

Block-based

Speech-to-Speech Translation

Degree’s Thesis

Audiovisual Systems Engineering

Author: Sandra Roca

Advisor: Xavier Giró i Nieto

Universitat Politècnica de Catalunya (UPC)

October, 2018

 1

Abstract

This bachelor’s thesis explores different ways of building a block-based Speech Translation

system with the aim of generating huge amounts of parallel speech data.

The first goal is to research and manage to run suitable tools to implement each one of the

three blocks that integrates the Speech Translation system: Speech Recognition, Translation

and Speech Synthesis.

We experiment with some open-source toolkits and we manage to train a speech

recognition system and a neural machine translation system. Then, we test them to evaluate

their performance.

As an alternative option, we use the cloud computing solutions provided by Google Cloud

to implement the three sequential blocks and we successfully build the overall system.

Finally, we make a comparative study between an in-house software development versus

Cloud computing implementation.

 2

Resum

Aquesta tesi explora diferents maneres d’implementar un sistema de blocs de Traducció de

Veu amb la finalitat de generar un gran corpus paral·lel de veu.

La primera tasca consisteix en cercar i aconseguir dominar eines adequades per a

implementar cada un dels tres blocs que integra el sistema de traducció de veu:

reconeixement de veu, traducció, i síntesi de veu.

Experimentem amb algunes eines de codi obert i aconseguim entrenar un sistema de

reconeixement de veu i una màquina de traducció neuronal. Posteriorment, els sotmetem

a test per tal d’evaluar el seu rendiment.

Com a opció alternativa, utilitzem les solucions d’Informàtica en núvol (Cloud Computing)

proporcionades per Google Cloud per a implementar els tres blocs seqüencials i elaborem

el sistema global amb èxit.

Finalment, fem un estudi comparatiu entre el desenvolupament de software intern i la

implementació Cloud computing.

 3

Resumen

Esta tesis explora diferentes maneras de implementar un sistema de bloques de Traducción

de Voz con el propósito de generar grandes cantidades de datos para generar un gran

corpus paralelo de voz.

La primera tarea consiste en buscar y conseguir dominar herramientas adecuadas para

implementar cada uno de los tres bloques que integran el sistema de traducción de voz:

reconocimiento de voz, traducción y síntesis de voz.

Experimentamos con algunas herramientas de Código abierto y conseguimos entrenar un

sistema de reconocimiento de voz y una máquina de traducción neuronal. Posteriormente,

los sometemos a test con el fin de evaluar su rendimiento.

Como opción alternativa, usamos las soluciones de Computación en la nube (Cloud

Computing) proporcionadas por Google Cloud para implementar los tres bloques

secuenciales y elaboramos el sistema global con éxito.

Finalmente, hacemos un estudio comparativo entre el desarrollo de software interno y la

implementación Cloud Computing.

 4

Acknowledgements

First of all, I want to thank my tutor, Xavier Giró-i-Nieto, for making possible my

collaboration in this project and, most of all, for his help and guidance during the whole

project.

I would also like to thank Amanda Duarte, who has been implied in the project from the

very beginning and has provided her wide knowledge of deep learning.

Albert Gil also deserves appreciation for his help with the GPI servers.

Finally, I want to thank to my family and friends for their support.

 5

Revision history and approval record

Revision Date Purpose

0 27/09/2018 Document creation

1 6/10/2018 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Sandra Roca Cobo sandra.roca.cobo@alu-etsetb.upc.edu

 Xavier Giró i Nieto xavier.giro@upc.edu

 Marta Ruiz marta.ruiz@upc.edu

Written by: Reviewed and approved by:

Date 27/09/2018 Date 8/10/2018

Name Sandra Roca Name Xavier Giró i Nieto

Position Project Author Position Project Supervisor

 6

Contents

Abstract .. 1

Resum ... 2

Resumen ... 3

Acknowledgements... 4

Revision history and approval record .. 5

Contents ... 6

List of Figures .. 8

List of Tables ... 9

1. Introduction ... 10

1.1. Motivation .. 10

1.2. Statement of purpose ... 11

1.3. Requirements and specifications ... 12

1.4. Methods and procedures .. 12

1.5. Work plan ... 13

1.6. Incidences and modifications .. 13

2. State of the art ... 15

2.1. Automatic Speech Recognition ... 15

2.2. Neural Machine Translation .. 16

2.3. Speech synthesis ... 16

3. Project development .. 18

3.1. Speech Recognition .. 18

3.1.1. Dataset .. 18

3.1.2. Speech. A PyTorch implementation for Speech-to-Text 18

3.2. Open-NMT ... 20

3.3. Implementation with Google Cloud .. 21

4. Results ... 25

4.1. In-house software and local server .. 25

4.2. Google Cloud ... 27

 7

5. Budget ... 30

6. Conclusions ... 32

Bibliography ... 33

Appendices ... 34

 8

List of Figures

Figure 1. DeepLipDub block diagram .. 10

Figure 2. Typical Speech-to-Speech Translation structure .. 11

Figure 3. Work breakdown structure ... 13

Figure 4. Typical Speech Recognition system architecture ... 16

Figure 5. General speech synthesizer structure .. 17

Figure 6. Piece of code of the configuration. ... 22

Figure 7. Input file containing the path of the three audio files 23

Figure 8. Terminal output corresponding to the Speech-to-Text process 23

Figure 9. Terminal output corresponding to the translation task 23

Figure 10. Terminal output corresponding to the Text-to-Speech process 24

Figure 11. Automatically generated files during the execution + input file 24

https://d.docs.live.net/06ec3a019d44e1c2/Escritorio/Final%20Project%20Sandra.docx#_Toc526838257

 9

List of Tables

Table 1. Librispeech data subsets used in the project .. 18

Table 2. Annual cost of the GPI Infrastucture ... 26

Table 3. Calculation of the equivalent number of Degree students 26

Table 4. Cost estimate of the GPI infrastructure corresponding to a Degree student 27

Table 5. Cost estimate of Speech-to-Text using Google Cloud .. 27

Table 6. Cost estimate of translation using Google Cloud ... 28

Table 7. Cost estimate of the speech synthesis using Google Cloud 29

Table 8. Total cost estimate of the overall system .. 29

Table 9. Budget of the project ... 31

 10

1. Introduction

1.1. Motivation

The motivation of implementing a Speech Translation system is related to the DeepLipDub

project[1], carried out at UPC. The aim of that project is to synthesize speech translated

from the source language of a video sequence to a target language and, simultaneously,

to replace the pixels of the speaker’s lips so that the substitutes are synchronized with the

translated speech.

That project is divided in two branches: speech translation and lip dubbing.

The first branch consists of three blocks: an Automatic Speech Recognizer (ASR) to get the

transcripts of the video, a Neural Machine Translator (NMT) to translate the output of the

previous block to a target language and, finally, a Speech Synthesizer to generate the audio

stream of the translated transcripts.

In parallel, the second branch has a first block that detects the pixels belonging to the

speaker’s lips and a second block that uses the combination of the Speech Synthesizer

output and the Lip detector’s output to modify that pixels in accord with the content of the

speech synthesizer.

Since a large amount of data is required to train deep learning, the implementation

proposed in this thesis will be used as a tool to generate an English-German parallel speech

corpus, which will be useful for training an end-to-end Speech Translation system.

Good
morning

Guten
morgen ASR NMT Speech

synthesis
 “Good
morning”

“Guten
morgen”

Lip
detector

Lip
generator

Figure 1. DeepLipDub block diagram

 11

1.2. Statement of purpose

Speech-to-speech translation (S2ST) is the process by which the phrases spoken in one

language are immediately translated and spoken in another language.

The most important use case for Speech translation is, of course, in travel. It also has many

potential applications in many different contexts such as medical facilities, schools, police,

hotels, business and much more. This technology is also useful to perform automatic

dubbing, which is the task that concerns us for the development of this thesis.

The most typical Speech Translation systems integrate three software technologies:

Automatic Speech Recognition (ASR), Machine Translation (MT) and Speech Synthesis (TTS).

Figure 2. Typical Speech-to-Speech Translation structure

Nevertheless, it’s not enough to just chain a really good ASR system with a really good MT

system and a speech synthesizer. One of the most inconvenient facts is that the way people

talk is not the same as the way they write. That’s why corpora play a crucial role in

developing speech-to-speech translation technologies.

