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Abstract

The Double Cantilever Beam (DCB) Mode I fracture testing has been widely

used in fracture testing of especially fiber reinforced polymer composites and

adhesive joints. Application of classical DCB testing to plain concrete or
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unreinforced ceramic specimens is not straightforward and cannot be carried

out as in fiber reinforced polymer composites. Instead, an indirect tension

approach is proposed in this study. Tests of notched geometrically similar

DCB specimens made of normal and high strength concretes loaded eccentri-

cally at the cantilever beam-column ends in compression have been carried

out. Classical type II size effect analyses of peak loads obtained from these

tests are performed. The Microplane Model M7 is calibrated independently

using uniaxial compression tests and employed to predict the peak loads of

both tested and virtual geometrically similar DCB specimens. The same size

effect analyses are performed on the predicted peak loads and the errors in

the fracture parameters of the classical size effect analysis are determined.

Keywords: Fracture mechanics, double cantilever beam specimen, size

effect, Microplane Model M7, concrete

1. Introduction

Since 1967 when Hoagland [1] proposed a double cantilever beam (DCB)

specimen to evaluate the plane strain fracture toughness of metals and showed

that the critical stress intensity factor is dependent on the specimen geometry

and the material properties of the metal by comparing the results to those

obtained by other experimental methods, the DCB Mode I fracture testing

has been applied extensively to polymer fiber composites and adhesive joints,

and to a lesser extent, to other materials such as wood and metals. DCB

Mode I fracture specimens have also been extensively analyzed by analytical,
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semianalytical and numerical methods in the literature. Earlier applications

of DCB Mode I fracture testing and analysis include DCB tests of Heady

[2] used to measure the critical stress intensity factor for slow crack growth

due to corrosion in high strength steels. The analyses of Kanninen [3, 4]

involving a beam free in part and supported in part by an elastic founda-

tion matched the experimental results only for initial crack extensions. Later

studies employed a higher order plate theory that included transverse shear

deformation [5] and Timoshenko beam supported on an elastic foundation

[6, 7, 8, 9, 10, 11, 12]. The calculation of energy release rate in the DCB spec-

imens made of fiber reinforced polymer composites loaded in direct Mode I

fracture has been widely studied [13, 14, 15, 16]. Finite element analyses

of the DCB direct Mode I fracture tests in which sophisticated constitutive

models for fiber reinforced polymer composites are employed have also been

performed [17, 18, 19, 20]. The DCB direct Mode I fracture tests were also

applied to engineering materials other than fiber reinforced polymer compos-

ites such as wood [21] and bovine bone tissue [22], as well as debonding of

adhesively bonded joints that produced a significant literature (see e.g. [23]).

In all the aforementioned studies, the DCB loading configuration has been

the separation of the cantilever beams at the free ends to produce Mode I

fracture directly, similar to those of the standards ASTM D5528-13 [24], ISO

15024 [25] and JIS K7086 [26]. On the other hand, the conventional DCB

loading configuration would result in two fundamental problems in the case

of concrete: (1) Distributed cracking along the cantilever arms that dissipate
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spurious energy becomes inevitable due to bending moment and shear, (2)

the shear stresses acting in the fracture process zone cause the crack to curve

instead of propagating in a straight line resulting in mixed mode fracture

instead of Mode I fracture.

Thus, as the principal objective of this study size effect tests and frac-

turing analyses of DCB specimens made of plain normal and high strength

concretes loaded to produce Mode I fracture indirectly are presented. In these

tests, DCB specimens are supported eccentrically at the cantilever ends and

loaded in compression resulting in bending moments in the DCB cantilever

beam-columns as well as compressive stresses parallel to the initial notch.

Moreover, the lack of shear in the cantilever arms allow the crack to grow

in a straight line. In the light of the aforementioned studies on the fracture

mechanics of the orthotropic polymer composite DCBs, larger bending stiff-

ness for the cantilever columns are employed in order to obtain a straight

crack path during the crack propagation in the concrete indirect tension DCB

specimens [18].

