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Abstract—A Boolean relation can specify some types of flexibility of a combinational circuit that cannot be expressed with don’t cares.

Several problems in logic synthesis, such as Boolean decomposition or multilevel minimization, can be modeled with Boolean

relations. However, solving Boolean relations is a computationally expensive task. This paper presents a novel recursive algorithm for

solving Boolean relations. The algorithm has several features: efficiency, wide exploration of solutions, and customizable cost function.

The experimental results show the applicability of the method in logic minimization problems and tangible improvements with regard to

previous heuristic approaches.
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1 INTRODUCTION

FLEXIBILITY in logic synthesis can be expressed using
different abstract methods like don’t care conditions

(DCs), Boolean Relations (BRs), Multiple BRs (MBRs) [30],
and sets of pairs of functions to be distinguished (SPFDs)
[23], [29].

Don’t cares form the basis for the minimization of

incompletely specified functions (ISFs) and multilevel net-

works. BRs allow capturing more flexibility than ISFs.

However, while the minimization of ISFs is a unate covering

problem, solving BRs is a binate covering problem (BCP)

and hence is significantly more difficult [23].
Fig. 1a illustrates an example of a BR with two input

and two output variables. It is a subset of IB2 � IB2, where

IB ¼ f0; 1g. The input vertex 10 is related to two different

output vertices {00, 11}, and 11 is related to another pair

{10, 11}. The flexibility for 10 and 11 is different. The latter

can be captured by introducing a don’t care into the range

of output variables ðf10; 11g � f1�gÞ.1 The former, {00, 11},

cannot be expressed with don’t cares.
To solve a BR, one needs to find a compatible multiple-

output function with minimum cost. Figs. 1b and 1c depict

two functions that are compatible with the original BR.
Many problems in logic design can be reduced to BRs:

Boolean matching techniques for library binding [4], FSM

encoding [21], Boolean decomposition [17], etc. For exam-

ple, given a cut in the network, the flexibility of the nodes at

the cut can be specified with a BR. E.g., if the cut contains

two nodes y1, y2 that reconverge to an AND gate and for a

given primary vector, the output of the AND gate must be

0, then the flexibility at y1, y2 is {00, 01, 10}.
This paper presents a novel recursive algorithm for

solving BRs. The algorithm has an efficient strategy in

exploring the large space of solutions and can be used in

exact mode (for small relations) and in heuristic approximate

mode for larger relations. The cost function can be tuned for

different parameters relating to the area or delay in

computing a BR. Moreover, the algorithm can further be

adjusted to solve Boolean equations. The experimental

results show tangible improvements with regard to previous

heuristic approaches. As an application of the solver, this

paper describes the use of BRs for the problem of the

multiway decomposition of Boolean functions in logic

circuits. The experiments show that significant delay and

area improvements can be achieved by using our solver in

logic circuit implementation.
The rest of the paper is organized as follows: Section 2

gives an overview of the recursive paradigm presented in

this paper. Section 3 introduces the previous work in the

solvers of BRs. Sections 4 and 5 present the basic definitions

on the BR domain and the basis of recursive algorithm,

respectively. Details of the solver are explained in Section 6.

The major heuristics used to implement the recursive

algorithm are presented in Section 7. Section 8 introduces

how to solve a system of Boolean equations with a BR.

Finally, Section 9 reports experimental results, and Section 10

introduces an application where BRs can be applied.

2 OVERVIEW

In this section, we will introduce the basis of the recursive

paradigm. The formal details will be presented in Section 5.

Consider the BR defined in Fig. 1a. For the sake of simplicity,

the BR will be represented with the same notation of sets of
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elements. The recursive paradigm illustrated in Fig. 2 is
based on the following steps:

a. Overapproximate the BR into a multiple-output ISF

(MISF).2 The input vertices such that their output

vertices cannot be captured with conventional don’t

cares are expanded to cover more vertices of the

output set. In the BR presented in Fig. 1a, the output

{00, 11} of the input vertex {10} cannot be covered

with don’t cares. Therefore, it is expanded to f��g.
b. Use a standard MISF minimization method to obtain

a multiple-output function covered by the MISF.
c. If the resulting function has no conflicts with the

original relation, then report the result. Otherwise,
select one element of the input set where there is an
incompatibility with the original BR. In the example,
the incompatibility appears in the input vertex {10},
since in the resulting function it maps to the output
vertex {10} that was not in the original range ({00, 11})
for this input vertex.

d. Decompose the original BR into two smaller rela-
tions by creating a partition in the range of the
output vertices of the selected incompatible input
vertex.

e. Recursively solve the smaller BRs and select the best
compatible solution out of the explored solutions.

Our solver reduces the BCP of solving a BR to a sequence
of Boolean minimization problems applied to ISFs (MISFs),
each of which is a simpler unate covering problem [12].
There are known techniques that compute the minimal

solution for an MISF [1], [15], [26]. Each MISF is an
overapproximation of the original BR, and therefore, its
solution (a minimized form) may contain conflicts with the

original BR, in which case the algorithm continues with a
successive refinement of the BR into two simpler BRs that
contain fewer output nodes that cannot be captured with

don’t care flexibility. The objective of this recursive para-
digm is in decreasing the number of conflicts during each
step. The algorithm may use different completion criteria
trading off the quality of the solution and the runtime. For

example, the algorithm can stop after one of the minimiza-
tion problems for the derived MISF returns a function
compatible with the BR. In this case, it is guaranteed that the

correct solution of the BR is found, but there is no guarantee
that it is optimal. To be exact, the algorithm can explore
complete branch and bound until no better solution can be
found. Multiple heuristic completion criteria may be used in

between these two extremes.

