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Abstract 

This bachelor’s thesis explores different ways of building a block-based Speech Translation 

system with the aim of generating huge amounts of parallel speech data. 

The first goal is to research and manage to run suitable tools to implement each one of the 

three blocks that integrates the Speech Translation system: Speech Recognition, Translation 

and Speech Synthesis. 

We experiment with some open-source toolkits and we manage to train a speech 

recognition system and a neural machine translation system. Then, we test them to evaluate 

their performance. 

As an alternative option, we use the cloud computing solutions provided by Google Cloud 

to implement the three sequential blocks and we successfully build the overall system. 

Finally, we make a comparative study between an in-house software development versus 

Cloud computing implementation. 
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Resum 

Aquesta tesi explora diferents maneres d’implementar un sistema de blocs de Traducció de 

Veu amb la finalitat de generar un gran corpus paral·lel de veu. 

La primera tasca consisteix en cercar i aconseguir dominar eines adequades per a 

implementar cada un dels tres blocs que integra el sistema de traducció de veu: 

reconeixement de veu, traducció, i síntesi de veu. 

Experimentem amb algunes eines de codi obert i aconseguim entrenar un sistema de 

reconeixement de veu i una màquina de traducció neuronal. Posteriorment, els sotmetem 

a test per tal d’evaluar el seu rendiment. 

Com a opció alternativa, utilitzem les solucions d’Informàtica en núvol (Cloud Computing) 

proporcionades per Google Cloud per a implementar els tres blocs seqüencials i elaborem 

el sistema global amb èxit. 

Finalment, fem un estudi comparatiu entre el desenvolupament de software intern i la 

implementació Cloud computing. 
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Resumen 

Esta tesis explora diferentes maneras de implementar un sistema de bloques de Traducción 

de Voz con el propósito de generar grandes cantidades de datos para generar un gran 

corpus paralelo de voz. 

La primera tarea consiste en buscar y conseguir dominar herramientas adecuadas para 

implementar cada uno de los tres bloques que integran el sistema de traducción de voz: 

reconocimiento de voz, traducción y síntesis de voz. 

Experimentamos con algunas herramientas de Código abierto y conseguimos entrenar un 

sistema de reconocimiento de voz y una máquina de traducción neuronal. Posteriormente, 

los sometemos a test con el fin de evaluar su rendimiento. 

Como opción alternativa, usamos las soluciones de Computación en la nube (Cloud 

Computing) proporcionadas por Google Cloud para implementar los tres bloques 

secuenciales y elaboramos el sistema global con éxito. 

Finalmente, hacemos un estudio comparativo entre el desarrollo de software interno y la 

implementación Cloud Computing.  
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1. Introduction 

1.1. Motivation 

The motivation of implementing a Speech Translation system is related to the DeepLipDub 

project[1], carried out at UPC. The aim of that project is to synthesize speech translated 

from the source language of a video sequence to a target language and, simultaneously, 

to replace the pixels of the speaker’s lips so that the substitutes are synchronized with the 

translated speech. 

That project is divided in two branches: speech translation and lip dubbing.  

 

 

 

 

 

 

 

The first branch consists of three blocks: an Automatic Speech Recognizer (ASR) to get the 

transcripts of the video, a Neural Machine Translator (NMT) to translate the output of the 

previous block to a target language and, finally, a Speech Synthesizer to generate the audio 

stream of the translated transcripts. 

In parallel, the second branch has a first block that detects the pixels belonging to the 

speaker’s lips and a second block that uses the combination of the Speech Synthesizer 

output and the Lip detector’s output to modify that pixels in accord with the content of the 

speech synthesizer.  

 

Since a large amount of data is required to train deep learning, the implementation 

proposed in this thesis will be used as a tool to generate an English-German parallel speech 

corpus, which will be useful for training an end-to-end Speech Translation system. 

 

Good 
morning 

Guten 
morgen ASR NMT Speech 

synthesis 
  “Good   
morning” 

“Guten 
morgen” 

Lip 
detector 

Lip 
generator 

Figure 1. DeepLipDub block diagram 
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1.2. Statement of purpose 

 

Speech-to-speech translation (S2ST) is the process by which the phrases spoken in one 

language are immediately translated and spoken in another language. 