In contrast to complex testing techniques in which crack mouth opening

displacement (CMOD) or at least load point displacement (work of fracture

method) is controlled for the purposes of the determination of material frac-

turing properties, the size effect method of fracture testing requires only the

peak loads if the material strength is determined independently of the size

effect tests and therefore there is no need for measuring CMODs or load

point displacements. Further simplification of the testing procedure is made
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possible by choosing a compression setup instead of a tension setup, even

when Mode I fracture properties are pursued. Furthermore, the size effect

curve yields information on the brittleness of the specimens but the work of

fracture method does not. In the case of concretes, the size effect method was

applied successfully to the failure of concrete structures failing in tension, in

diagonal shear, in torsion [27, 28], in pull-out of reinforcing bars [29], in bond

splice [30], in compression [31, 32, 33, 34], in bending [35, 36, 37] as well as

by Arcan tests [38].

However, in the case of normal strength concretes, the specimen size range

that can be successfully cast and tested in the laboratory is too small. Thus,

as the secondary objective of this study, the errors in the predictions of size ef-

fect fracture parameters are investigated by introducing peak loads obtained

by the finite element analyses with the Model M7 of virtual specimens in the

size effect analyses. To this end, for each test series, one virtual specimen

twice as large as the largest tested one (for which actual laboratory testing

would be prohibitive) and one virtual specimen half the size of the small-

est tested one have been analyzed by the model M7 to determine their peak

loads. It is shown that these peak loads provide valuable data points that im-

prove vastly the accuracy of the size effect curve in predicting the Type II size

effect fracturing parameters. The existence of complex states of stress at the

crack front in the indirect tension DCB specimen because of strain-softening

resulting from distributed cracking, localization of cracking into a larger frac-

ture zone prior to failure, and bridging stresses at the fracture front require
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a sophisticated model for the analysis of the failure of indirect tension DCB

specimens made of concrete [39]. The model M7 is one of the few models

which satisfy these requirements. The so called “computational continuum

models” (like the model M7, as opposed to “computational discrete models”)

must have an additional parameter considered to be a material property to

control the localization of the strains, called the characteristic length or lo-

calization limiter. Both types of material models were shown to agree well

with the size effect formulas fitted to the peak loads of geometrically similar

specimens of a sufficiently broad size range [40, 41, 42, 43] obtained from size

effect tests such as 3 point bending and uniaxial tension.

2. Size Effect Test Specimens and Experiments

Three series of normal and high strength concrete specimens were pro-

duced. Specimen thicknesses of b = 30, 40 and 50mm were chosen for series

A, B and C respectively. All series have three different size of specimen and

three specimens were cast for each size. Each series contained nine speci-

mens; since all three series were produced using normal and high strength

concrete, in total 54 specimens were cast. The initial letters of labels of spec-

imens P and HS correspond to plain and high strength DCBs, and the letters

A, B and C that follow P or HS correspond to each of the 3 series, and the

numbers 1-3, 4-6, 7-9 correspond to three specimens that were tested in each

series. For geometrical similarity, specimen dimensions were chosen so as to

have a geometrical scaling of 1:2:4. The specimen geometries and dimensions
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are shown in Fig.1.

The concrete mix proportions water:cement:sand:gravel were 0.55:1:2:2

by weight for the normal strength concrete and water : cement : sand :

gravel : superplasticizer : silica fume were 0.35:1:2:2:0.015:0.11 by weight for

the high strength concrete. Portland cement (KPC32.5, according to Turk-

ish standard TS EN197-1), similar to ASTM Type I, and Kızılırmak river

aggregate from the county of Kırıkkale were used. The maximum aggregate

size was da = 10mm, the maximum sand size was 5mm for all the DCBs.

All of the specimens were tested at the age of 90 days. The average 90-day

compressive strengths together with their respective coefficients of variation

are presented in Table 1. All of the specimens in all sizes for any given type

of concrete were cast from the same batch of concrete. The DCBs were cast

in forms made of plywood with a smooth hard varnish-painted surface. The

DCB notches were obtained by introducing plastic plates at the notch loca-

tions while casting. The ratio of notch length to specimen height was chosen

as a/d = 0.6. The forms were stripped after one day, and the specimens

were cured for 28 days in water. Additionally, for each series a standard

compression test specimen was cast from the same batch and cured for 28

days in water. At the end of the curing period, the specimens were kept at

a temperature of 20◦C and a relative humidity of 50% until the time of test.

