds of the project and the waiting time. 

v Handlers Folder: In this folder can be found the script dedicated to the different 
types of object need to build a dialog with the telegram python package. 

-  The file speakerHelper.py is used to code all the method directly 
related to interact with the user. 

-  The file checkerHelper.py is used to code all the method in charge of 
the checking.  

- The file actionsHelper.py is used to code all the method related to the 
action the bot should realise. For example, the welcome function is in 
charge of a welcome message to the user. Depending on type of user 
(unkown/known) variable, the message will change. 

- The file botHelper.py is used to code a 'block' object. This object is 
required to build a command. Indeed, each command is actually a block 
in which we are executing actions. These actions used some checking 
functions and speaker functions. 

 

In the end, adding a new skill to the bot, is actually adding a new command. 
This command must be located in the bot_commands.py file. It should be a function 
with the argument bot and update which are the arguments required by the telegram 
package. Each command deals with a specific type of message and uses, as 
mentioned before, actions function to treat them. 
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3.1.3. Database	folder	
 

We can find the necessary data for the running of the Bot, including: 

v Ava.sqlite. It is the SQLite DB in which the data contained will be explained in 
the section 3.2. of this chapter.  

v Two python files. The first one (data_utils) gathers the functions related to the 
data preprocessing. The second (dataHandler) groups all the functions used to 
deal with the database. 

v A jupyter notebook. To manually add data into the database 

 

3.1.4. Models	folder	
 

All the necessary functions and data related to the models computation can be 
found in this folder:  

v models files. The files with the model and instances trained. They are external 
files which are loaded only when the Bot is started.  

v Python scripts. Contain all the function to compute the models 
v A jupyter notebook. To train the word2vec model.  
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3.2. Database	
It has been decided to manage the backend with a sqlite database. Indeed, 

SQLite is a very light-weight relational database management system contained in a 
C programming library. Rather to be a client-server database engine, it is embedded 
into the end program.  

To build the database, the python’s package sqlite3 was used. This package 
allows us to create and open a connection to the database from python.  

 

The structure of the database was designed to facilitate the following points: 

v the data extraction for the dashboard 
v the saving of key elements of a conversation bot-user 
v the training of model 

Therefore, the data gather from the conversation is saving into one of the following 
tables:  

- User. Containing the user information. 
- Id: User id, a unique id delivered by telegram for each user.  
- Birthdata: The birth date of the user gathers during the first 

connection. 
- Allowed: binary variable used to check if the user is allowed to talk 

with the bot or no.  
- Date_creation: The date of the user registration to the bot system. 
- City: User’s current city.  
- Country: User’s current country. 

- Conversations. Record of all the conversations with the users.  
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- Id: conversation id, which is unique. 
- Date: date of the conversation.  
- Duration: duration of the conversation, from the first greeting to the 

last user answer.  
- Satisfaction: User’s satisfaction.  
- Id_quesiton: foreign key of the Health question id saved into the 

Questions table.  
- Userid: foreign key of the user id of the Users table. 
- Id_topic: foreign key of the topic id saved into the Topics table. 

 
- Questions. Contains the questions of the dataset used in this project, but 

also the Health question gathered from the conversations with the users. 
- Id: unique id given to each each question. 
- Subindex: none unique id given for each topic. For example, four ids 

equal to 1 can be found into the sub-index column.  
- Cleaned_q: pre-processed questions as explained in the chapter 2, in 

the stop-words removal part.  
- Original_q: non pre-processed questions 
- inModel: Binary variable which aims to facilitate the selection of the 

questions to train the model.  
- Id_answer: foreign key of the answer’s id to which is linked the 

question. 
- Id_topic: Foreign key of the topic id.  

 

- Topics: Gather the information related to the dataset’s topics.  
- Id: unique id for each topic. 
- Name: name of the topic. 

 
- Definitions: 

- Id: unique id for each question. 
- Question: the question of type question definition. 
- Answer: the definition of each topic 

 

The reason why the question definition type of messages was put in a 
separated table, is due to the way the data was created. Indeed, it was more 
convenient to create a table in which all the manually created were put together. 	
 

3.3. Additional	Functionality	
 

We noticed that it was important for the bot to be able to detect the language in 
which the user is talking. To do so, we implemented a function in the checkerHelper 
script, to check the words inside the input. These words will then be compared to a list 
of stops-words in different languages. A score is computed for each possible language 
and the one having the highest score is selected. If this language corresponds to 
English the chat flow continue, however if the language detected is not English, a 
message is sent to the user to remember him to speak in English.   
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CONCLUSION	AND	FUTURE	WORK		
 

In this final chapter, the conclusions are exposed, as well as the contributions 
made in this project and the future work proposed. 

CONCLUSIONS	
 

The initial goals of the project have been reached even though some data 
problems occur during the first two months and half. First, we will make a recap on the 
different aspects of the project done: 

Ø NLP approaches: We have been able to build a system that is able to 
understand the meaning of the questions by using the Word Mover’s Distance 
for the Health questions type and the Cosine similarity for the questions 
definitions and already asked questions. 