3 PREVIOUS WORK

Several exact and heuristic approaches have been pro-
posed to solve BRs. The exact methods reported in [6] and
[7] tackle the problem of solving a BR similarly to the
Quine-McCluskey procedure [22]. The definitions of prime
and prime implicant in Boolean functions are generalized
to candidate prime (c-prime) and c-prime implicant in
BRs. Analogous to the Quine-McCluskey procedure, first,
all c-primes are generated, and then, the minimization is
formulated as a BCP. The covering problem is solved by
Integer Linear Programming [28], where the objective is to
find the optimum sum-of-product representation of the
BR. Other exact methods were presented in [20] and [21]
using a Branch-and-Bound algorithm based on the BCP
formulation. The major contribution of these approaches
was the representation of the constraints of the BCP with
Binary Decision Diagrams (BDDs) [5]. This compact
representation helped to solve larger relations consuming
less memory. However, the exact methods are limited to
solve small and medium instances due to the complexity.

Heuristic methods provide approximated solutions with
a trade-off between the quality of the solutions and the
computational complexity. Herb [18] was the first heuristic
method for BRs based on two-level minimization and test
pattern generation techniques. The ESPRESSO [8] approach
was taken as a reference in the sense that the loop reduce-
expand-irredundant is repeatedly applied as long as the cost
of the solution decreases. The drawback of this procedure is
that the test pattern generation methodology limits the
expand operation to one variable at a time. This reduction
restricts the search space and increases the overall runtime.
gyocro [33] was proposed as another heuristic approach also
based on ESPRESSO where some of Herb’s weaknesses
were amended. Basically, the difference appears in the
procedure expand, where multiple variables can be taken.
The objective cost function in gyocro is slightly different
compared with that of the previous approaches. The
minimum sum of products with the smallest number of
literals per product is searched.

Our experience demonstrates that the number of products
is not necessarily a good metric for estimating the quality of
the solutions. Sometimes, one needs other objectives, e.g., to
balance the functions for delay optimization or to balance the
support of the functions for reducing layout congestion. The
recursive approach presented in this paper accepts a
customizable cost function that allows guiding the search
toward a user-defined goal. We also observed that heuristic
methods like gyocro often cannot escape from local minima
determined by the initial solution, since the reduce-expand-
irredundant loop is not always capable of hill climbing. An
example of this limitation is presented in Section 9.1.

4 PRELIMINARIES

Definition 4.1. Boolean function. A Boolean function f is a
function f : IBn ! IB, where IB ¼ f0; 1g. A Boolean function
can also be interpreted as the set of vertices x 2 IBn such that
fðxÞ ¼ 1.

Definition 4.2. Literals, minterms, cubes, and covers. A
literal is a variable or its complement. The conjunction
(or product) of a set of literals is called a cube. A cube is called
a minterm when the number of literals of the cube corresponds
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to the number of variables of the function. A function can be
represented by a cover that is defined as a disjunction (or sum)
of cubes.

Definition 4.3. Multiple-output Boolean function. A multi-
ple-output Boolean function f is a function f : IBn ! IBm. It
can be also specified as a vector of Boolean functions
f ¼ ðf1; f2; . . . ; fmÞ.

Hereafter, we will useX¼ðx1; . . . ; xnÞ andY ¼ðy1; . . . ; ymÞ
to denote the set of inputs and outputs of a multiple-output

Boolean function, respectively.

Definition 4.4. Incompletely specified Boolean function.

An incompletely specified Boolean function (ISF) is a function
f : IBn ! IB [ f�g, where � is called the don’t care value of

the function. An ISF can be specified by three Boolean functions,
OFFðfÞ, ONðfÞ, and DCðfÞ, that characterize the vertices in
IBn with images 0, 1, and �, respectively.

An ISF defines an interval of Boolean functions between

ONðfÞ and ONðfÞ [DCðfÞ. An implementation of an ISF f

is a Boolean function f̂ such that

ONðfÞ � f̂ � ONðfÞ [DCðfÞ:

Definition 4.5. MISF. An MISF is a function f : IBn !
ðIB [ f�gÞm. It can be also specified as a vector of ISFs
f ¼ ðf1; f2; . . . ; fmÞ.

An MISF also defines an interval of multiple-output

functions. The objective of a two-level minimizer is to find a

function with the minimum (or minimal) sum-of-product

representation that covers the MISF. Efficient methods for

computing minimal sum-of-product representations are

well known [1], [15], [26].

Definition 4.6. BR. A BR R is a subset of IBn � IBm, where IBn

and IBm are called the input and output sets of R, respectively.
A BR is left-total if for all x 2 IBn, there is y 2 IBm such that

ðx; yÞ 2 R. We will also refer to the left-total BRs as well
defined, following the nomenclature in [33]. A BR is

functional if every input vertex is associated with a single

output vertex.