The specimens were tested in a material testing machine with a stiffness

constant of 560kN/mm in the Structure Laboratory of the Department of

Civil Engineering at Gazi University, Ankara, Turkey. The stroke rate was
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determined so as to achieve the maximum load for each specimen within

about 3 min. The load measurements were taken from a load cell with 225kN

capacity automatically using the closed loop testing system. Two horizontal

displacements at the cantilever ends (LVDT1 and LVDT2) and one axial

displacement (LVDT3) were measured by LVDT gauges. The maximum

registered values from LVDT1 and LVDT2 were approximately 30mm for

the largest specimen, 15mm for medium size specimen and 7.5mm for the

smallest size specimen. Experimental setup is depicted in Fig. 2a.

The cantilever ends were loaded using steel plates which had a width of

20% of the cantilever width. The dimensions of the top support were twice

that of the cantilever end supports. The same apparatus was used for all

tests. The failure loads recorded in these tests for each specimen are shown

in Table 2.

To determine the tensile strength of concrete, a series of uniaxial com-

pression tests on standard cylindrical specimens are performed. Once the

compressive strength is determined, the splitting tensile strength can be em-

pirically determined using the formulae provided in various standards. In

this study, the splitting tensile strengths fct for the two types of concretes

are estimated empirically using both the ACI formula given by

fct = 0.56
√
f ′c (1)

in which both strengths are expressed in MPa as well as the CEB-FIB formula
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given by

fct = 0.3(f ′c)
0.66 (2)

in which again both strengths are expressed in MPa. The direct tension

tensile strength f ′t is estimated as the 80% of these splitting tensile strengths

[44, 45, 46] as shown in Table 1. The difference in predictions from these two

formulas are less than 7%. Thus, in this study for the normal strength and

high strength concretes the direct tension tensile strengths are estimated as

f ′t = 2.40MPa and f ′t = 3.20MPa respectively.

3. A Brief Description of The Model M7

The Microplane Model M7 is the latest model among a series of models

called the “microplane models” for predicting the multiaxial inelastic behav-

ior of plain concrete developed in collaboration with Z. P. Bažant at North-

western University. Developing a multiaxial constitutive model for concrete

(and in general, for a class of materials called “geomaterials”) is a formidable

task because unlike common ductile metals, concrete in general has a very

complex mechanical response that changes character as a function of the

current and the past states of stress. As a result, unlike ductile metals, a

simple uniaxial test is not sufficient to fully describe the mechanical behavior

of concrete. In compression, the confining pressure plays a major role in the

mechanical response of concrete [47, 43]. Thus, triaxial hydrostatic compres-

sion tests are necessary to describe the pressure sensitivity of the response.

The unloading and reloading behaviors of concrete in cyclic compression,
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cyclic tension and cyclic hydrostatic compression are also wildly different

[47, 43]. As a result, cyclic compression and cyclic tension tests as well as

cyclic hydrostatic compression tests are also needed. Thus, for a complete

characterization of the mechanical behavior of concrete, at least tests of (1)

uniaxial compression, (2) uniaxial tension, (3) uniaxial cyclic compression

(4) uniaxial cyclic tension (5) hydrostatic compression (6) hydrostatic cyclic

compression (7) triaxial compression at various confining pressures and (8)

triaxial cyclic compression at these confining pressures are needed [48, 42].

The Model M7 has been shown to successfully predict a total 25 distinct

data sets obtained at a wide range of load paths including the aforementioned

tests and some unconventional nonproportional load paths with a vertex at

the yield surface [42, 43]. The performance of the model in many different

finite element analyses of concrete specimens tested under various load paths

have also been excellent [43].

The Model M7 consists of constitutive laws are prescribed on various

planes in material mesostructure called the “microplane” that relate stress

and strain vectors on these planes. The integration of stress vectors expressed

as functions of strain vectors acting on these planes yields the macroscopic

stress tensor. To this end, the so-called “kinematic constraint” in which the

strain tensor is projected onto microplanes of different orientations given by

the unit normal vector ~n must be employed:

εN = εijninj = εijNij (3)
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where repeated indices mean summation and the indices range from 1 to 3.