Ø Front-end Applications. We have been able to implement this system into an 
actual text messaging application, Telegram, which is widely used, thus giving 
the opportunity to reach our system a huge range of users. As well as building 
a dashboard, using Power Bi, which shows the key elements gathered by the 
system.  

Ø Back-end Development. We have implemented a wide range of functionalities 
for our Chatbot, which enriches the user experience and provides a useful 
service.  

Ø Python performance. Now that the solution is built, we can conclude that 
given all what has been seen during the project, python is a very good option 
to develop Chatbot, both for its flexibility and the performance provided for 
natural language processing tasks. 

 

Furthermore, a considerable autonomous learning has been done all along the 
project, which has provided lots of knowledge about many different fields and about 
the natural language processing world.  

 

Taking a step back, it looks like we could have dedicated an entire Master 
Thesis to the natural languages approaches and another one for the Chatbot 
implementation. Of course, we have not been able to enter to all of these aspects at a 
full level of detail, but an an effort was made to build an overall solution with high 
performance considering the magnitude of this thesis. 
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FUTURE	WORK	
 

Like in all project, there are always parts that could be improved or done 
differently. Several axes of for improvement will be discussed here. 

First concerning the NLP layer of the implemented solution, a work is currently 
done to improve the computation time of the Word Mover distance. This improvement 
is based on the paper Linear-Complexity Relaxed Word Mover's Distance with GPU 
Acceleration by Kubilay Atasu, Thomas Parnell, Celestine Dünner, Manolis Sifalakis, 
Haralampos Pozidis, Vasileios Vasileiadis, Michail Vlachos, Cesar Berrospi, Abdel 
Labbi. They transformed the Relaxed Word Mover Distance into a low-complexity 
implementation that reduces the average time complexity to linear. Their solution maps 
well onto GPUs. We tried to implement their solutions in C++ but so far, no 
improvement in term of computation have been realized yet.  

Another idea to improve the quality of the model, is trying to find similar dataset 
with a similar vocabulary in order to improvement the training of the Word2vec model. 

A deep learning solution, has been tried in order to generate the answers 
instead of retrieved. The idea is to go into a more personal conversation with the users. 
So far, the results didn’t reach the result of the implemented model. But this could be 
a way to improve the bot.  

From a technical point of view, it could be considered to migrate the solution to 
the cloud. Indeed, right now the bot is running in local and while it is a demo project, 
to propose a solution running into the cloud.  

 

 

.  
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APPENDICES	
 

 

For privacy issues, only code regarding the data cleaning process will be 
attached. Code from the Chatbot implementation can be asked for consultation for the 
thesis evaluation.  

 	

A. data_utils.py	
 
This script provides the functions used to clean, analyse and correct string/words in 
cells of dataframe.  
 

 
# -------------------------------------------# 
# List of imports 
# -------------------------------------------# 
 
 
import warnings 
warnings.filterwarnings(action='ignore', category=UserWarning, 
module='gensim') 
import re 
from nltk import word_tokenize,wordpunct_tokenize 
from nltk.corpus import stopwords,wordnet 
 
 
# ---------------------- 
# Text Pre-processing 
# ---------------------- 
 
def preprocess(textVariable, dictionary=None, 
removeApostrophes=True, special_element=None,removeNumbers=True, 
               removePunctuation=True, removeControlChars=True, 
removeWhiteSpace=True, 
               removeExtraSpace=True, 
toLower=True,singleLetter=True,removeUnderscore=True,outSpace=False, 
cleanwords=True): 
    """ 
    This function takes as input a text variable and optionally a 
dictionary. The function computes 
    basic text mining pre-processing. 
 
        :param textVariable: string used as input 
        :param dictionary: only required  for cleanwords 
        :param removeApostrophes: Boolean variable 
        :param removeNumbers: Boolean variable 
        :param removePunctuation: Boolean variable 
        :param singleLetter : Boolean variable 
        :param removeControlChars: Boolean variable 
        :param removeWhiteSpace: Boolean variable 
        :param removeExtraSpace:Boolean variable 
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        :param toLower: Boolean variable 
        :param removeUnderscore : Boolean variable 
        :param outSpace : Boolean variable 
        :param cleanwords: correct misspelled words 
 
        :return textVariable : A preprocess text variable 
 
        """ 
    temp = textVariable 
    # remove Apostrophes 
    if removeApostrophes: 
        temp = re.sub("'", "", temp) 
    # remove Accent grave 
    if special_element is not None: 
        for elt in special_element: 
            pattern = re.compile(r'\b{0}\b'.format(elt), 
re.IGNORECASE) 
            if re.findall(pattern, temp): 
                sentence = re.sub(pattern, " ", temp) 
            temp = temp.replace(elt, " ") 
 
    # replace punctuation with space 
    if removePunctuation: 
        temp = re.sub(r'[^\w\s]', '', temp) 
    # remove numbers 
    if removeNumbers: 
        temp = re.sub("\d", " ", temp) 
 
    # remove single letter in the text 
    if singleLetter: 
        temp = re.sub('(\\b[A-Za-z] \\b|\\b [A-Za-z]\\b)', '', temp) 
 