Reusing the notation for the multiple-output functions,
X ¼ ðx1; . . . ; xnÞ and Y ¼ ðy1; . . . ; ymÞ denote the set of
inputs and outputs of a relation. Hereafter, we will
indistinctively use the terms BR and relation.

Definition 4.7. Natural join [11]. The natural join over the

input set X between two relations R and S is defined as

RðX;Y Þ fflX SðX;ZÞ ¼ ðx; y; zÞ j ðx; yÞ 2 R ^ ðx; zÞ 2 Sf g:

Note that when the relations R and S have the same input and

output set and the natural join is applied over all the variables,

the natural join is equivalent to the intersection operator.

The next two definitions describe how functions ISFs

and MISFs can be represented with the notation of BRs.

Definition 4.8. Relationship between an incomplete

function and a BR. The don’t care value f�g assigned to

the output of a minterm of an ISF denotes all the permissible

values that the minterm can take from IB. Therefore, an ISF fy
can be also interpreted as a BR Fy � IBn � IB such that

. ðx; 0Þ 2 Fy iff fyðxÞ 2 f0;�g and

. ðx; 1Þ 2 Fy iff fyðxÞ 2 f1;�g,
so that fyðxÞ ¼ f�g implies that both ðx; 0Þ and ðx; 1Þ belong

to the relation. This definition implies a mutual relationship

between left-total BRs Fy � IBn � IB and ISFs.

An MISF f can be also defined as a BR R � IBn � IBm

such that

RðX; y1; y2; . . . ; ymÞ ¼ fflX
i2f1;...;mg

FyiðX; yiÞ:

Example 4.1. Consider the next two ISF functions in tabular

representation:
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Fig. 2. Steps of the recursive paradigm implemented in BREL. (a) Overapproximate the BR to an MISF. (b) MISF minimization. (c) Selection of one

input vertex where there is a conflict. (d) Decomposition in two new BRs. (e) Recursively solve the subrelations.



They can be represented as BRs from Definition 4.8
where the don’t care f�g takes all the permissible values
from IB. Similarly, the defined MISF from the conjunc-
tion of these ISFs can be also described as a BR from
Definition 4.8. The resulting BRs of the ISFs and the
MISF are given as follows:

Definition 4.9. Compatible functions. Given a BR R, the set

of multiple-output functions compatible with R is defined as

IFðRÞ ¼ fF j F � R ^ F is a multiple-output functiong:

Note that IFðRÞ ¼ ; if R is not well defined.

We next define a solution and an optimal solution to a BR.

Definition 4.10. Solving a BR. Given a well-defined BR R,

solving the BR R is finding a multiple-output function

F 2 IFðRÞ. We also say that F is a solution of a BR R. If in

addition a cost function cðF Þ is provided, we say that solution

F is an optimal solution of a BR R if

8F 0 2 IFðRÞ : cðF Þ � cðF 0Þ:

In practical applications, it is often too costly or impossible
to find an optimal solution for a given BR, and a solution

of a “reasonably good cost” is searched for. The solver is

said to be exact if it guarantees to find an optimal solution;
otherwise, the solver is heuristic. The advantage of the

algorithm described in this paper is that it can be used in

both exact and heuristics modes, depending on the selected
completion function.

Example 4.2. This example below shows a tabular repre-
sentation of the BR that corresponds to Fig. 1a:

The two Boolean functions below illustrate examples
of a compatible and an incompatible function for the
previously defined BR:

We will next discuss the basic principles of solving BRs
(Section 5), the details of the BR solver (Section 6), and the

lower level implementation aspects (Section 7).

5 BASICS OF SOLVING A BOOLEAN RELATION

5.1 Semilattice of Well-Defined Boolean Relations

In this section, the boundaries of the search space are

defined. As we will show, the search space of the well-

defined BRs is a semilattice. To demonstrate the existence of

the semilattice, first, let us prove that there is a lattice over

the set of BRs in IBn � IBm.

Property 5.1. Lattice of BRs. ðR;�Þ is a lattice with the top

element IBn � IBm and the bottom element ;. The join and

meet operations are the intersection and the union of relations,

respectively.

The proof of this property follows directly from the

properties of the union and the intersection on sets of finite

Boolean vectors.

Lemma 5.1. If R is a functional BR and R0 � R, then R0 is not

well defined.

Proof. By definition, there is only one output vertex for each

input vertex in a functional BR. A relation R0 such that

R0 � R has at least one input vertex without image on

IBm. Thus, R0 is not well defined. tu

Finally, the definition of the semilattice is straightfor-

ward from the previous lemmas.

Theorem 5.1. Semilattice of well-defined BRs. The set of

well-defined BRs with the partial order � is a semilattice with

one greatest element IBn � IBm and 2m2n least elements that

correspond to the elements of IFðIBn � IBmÞ.
Proof. Two statements have to be proved: the existence of

the semilattice and the upper and lower bounds of this

semilattice. First, the semilattice of well-defined BRs can

be easily derived from Property 5.1. A lattice implicitly

defines two semilattices, one for each operator (union and

intersection). Therefore, the semilattice over the operator

union exists and, therefore, over the partial order � .

Second, let us demonstrate the greatest and the least

elements:

. The supremum element is IBn � IBm. It is clearly
well defined. There is no other relation that
subsumes it.