An alternative approach would be the so-called “static constraint” in which

instead of the strain tensor, the stress tensor is projected onto microplanes

but this approach would be suitable for plastic behavior of ductile metals

because it would not permit the modeling of the post peak strain softening

behavior of quasibrittle materials like concrete. To model the shear behavior

of concrete, a local coordinate system is defined on the microplanes given

by the orthonormal vectors ~n,~l and ~m in which the normal stress and strain

are referred to the vector ~n and shear strains and stresses are referred to the

vectors ~l and ~m. The projected shear strains then are given by

εL = εij
1

2
(nilj + linj) = εijLij

εM = εij
1

2
(nimj +minj) = εijMij (4)

Given the projected strains on a microplane as defined by Eqs.3 and 4, the

corresponding normal and shear stresses can be evaluated using the pre-

scribed microplane constitutive laws generically given by

σN = FN (εN , σV ) for σeN > 0

σ−V = FV (εV , εI , εIII)

σ−D = FD (εD, εV )

σN = σ−V + σ−D for σeN < 0 (5)

τL = Fτ (σN) cos(α)
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τM = Fτ (σN) sin(α)

in which the functions FN , FV , FD and Fτ denote the microplane normal,

volumetric, deviatoric and shear constitutive laws respectively; σeN is the elas-

tic microplane normal stress, εV is the volumetric strain, σV is the volumetric

stress, εI is the maximum principal strain and εIII is the minimum princi-

pal strain (for details see [42]). In Eqs.5 the arguments to the microplane

constitutive functions turn out to be not only the corresponding microplane

strains, but also other microplane stress variables [42], discovered through

extensive data fitting involving numerous data sets on different concretes.

This means a deviation from pure kinematic constraint towards static con-

straint, but this may be justified by the fact that the quasibrittle materials

transition from brittle to ductile behavior as the confining pressure increases

and thus at any given confining pressure the material behavior must be con-

forming partly to the kinematic constraint and partly to the static constraint.

The microplane shear law is effectively a yield surface which helps simulate

the plastic behavior of concrete under triaxial compression. To calculate the

macroscopic stress tensor without introducing any spurious anisotropy, the

microplane normal and shear stresses given in Eqs.5 are integrated over the

surface of a unit hemisphere using the principle of virtual work:

σij =
3

2π

∫
S

(σNNij + τLLij + τMMij) dS (6)
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The integral in Eq.6 is evaluated numerically using the Gaussian quadrature

for best efficiency and accuracy. Although as low as 21 points can be used

to get an approximately isotropic response, in the post peak region of the

stress-strain response the error in isotropy may become too large [48]. Thus,

a 37 point Gaussian quadrature is employed in the calculations, which allows

the complete stress-strain response to be approximately isotropic [42].

Most of the foregoing equations are common to the Model M7 and its

many predecessors (models called M1 [49] through M6f [50]). However, the

Model M7 outperforms its predecessors by (1) predicting correctly the ten-

sile and compressive behavior of concrete under loading and unloading cycles

in addition to predicting correctly other concrete multiaxial behavior, (2)

predicting correctly the lateral contraction in uniaxial tension. None of its

predecessors could predict correctly either such cyclic behavior of concrete

or the lateral contraction under tension with the exception of the early pre-

decessors (e.g. the Model M1 [49]) which, on the other hand, could not at

all predict correctly multiaxial compressive behavior of concrete.

To accomplish the correct predictions of concrete behavior under such

load cycles as well as the correct prediction of lateral contraction under uni-

axial tension, the Model M7 uses the so-called volumetric-deviatoric split

in microplane normal stress and strain in the inelastic range of response in

compression as shown in Eqs.5 but the normal stress and strain without

split in both elastic and inelastic ranges of tensile response. Moreover, the

model M7 features about the same number of fixed and free parameters as
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its more recent predecessors (e.g. the Model M4 [48, 47]). Clearly, among

the microplane models with a sound, noncontroversial theoretical basis ever

published, the Model M7 is arguably the best microplane model for concrete.

However, the versatility in data fitting provided by prescribing the consti-

tutive law at microplane level make a direct relation between the size effect

fracturing parameters and the parameters of the Model M7 impossible.

4. Size Effect Fracture Analyses and Results

The calibration of the Model M7 is of profound importance to be able

to accurately predict the size effect fracture parameters B, d0, cf and Gf of

both the normal strength and the high strength concretes employed in the

tests using the size effect analyses. To this end, the elastic moduli for the

normal and high strength concretes were prescribed as E = 27109MPa and

E = 33711MPa and the Model M7 was calibrated by varying the free param-

eters k1 and k3 to match the compressive strength obtained by the uniaxial

compression test for the concrete from each series. Thus, the optimum values

of these parameters turn out to be k1 = 75 · 10−6 and k3 = 33.0 for the nor-

mal strength concrete and k1 = 75 · 10−6 and k3 = 53.0 for the high strength

concrete. In Fig.3, the effect of a varying k1 on the tensile response of the

Model M7 is shown. The curve in the middle corresponds to the calibrated

k1 = 75 · 10−6 value. The upper curve corresponds to k1 = 112.5 · 10−6 which

is 50% higher than the calibrated value. The lower curve is for k1 = 37.5·10−6

which is 50% of the calibrated k1. Clearly by varying the free parameter k1,
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the response is scaled radially and as a result, the response curve has the