    # replace control characters with space 
    if removeControlChars: 
        temp = re.sub(r'[\x00-\x1f\x7f-\x9f-\xa0]', ' ', temp) 
 
    # remove whitespace at beginning and ending of  cells 
    if removeWhiteSpace: 
        temp = temp.strip() 
 
    # remove extra space in the document 
    if removeExtraSpace: 
        temp = re.sub("\s{2,}", " ", temp) 
 
    # force to lowercase 
    if toLower: 
        temp = temp.lower() 
 
    # remove underscore of the textVariable 
    if removeUnderscore: 
        temp = re.sub("_", " ", temp) 
 
 
    # remove all the space of the textVariable 
    if outSpace: 
        temp = re.sub(" ", "_", temp) 
 
    # correct misspelled words 
    if cleanwords: 
        if dictionary: 
            for key in list(dictionary.keys()): 
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                pattern = re.compile(r'\b{0}\b'.format(key), 
re.IGNORECASE) 
                if re.findall(pattern, temp): 
                    temp = re.sub(pattern, dictionary[key], temp) 
        else: 
            return print('Please add a dictionary to correct 
misspelled words or mark cleanwords=False') 
 
    return temp 
 
# -------------------------------------------# 
# General Cleaning 
# -------------------------------------------# 
def calculate_languages_ratios(sentence,language_used=None,stop_list=None): 
    """ 
        Calculate probability of given text to be written in several 
languages and 
        return a dictionary that looks like {'french': 2, 'spanish': 
4, 'english': 0} 
 
        :param sentence: Text whose language want to be detected 
        :type text: str 
 
        :return: Dictionary with languages and unique stopwords seen 
in analyzed text 
        :rtype: dict 
 
        nltk.wordpunct_tokenize() splits all punctuations into 
separate tokens 
        """ 
    languages_ratios = {} 
    tokens = wordpunct_tokenize(sentence) 
    words = [word.lower() for word in tokens] 
 
    # Compute per language included in nltk number of unique 
stopwords appearing in analyzed text 
    for language in stopwords.fileids(): 
        if language_used is not None and stop_list is not None: 
            stopwords_set = set(stop_list + 
stopwords.words(language)) 
        else: 
            stopwords_set = set(stopwords.words(language)) 
 
        words_set = set(words) 
        common_elements = words_set.intersection(stopwords_set) 
        languages_ratios[language] = len(common_elements) 
 
    return languages_ratios 
 
def detect_language(text, language=None,stop_list=None): 
    """ 
    Calculate probability of given text to be written in several 
languages and 
    return the highest scored. 
 
    It uses a stopwords based approach, counting how many unique 
stopwords 
    are seen in analyzed text. 
 
    :param text: Text whose language want to be detected 
    :type text: str 
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    :return: Most scored language guessed 
    :rtype: str 
    """ 
 
    #list of language to consider as english text 
    as_english = ['azerbaijani','danish', 'dutch'] 
 
    ratios = 
calculate_languages_ratios(text,language_used=language,stop_list=sto
p_list) 
    most_rated_language=max(ratios, key=ratios.get) 
 
    if len(set(ratios.values()))==1 or most_rated_language in 
as_english: 
        most_rated_language=language 
 
    return most_rated_language,ratios 
 
 
 
defGeneralCleaning(index,listText,check_reject,language=None,stop_list=Non
e): 
    # remove repeated character (which are not alphanumeric) 
    listText = [re.sub('([^\w\s]{2,})', '', str(sentence)) for 
sentence in listText] 
 
    # remove repeated character in list [a-z] and replace it with 
just one ex aaaaaaaah --> ah 
    listText = [re.sub('((?![o])[a-z])\1{1,}', 
'\1',str(sentence))for sentence in listText] 
 
    # remove date and time 
    listText = [re.sub('[0-9]{2}[\/,:.][0-9]{2}[\/,:.][0-9]{2,4}', 
'', str(sentence)) 
        for sentence in listText] 
 
 
    # remove special character  <>#{}€%~€™ 
    listText = [re.sub('[<>#{}€%~€™Ã©Â¨Ãª]', '', str(sentence)) 
                    for sentence in listText] 
 
    # replace \b(Ã©|Ãª|Ã¨)\b by e 
    listText = [re.sub('\b(Ã©|Ãª|Ã¨)\b', 'e', str(sentence)) 
                for sentence in listText] 
 
    # remove special character ]{>()}<[*? 
    listText = [re.sub('[]{>()}<[*?]', '', str(sentence)) 
                    for sentence in listText] 
 
    listText = [preprocess(str(sentence), removeApostrophes=False, 
                                    removeNumbers=False, 
removePunctuation=False, 
                                    removeControlChars=True, 
removeWhiteSpace=True, 
                                    removeExtraSpace=True, 
toLower=False, singleLetter=False, 
                                    removeUnderscore=True, 
outSpace=False, cleanwords=False) 
                         for sentence in listText] 
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    if language is not None: 
        if check_reject is None: 
            check_reject={} 
        listText_checking=[] 
        # detect sentence with none english language 
        for i,sentence in enumerate(listText): 
            language_detected,ratios=detect_language(sentence, 
language=language,stop_list=stop_list) 
            if language_detected == language : 
                listText_checking.append(sentence) 
            else: 
                print("#-------------------------#") 
                print(language_detected) 
                print("#-------------------------#") 
                print() 
                key=check_reject.setdefault(i,None) 
                if key is not None: 
                    check_reject[i].append(language_detected) 
                else: 
                    check_reject[i]=[language_detected] 
 