Regarding the component technologies that integrates a S2ST system, there are so many

specific corpora to train each of the blocks independently. But what about if we want to

train the overall system? In that case, if we are going to train a combined model of Speech

Recognition and Machine Translation, we need a corpus of input speech labelled with the

corresponding transcriptions and translations into a target language.

This means collecting a huge amount of spoken data and the corresponding transcriptions

in both source and target languages. As it will take a lot of time to achieve that, as well as

experts in that languages would be required, we come up with a solution: a Speech

Translation implementation that given audio files of spoken language as input, it

automatically generates the corresponding spoken translation into the target language.

Voice
Speech

Recognition
(ASR)

Text
Machine

Translation
(MT)

Text
Speech

Synthesis
(TTS)

Voice

Source

language
Source

language

Target

language

Target

language

 12

1.3. Requirements and specifications

The requirements of the project are the following:

• Find suitable open source toolkits to implement the three blocks of the S2ST system:

Automatic Speech Recognition (ASR), Neural Machine Translation (NMT) and

Speech Synthesis (TTS).

• Train an ASR system

• Train a NMT system

• Manage to run a Speech Synthesizer software

• Build the block-based Speech Translation system

The specifications are the following:

• Python as a programming language

• Use PyTorch implementations to train the models

• Use the Google Cloud APIs to build the Cloud-based solution

1.4. Methods and procedures

As this thesis aims to study the difference between an In-house or Cloud-based software

development of Speech-to-Speech translation, it is necessary to find easy-to-use tools for

both cases.

Regarding the In-house software development choice, the procedure we follow consists in

training an Automatic Speech Recognition system and then training as well a Neural

Machine Translation system in order to later concatenate them.

As far as the Cloud-based implementation is concerned, we use the APIs that provide

Google Cloud to implement the overall system. Making the appropriate calls to the speech-

to-text, translate and text-to-speech APIs, we achieve an excellent performance of the

Speech Translation system.

 13

1.5. Work plan

Figure 3. Work breakdown structure

1.6. Incidences and modifications

The initial goal of this project was to build a Speech Translation system by building our own

models for Speech Recognition and Neural Machine Translation.

For that purpose, I used an open source toolkit for each task. What I did not expect is that

I would face so many problems with the software dependencies and the installation of extra

required libraries.

Planning

•Project topic and goals
•Project proposal and work plan

Software
research

•Research of an easy-to-use tool for Speech Recognition
•Research of a Neural Machine Translation implementation

Training
models

•Train a speech recgnition model
•Train a NMT model

Cloud-based
implem.

•Speech-to-Text API
•Translation API
•Text-to-Speech API

Experiments
and

evaluation

•Evaluate the performance of the ASR and NMT models
•Test the performance of the overall system

Final Report

•Redaction of the Final Report
•Prepare oral presentation

 14

Another challenge I had to face up was that there were some errors on the code and it was

so difficult to identify the piece of code the errors were caused by.

After solving these issues, we finally manage to train both Speech Recognition and Neural

Machine Translation models. Unfortunately, the performance of that models was not so

good and, apart from that, it was not possible to concatenate the ASR system with the NMT

because of incompatible data formats.

As we had spent so much time trying to run these toolkits and then training the models, it

had been so laborious to look for and try other tools to achieve better results. That’s why

we decided to move on to a Cloud-based implementation using Google Cloud APIs.

 15

2. State of the art

In this chapter we will revise some of the literature involved in the process of building a

speech-to-speech translation system and we will also make a review of the successes so far.

Speech translation technology has solved the language barrier problem and has enabled

natural language communication between people that do not share the same language.

In today’s state-of-the-art systems we see a workflow with three separated systems:

- A speech recognition system that identifies the words spoken and transcode them

into text.

- A machine translation system that translate the text of the source speech into the

target language.

- A speech synthesizer to go from the translated text to spoken words.

These systems are pretty robust and work well for their intended purpose. However, as it is

not an end-to-end Speech translation system but a block-based system, we lose important

characteristics of the voice when we transcode from the speech signal into a text

representation and it makes it difficult to generate a good dynamic voice.

2.1. Automatic Speech Recognition

Speech Recognition is the process that enables the recognition and “translation” of spoken

language into text. Due to the ongoing research in this area for several years, so many

approaches for this task has been developed.

Based on the speech production mechanism of humans, an ASR system aims to infer the

words of a speech given the observable signal.