. The least lower bound elements are all the
compatible multiple-output functions with
n inputs and m outputs from the set IFðIBn � IBmÞ
defined by Definition 4.9. Lemma 5.1 defines that
there is no relation R0 such that R0 � IFðIBn � IBmÞ
and R0 is well defined. The number of elements in
IFðIBn � IBmÞ is equal to 2m2n , that is, the product of
m single output functions from a set of 22n possible
Boolean functions. tu

5.2 Projection of a Boolean Relation to a
Multiple-Output ISF

This section introduces a method to obtain an MISF from a

BR. This approximation is useful to derive a fast solution

for a BR.
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Definition 5.1. Projection of a BR. The projection of a

relation RðX;Y Þ onto the output yi is another relation

ðR # yiÞ such that

ðR # yiÞ ¼
�
ðX; zÞ j 9y1; . . . ; yi�1; yiþ1; . . . ; ym

such that ðX; y1; . . . ; yi�1; z; yiþ1; . . . ; ymÞ 2 R
�
:

The projection of a well-defined relation R onto one
output yi implicitly defines an ISF for that output. Note that
the projection can be extended to multiple outputs.

Example 5.1. From the relation presented in Example 4.2,

the following projections can be derived:

Definition 5.2 MISF covering a BR. Given a BR R, an MISF

covering R can be obtained as follows:

MISFRðX;Y Þ ¼ fflX
i2f1;...;mg

ðR # yiÞ:

The relation MISFRðX;Y Þ is a vector of ISFs, and hence, it is

an MISF.

Example 5.2. From the projections of the relation presented

in Example 4.2, the tabular representation of the original

relation and the MISFR is shown next:

In this example, we can observe that the image of the
input vertex 10 in MISFR covers the output vertices {01, 10}
that are not included in Rð10Þ. This is because MISFR

effectively expands the output set {00, 11} to the smallest
covering cube f��g ¼ f00; 01; 10; 11g.

Property 5.2. The following property holds between a well-

defined BR R and MISFR:

RðX;Y Þ � MISFRðX;Y Þ:

Proof. Let us assume that only two output variables are

involved:

R ¼ ðR # y1y2Þ � ðR # y1Þ fflx ðR # y2Þ:

This assumption can be proved as follows:

8ðx; y1; y2Þ 2 R ¼)ðx; y1Þ 2 ðR # y1Þ ^ ðx; y2Þ 2 ðR # y2Þ
¼)ðx; y1; y2Þ 2 ðR # y1Þ fflx ðR # y2Þ:

The previous statement can be generalized to multiple

outputs:

ðR # yi . . . yjÞ � ðR # yiÞ fflx ðR # yiþ1 . . . yjÞ:

Finally, the property RðX; Y Þ � MISFRðX;Y Þ can be

proved based on the previous statement and the next

formula:

R �ðR # y1Þ fflx ðR # y2 . . . ymÞ �
� ðR # y1Þ fflx ðR # y2Þ fflx ðR # y3 . . . ymÞ � . . . �
�ðR # y1Þ fflx . . . fflx ðR # ym�2Þ fflx ðR # ym�1ymÞ �
�MISFR:

tu

The next property is important for the presented

method, since the MISFR obtained by projection to the

outputs is the smallest MISF that still covers all the

compatible functions of R.

Property 5.3. Given a BR R and the MISFR obtained from the

projection onto the outputs, there is no other MISF f 0 such

that R � f 0 � MISFR.

Proof. The proof is by contradiction. Let us assume that f 0

exists. This statement implies that R � f 0 � MISFR.

Taking into account that an MISF is a vector of ISFs

fflX
i2f1;...;mg

ðf 0 # yiÞ � fflX
i2f1;...;mg

ðMISFR # yiÞ:

The previous statement implies that there is an

output yi 2 fy1; . . . ; ymg that generates an ISF such

that ðR # yiÞ � ðf 0 # yiÞ � ðMISFR # yiÞ. However, this

ISF does not exist since 8yi 2 Y , ðR # yiÞ¼ðMISFR #yiÞ
by Definition 5.2, and hence, ðf 0 # yiÞ � ðR # yiÞ. tu

5.3 Solution of a Multiple-Output ISF

This section describes the method to obtain a fast solution

from the BR MISFR that covers the relation R. Note that we

cannot guarantee the compatibility of the solution with R.
The MISF generated from the projection onto the single

outputs is solved by performing an individual minimiza-

tion of the outputs with an ISF minimizer [3], [16], [27].

Example 5.3. A possible solution for the ISFs ðR # y1Þ and

ðR # y2Þ in Example 4.2 is the following:

The multiple-output function for the MISFR is
shown next:

As shown in Figs. 3a and 3b, a BR R can be projected to

MISFR, where an MISF minimizer can be used. If the BR R

is an MISF, then R ¼ MISFR, and the solution is always

compatible with the relation. However, the compatibility of
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the solution is not guaranteed when the BR R is not an MISF
since R � MISFR.

Definition 5.3. Compatibility of a function with a BR.
Given a multiple-output function F and a relation
R � IBn � IBm, F is compatible with R if F � R. In
general, we define the set of pairs of inputs and output
vertices of F incompatible with R as

IncompðF;RÞ ¼ F nR:

Example 5.4. The multiple-output function presented in
Example 5.3 is an incompatible solution of the
relation in Example 4.2. The incompatible pair is
IncompðF;RÞ ¼ fð10; 10Þg.