        # return empty list if one of the sentence written in 
language 
        if len(listText)!= len(listText_checking): 
            for i in range(len(listText)): 
                listText[i]="" 
 
    return listText,check_reject 
 
 
def misspelled_words(tokens): 
    ''' 
    function to correct the spelling of words(tokens) 
    :param tokens: list of token to check 
    :return: tokens_correct list of token with correct spelling 
    ''' 
    import re 
    from autocorrect import spell 
    tokens_correct = [] 
    for token in tokens: 
        if not re.findall(re.compile(r'[^\w\s]'), token): 
            tokens_correct.append(spell(token)) 
        else: 
            if len(tokens_correct) > 1: 
                
tokens_correct.append(''.join([tokens_correct.pop(tokens_correct.ind
ex(tokens_correct[-1])), token])) 
 
    # tokens_correct=[spell(token)for token in tokens if not 
re.findall(re.compile(r'[^\w\s]'),token) ] 
    return tokens_correct 
 
 
def removeElement(sentence, replaceObj, dict_arg=None): 
    import re 
    if isinstance(replaceObj, dict): 
        # case 1 : replaceDict={'by':'toReplace'} 
        # -->replace one word/expression('toReplace') by a specific 
word/expression ('by') 
        # case 2 : replaceDict={by:'[toReplace1,toReplace2]'} 
        # -->replace list of 
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words/expressions8[toReplace1,toReplace2]) by a specific 
word/expression ('by') 
        # toReplace can be a regex expression like [\(\)\{\}<>] 
        for by in replaceObj.keys(): 
            toReplace = replaceObj[by] 
            if isinstance(toReplace, list):  # case 2 
                pattern = re.compile("|".join(toReplace), 
re.IGNORECASE)  # "({})".format(x) for x in toReplace) 
                sentence = re.sub(pattern, by, sentence) 
            else: 
                sentence = re.sub(re.compile(toReplace, 
re.IGNORECASE), by, sentence) 
 
    if callable(replaceObj): 
        def replace_with_function(sentence,replaceObj,*args): 
            if len(args) < 2: 
                return print('Please give me a regex expression and 
a word to replace') 
            if replaceObj.__name__ == 'search': 
                if len(args) == 3:  # args =['regex 
expression','by',index] 
                    elt = re.search(args[0], sentence,re.M | 
re.IGNORECASE) 
                    if elt is not None: 
                        elt=elt.group(args[2]) 
                else: 
                    return print( 
                        "-->Please add a boolean value (0 or 1) for 
the group function. Ex: removeElement(tt,re.search,r'[0-
9]','feet',1)") 
            else: 
                elt = replaceObj(args[0], sentence,re.M | 
re.IGNORECASE) 
 
            if isinstance(elt, list) and elt is not None: 
                pattern = re.compile("|".join(elt), re.IGNORECASE) 
 
            else: 
                if elt is None or elt=='': 
                    pattern = '' 
                else: 
                    pattern = re.compile(elt, re.IGNORECASE) 
 
            sentence = re.sub(pattern, args[1], sentence) 
            return sentence 
 
        def reformatList(key, listValues): 
            if len(listValues) > 1: 
                index = listValues[1] 
                elt_list = [listValues[0], key, index] 
            else: 
                elt_list = [listValues[0], key] 
            return elt_list 
 
        if dict_arg is not None: 
            for by in dict_arg.keys(): 
                values = dict_arg[by] 
                if isinstance(values,list): # dict type = 
{'key':[values],[values],..] 
                    for i in values: 
                        if isinstance(i,list):# dict type = 
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{'key':[[value1,value2],[value1,value2],..] 
                            elt_list=reformatList(by, i) 
                            sentence = 
replace_with_function(sentence, replaceObj, *elt_list) 
                        else: 
                            elt_list=[i,by] 
                            sentence = 
replace_with_function(sentence, replaceObj, *elt_list) 
                else: 
                    elt_list = [values, by] 
                    sentence = 
replace_with_function(sentence,replaceObj, *elt_list) 
    return sentence 
 