same relative proportions. Thus, calibration of the Model M7 independently

of the failure loads of the geometrically similar specimens by varying only

the free parameters of the model allows the equivalent cohesive curve to be

uniquely defined [51].

The Type II size effect analysis begins with using the failure loads Pu

given in Table 2 to calculate the nominal strengths as σNu = Pu/bd where

b is the width (out of plane dimension) of the specimen and d is the height

of the specimen as shown in Fig.2b for 2D geometric similarity. For small

enough size DCB specimens, the nominal strength is expected to approach a

horizontal asymptote (or constant strength) and for large enough size DCB

specimens, it should approach the LEFM asymptote with a −1/2 slope in

the log-log scale. The simplest formula that satisfies both conditions may be

written as [40]:

σNu =
Bf ′t√

(1 + d/d0)
=

√
E ′Gf/g′0cf√

1 + g0d/g′0cf
(7)

where Bf ′t is the value of the horizontal asymptote in the small size limit,

f ′t is the tensile strength of concrete, Gf is the fracture energy of concrete,

aeff = a0 + cf is the effective crack length at failure in which a0 is the notch

length and cf is the half of the size of the fracture process zone, g0 = g(a0/d)

is the energy release rate function, g′0 = g′(a0/d), E ′ = E = the elastic

modulus for plane stress and d0 is the transitional size between the brittle
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and non brittle behavior for the concrete under consideration.

Optimal fitting of Eq.7 to the test data shown in Table 2 reveals the size

effect fracture parameters as shown in Table 3 for all test series. The test

data and their optimal size effect curves are plotted in Fig.4. To obtain the

fracture parameters cf and Gf , using Eq.7 one can derive Eqs. 8 and 9 [40]

given by

1

d0
=

g0
g′0cf

(8)

Bf ′t =

√
E ′Gf

g′0cf
(9)

and substituting cf = g0d0/g
′
0 from Eq.8 in Eq.9 one obtains

Gf = (Bf ′t)
2 g0d0
E ′

(10)

As shown in Fig.2b, the nondimensional notch length is given as ā0 = a0/d =

0.6, the nondimensional half size of the fracture process zone to be deter-

mined from size effect analysis as ∆ā = ∆a/d, the nondimensional width

of the specimen as 2c̄ = 2c/d ≈ 0.85, the nondimensional eccentricity as

ē = e/d = c̄/5 ≈ 0.085, the nondimensional notch width as λ̄ = λ/d which

varied between 0.0167 and 0.0667 because of a constant 5mm notch width em-

ployed in all specimens. The nondimensional load is defined as P̄ = P/Ed2.

In the foregoing equations, E is the Young’s modulus and d is the depth

of the geometrically similar DCB specimens tested. The nondimensional
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thicknesses of the specimens b̄ = b/d also varied between 0.1 and 0.4. It is

assumed that both the nondimensional notch width and the nondimensional

thickness not being constants has negligible effect on the results. The energy

release rate function g0 = g(0.6) and its derivative g′0 = g′(0.6) in the forego-

ing equations are to be determined for the loading configuration, shape and

geometry of the specimen as given above. To this end, the energy release

rate determined from the complementary strain energy U∗ = P 2C(a)/2 at

constant load is employed:

G =
1

b

d

da

[
1

2
P 2C(a)

]
(11)

⇒ G =
1

2b

P 2

d
C ′ (ā) (12)

where C(a) is the compliance of the structure, i.e. u = C(a)P in which u

is the load point displacement and P is the load. The stress intensity factor

KI may be expressed as

KI = σN
√
d
√
g (ā) =

√
E ′G (13)

where σN = P/bd is the nominal stress. Substituting G from Eq.12 into

Eq.13 and solving for g(ā) one may obtain

g(ā) =
1

2
E ′bC ′ (ā) (14)

⇒ g′(ā) =
1

2
E ′bC ′′ (ā) (15)
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Thus, to determine g0 = g(ā0) = g(0.6) one must determine C ′(0.6) and

substitute this value in Eq.14. Similarly, to determine g′0 = g′(ā0) = g′(0.6)

one must determine C ′′(0.6) and substitute it in Eq.15. In this study the first

and second derivatives of the compliance function are determined through the

finite difference method, which produces highly accurate results [40]:

C ′(ā0) ≈
C (ā0 + ∆ā0)− C (ā0 −∆ā0)

2∆ā0
(16)

C ′′(ā0) ≈
C (ā0 + ∆ā0)− 2C (ā0) + C (ā0 −∆ā0)

(∆ā0)
2 (17)

where ā0 = 0.6 and ∆ā0 is suitably chosen to be 0.01. The compliances

appearing in Eqs.16 and 17 are then determined through linear elastic finite

element analyses employing 278400, 272000 and 268800 hexahedral elements

of type C3D8R of ABAQUS [52] for series A, B and C of the DCB speci-

mens respectively. The nondimensional compliance values obtained in these

analyses for series A specimens are C(0.59) = 51.559, C(0.60) = 52.140 and

C(0.61) = 52.772 which yield C ′(0.6) = 60.610 and C ′′(0.6) = 506.00. Thus,

g0(0.6) and g′0(0.6) turn out to be 3.031 and 25.300 respectively for this series

of DCB specimens.

In Fig.4(a) through (c) the size effect fits for each one of the series PA, PB

and PC DCB specimens are shown. Similarly, in Figs.4(e) through (g) the

size effect fits for each one of the series HSA, HSB and HSC DCB specimens

are given. In Fig.4(d) and Fig.4(h) the size effect fits for all nominal strength

data obtained by testing respectively normal strength and high strength DCB
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specimens are shown. These size effect analyses of the peak loads yield the

size effect fracture parameter values as given in Table 3 for all test series.

The proposed experimental method would be incomplete unless the errors

in the size effect fracture parameters are estimated by carrying out a com-

parison of the results, namely Bf ′t , d0, cf and Gf , obtained from Type II size

effect analyses of the peak loads from the tested specimens only with those

obtained from the same analyses applied to the predicted peak loads from

the virtual specimens. To this end, a virtual DCB specimen half the size of

the smallest tested DCB specimen and a twice as large as the largest tested

one are proposed for each test series. The sizes of these virtual specimens

are determined based on not only the computational feasibility of the finite

element analyses of the large size virtual specimens but also on the previous

data fitting experience with the Model M7 and the minimum permissible

element density in the small size virtual specimens. After calibrating the

Model M7 for the two types of concretes employed in the tests, the peak

loads of all virtual DCB specimens from all series are determined using fi-

nite element analyses in which the Model M7 is used as the constitutive law.

As the finite element driver, the commercial finite element analysis package

ABAQUS version 2016 is employed [52]. The analyses are performed in the

sense of crack band model in which the element width is chosen as 2.5mm

for the both normal and high strength concretes.

The predicted peak loads for these virtual DCB specimens and their op-

timally fitting size effect curves are shown in Fig.5. For comparison, the
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experimental peak loads are also shown in the same figure. The optimum

values of the size effect fracturing parameters Bf ′t , d0, cf , Gf and B obtained

by these optimal fits are given in Table 4 for each test series as well as for all

normal strength and for all high strength series.

Comparing Tables 3 and 4 it may be inferred that the experimental data

alone give rise to a large scatter in the size effect fracture parameters, which

may be due to inherent statistical scatter in concrete. The size effect analysis

of the predicted peak loads by the Model M7 allows the errors in the fracture

size effect parameters obtained using the experiments to be determined. The

errors in the fracture parameters Bf ′t , d0, cf , Gf and B obtained using the

peak loads from the tests only relative to those obtained using the predicted

peak loads from the virtual experiments turn out to be 18.207%, 48.150%,

48.150%, 27.550% and 18.207% for all P-series and 1.664%, 0.344%, 0.344%,

3.000% and 1.664% for all HS-series respectively. Thus, it may be concluded

that when the material microstructure is large, the size range that can pos-

sibly be tested in the laboratory is likely to be too small compared to the

material microstructure size and the guidance of a well established material

model is needed to obtain reasonable estimates of fracture parameters using

the size effect analysis.