5.4 Divide and Conquer

Let us next discuss the basis of the divide-and-conquer
approach presented in this paper for dealing with
relations in which the solution of the projected MISFR is
incompatible with the original relation.

Definition 5.4. Splitting of a BR. Let R � IBn � IBm be a
well-defined relation, x 2 IBn, and yi be one of the outputs of
the relation. The following two relations can be defined:

RxyiðX;Y Þ ¼R� ðx; y1; . . . ; yi�1; 0; yiþ1; . . . ; ymÞf g;
RxyiðX;Y Þ ¼R� ðx; y1; . . . ; yi�1; 1; yiþ1; . . . ; ymÞf g:

We denote the previous operation by

Rxyi ; Rxyi

� �
¼ SplitðR; x; yiÞ:

The Split operation is graphically illustrated in Fig. 3c.
Intuitively, given an input vertex x of the input set and one
output yi, the relation can be split into two relations such
that one of them takes the value yi ¼ 0 and the other takes

the value yi ¼ 1 for the vertex x. The two relations induce a
partition over the functions compatible withR. The relations
Rxyi and Rxyi still cover all the compatible solutions of R and
no other functions.

Example 5.5. Let us take the input vertex {10} and the output
y1 from the relation in Example 4.2. Note that the selected
input vertex {10} is included in IncompðF;RÞ. The
objective of this selection is to remove this incompatibility
in Rxy1

and Rxy1
. Then, Rxy1

and Rxy1
are defined by the

following tables:

Rxy1
and Rxy1

are smaller relations. We can now
recursively solve each one of them and choose the best
solutions. After minimizing each one, the following
multiple-output functions are obtained:

These functions are compatible with Rxy1
and Rxy1

,
respectively, and, therefore, compatible with R.

Property 5.4. Given R, Rxyi , and Rxyi as defined above, the sets
of compatible functions IFðRxyiÞ and IFðRxyiÞ are a partition
of IFðRÞ.

Proof. A partition has the following properties:

IFðRÞ ¼ IF Rxyi

� �
[ IF Rxyi

� �
; IF Rxyi

� �
\ IF Rxyi

� �
¼ ;:
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Let us prove each one independently:

. IFðRÞ ¼ IFðRxyiÞ [ IFðRxyiÞ. By the definition of
the Split operation, R ¼ Rxyi [Rxyi . Therefore

IFðRÞ ¼ fF j F � Rgð Þ ^ R ¼ Rxyi [Rxyi

� �
¼)

IFðRÞ ¼ F j F � Rxyi [Rxyi

� �
¼)

IFðRÞ ¼ F j F � Rxyi

� �
[ F j F � Rxyi

� �
¼ IF Rxyi

� �
[ IF Rxyi

� �
:

. IFðRxyiÞ \ IFðRxyiÞ ¼ ;. The BRs Rxyi and Rxyi

differ on the output vertices of the input vertex
x such that RxyiðxÞ \RxyiðxÞ ¼ ;. Therefore, there
is no Boolean function F such that F � Rxyi and
F � Rxyi . tu

The next theorem defines the conditions for Rxyi and Rxyi

to be well defined and strictly smaller than R.

Theorem 5.2. Consider an input vertex x and an output yi of the

relation R. Rxyi and Rxyi obtained from SplitðR; x; yiÞ are both

well defined and strict subsets of R (i.e., Rxyi � R and

Rxyi � R) iff R is well defined and ðR # yiÞðxÞ ¼ f0; 1g.
Proof. When the Split operation is performed on an input

vertex x such that ðR # yiÞðxÞ ¼ f0; 1g, it can be easily

proven that Rxyi and Rxyi are well defined. By

Definition 5.4, 8x0 6¼ x;Rxyi andRxyi have the same output

vertices, and for the input vertex x, the output vertices are

split in such a way that ðx; y1;... ; yi�1; 1; yiþ1;... ; ymÞ 2 Rxyi

and ðx; y1;... ; yi�1; 0; yiþ1;... ; ymÞ 2 Rxyi . Therefore, both

Rxyi and Rxyi are still well defined, and moreover, both

are strict subsets of R since at least one of the output

vertices is dropped for both subrelations. Let us assume for

the contrary that ðR # yiÞðxÞ 6¼f0; 1g, e.g., ðR # yiÞðxÞ¼f0g.
Then, Rxyi ¼ R is well defined but not a strict subset of R,

while Rxyi is not left-total and, hence, not well defined. tu
Example 5.6. In Example 5.5, the input vertex {10} and the

output y1 are used in the Split operation. Note that if the

vertex to split were {11}, then Rxy1
would not be well

defined, since y1 cannot take the value 0 for this input

vertex.

6 DETAILS OF THE BOOLEAN RELATION SOLVER

This section describes first a naive BR solver and then the

recursive algorithm based on a branch-and-bound strategy.

Let us start with introducing the representation of BRs with

characteristic functions that is used in our implementation.

6.1 Characteristic Functions

A BR can be represented by its characteristic function.

Definition 6.1. Characteristic functions. A BR R can be
specified by a characteristic function3 R: IBn � IBm ! IB such
that ðx; yÞ 2 R iff Rðx; yÞ ¼ 1.