 
# -------------------------------------------# 
# Replacing Words Matching Regular Expressions 
# -------------------------------------------# 
 
replacement_patterns = [ 
    (r'won\'t', 'will not'), 
    (r'can\'t', 'cannot'), 
    (r'i\'m', 'i am'), 
    (r'ain\'t', 'is not'), 
    (r'(\w+)\'ll', '\g<1> will'), 
    (r'(\w+)n\'t', '\g<1> not'), 
    (r'(\w+)\'ve', '\g<1> have'), 
    (r'(\w+)\'s', '\g<1> is'), 
    (r'(\w+)\'re', '\g<1> are'), 
    (r'(\w+)\'d', '\g<1> would'), 
] 
 
class RegexpReplacer(object): 
    """ Replaces regular expression in a text. 
    replacer = RegexpReplacer() 
    replacer.replace("can't is a contraction") 
    'cannot is a contraction' 
    replacer.replace("I should've done that thing I didn't do") 
    'I should have done that thing I did not do' 
    """ 
 
    def __init__(self, patterns=replacement_patterns): 
        self.patterns = [(re.compile(regex), repl) for (regex, repl) 
in patterns] 
 
    def replace(self, text): 
        s = text 
 
        for (pattern, repl) in self.patterns: 
            s = re.sub(pattern, repl, s) 
 
        return s 
 
 
class RepeatReplacer(object): 
    """ Removes repeating characters until a valid word is found. 
    >>> replacer = RepeatReplacer() 
    >>> replacer.replace('looooove') 
    'love' 
    >>> replacer.replace('oooooh') 
    'ooh' 
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    >>> replacer.replace('goose') 
    'goose' 
    """ 
 
    def __init__(self): 
        self.repeat_regexp = re.compile(r'(\w*)(\w)\2(\w*)') 
        self.repl = r'\1\2\3' 
 
    def replace(self, word): 
        if wordnet.synsets(word): 
            return word 
 
        repl_word = self.repeat_regexp.sub(self.repl, word) 
 
        if repl_word != word: 
            return self.replace(repl_word) 
        else: 
            return repl_word 
 
 
def preprocess_doc(documents, language='english'): 
    ''' 
    Function to clean the messages. 
    :param documents: message (string) to clean 
    :param language: language to use for stop_word 
    :return: cleand tokenized message 
    ''' 
    # Lower the text. 
    doc = documents.lower() 
 
    replacer = RegexpReplacer() 
    replacer.replace(str(doc)) 
 
    # Remove stopwords. 
    stop_words = stopwords.words(language) 
    doc = word_tokenize(doc)  # Split into words. 
    doc = [w for w in doc if not w in stop_words]  # Remove 
stopwords. 
    doc = [w for w in doc if w.isalpha()]  # Remove numbers and 
punctuation. 
 
    return doc 
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B. Dataset	creation	
 

In this part, the python steps to create the extract the data from the json files and 
create a csv file are presented :  

 
 
# #### Import packages 
 
import os, json 
import pandas as pd 
 
 
# #### Load files and create dataset 
path_to_json = './json/' 
 
# Load files' names into a list 
json_files = [pos_json for pos_json in os.listdir(path_to_json) if 
pos_json.endswith('.json')] 
print("Files' names: ",json_files) 
 
 
# Create an empty dataset 
jsons_data = pd.DataFrame(columns=['question', 'answer', 'tags']) 
 
## Fill dataset  
 
#initialised indexes of dataset 
index = 0 
 
# loop over names' files 
for js in json_files: 
    with open(os.path.join(path_to_json, js)) as json_file: 
        json_text = json.load(json_file) 
         
        #Look for considered elements 
        for elt in json_text: 
            question = elt['question'] 
            answer = elt['answer'] 
            tags = elt['tags'] 
             
            # Push a list of data into the DataFrame at row given by 
'index' 
            jsons_data.loc[index] = [question, answer, tags] 
            index+=1 
 
 
#save dataset 
jsons_data.to_csv('dataset_QnA.csv', sep=';', encoding='utf-8', 
index=False) 
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C. Data	cleaning		
 

This part exposed the functions and steps realised to clean the data, corresponding to 
the part 2.1. of the second chapter.  

a. Functions	used	in	the	cleaning	process	
 

In this part, funcitons used for the cleaning realised on the extracted data.  

 
# -------------------------------------------# 
# List of imports 
# -------------------------------------------# 
#package 
import pandas as pd 
#import bot_data.data_utils 
import data_utils 
 
 
# -------------------------------------------# 
# Functions 
# -------------------------------------------# 
 
def removeRows(dataframe,columns): 
    ''' 
    function to remove rows where one of the variables contained in 
columns list is empty 
    :param dataframe: pandas dataframe 
    :param columns: columns to consider 
    GoodDataFrame and BadDataFrame a 
    :return: - 
    ''' 
    #initialize list toRemove 
    index_list_toRemove=[] 
 
    # cell with len <=1 replace by "" 
    for index, row in dataframe.iterrows(): 
        add = False 
        toCheck = row[columns].tolist() 
        for i,sentence in enumerate(toCheck): 
            if (len(str(sentence))<=1) or sentence=="N/a" or 
sentence==' ' : 
                dataframe.loc[index, columns[i]] = "" 
                add = True 
            if pd.isnull(sentence): 
                dataframe.loc[index, columns[i]] = "" 
                add = True 
            if add and  index not in index_list_toRemove: 
                index_list_toRemove.append(index) 
 