 16

Figure 4. Typical Speech Recognition system architecture

The decoding module is as well composed by the subblocks: acoustic model, language

model and pronunciation dictionary.

2.2. Neural Machine Translation

Neural machine translation (NMT) is an end-to-end approach of Machine Translation, which

can be defined as the process by which a source text in one language is automatically

converted to text in another language.

NMT uses neural network models to learn to translate text based on existing statistical

models, and this makes it possible to condition the probability of words that are generated

at each position on all the previous words in the output sentence. The deep learning

architecture that the system uses is capable of learning the meaning of the text and thanks

to that, the machine performs the translation task at a semantic level. Thus, the output of

the system is a fluent and naturally sounding translation.

It has de ability to produce faster and higher quality output than Statistical Machine

Translation (SMT).

Another characteristic of these state-of-the-art approach is that NMT systems understand

similarities between words and can benefit from that.

2.3. Speech synthesis

Speech synthesis is the artificial simulation of human speech carried out by a computer or

another electronic device. All speech synthesizers are based on the model of Human Speech

Production in order to achieve the most possible natural sounding of the synthetic speech.

Pre-processing
Feature

extraction
Decoding

Post-
preprocessingSpeech

waveform

Text

transcription

 17

As well as written language can be seen as a sequence of elementary, we can define speech as

elementary acoustic symbols also known as phonemes.

Based on this comparison, a general speech synthesizer has the following structure:

Figure 5. General speech synthesizer structure

Given some text as a input, the NLP module produces the corresponding phonetic

transcription and then de DSP module is responsible for converting the phonemes into

artificial speech.

The Natural Language Processing module consists in the composition of 3 major

components:

- the text analyser, which study the morpho-syntactical functions of the words

- the letter-to-sound component, responsible for making the conversion between

words and phonemes

- the prosody generation component, which contributes to intonation, tone and

rhythm

As far as the Digital Signal Processing task is concerned, there are three main subjects

involved: Linguistic, physiology and acoustics. The first one refers to how language is

constructed and the grammar analysis, the second one focuses on the way the sounds are

produced and, finally, acoustics is responsible for the generation and transmission of

sounds.

Text
Natural

Language
Processing

Phonemes
Digital Signal

Processing
Speech

 18

3. Project development

This chapter presents the process followed during the development of the project.

3.1. Speech Recognition

The first important step of the project was to find an easy-to-use tool suitable for the

Speech Recognition task. After testing several open-source toolkits recommended by the

experts on this field, we finally managed to run a PyTorch implementation of end-to-end

models for ASR, developed by Awni Hannun.

3.1.1. Dataset

The dataset used to train the speech recognition system was LibriSpeech[4] dataset, which

is a corpus of read English speech suitable for training and evaluating speech recognition

systems. It contains almost 1000 hours of speech sampled at 16 kHz.

The subsets used to train and to test the system are the following:

Subset hours Total speakers

Train-clean-360 363.3 921

Dev-clean 5.4 40

Test-clean 5.4 40

Table 1. Librispeech data subsets used in the project

3.1.2. Speech. A PyTorch implementation for Speech-to-Text

Speech is an open-source package to build end-to-end models for automatic speech

recognition. At the time this project was developed, the supported configurations were:

Sequence-to-sequence models with attention, Connectionist Temporal Classification and

the RNN Sequence Transducer.

 19

➔ Data preparation

Before starting to train a model, the first thing we need to do is to prepare the data we

want to train the model with. The preprocessing task consists in two main parts:

- Convert files from flac to wav

- Generate a json file for each of the train, dev and test subsets.

containing the duration, the transcription and the path of each of the files of the whole

training subsets

Once the preprocess is done, we can proceed to the training part.

➔ Training

We first need to edit the configuration file, where you have to set the save_path to the

choosen location to store the model. You can also modify the parameters of the neural

network configuration. In our case, we have used the CTC configuration and we have

set the number of epochs to 200.

- Edit Configuration file: ctc_config.json

o Save_path: path where the model is stored

o Train_set

o Dev_set

o Batch_size: 8

o Epochs: 200

o Class: CTC

Now we are ready to train the model. The training process takes a lot of time in

executing; with the configuration we have used it took around 2 weeks to finish.

The metric used to evaluate the performance is the Character Error Rate (CER). We get

a 25.3% of CER for the development subset.