Characteristic functions are convenient for the automa-
tion of solving BRs since it enables reusability of algorithms
and tools developed for Boolean functions.

Definition 6.2. Cofactor and existential abstraction. The
cofactors fxi and fxi of a Boolean function fðx1; . . . ; xnÞ
are defined as fxi ¼ fðx1; . . . ; xi�1; 1; xiþ1; . . . ; xnÞ and
fxi ¼ fðx1; . . . ; xi�1; 0; xiþ1; . . . ; xnÞ. The existential ab-
straction 9xif is defined as 9xif ¼ fxi þ fxi . Cofactors
and existential abstraction can be extended to multiple
variables.

6.2 Quick Solver

The algorithm presented in Fig. 4 allows us to obtain a
solution of the BR quickly. It was used in gyocro [33] to
obtain the initial solution before applying the reduce-
expand-irredundant iterations. The quick solver minimizes
each output in order using the maximum flexibility provided
by the relation. As long as the outputs are calculated, the
constraints of the previous solutions are propagated to the
rest of the outputs. The core of the algorithm is the function
Minimize that performs the ISF minimization. Although this
algorithm is fast, it has two drawbacks:

. The solution depends on the order in which the
outputs are minimized.

. The first outputs tend to take advantage of the
flexibility of the relation, whereas the last outputs
inherit little flexibility. This leads to highly unba-
lanced and suboptimal solutions.

Example 6.1. Consider the example in Fig. 5. Initially,
the flexibility of the output x is used, and the ISF for
x is solved. Based on the solution Fx, the original BR
is constrained, and R0 is obtained such that
ðR0 # xÞ ¼ Fx. The ISF for the output y is extracted
from the relation R0 and is solved. The solution is
fða; b; x; yÞ ¼ ðx, 1Þðy, abþ abÞ. Note that the best
function with the smallest number of product terms,
fða; b; x; yÞ ¼ ðx, bÞðy, aÞ, is not found by the
quick solver.

The goal of this paper is to propose a method that
performs a better exploration of the space of solutions while
having an affordable computational complexity.
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Fig. 4. A naive algorithm to solve a BR.

Fig. 5. Example of solving a BR with QuickSolver.

3. We will refer the characteristic function of a relation with the
symbol R.



6.3 The Recursive Approach

The approach proposed in this paper is based on the Split
operation presented in Definition 5.4. The intuitive basis of
this approach can be informally described as follows:

The recursive algorithm is shown in more detail in Fig. 6,
where the cost of the best explored solution is used to prune
the search space.

BREL is initially called with a null BR with infinite cost.
Only the best solution is preserved in BestF. The algorithm
checks if R is a function (the terminal case) in lines 1-3. In
case R is not a function, the minimization of the MISFR is
performed in lines 4 and 5 with BDD-based optimization
methods (as further explained in Section 7.5). The solution,
even if it is incompatible, is rejected if its cost is greater
than the cost of the best previously obtained function (line
6). In case of an incompatible solution, constraining the
relation further for solving the conflicts cannot improve the
cost of a solution obtained for the problem with higher
flexibility. If the new cost is smaller than the previous one,

the compatibility of the solution is checked (line 7). If there
is no conflict, the best solution is stored in the variable
BestF (line 8). In case the solution is incompatible (lines 9
and 10), an input vertex and an output are selected from
the incompatible points to perform the Split operation
based on Theorem 5.2. The largest input cube within the
characteristic function of all input conflicting vertices and
an output such that ðR # yiÞðxÞ ¼ f0; 1g are selected to
apply the Split operation (further discussed in Section 7.4).
Finally, the recursive calls are done (lines 11 and 12) for
each of the smaller subrelations R1 and R2.

This algorithm uses two additional parameters:

. The cost function can be customized by the user
and is a parameter of the recursive algorithm.
Previous algorithms such as the exact or heuristic
solvers in [6] and [33] aim at minimizing the number
of cubes of the solutions.

. The algorithm can trade-off between the quality of
the solution and the runtime spent in the search. As
in any branch-and-bound algorithm, the search can
be stopped as soon as some resources (e.g., the CPU
time) have been exhausted.

Note that incompatibilities may occur in this algorithm

only at an input vertex x for which the output set cannot be

precisely captured with don’t cares. Consider the example

in Fig. 1. BREL can potentially find an incompatibility for

the input vertex 10, since its output set {00, 11} cannot be

captured with don’t cares, but it would not consider the

input vertex 11 as a potential incompatible vertex, since its

output set {10, 11} can be described as 1�.

Example 6.2. Fig. 7 depicts how the relation Rða; b; c; x; yÞ is

solved with BREL. In the first recursion, the same solution

b is found for both outputs x and y. The minimization after

the projection steps is represented using Karnaugh maps.

After the individual minimization, a multiple-output

function is composed from the individual solutions. Two

conflicts are found between this function and the original

BR on input vertices 010 and 101. In order to reduce the

conflicts, the vertex 010 and the output y are selected to

split the relation. The solver will find a compatible

solution for each of the new subrelations in the second

recursive iteration:

fða; b; c; x; yÞ ¼ ðx, acÞðy, bÞ for y ¼ 1;
ðx, bÞðy, aþ cÞ for y ¼ 0:

�

For this example, the conflict for the input vertex 101 is

also solved in the second recursive call. However, in

general, the number of required recursive calls to solve

different conflicting vertices may differ.