    #remove element contained in index_list_toRemove 
    dataframe.drop(dataframe.index[index_list_toRemove], 
inplace=True) 
    print('rows removed') 
    return dataframe 
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def removeDuplicateRow(dataframe,path, *args,merge=True): 
    ''' 
    function to remove duplicate row having same element in column A 
and B 
    :param dataframe: pandas dataframe 
    :param columns: columns to consider 
    :param args: list of two columns to be considered 
 
    save dataframe without duplicate rows 
    :return: - 
    ''' 
 
    df = pd.read_csv('{0}/'.format(path) + dataframe, sep=";") 
 
    columnA = args[0] 
    columnB = args[1] 
 
    # first drop rows with Q and A equal (we keep the last) 
    newdf = df.drop_duplicates(subset=[columnA, columnB], 
keep='last') 
 
    # merge question duplicate with different answer 
    list_trueFalse= newdf.duplicated([columnA], keep=False).tolist() 
    index_duplicate_row=[index for index, elt in 
enumerate(list_trueFalse) if elt] 
 
    dict_treat_row = {} 
    index_list_toRemove = [] 
    for index in index_duplicate_row: 
        question = newdf.loc[newdf.index[index], columnA] 
        answer = newdf.loc[newdf.index[index], columnB] 
 
        if question in dict_treat_row.keys(): 
            dict_treat_row[question].append(answer) 
            index_list_toRemove.append(index) 
        else: 
            dict_treat_row[question] = [answer] 
 
    # remove element contained in index_list_toRemove 
    newdf = newdf.drop(newdf.index[index_list_toRemove]) 
 
    #fill the new dataset 
    for index,row in newdf.iterrows(): 
        question = row[columnA] 
        if question in dict_treat_row.keys(): 
            if merge: 
                row[columnB] = '/'.join(str(v) for v in 
dict_treat_row[question]) #merge all answer into a string 
            else: 
                row[columnB]= dict_treat_row[question][-1] #take the 
last element 
 
    newdf.to_csv('{0}/3_removeDuplicateRow.csv'.format(path), 
sep=';', encoding='utf-8', index=False) 
    print('You removed {0} rows'.format(df.shape[0] - 
newdf.shape[0])) 
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def spellingCorrection(dataframe, columns, path, name=None): 
    ''' 
    :param dataframe: pandas dataframe 
    :param columns: columns to check 
    :param path: where to save dataframe 
    :param name: if name not none, save the dataframe in path 
    :return: dataframe with correct spelling in columns 
    ''' 
    from  data_utils import misspelled_words 
    import nltk 
    dataframe.reset_index() 
    for index, row in dataframe.iterrows(): 
        to_check = row[columns].tolist() 
        for column, sentence in enumerate(to_check): 
            tokens = nltk.tokenize.word_tokenize(sentence) 
            tokens_correct = misspelled_words(tokens) 
            dataframe.at[index, columns[column]] = ' '.join(str(v) 
for v in tokens_correct) 
        print('Row : %s corrected' % str(index), 'Shape dataframe', 
dataframe.shape[0]) 
 
    dataframe = removeRows(dataframe, columns) 
 
    print('-----------------------------------') 
    print('All the columns have been corrected') 
    print('-----------------------------------') 
 
    if name is not None: 
        dataframe.to_csv('{0}'.format(path) + name + '.csv', 
sep=';', encoding='utf-8', index=False) 
        print('Dataframe saved') 
 
    return dataframe 
 
def NameDictionary(dataframe,columns,path,name_dict=None): 
    ''' 
    Function to identify the name in a sentence 
    :param dataframe: pandas dataframe 
    :param columns: columns list to check 
    :param path: where to save the dictionary 
    :param name_dict: name of dictionary to save 
    :return: dictionary {'Jo':[(23,'Q')]} = {'Name':[(index in 
dataframe,column)]} 
    ''' 
    import nltk 
    import numpy as np 
    from nltk.tag.stanford import StanfordNERTagger 
 
    # Change the path according to your system 
    stanford_classifier = 'C:/Users/charline.mas/stanford-ner-2018-
02-27/classifiers/english.all.3class.distsim.crf.ser.gz' 
    stanford_ner_path = 'C:/Users/charline.mas/stanford-ner-2018-02-
27/stanford-ner.jar' 
 
    # Creating Tagger Object 
    st = StanfordNERTagger(stanford_classifier, stanford_ner_path, 
encoding='utf-8') 
 
    #creation dicitonary of the found names 
    dict_name = {} 
    dataframe.reset_index() 
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    for index,row in dataframe.iterrows(): 
        to_check= row[columns].tolist() 
        for column,sentence in enumerate(to_check): 
            for sent in nltk.sent_tokenize(sentence): 
                tokens = nltk.tokenize.word_tokenize(sent) 
                tags = st.tag(tokens) 
                for tag in tags: 
                    if tag[1] == 'PERSON': 
                        print(tag,index,columns[column]) 
                        name=tag[0] 
                        if name in dict_name.keys(): 
                            dict_name_temp={} 
                            old_val=dict_name[name] 
                            value_toAdd=[(index,columns[column])] 
                            dict_name_temp[name]=old_val+value_toAdd 
                            dict_name.update(dict_name_temp) 
                        else: 
                            