The most important use case for Speech translation is, of course, in travel. It also has many 

potential applications in many different contexts such as medical facilities, schools, police, 

hotels, business and much more. This technology is also useful to perform automatic 

dubbing, which is the task that concerns us for the development of this thesis. 

The most typical Speech Translation systems integrate three software technologies: 

Automatic Speech Recognition (ASR), Machine Translation (MT) and Speech Synthesis (TTS). 

 

Figure 2. Typical Speech-to-Speech Translation structure 

 

Nevertheless, it’s not enough to just chain a really good ASR system with a really good MT 

system and a speech synthesizer. One of the most inconvenient facts is that the way people 

talk is not the same as the way they write. That’s why corpora play a crucial role in 

developing speech-to-speech translation technologies. 

Regarding the component technologies that integrates a S2ST system, there are so many 

specific corpora to train each of the blocks independently. But what about if we want to 

train the overall system? In that case, if we are going to train a combined model of Speech 

Recognition and Machine Translation, we need a corpus of input speech labelled with the 

corresponding transcriptions and translations into a target language. 

This means collecting a huge amount of spoken data and the corresponding transcriptions 

in both source and target languages. As it will take a lot of time to achieve that, as well as 

experts in that languages would be required, we come up with a solution: a Speech 

Translation implementation that given audio files of spoken language as input, it 

automatically generates the corresponding spoken translation into the target language. 

Voice
Speech 

Recognition 
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Text
Machine 
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1.3. Requirements and specifications 

 

The requirements of the project are the following: 

• Find suitable open source toolkits to implement the three blocks of the S2ST system: 

Automatic Speech Recognition (ASR), Neural Machine Translation (NMT) and 

Speech Synthesis (TTS). 

• Train an ASR system  

• Train a NMT system 

• Manage to run a Speech Synthesizer software 

• Build the block-based Speech Translation system 

 

The specifications are the following: 

• Python as a programming language 

• Use PyTorch implementations to train the models 

• Use the Google Cloud APIs to build the Cloud-based solution 

 

 

1.4. Methods and procedures 

 

As this thesis aims to study the difference between an In-house or Cloud-based software 

development of Speech-to-Speech translation, it is necessary to find easy-to-use tools for 

both cases. 

Regarding the In-house software development choice, the procedure we follow consists in 

training an Automatic Speech Recognition system and then training as well a Neural 

Machine Translation system in order to later concatenate them. 

As far as the Cloud-based implementation is concerned, we use the APIs that provide 

Google Cloud to implement the overall system. Making the appropriate calls to the speech-

to-text, translate and text-to-speech APIs, we achieve an excellent performance of the 

Speech Translation system. 
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1.5. Work plan 

 

 

Figure 3. Work breakdown structure 

 

1.6. Incidences and modifications 

 

The initial goal of this project was to build a Speech Translation system by building our own 

models for Speech Recognition and Neural Machine Translation. 

For that purpose, I used an open source toolkit for each task. What I did not expect is that 

I would face so many problems with the software dependencies and the installation of extra 

required libraries. 

Planning

•Project topic and goals
•Project proposal and work plan

Software 
research

•Research of an easy-to-use tool for Speech Recognition
•Research of a Neural Machine Translation implementation

Training 
models

•Train a speech recgnition model
•Train a NMT model

Cloud-based 
implem.

•Speech-to-Text API
•Translation API
•Text-to-Speech API

Experiments 
and 

evaluation

•Evaluate the performance of the ASR and NMT models
•Test the performance of the overall system

Final Report

•Redaction of the Final Report
•Prepare oral presentation
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Another challenge I had to face up was that there were some errors on the code and it was 

so difficult to identify the piece of code the errors were caused by. 

After solving these issues, we finally manage to train both Speech Recognition and Neural 

Machine Translation models. Unfortunately, the performance of that models was not so 

good and, apart from that, it was not possible to concatenate the ASR system with the NMT 

because of incompatible data formats. 

As we had spent so much time trying to run these toolkits and then training the models, it 

had been so laborious to look for and try other tools to achieve better results. That’s why 

we decided to move on to a Cloud-based implementation using Google Cloud APIs. 
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2. State of the art 

In this chapter we will revise some of the literature involved in the process of building a 

speech-to-speech translation system and we will also make a review of the successes so far. 