➔ Testing

Once the model is trained, we evaluate its performance using the test subset. We can

save the predictions in a json file to see the resulting transcripts from the audio files.

The evaluation of the test subset is 27% of CER.

 20

3.2. Open-NMT

The toolkit used to train a neural machine translation system is Open-NMT: an Open-

Source Toolkit for Neural Machine Translation.

➔ Data preparation

As a preliminary step, we have to do a pre-processing task in order to extract features

for training and generate vocabulary files for the model.

The data consists of parallel source and target data containing one sentence per line.

There are parallel data for both training and validation files (the latter are required and

used to evaluate the convergence of the training).

In the source data we find sentences written in the source language (English), and the

target data corresponds to the translation of that sentences into the target language

(German).

After running the preprocessing, the following files are generated:

- demo.trained.pt

- demo.valid.pt

- demo.vocab.pt

which are serialized PyTorch files containing training, validation and vocabulary data,

respectively.

➔ Training and Translation

Now we are ready to train the model. We use the default model, that consists of a 2-

layer LSTM with 500 hidden units on both decoder/encoder.

Once the model is trained, we can use it to predict on new data. By executing the

“translate.py” command and indicating the data we want to translate, a text file is

generated with the corresponding translations predicted.

As demo dataset we have used to train the model is too small, the predictions are not

so good.

After that, we try a pre-trained model to repeat the process and to find out if the can

manage to achieve good predictions using this implementation.

This model has been also trained for English-to-German translation. The dataset used

for the training is WMT.

Using the pre-trained model it seems that the translation system has now a good

performance. The problem comes when concatenating the ASR and the NMT blocks.

 21

As the speech recognition system is character-based and it has not a high accuracy,

there are some mistaken characters in the transcriptions, and that results in many non-

existing words. If we then takes that transcripts as the input of the NMT system, it does

not recognize the non-existing words and this makes it impossible to achieve a

meaningful translation.

3.3. Implementation with Google Cloud

Google Cloud Platform is a suite of Cloud Computing services that provides several cloud

services such as machine learning APIs.

In order to achieve the implementation of a block-based speech translation, the useful APIs

from Google Cloud are the following:

- Cloud Speech-to-Text API

- Cloud Translation API

- Cloud Text-to-Speech API

Before starting to implement a Speech Translation system using Google Cloud APIs, there

are some preliminary steps:

- Create a new project with the GCP (Google Cloud Platform) Console

- Enable the APIs listed above for that project

- Create a service account

- Download a private key as JSON

- Set the environment variable GOOGLE_APPLICATION_CREDENTIALS to the file path

of the JSON file downloaded on the previous step

- Install the client libraries: google-cloud-speech, google-cloud-translate and

google-cloud-texttospeech

Now we are ready to implement the three blocks of our system.

→ Speech-to-Text

Google Cloud Speech-to-Text allows to apply the most advanced deep-learning neural

network algorithms for speech recognition in an easy-to-use API.

To make a speech recognition request, it’s necessary to define some configuration settings.

The required fields are the following:

- Encoding → specifies the encoding scheme of the supplied audio

- Sample Rate → specifies the sample rate (in Hertz) of the supplied audio

 22

- Language code → the language + region to use for speech recognition

As our audio input files are FLAC files, sampled at 16kHz and the source language is English,

we define the configuration as follows:

Figure 6. Piece of code of the configuration.

The expected input of our Speech Recognition implementation is a text file containing the

path of each of the audio files (.flac) we want to transcribe.

For each audio input file, we send a speech recognition request to the Speech-to-Text API.

The output is as well a unique text file containing the recognized text from each of the

audio files. Each line corresponds to a single audio transcription.

→Translation

The Translation API allows us to translate an arbitrary string into more than 100 languages

using state-of-the-art Neural Machine Translation.

To make a Translation API Request, we must to specify 3 parameters: the language to

translate from (source), the language to translate to (target) and the text we want to

translate. If the source language is not specified, the API will attempt to detect the source

language automatically.

As we are building a block-based implementation, the input of our language translator is

the output of the Speech Recognition block, and the output is a text file containing the

corresponding English-to-German translation.

→Text-to-Speech

With Google Cloud Text-to-Speech we can synthesize natural-sounding speech with 30

voices in 14 languages and variants.