In Figs. 6a-e and 7a-e the cracking patterns of the normal strength and

high strength series C DCB specimens are shown respectively. The crack

propagation is illustrated as the maximum principal logarithmic strain im-

mediately before and immediately after the peak load for each specimen. The
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smallest virtual specimens have the sizes 37.5mm, 50mm and 62.5mm for se-

ries A, B and C respectively. The largest virtual specimens have the sizes

600mm, 800mm, 1000mm for series A, B and C respectively. Keeping the

element size constant in the sense of crack band model, the normal strength

and high strength series C DCB specimens shown in Figs. 6a-e and 7a-e are

meshed using 1430, 5500, 21000, 84000, and 336000 8-node brick elements of

type C3D8R. On the right column in the Figs.6 and 7 the half of the size of

the fracture process zone cf is also drawn scaled relative to the size of each

DCB specimen. Clearly for the largest virtual DCB specimens, cf becomes

negligibly small.

5. Conclusions

Test results from a novel DCB indirect Mode I test in which geometrically

similar specimens are supported at the cantilever beam-column free ends

eccentrically and loaded in compression in the direction of their notches are

reported. Using a sophisticated multiaxial constitutive model for concrete,

called the Microplane Model M7 calibrated independently of size effect test

data for the normal and high strength concretes employed in the experiments,

the experimentally obtained peak loads are predicted. Furthermore, the peak

loads of geometrically similar one virtual DCB specimen twice as large as the

largest tested DCB specimen and one virtual DCB specimen half the size of

the smallest tested DCB specimens in each series are determined using the

Model M7. The size effect fracture parameters, namely cf , Gf , B and d0 are
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calculated applying the so-called Bažant’s Type II Size Effect Law [41] to

peak loads from experiments and to predicted peak loads from virtual tests.

Consequently, the following conclusions may be drawn in this study:

1. The specimens tested have failed in Mode I. A relatively straight crack

propagated from the notch tip toward the load point and broke the

specimen into two pieces in all specimens.

2. A strong size effect is observed in the failure loads obtained from the

tests and it follows the so called Type II size effect law.

3. The size effect fracture parameters obtained from the failure loads pre-

dicted by the Model M7 of geometrically similar virtual DCB specimens

may be compared to those obtained from the peak loads from the ex-

periments which allows the errors in these experimental results to be

estimated.

4. Type II size effect analyses of the experimental failure loads alone yield

a Gf for normal strength concrete about 29% higher than that for the

high strength concrete. However, when the predicted failure loads from

virtual DCB tests are employed, the Type II size effect analyses yield

a Gf for high strength concrete higher than that for normal strength

concrete but only by about 11%.

5. In the case of normal strength concrete, the DCB size range tested in

the laboratory remained too small compared to the characteristic size

of the material and this lead to errors in excess of 45% in the predicted

cf and over 25% in the predicted Gf and in the case of high strength
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concrete, these errors respectively are over 0.34% and about 3%.

6. In contrast to the work of fracture method (in which the full load vs

load point displacement diagram must be traced without any snap-back

instabilities to yield the two fracture parameters), the proposed DCB

indirect Mode I fracture testing method in which only the failure loads

in compression of geometrically similar DCB specimens are determined

to yield the fracture parameters is vastly simpler.

7. The Model M7 must be calibrated independently of the peak loads

obtained in the size effect tests using only the free parameters of the

model. The simplest calibration of the model may be to fit the com-

pressive strength obtained by simple uniaxial compression tests.
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7. Figures

Figure 1: The DCB specimens form the series A, B and C and their dimensions given in
mm.

Figure 2: a) The schematic description of the test setup where dimensions of the support
detail are given in mm, b) the dimensions and loading configuration of the indirect tension
DCB specimen in nondimensional space.

Figure 3: Radial scaling of tensile response by varying the free parameter k1 in (a) normal
strength concrete, (b) high strength concrete. The dashed curves correspond to 50% higher
and 50% lower values of k1. The solid curves are for the calibrated value of k1 = 75 ·10−6.

Figure 4: Type II size effect fits on the nominal strength of tested DCB specimens for
both the normal strength (a-c) and the high strength concretes (e-g) for each of the series
A, B and C as well as for all normal strength DCB specimens (d) and for all high strength
DCB specimens (h).