Speech translation technology has solved the language barrier problem and has enabled 

natural language communication between people that do not share the same language. 

In today’s state-of-the-art systems we see a workflow with three separated systems:  

- A speech recognition system that identifies the words spoken and transcode them 

into text.  

- A machine translation system that translate the text of the source speech into the 

target language. 

- A speech synthesizer to go from the translated text to spoken words. 

These systems are pretty robust and work well for their intended purpose. However, as it is 

not an end-to-end Speech translation system but a block-based system, we lose important 

characteristics of the voice when we transcode from the speech signal into a text 

representation and it makes it difficult to generate a good dynamic voice. 

 

2.1. Automatic Speech Recognition 

 

Speech Recognition is the process that enables the recognition and “translation” of spoken 

language into text. Due to the ongoing research in this area for several years, so many 

approaches for this task has been developed. 

Based on the speech production mechanism of humans, an ASR system aims to infer the 

words of a speech given the observable signal. 
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Figure 4. Typical Speech Recognition system architecture 

 

The decoding module is as well composed by the subblocks: acoustic model, language 

model and pronunciation dictionary. 

 

 

2.2. Neural Machine Translation 

Neural machine translation (NMT) is an end-to-end approach of Machine Translation, which 

can be defined as the process by which a source text in one language is automatically 

converted to text in another language. 

NMT uses neural network models to learn to translate text based on existing statistical 

models, and this makes it possible to condition the probability of words that are generated 

at each position on all the previous words in the output sentence. The deep learning 

architecture that the system uses is capable of learning the meaning of the text and thanks 

to that, the machine performs the translation task at a semantic level. Thus, the output of 

the system is a fluent and naturally sounding translation. 

It has de ability to produce faster and higher quality output than Statistical Machine 

Translation (SMT).  

Another characteristic of these state-of-the-art approach is that NMT systems understand 

similarities between words and can benefit from that. 

 

2.3. Speech synthesis 

 

Speech synthesis is the artificial simulation of human speech carried out by a computer or 

another electronic device. All speech synthesizers are based on the model of Human Speech 

Production in order to achieve the most possible natural sounding of the synthetic speech. 
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As well as written language can be seen as a sequence of elementary, we can define speech as 

elementary acoustic symbols also known as phonemes. 

Based on this comparison, a general speech synthesizer has the following structure: 

 

Figure 5. General speech synthesizer structure 

Given some text as a input, the NLP module produces the corresponding phonetic 

transcription and then de DSP module is responsible for converting the phonemes into 

artificial speech. 

The Natural Language Processing module consists in the composition of 3 major 

components: 

- the text analyser, which study the morpho-syntactical functions of the words 

- the letter-to-sound component, responsible for making the conversion between 

words and phonemes 

-  the prosody generation component, which contributes to intonation, tone and 

rhythm 

As far as the Digital Signal Processing task is concerned, there are three main subjects 

involved: Linguistic, physiology and acoustics. The first one refers to how language is 

constructed and the grammar analysis, the second one focuses on the way the sounds are 

produced and, finally, acoustics is responsible for the generation and transmission of 

sounds. 
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3. Project development 

This chapter presents the process followed during the development of the project. 

 

3.1. Speech Recognition 

 

The first important step of the project was to find an easy-to-use tool suitable for the 

Speech Recognition task. After testing several open-source toolkits recommended by the 

experts on this field, we finally managed to run a PyTorch implementation of end-to-end 

models for ASR, developed by Awni Hannun.  

 

3.1.1. Dataset 

The dataset used to train the speech recognition system was LibriSpeech[4] dataset, which 

is a corpus of read English speech suitable for training and evaluating speech recognition 

systems. It contains almost 1000 hours of speech sampled at 16 kHz. 

The subsets used to train and to test the system are the following: 

Subset hours Total speakers 

Train-clean-360 363.3 921 

Dev-clean 5.4 40 

Test-clean 5.4 40 

Table 1. Librispeech data subsets used in the project 

 

3.1.2. Speech. A PyTorch implementation for Speech-to-Text 

Speech is an open-source package to build end-to-end models for automatic speech 

recognition. At the time this project was developed, the supported configurations were: 

Sequence-to-sequence models with attention, Connectionist Temporal Classification and 

the RNN Sequence Transducer. 
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➔ Data preparation 

 

Before starting to train a model, the first thing we need to do is to prepare the data we 

want to train the model with. The preprocessing task consists in two main parts: 

 

- Convert files from flac to wav 

- Generate a json file for each of the train, dev and test subsets. 

containing the duration, the transcription and the path of each of the files of the whole 

training subsets 

 

Once the preprocess is done, we can proceed to the training part. 