7 FURTHER IMPLEMENTATION DETAILS

The general branch-and-bound approach presented in Fig. 6

can be implemented in different ways. There are multiple

degrees of freedom in the implementation: selecting a data

structure for representing relations, a strategy to explore the

branch-and-bound tree, particular cost functions, algorithms

for ISF minimization, etc.
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Fig. 6. A recursive algorithm for solving BRs.



We will next present several implementation details of
our solver, BREL, that lead to an efficient trade-off between
the quality of the solutions and the computational complex-
ity of the search. Many of the implementation decisions
have been taken after experimenting with different strate-
gies and choosing the most effective ones.

7.1 Representation of Relations

BDDs [5] are used to represent and manipulate the
characteristic functions of the relations. All the transforma-
tions, the evaluation of cost functions, and the ISF mini-
mization are implemented using BDD operations.

Since all the relations generated by the solver come from
a single original relation, there is a lot of sharing in the
BDD data representation. The solver invokes many similar
low-level BDD operations that are cached and calculated
only once. This has an important impact on the perfor-
mance of the solver.

7.2 Exploration of Solutions

The branch-and-bound tree of solutions is explored using a
partial breadth-first search (BFS). This requires a slight
modification of the algorithm in Fig. 6. All the relations
generated by splitting are stored in a bounded FIFO
implemented as a list.

The size of the FIFO of solutions is a parameter of the
solver. Due to the bound on the number of unresolved
intermediate relations, not all of the potentially generated
relations are resolved into compatible functions and reach
the functional leaves of the semilattice of relations. There-
fore, the QuickSolver (Fig. 4) is used as the first step to
guarantee that at least one compatible function is found
during the exploration.

The BFS enables a larger diversity in the exploration of
solutions and prevents the solver from spending all the
resources in only one corner of the tree in searching for a
local optimum.

7.3 Cost Function

A cost function is another parameter of the solver. For
efficiency reasons, BDD-based cost functions are desirable
since they are easy to compute. Even though the size of BDDs
is not always the best estimation of complexity for a Boolean
function, typically, there is a correlation between both. In the
experiments, we have used different cost functions, depend-
ing on the minimization goal: the sum of BDD sizes when
targeting area minimization and the sum of the squares of
BDD sizes when targeting delay. The latter cost function
biases the exploration toward solutions in which the
complexity of the functions is balanced, and hence, the
delay is more evenly distributed along all paths. The former
tends to minimize the overall size regardless of the relative
complexity of the subfunctions.

The experimental results, demonstrating application of
the BREL to logic decomposition (presented in Section 10.2),
show that these cost functions lead to significant area and
delay optimization.

7.4 Split Strategy

When conflicts appear after the minimization of the MISFR,
an input vertex x and an output yi must be selected for
splitting (line 9 in Fig. 6). Intuitively, the solver selects the
largest input cube within the characteristic function of all
input conflicting vertices.

More precisely, given the characteristic function of the
conflicts, Incomp, the outputs are existentially abstracted
ðC ¼ 9Y IncompÞ. Next, the shortest path in the BDD
representing C is extracted. The shortest path represents
the largest set of adjacent conflicting input vertices.
Constraining the value of the relation in one of the vertices
of this set forces many other adjacent vertices to acquire the
same output value during the minimization.

The input vertex x is obtained from the incompatible
input cube by assigning the value 1 to the variables with
a don’t care value ðf�gÞ. The selection of the output yi
must fulfill Theorem 5.2. Therefore, an output such that
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Fig. 7. Example of solving a BR.



ðR # yiÞðxÞ ¼ f0; 1g is selected following the variable order
in the BDD manager.

7.5 Minimization of ISFs

We will next explain the details of the Minimize operation in
the solver. Each ISF of the MISFR is individually minimized
with BDD-based optimization methods. A BDD-based
approach contributes to speed up the solver. ISFs are
defined by a pair of functions that represent the interval of
flexibility [Min, Max] (or ½On;On [Dc	). There are different
methods to minimize the ISF implementation using the
flexibility within the specification interval. Versions of
generalized cofactors, such as constrain and restrict [13],
[14], have been often used to reduce the size of BDDs. A
BDD operation to find irredundant SOPs is also possible by
using Minato-Morreale’s algorithm [24], even though the
obtained solutions can be far from the optimum.

Another way to reduce the complexity is to reduce the
support by eliminating nonessential variables. A variable z
is called not essential if the interval ½9zMin; 8zMax	 is not
empty (cf. [9, pp. 107-112]).

Our solver first reduces the support of the ISF by greedily
eliminating nonessential variables from the top to the bottom
of the BDD representation. After that, an irredundant SOP is
calculated using Minato-Morreale’s algorithm. We found
this combined approach to be more efficient, in terms of the
performance and quality of the solutions, than other tested
techniques. Three techniques have been tested: a minimiza-
tion of irredundant SOPs (ISOP) based on Minato-Morreale’s
approach [24], a constrain-restrict minimization (Constrain)
[13], [14], and a BDD safe minimization (LICompact) [19].
Table 1 shows the normalized comparison of these ISF
minimization approaches with regard to the selected ISOP
minimization with the elimination of nonessential variables.
The table reports the increment of the number of literals in
SOP representation of the final solution (LIT) and the
required CPU time (CPU) for the benchmarks used in the
experimental results on Boolean Relations. The elimination
of the nonessential variables contributes to significantly
reduce the runtime and improves the quality of the solutions
of the ISF minimization. The table also demonstrates that the
irredundant SOP minimization, on the average, provides
slightly better solutions than other methods as measured by
the literal count in the SOP form.