dict_name[name]=[(index,columns[column])] 
 
    np.save('{0}{1}.npy'.format(path,name_dict), dict_name) 
    print('-----------------------------------') 
    print('Dictionary names saved') 
    print('-----------------------------------') 
    return dict_name 
 
 
def deleteElement 
(dataframe,columns,replaceObj,dict_args=None,name=None,removeSentenc
e=False): 
 
    import nltk 
    from data_utils import removeElement 
    dataframe.reset_index() 
    for index, row in dataframe.iterrows(): 
        to_check = row[columns].tolist() 
        for column, sentence in enumerate(to_check): 
 
            if removeSentence: 
                new_text=[] 
                for sent in nltk.sent_tokenize(sentence): 
                    if dict_args is not None: 
                        s = 
removeElement(sent,replaceObj,dict_arg=dict_args) 
                    else: 
                        s = removeElement(sent, replaceObj) 
                    if not len(s)<len(sent): 
                        new_text.append(sent.capitalize()) 
 
                sentence= ' '.join(new_text) 
            else: 
                if dict_args is not None: 
                    sentence = removeElement(sentence, replaceObj, 
dict_arg=dict_args) 
                else: 
                    sentence = removeElement(sentence, replaceObj) 
 
            dataframe.at[index, columns[column]] = sentence 
 
    if removeSentence: 
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        print('-----------------------------------') 
        print('Sentence(s) removed') 
        print('-----------------------------------') 
    else: 
        print('-----------------------------------') 
        print('Element(s) removed') 
        print('-----------------------------------') 
 
 
    if name is not None: 
        dataframe.to_csv('./data/'+name + '.csv', sep=';', 
encoding='utf-8', index=False) 
        print('Dataframe saved') 
 
    return dataframe 
 

 	



         

CHARLINE MAS                 Page 76/83 

b. Cleaning	steps	
 
 
# Import packages 
 
import pandas as pd 
import re 
import nltk 
from nltk  import word_tokenize 
from collections import Counter 
import collections 
from data_extraction import * 
from data_utils import * 
 
 
 
# Load Data 
df = pd.read_csv('dataset_QnA.csv', sep=";") 
 
 
# General cleaning  
 
# Remove all the duplicate and empty rows  
path = './' 
removeDuplicateRow('dataset_QnA.csv',path, 'question', 
'answer',merge=False) 
 
# import the previous cleaning dataset 
df1 = pd.read_csv('{0}3_removeDuplicateRow.csv'.format(path), 
sep=";") 
 
 
# NLP cleaning 
''' 
Clean sentences from misspelled words, control characters, whitespace 
at beginning and ending of sentence, 
extra space and underscore 
'''  
 
# Remove the sentence in answer variable containing the following 
elements 
elt_forSentenceRemoving=['regards', 'thanks', "pictures","thankyou", 
"thnkayou", 'thank you','Thnkayou','sincerely','take care'] 
df2 = deleteElement 
(df1,['answer'],{'':elt_forSentenceRemoving},name=None,removeSentenc
e=True) 
 
 
# Replace elements in the question and answer columns 
courtesy = ["good afternoon", "good morning", "best regards", 
"hello", 
            "hi", "good evening","as above","Sorry","please"] 
courtesy = [r'\bw\b' for w in courtesy] 
 
dd={'and': '&', 'emergency room':r'\ber\b', 'you':r'\bu\b', 
    
'which':r'\bwch\b','radiotherapy':r'\brt\b','toxicity':r'\btx\b','th
anks':r'\btxs\b','I have':r'\bive\b', 
    'doctor':'dr.','feet':'ft','primary care 
physician':r'\bpcp\b','electrocardiogram':[r'\bekg\b',r'\becg\b',r'\
bekgs\b'], 
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    'problems':r'\bpblms\b','problem':r'\bpblm\b','weight 
management':r'\bwt 
mngmt\b','years':[r'\byrs\b',r'\byr\b'],'i.e.':r'\b i. e \b', 
    'hour':r'\bhr\b',"I don't know":r'\bidk\b','wide local 
excision':r'\bwle\b','please':r'\bplz\b','abut':r'\babout\b', 
    '':courtesy+[r'[\(\)\{\}<>]',"'",'-'],' ':'/'} 
 
df3 = deleteElement 
(df2,['question','answer'],dd,removeSentence=False) 
 
 
# Columns to consider in the cleaning 
columns=['question','answer'] 
 
# Create a copy of the previous cleaned dataset 
df4 = df3.copy() 
df4.reset_index() 
 
# Apply the preprocess function to each column and each row of the 
selected column. 
for column in columns: 
    # Select the column and defined it as a list 
    S = df4[column].tolist() 
    # Apply functions 
    new_s = [preprocess(sentence, 
removeApostrophes=False,special_element=["``",'"'], 
removeNumbers=False, 
                   removePunctuation=False, removeControlChars=True, 
removeWhiteSpace=True, 
                   removeExtraSpace=True, 
toLower=False,singleLetter=False,removeUnderscore=True, 
                        outSpace=False,cleanwords=False) for 
sentence in S] 
    new_s=[' '.join([s.capitalize() for s in 
nltk.sent_tokenize(sentence)]) 
           for sentence in new_s] 
    # Finally we add back the cleaned column to the dataset 
    df4[column]=new_s 
 