 

➔ Training 

 

We first need to edit the configuration file, where you have to set the save_path to the 

choosen location to store the model. You can also modify the parameters of the neural 

network configuration. In our case, we have used the CTC configuration and we have 

set the number of epochs to 200. 

 

- Edit Configuration file: ctc_config.json 

o Save_path: path where the model is stored 

o Train_set 

o Dev_set 

o Batch_size: 8 

o Epochs: 200 

o Class: CTC 

Now we are ready to train the model. The training process takes a lot of time in 

executing; with the configuration we have used it took around 2 weeks to finish. 

The metric used to evaluate the performance is the Character Error Rate (CER). We get 

a 25.3% of CER for the development subset. 

 

➔ Testing 

Once the model is trained, we evaluate its performance using the test subset. We can 

save the predictions in a json file to see the resulting transcripts from the audio files. 

The evaluation of the test subset is 27% of CER. 
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3.2. Open-NMT 

 

The toolkit used to train a neural machine translation system is Open-NMT: an Open-

Source Toolkit for Neural Machine Translation. 

➔ Data preparation 

 

As a preliminary step, we have to do a pre-processing task in order to extract features 

for training and generate vocabulary files for the model. 

 

The data consists of parallel source and target data containing one sentence per line. 

There are parallel data for both training and validation files (the latter are required and 

used to evaluate the convergence of the training). 

In the source data we find sentences written in the source language (English), and the 

target data corresponds to the translation of that sentences into the target language 

(German). 

After running the preprocessing, the following files are generated: 

 

- demo.trained.pt 

- demo.valid.pt 

- demo.vocab.pt 

which are serialized PyTorch files containing training, validation and vocabulary data, 

respectively. 

 

➔ Training and Translation 

 

Now we are ready to train the model. We use the default model, that consists of a 2-

layer LSTM with 500 hidden units on both decoder/encoder. 

Once the model is trained, we can use it to predict on new data. By executing the 

“translate.py” command and indicating the data we want to translate, a text file is 

generated with the corresponding translations predicted. 

As demo dataset we have used to train the model is too small, the predictions are not 

so good. 

 

After that, we try a pre-trained model to repeat the process and to find out if the can 

manage to achieve good predictions using this implementation.  

This model has been also trained for English-to-German translation. The dataset used 

for the training is WMT. 

 

Using the pre-trained model it seems that the translation system has now a good 

performance. The problem comes when concatenating the ASR and the NMT blocks. 



 

 21 

As the speech recognition system is character-based and it has not a high accuracy, 

there are some mistaken characters in the transcriptions, and that results in many non-

existing words. If we then takes that transcripts as the input of the NMT system, it does 

not recognize the non-existing words and this makes it impossible to achieve a 

meaningful translation. 

 

3.3. Implementation with Google Cloud 

 

Google Cloud Platform is a suite of Cloud Computing services that provides several cloud 

services such as machine learning APIs. 

In order to achieve the implementation of a block-based speech translation, the useful APIs 

from Google Cloud are the following: 

- Cloud Speech-to-Text API 

- Cloud Translation API 

- Cloud Text-to-Speech API 

Before starting to implement a Speech Translation system using Google Cloud APIs, there 

are some preliminary steps: 

- Create a new project with the GCP (Google Cloud Platform) Console 

- Enable the APIs listed above for that project 

- Create a service account 

- Download a private key as JSON 

- Set the environment variable GOOGLE_APPLICATION_CREDENTIALS to the file path 

of the JSON file downloaded on the previous step 

- Install the client libraries: google-cloud-speech, google-cloud-translate and 

google-cloud-texttospeech 

Now we are ready to implement the three blocks of our system. 

 

→ Speech-to-Text 

Google Cloud Speech-to-Text allows to apply the most advanced deep-learning neural 

network algorithms for speech recognition in an easy-to-use API. 

To make a speech recognition request, it’s necessary to define some configuration settings. 