To send a request to the Text-to-Speech API, the parameters to define are the following:

the voice configuration (language, voice and gender), the audio encoding format and the

text to be synthesized.

 23

Our synthesizer expects the output of the language translation as input.

For each line of the input (corresponding to the English-to-German translation of a single

audio file), we send a synthesize request to the Cloud Text-to-Speech API.

Finally, the speech synthesis process generates an audio file of natural German speech for

each one of the transcripts translated into German.

Once we have the three blocks that integrates the Speech-to-Speech Translation system,

we chained them in order to automatize the whole process and we finally have the overall

system implemented.

To better understand the performance of our system, let us illustrate it through an example.

The example consists in translating three audio files of English speech (from the LibriSpeech

test subset) into German speech.

The text file we use as the input of the overall system is the following:

Figure 7. Input file containing the path of the three audio files

During the execution of the entire process, the terminal shows the output of each one of

the blocks step by step.

Figure 8. Terminal output corresponding to the Speech-to-Text process

Figure 9. Terminal output corresponding to the translation task

 24

Figure 10. Terminal output corresponding to the Text-to-Speech process

As it can be seen in the figure above, once the execution has finished, three audio files

corresponding to the German translated speech are generated. Both the transcripts and

the translation output are also saved in a text file.

Figure 11. Automatically generated files during the execution + input file

 25

4. Results

In this chapter we present a comparative study of the costs involved between an In-house

software development and a Cloud implementation of a Speech-to-Speech Recognition

system.

4.1. In-house software and local server

First, we estimate the annual cost of the GPI infrastructure.

The elements we have to consider are the following:

- Virtual machines with 8 GPUs

- Access servers

- Storage

- Data centre

- Technical staff

Another element that would have to be considered is software licenses, but assuming that

we would use open source tools to build the S2ST system, it would not imply any cost.

The expenses related to the electricity could have not been included in the cost estimate

calculation because it’s UPC who bear that costs and we have not had access to this detailed

information.

To calculate the annual cost of the GPI infrastructure, the method we apply consists in

dividing the total cost of each element by its useful life.

 Unit cost Amount Total cost Useful Life Annual cost

Virtual machine

with 8 GPUs

20.000 € 3 60.000 € 8 years 7.500 €

Access server 12.000 € 2 24.000 € 10 years 2.400 €

Storage (30 TB) 10.000 - 10.000 € 12 years 833 €

Data centre

- Racks

- Switches+routers

2

.

1.000 €

1.500 €

-

2.000 €

1.500 €

Technical staff

salary

35.000 € 1 35.000 € - 35.000€

 26

Total 47.433 €

Table 2. Annual cost of the GPI Infrastucture

Now that we have the total annual cost of the GPI infrastructure, let’s divide it between the

number of members of the Image Processing Group taking some considerations into

account.

The number of professors and Phd candidates amounts to 11 and 10, respectively.

Considering that each professor has 1 student of Master and 2 Degree students assigned

per year, it would be a total of 11 Master students and 22 Degree students per year.

As far as computational cost is concerned, we estimate that Phd candidates and professors

use twice as much computational resources than a Master student do, as well as a Master

student uses twice as much computational resources than a Degree student.

According to that estimation, we will assign different weights to the members of the group

depending on their category. These weights will be 4 for Phd candidates and professors, 2

for Master students and, finally, a weight of 1 for the Degree students. Applying the

corresponding weights to each member, we can calculate total number of members under

the assumption that all members were Degree students.

Member category
Real

Quantity
Weight

#Equivalent

Degree students

Professors 11 4 44

Phd candidates 10 4 40

Master students 11 2 22

Degree students 22 1 22

Total 128

Table 3. Calculation of the equivalent number of Degree students

 27

Based on this result, we can estimate the corresponding expense of a single Degree student

that makes use of the GPI Infrastructure.

Annual cost 47.433 €

Number of “Degree students” 128

Total 370,57 €

Table 4. Cost estimate of the GPI infrastructure corresponding to a Degree student

4.2. Google Cloud

As the main purpose of this project is to generate a parallel speech corpus, the study will

be based on the costs involved in translating the whole LibriSpeech dataset from English

to German.

Cloud Speech-to-Text is priced based on the amount of audio successfully processed by

the service. The price is 0,0052€ / 15 seconds, which means 1,25€ / 1 hour.