 
''' 
Remove duplicate words ex you mention is is rated --> you mention is 
rated 
''' 
# Columns to consider in the cleaning 
columns=['question','answer'] 
 
# Create a copy of the previous cleaned dataset 
df5 = df4.copy() 
df5.reset_index() 
 
for column in columns: 
    S = df5[column].tolist() 
    new_sentence=[] 
    for index,sentence in enumerate(S): 
        new_sent=[] 
        for sent in nltk.sent_tokenize(sentence): 
            words = sent.split(' ') 
            words_copy = words.copy() 
            for i in range(len(words)): 
                if i != len(words)-1 and words[i]==words[i+1]: 
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                    words_copy.remove(words[i]) 
            new_sent.append(' '.join(words_copy)) 
        new_sentence.append(' '.join(new_sent)) 
    df5[column]=new_sentence 
 
 
''' 
Remove the whitespace created by the previous cleaning 
''' 
# Columns to consider in the cleaning 
columns=['question','answer'] 
 
# Create a copy of the previous cleaned dataset 
df6 = df5.copy() 
df6.reset_index() 
 
for column in columns: 
    S = df6[column].tolist() 
    new_s = [preprocess(sentence, dictionary=None, 
removeApostrophes=False,special_element=None, removeNumbers=False, 
                   removePunctuation=False, removeControlChars=True, 
removeWhiteSpace=True, 
                   removeExtraSpace=True, 
toLower=False,singleLetter=False,removeUnderscore=True, 
                        outSpace=False, cleanwords=False) for 
sentence in S] 
    new_s=[' '.join([s.capitalize() for s in 
nltk.sent_tokenize(sentence)]) 
           for sentence in new_s] 
    df6[column]=new_s 
 
 
 
# Remove the empty rows created by the previous cleaning 
df7 = removeRows(df6, columns) 
 
# delete the following elements in the tags columns 
df8 = deleteElement 
(df7,['tags'],{'':[r'[\(\)\{\}\[\]]',"'"]},removeSentence=False) 
 
 
''' 
Remove the whitespace created by the previous cleaning 
''' 
 
# Create a copy of the previous cleaned dataset 
df9 = df8.copy() 
df9.reset_index() 
 
S = df9['tags'].tolist() 
new_s=[[word for word in elt.split(', ')] for elt in S] 
new_s=[' '.join([s.capitalize() for s in sentence]) 
           for sentence in new_s] 
df9['tags']=new_s 
 
''' 
Final checking to find empty rows 
''' 
# Columns to consider in the cleaning 
columns=['tags'] 
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# Create a copy of the previous cleaned dataset 
df10 = df9.copy() 
df10.reset_index() 
 
# Initialisation of the index list of the element to remove 
index_list_toRemove=[] 
# Iterate through the dataset to find index of empty rows 
for index, row in df10.iterrows(): 
    add = False 
    toCheck = row[columns].tolist() 
    toCheck = toCheck[0].split(', ') 
    if not toCheck or ' '.join(toCheck)==' ': 
        index_list_toRemove.append(index) 
 
#remove element contained in index_list_toRemove 
df10.drop(df10.index[index_list_toRemove], inplace=True) 
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c. Data	selection	
 
 
In this section, it  is showed how we selected only the rows having one topic 
 
 
# Transform tags columns into list  
tags = df10['tags'].tolist() 
new_tags = [[word for word in tag.split(', ') ] for tag in tags] 
 
# Compute lenght of each tag_list  
tag_list_lenght = list(map(len,new_tags)) 
 
# Dictionary of topics frequency 
count = Counter(tag_list_lenght) 
 
# Sorted the previously found dictionary 
od = collections.OrderedDict(sorted(count.items())) 
 
 
# Create index dictionary key = number of tag, values = list of 
index  
dd_index={} 
for i in count.keys(): 
    dd_index[i]=[n for n, x in enumerate(tag_list_lenght) if x == i] 
 
 
# Select the rows with just one tag 
dataset_one_tag = df1.loc[dd_index[1],:] 
 
#List of retained tag 
tags_retained=['bariatrics','cardiac 
electrophysiology','cardiology','breast surgery'] 
 
# Select rows which contained only the tags in tags_retained 
dataset_retained_tags=dataset_one_tag.loc[dataset_one_tag['tags'].is
in(tags_retained)] 
 
 
# Transform topic name into cluster number 
df_final = dataset_retained_tags.copy() 
 
#Create dictionary with the topics code 
dict_cluster={'bariatrics':0,'breast surgery':1,'cardiac 
electrophysiology':2,'cardiology':3} 
 
# Change the tag name by the cluster number  
df_final['tags'] = df_final['tags'].map(dict_cluster) 
 
 
# Save dataset  
df_final.to_csv('labeled_data.csv', sep=';', encoding='utf-8', 
index=False) 
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