The required fields are the following: 

- Encoding → specifies the encoding scheme of the supplied audio 

- Sample Rate → specifies the sample rate (in Hertz) of the supplied audio 
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- Language code → the language + region to use for speech recognition 

As our audio input files are FLAC files, sampled at 16kHz and the source language is English, 

we define the configuration as follows: 

 

Figure 6. Piece of code of the configuration. 

 

The expected input of our Speech Recognition implementation is a text file containing the 

path of each of the audio files (.flac) we want to transcribe. 

For each audio input file, we send a speech recognition request to the Speech-to-Text API. 

The output is as well a unique text file containing the recognized text from each of the 

audio files. Each line corresponds to a single audio transcription. 

 

→Translation 

The Translation API allows us to translate an arbitrary string into more than 100 languages 

using state-of-the-art Neural Machine Translation. 

To make a Translation API Request, we must to specify 3 parameters: the language to 

translate from (source), the language to translate to (target) and the text we want to 

translate. If the source language is not specified, the API will attempt to detect the source 

language automatically. 

As we are building a block-based implementation, the input of our language translator is 

the output of the Speech Recognition block, and the output is a text file containing the 

corresponding English-to-German translation. 

 

→Text-to-Speech 

With Google Cloud Text-to-Speech we can synthesize natural-sounding speech with 30 

voices in 14 languages and variants. 

To send a request to the Text-to-Speech API, the parameters to define are the following: 

the voice configuration (language, voice and gender), the audio encoding format and the 

text to be synthesized. 
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Our synthesizer expects the output of the language translation as input. 

For each line of the input (corresponding to the English-to-German translation of a single 

audio file), we send a synthesize request to the Cloud Text-to-Speech API. 

Finally, the speech synthesis process generates an audio file of natural German speech for 

each one of the transcripts translated into German. 

 

Once we have the three blocks that integrates the Speech-to-Speech Translation system, 

we chained them in order to automatize the whole process and we finally have the overall 

system implemented. 

To better understand the performance of our system, let us illustrate it through an example. 

The example consists in translating three audio files of English speech (from the LibriSpeech 

test subset) into German speech. 

The text file we use as the input of the overall system is the following: 

 

Figure 7. Input file containing the path of the three audio files 

During the execution of the entire process, the terminal shows the output of each one of 

the blocks step by step. 

 

 

Figure 8. Terminal output corresponding to the Speech-to-Text process 

 

Figure 9. Terminal output corresponding to the translation task 
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Figure 10. Terminal output corresponding to the Text-to-Speech process 

As it can be seen in the figure above, once the execution has finished, three audio files 

corresponding to the German translated speech are generated. Both the transcripts and 

the translation output are also saved in a text file. 

 

Figure 11. Automatically generated files during the execution + input file 
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4. Results 

In this chapter we present a comparative study of the costs involved between an In-house 

software development and a Cloud implementation of a Speech-to-Speech Recognition 

system. 

 

4.1. In-house software and local server 

First, we estimate the annual cost of the GPI infrastructure. 

The elements we have to consider are the following: 

- Virtual machines with 8 GPUs 

- Access servers 

- Storage 

- Data centre 

- Technical staff 

Another element that would have to be considered is software licenses, but assuming that 

we would use open source tools to build the S2ST system, it would not imply any cost. 

The expenses related to the electricity could have not been included in the cost estimate 

calculation because it’s UPC who bear that costs and we have not had access to this detailed 

information. 

To calculate the annual cost of the GPI infrastructure, the method we apply consists in 

dividing the total cost of each element by its useful life. 

 Unit cost Amount Total cost Useful Life Annual cost 

Virtual machine 

with 8 GPUs 

20.000 € 3 60.000 € 8 years 7.500 € 

Access server 12.000 € 2 24.000 € 10 years 2.400 € 

Storage (30 TB) 10.000 - 10.000 € 12 years 833 € 

Data centre 

- Racks 

- Switches+routers 

  

2 

. 

 

1.000 € 

1.500 € 

 

- 

 

2.000 € 

1.500 € 

Technical staff 

salary 

35.000 € 1 35.000 € - 35.000€ 
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Total 47.433 € 

Table 2. Annual cost of the GPI Infrastucture 

 

Now that we have the total annual cost of the GPI infrastructure, let’s divide it between the 

number of members of the Image Processing Group taking some considerations into 

account. 