Figure 5: Type II size effect fits on the nominal strength of the virtual specimens analyzed
by the Model M7 for both the normal strength (a-c) and the high strength concretes (e-g)
for each of the series A, B and C as well as for all normal strength DCB specimens (d)
and for all high strength DCB specimens (h).

Figure 6: Fracture patterns of DCB specimens for the normal strength concrete specimen
sizes of a) d = 62.5mm, b) d = 125mm, c) d = 250mm, d) d = 500mm, e) d = 1000mm
obtained using the Microplane Model M7. On the right column cf is drawn relative to the
specimen size on each specimen.

Figure 7: Fracture patterns of DCB specimens for the high strength concrete specimen
sizes of a) d = 62.5mm, b) d = 125mm, c) d = 250mm, d) d = 500mm, e) d = 1000mm
obtained using the Microplane Model M7. On the right column cf is drawn relative to the
specimen size on each specimen.
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8. Tables

DCB

designation

Compressive

strength

(MPa)

Coefficient

of vari-

ation

on com-

pressive

strength

f ′t = 0.8fct

from ACI

formula

(MPa)

f ′t = 0.8fct

from

CEB-FIB

formula

(MPa)

PA, PB,

PC

32.78 5.9% 2.57 2.40

HSA,

HSB, HSC

50.69 8.6% 3.19 3.20

Table 1: The compressive strengths obtained from uniaxial compression tests of standard

cylinders and direct tension tensile strengths obtained as 80% of the splitting tensile

strengths given by ACI and CEB-FIB formulas.
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DCB specimen Failure load in kN DCB specimen Failure load in kN
PA1 8.612 HSA1 9.091
PA2 8.708 HSA2 11.005
PA3 8.134 HSA3 13.493
PA4 4.211 HSA4 7.656
PA5 5.455 HSA5 7.273
PA6 5.933 HSA6 6.699
PA7 2.775 HSA7 5.550
PA8 3.445 HSA8 2.967
PA9 2.297 HSA9 4.211
PB1 18.373 HSB1 16.364
PB2 20.479 HSB2 14.928
PB3 10.048 HSB3 18.373
PB4 8.900 HSB4 8.612
PB5 6.124 HSB5 9.378
PB6 11.675 HSB6 12.919
PB7 4.019 HSB7 5.646
PB8 7.368 HSB8 5.933
PB9 3.732 HSB9 5.359
PC1 23.828 HSC1 22.871
PC2 18.852 HSC2 22.704
PC3 20.574 HSC3 23.349
PC4 11.483 HSC4 12.919
PC5 10.335 HSC5 13.493
PC6 8.900 HSC6 18.565
PC7 6.603 HSC7 7.847
PC8 6.794 HSC8 6.890
PC9 5.742 HSC9 5.646

Table 2: The failure loads of all DCB specimens tested in series A, B and C. The prefix
“P” means normal strength concrete and “HS” means high strength concrete.
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Test series Bf ′t
(MPa)

d0 (mm) cf (mm) Gf

(N/mm)
B

PA 1.466 214.582 25.703 0.052 0.611
PB 1.399 451.081 53.934 0.094 0.583
PC 1.098 723.572 86.836 0.091 0.458
All P-
series

1.452 255.523 30.608 0.058 0.605

HSA 2.528 90.950 10.894 0.052 0.790
HSB 1.717 228.900 27.369 0.058 0.537
HSC 1.162 878.118 105.384 0.099 0.363
All HS-
series

2.144 114.064 13.663 0.045 0.670

Table 3: The results of fitting σNu = Bf ′t/
√

1 + d/d0 to the experimentally obtained
nominal strength of DCB specimens from series A, B and C for normal and high strength
concretes

Test series Bf ′t
(MPa)

d0 (mm) cf (mm) Gf

(N/mm)
B

PA 1.807 114.074 13.664 0.042 0.753
PB 1.716 133.192 15.925 0.042 0.715
PC 1.703 127.516 15.303 0.038 0.709
All P-
series

1.717 132.490 15.870 0.042 0.715

HSA 2.175 119.681 14.336 0.051 0.680
HSB 2.128 120.847 14.449 0.047 0.665
HSC 2.172 103.336 12.401 0.041 0.679
All HS-
series

2.179 113.671 13.616 0.047 0.681

Table 4: The results of fitting σNu = Bf ′t/
√

1 + d/d0 to the nominal strength of the
virtual DCB specimens predicted by the Model M7 of series A, B and C for normal and
high strength concretes.
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