Subset hours Cost

Dev-clean 5,4 6,75 €

Dev-other 5,4 6,75€

Test-clean 5,3 6,625 €

Test-other 5,1 6,375 €

Train-clean-100 100,6 125,75 €

Train-clean-360 363,6 454,5 €

Train-other-500 496,7 620,875 €

Total 982,1 1.127,625 €

Table 5. Cost estimate of Speech-to-Text using Google Cloud

 28

The Cloud Translation API has a price of 17,5€ / 1 million characters.

To calculate the cost estimate of translating the whole LibriSpeech dataset, we have to

estimate the character count of the dataset transcripts. To do a more detailed calculation,

a character count is carried out for each one of the subsets of LibriSpeech, and then, the

Cloud Translation API’s price is applied to calculate the total cost.

Subset Total characters Cost

Dev-clean 286.844 5,02 €

Dev-other 264.090 4,62 €

Test-clean 278.974 4,88 €

Test-other 271.063 4,74 €

Train-clean-100 5.427.481 91,83 €

Train-clean-360 19.053.548 333,44 €

Train-other-500 25.282.513 442,44 €

Total 50.684.513 886,98 €

Table 6. Cost estimate of translation using Google Cloud

The Cloud Text-to-Speech API is priced based on the amount of characters to synthesize

into audio. The price is 3,5€ / 1 million characters.

In order to estimate the character count of the German translation of the whole LibriSpeech,

we calculate the character count ratio English:German by translating a small set of the

dataset from English to German. This small set has a total of 6313 characters, while its

translation to German contains 7008 characters. Therefore, the estimated character count

ratio is 1:1,11 (English:German). Based on this value, we can now calculate the cost estimate

of speech synthesis.

 29

Subset
Char count

(English)

Char count

(German)
Cost

Dev-clean 286.844 318.396 1,11 €

Dev-other 264.090 293.140 1,03 €

Test-clean 278.974 309.661 1,08 €

Test-other 271.063 300.880 1,05 €

Train-clean-100 5.427.481 6.024.504 21,09 €

Train-clean-360 19.053.548 21.149.438 74,02 €

Train-other-500 25.282.513 28.063.590 98,22 €

Total 56.459.609 197,61 €

Table 7. Cost estimate of the speech synthesis using Google Cloud

Total cost of the overall system

Speech-to-Text 1.127,625 €

Translate 886,98 €

Text-to-Speech 197,61 €

Total 2.212,22 €

Table 8. Total cost estimate of the overall system

 30

5. Budget

As the object of this thesis was not developing or building any prototype, to calculate the

cost estimate of the project we will take into account the following elements: the hardware

resources required, the software used and the engineers salary.

➔ Hardware resources

This project has been developed using the resources available at the Image Processing

Group (GPI) at UPC, so the hardware needed has not implied any real cost.

Nevertheless, we provide a cost estimation of the required hardware assuming that

those resources had not been provided by the research group.

The total amount of hours of CPU and GPU used during the project development is 804

and 760, respectively.

The price of a GPU provided by Google Cloud Engine with the most similar

configuration to the one used to develop the project is 0.36€/hour, so the total expense

would be 264,25 €.

➔ Software used

Both the Automatic Speech Recognition toolkit used to train a model and the

OpenNMT toolkit are open source, so they don’t imply any cost.

As far as the Google Cloud APIs usage is concerned, the prices of the APIs we have used

are the following:

- Speech-To-Text: 1,25€ / h

- Translate: 17,5 € / 1 million character

- Text-To-Speech: 3,5 €/ 1 million characters

However, Google Cloud offers $300 free credit during the first 12 months to get started

with any GCP product. As this free credit has been enough for the project development,

the usage of Google Cloud APIs has not implied any cost either.

➔ Engineers salary

Finally, we have to calculate the salary of the engineers working on the project

according to the total amount of hours spent in the project.

Considering a Junior Engineer salary of 10€ per hour and a dedication of 20h/week in

average during 30 weeks, the junior engineer salary amounts to 6.000€.

The professor and the Phd student who helped me with the development of the project

are considered as Senior Engineers, with a salary of 50 €/h.