The number of professors and Phd candidates amounts to 11 and 10, respectively. 

Considering that each professor has 1 student of Master and 2 Degree students assigned 

per year, it would be a total of 11 Master students and 22 Degree students per year. 

As far as computational cost is concerned, we estimate that Phd candidates and professors 

use twice as much computational resources than a Master student do, as well as a Master 

student uses twice as much computational resources than a Degree student. 

According to that estimation, we will assign different weights to the members of the group 

depending on their category. These weights will be 4 for Phd candidates and professors, 2 

for Master students and, finally, a weight of 1 for the Degree students. Applying the 

corresponding weights to each member, we can calculate total number of members under 

the assumption that all members were Degree students. 

 

Member category 
Real 

Quantity 
Weight 

#Equivalent 

Degree students 

Professors 11 4 44 

Phd candidates 10 4 40 

Master students 11 2 22 

Degree students 22 1 22 

Total 128 

Table 3. Calculation of the equivalent number of Degree students 
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Based on this result, we can estimate the corresponding expense of a single Degree student 

that makes use of the GPI Infrastructure. 

 

Annual cost 47.433 € 

Number of “Degree students” 128 

Total 370,57 € 

Table 4. Cost estimate of the GPI infrastructure corresponding to a Degree student 

 

 

4.2. Google Cloud 

 

As the main purpose of this project is to generate a parallel speech corpus, the study will 

be based on the costs involved in translating the whole LibriSpeech dataset from English 

to German. 

Cloud Speech-to-Text is priced based on the amount of audio successfully processed by 

the service. The price is 0,0052€ / 15 seconds, which means 1,25€ / 1 hour. 

 

Subset hours Cost 

Dev-clean 5,4 6,75 € 

Dev-other 5,4 6,75€ 

Test-clean 5,3 6,625 € 

Test-other 5,1 6,375 € 

Train-clean-100 100,6 125,75 € 

Train-clean-360 363,6 454,5 € 

Train-other-500 496,7 620,875 € 

Total 982,1 1.127,625 € 

Table 5. Cost estimate of Speech-to-Text using Google Cloud 
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The Cloud Translation API has a price of 17,5€ / 1 million characters. 

To calculate the cost estimate of translating the whole LibriSpeech dataset, we have to 

estimate the character count of the dataset transcripts. To do a more detailed calculation, 

a character count is carried out for each one of the subsets of LibriSpeech, and then, the 

Cloud Translation API’s price is applied to calculate the total cost. 

 

Subset Total characters Cost 

Dev-clean 286.844 5,02 € 

Dev-other 264.090 4,62 € 

Test-clean 278.974 4,88 € 

Test-other 271.063 4,74 € 

Train-clean-100 5.427.481 91,83 € 

Train-clean-360 19.053.548 333,44 € 

Train-other-500 25.282.513 442,44 € 

Total 50.684.513 886,98 € 

Table 6. Cost estimate of translation using Google Cloud 

 

The Cloud Text-to-Speech API is priced based on the amount of characters to synthesize 

into audio. The price is 3,5€ / 1 million characters. 

In order to estimate the character count of the German translation of the whole LibriSpeech, 

we calculate the character count ratio English:German by translating a small set of the 

dataset from English to German. This small set has a total of 6313 characters, while its 

translation to German contains 7008 characters. Therefore, the estimated character count 

ratio is 1:1,11 (English:German). Based on this value, we can now calculate the cost estimate 

of speech synthesis. 
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Subset 
Char count 

(English) 

Char count 

(German) 
Cost 

Dev-clean 286.844 318.396 1,11 € 

Dev-other 264.090 293.140 1,03 € 

Test-clean 278.974 309.661 1,08 € 

Test-other 271.063 300.880 1,05 € 

Train-clean-100 5.427.481 6.024.504 21,09 € 

Train-clean-360 19.053.548 21.149.438 74,02 € 

Train-other-500 25.282.513 28.063.590 98,22 € 

Total 56.459.609 197,61 € 

Table 7. Cost estimate of the speech synthesis using Google Cloud 

 

 

Total cost of the overall system 

Speech-to-Text 1.127,625 € 

Translate 886,98 € 

Text-to-Speech 197,61 € 

Total 2.212,22 € 

Table 8. Total cost estimate of the overall system 
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5. Budget 

As the object of this thesis was not developing or building any prototype, to calculate the 

cost estimate of the project we will take into account the following elements: the hardware 

resources required, the software used and the engineers salary. 

➔ Hardware resources 

 

This project has been developed using the resources available at the Image Processing 

Group (GPI) at UPC, so the hardware needed has not implied any real cost. 

Nevertheless, we provide a cost estimation of the required hardware assuming that 

those resources had not been provided by the research group. 

 

The total amount of hours of CPU and GPU used during the project development is 804 

and 760, respectively. 

 

The price of a GPU provided by Google Cloud Engine with the most similar 

configuration to the one used to develop the project is 0.36€/hour, so the total expense 

would be 264,25 €. 

 

➔ Software used 

 

Both the Automatic Speech Recognition toolkit used to train a model and the 

OpenNMT toolkit are open source, so they don’t imply any cost. 

 

As far as the Google Cloud APIs usage is concerned, the prices of the APIs we have used 

are the following: 

 

- Speech-To-Text: 1,25€ / h 

- Translate: 17,5 € / 1 million character 

- Text-To-Speech: 3,5 €/ 1 million characters 

However, Google Cloud offers $300 free credit during the first 12 months to get started 

with any GCP product. As this free credit has been enough for the project development, 

the usage of Google Cloud APIs has not implied any cost either. 

 

➔ Engineers salary 

 

Finally, we have to calculate the salary of the engineers working on the project 

according to the total amount of hours spent in the project. 

Considering a Junior Engineer salary of 10€ per hour and a dedication of 20h/week in 

average during 30 weeks, the junior engineer salary amounts to 6.000€. 

The professor and the Phd student who helped me with the development of the project 

are considered as Senior Engineers, with a salary of 50 €/h. 
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 Cost/hour Dedication Total 

Hardware resources 0.35 €/h 760 h 266 € 

Senior Engineers 2 x 50 €/h 2 h/week 6.000 € 

Junior Engineer 10 €/h 20 h/week 6.000 € 

Total 12.266 € 

Table 9. Budget of the project 
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6. Conclusions  

The main goal of this project was the implementation of a Speech-to-Speech translation 

system so it can be used in the DeepLipDub project to generate a parallel speech corpus. 

We have experimented with some open source toolkits and we have indeed managed to 

train a model for both Speech Recognition and Translation tasks. However, we have not 

achieved successful results of that models and as it is required such long computational 

time to repeat the training experimenting with different configurations, we decided to 

move to a Cloud implementation. 

The implementation of the Speech-to-Speech Translation system using the Google Cloud 

APIs has a really good performance as it uses the state-of-the-art technologies. It would be 

very useful to generate a parallel speech corpus and despite the fact that the usage of 

Google Cloud APIs is not free, it has an affordable cost. 

As we have tried both In-house and Cloud-based development implementation, it would 

be interesting to make a brief comparison between them. Based on the degree of easy-

usability, the quality of performance and the required time to be spent, we strongly 

recommend the Cloud-based development.  

It is clear that for the purpose of building a parallel corpus, the Cloud-based choice is the 

most adequate. However, the DeepLibDup project integrates an ASR and NMT modules. 

Therefore, as a future work, it would be interesting to take up the In-house software 

solution that we have not managed to implement with success. Now that we have more 

control over the tools, it would be easier to train the models and to improve their accuracy. 
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Appendices 

Documentation of the Google Cloud APIs: 

https://cloud.google.com/speech-to-text/docs/ 

https://cloud.google.com/translate/docs/ 

https://cloud.google.com/text-to-speech/docs/ 

 

Source code: 

Speech. Open source for ASR: 

https://github.com/awni/speech 

OpenNMT 

https://github.com/OpenNMT/OpenNMT-py 

 

Speech-to-Text:  

https://github.com/GoogleCloudPlatform/python-docs-

samples/tree/master/speech/cloud-client 

Translate: 

https://github.com/GoogleCloudPlatform/python-docs-

samples/tree/master/translate/cloud-client 

Text-to-Speech 

https://github.com/GoogleCloudPlatform/python-docs-

samples/tree/master/texttospeech/cloud-client 
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