 31

 Cost/hour Dedication Total

Hardware resources 0.35 €/h 760 h 266 €

Senior Engineers 2 x 50 €/h 2 h/week 6.000 €

Junior Engineer 10 €/h 20 h/week 6.000 €

Total 12.266 €

Table 9. Budget of the project

 32

6. Conclusions

The main goal of this project was the implementation of a Speech-to-Speech translation

system so it can be used in the DeepLipDub project to generate a parallel speech corpus.

We have experimented with some open source toolkits and we have indeed managed to

train a model for both Speech Recognition and Translation tasks. However, we have not

achieved successful results of that models and as it is required such long computational

time to repeat the training experimenting with different configurations, we decided to

move to a Cloud implementation.

The implementation of the Speech-to-Speech Translation system using the Google Cloud

APIs has a really good performance as it uses the state-of-the-art technologies. It would be

very useful to generate a parallel speech corpus and despite the fact that the usage of

Google Cloud APIs is not free, it has an affordable cost.

As we have tried both In-house and Cloud-based development implementation, it would

be interesting to make a brief comparison between them. Based on the degree of easy-

usability, the quality of performance and the required time to be spent, we strongly

recommend the Cloud-based development.

It is clear that for the purpose of building a parallel corpus, the Cloud-based choice is the

most adequate. However, the DeepLibDup project integrates an ASR and NMT modules.

Therefore, as a future work, it would be interesting to take up the In-house software

solution that we have not managed to implement with success. Now that we have more

control over the tools, it would be easier to train the models and to improve their accuracy.

 33

Bibliography

[1] Amanda Cardoso Duarte, Xavier Giró-i-Nieto, Marta R. Costa-Jussà, Antonio

Bonafonte, and Jordi Torres. “DeepLipDub: Putting a Mouth to Someone’s Words”.

Universitat Politecnica de Catalunya (UPC) and Barcelona Supercomputing Center

(BSC) ` Barcelona, Catalonia/Spain, 2018.

[2] Alex Graves, Abdel-rahman Mohamed and Geoffrey Hinton. “Speech Recognition

with deep Recurrent Neural Networks”. Department of Computer Science,

University of Toronto

[3] Baidu Research – Silicon Valley AI Lab∗ Dario Amodei, Rishita Anubhai, Eric

Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike

Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan,

Christopher Fougner, Tony Han, Awni Hannun, Billy Jun, Patrick LeGresley, Libby Lin,

Sharan Narang, Andrew Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev

Satheesh, David Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong Wang,

Bo Xiao, Dani Yogatama, Jun Zhan, Zhenyao Zhu. “Deep Speech 2: End-to-End

Speech Recognition in English and Mandarin”.

[4] Vassil Panayotov, Guoguo Chen, Daniel Povey, Sanjeev Khudanpur. “LibriSpeech: An

ASR corpus based on public domain audio books”. The Johns Hopkins University,

Baltimore, MD 21218, USA

[5] Guillaume Klein†, Yoon Kim, Yuntian Deng, Jean Senellart, Alexander M. Rush.

“OpenNMT: Open-Source Toolkit for Neural Machine Translation”.

[6] Alex Graves, Santiago Fernández, Faustino Gomez, Jürgen Schmidhuber.

“Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with

Recurrent Neural Networks”.

[7]

 34

Appendices

Documentation of the Google Cloud APIs:

https://cloud.google.com/speech-to-text/docs/

https://cloud.google.com/translate/docs/

https://cloud.google.com/text-to-speech/docs/

Source code:

Speech. Open source for ASR:

https://github.com/awni/speech

OpenNMT

https://github.com/OpenNMT/OpenNMT-py

Speech-to-Text:

https://github.com/GoogleCloudPlatform/python-docs-

samples/tree/master/speech/cloud-client

Translate:

https://github.com/GoogleCloudPlatform/python-docs-

samples/tree/master/translate/cloud-client

Text-to-Speech

https://github.com/GoogleCloudPlatform/python-docs-

samples/tree/master/texttospeech/cloud-client

https://cloud.google.com/speech-to-text/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/text-to-speech/docs/
https://github.com/awni/speech
https://github.com/OpenNMT/OpenNMT-py
https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/speech/cloud-client
https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/speech/cloud-client
https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/translate/cloud-client
https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/translate/cloud-client
https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/texttospeech/cloud-client
https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/texttospeech/cloud-client