7.6 The Heuristic Approach

As previously discussed, the algorithm presented in this
paper can be used in both exact and heuristic modes,
depending on the complexity of the problem: reasonably
small BRs can be solved exactly, while for large BRs, a
heuristic mode can be run, pruning the solution tree more
aggressively and stopping at runtime limits.

The presented method is exact under the two following
conditions:

. The ISF minimizer used by the solver is exact.

. The exploration in the semilattice of BRs is
complete, i.e., not constrained by the heuristic
pruning strategies.

As in any branch-and-bound approach, heuristic ap-
proaches can be used to trade-off the computational cost at
the expense of sacrificing optimality. For example, it is
possible to stop the search after a runtime time-out or after
exploring only several subrelations and selecting the best
compatible function out of those found so far. It is crucial in
this process to apply the technique explained in Section 7.2
in order to guarantee that the exploration cannot stop before
obtaining at least one solution. Running the QuickSolver
guarantees that one solution is obtained for every subrela-
tion (including the original BR). The BFS order diversifies
the solutions obtained by the QuickSolver. The heuristic
mode of our solver has been used for the experimental
results reported in this paper.

7.7 Symmetries in Boolean Relations

Symmetries in Boolean functions are often used for
speeding up equivalence checking between two functions
by analyzing when functions (or their subfunctions) are
structurally equivalent after the permutation of some
variables. Symmetries can be also exploited in the char-
acteristic functions of BRs.

Fig. 8b depicts the first and second recursions of BREL
solving a two-input and two-output BR shown in Fig. 8a.
Initially, BREL finds the solution ðx, 1Þðy, 1Þ with three
incompatible vertices fab; ab; abg. Let us assume that the
input vertex ab and the output x are selected to perform the
split. In the second iteration of the recursion, depending on
the value of the output x for the input vertex ab, the
solutions are computed as follows:

fða; b; x; yÞ ¼ ðx, aÞðy, 1Þ; for x ¼ 1;
ðx, 1Þðy, aÞ; for x ¼ 0:

�

Note that these solutions are fully symmetric with
respect to the permutation of variables x and y. The two
symmetric relations lead to solutions with equal cost, as
calculated by a BDD-based cost function. Therefore, the
exploration for a relation can be stopped if a symmetric
relation has already been processed by the solver.

BREL has a cache of processed relations. Symmetries can
be checked for every new relation from the Split process to
identify if a symmetric relation is stored in the cache. If it is
found, the exploration for this branch is stopped.

There are efficient methods for identifying the first-order
[34], [35] and the second-order symmetries [10] in Boolean
functions that can be applied to BRs as well. However, the
analysis of BR symmetries has a high complexity, especially
for large BRs. Therefore, the application of symmetry
detection has to be limited in order to reduce the runtime
impact. For BREL, we have made a few implementation
decisions regarding the use of symmetries:

. Symmetries are only supported for output variables.
This implementation decision was based on experi-
ments in the application domains (like logic decom-
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position) where BREL is currently used. In this
domain, output variable symmetries appear very
often: e.g., if the large stage of logic is a symmetric gate
(such as AND, OR, NAND, NOR, etc.), the permuta-
tion of two functions that feed this gate leads to a
symmetric implementation of the same function.

. The solver supports all types of the first-order
symmetries and the nonskew nonequivalence sec-
ond-order symmetries [10].

. Symmetries are only explored during the initial
recursions on the exploration tree for subrelations
that are close to the original relation. Here, significant
cuts on the exploration branches can be expected.
Later, the symmetry check is turned off to avoid
spending significant CPU time in the search for
symmetries in the smaller relations.

An experiment has been done to identify the impact of
the symmetry detection on the quality of results and
runtime in the logic decomposition problem (the experi-
ments on logic decomposition will be described in detail in
Section 10.2). When the symmetry check is turned on, the
results are, on the average, improved by 1.6 percent in delay
and 1.2 percent in area after technology mapping at the cost
of a runtime increase of 10.6 percent. The literal count in the
SOP representation also decreases (on the average, by
1.30 percent). However, the improvement on some parti-
cular examples is significant. In the small netlist, s208, there
is an improvement of 16 percent on delay and 11 percent on
area with similar runtimes. In a larger netlist, s641, the
delay is improved by 13 percent and the area is reduced by
17 percent. Nevertheless, the cost of the symmetry check
increases the runtime by 15 percent.

The reason for the improvement of the quality of results
is given as follows: For large BRs, BREL runs in a nonexact
mode, since only a subset of solutions can be explored
within the limited time and memory resources. Without
symmetry detection, the solver can explore more subrela-
tions within the given runtime. However, many of these
subrelations are symmetric and, hence, useless. With
symmetry detection, the solver spends slightly less time in

solving relations (due to the penalty of symmetry detection)

but actually solves more relations from different equiva-

lence classes and hence explores more different solutions.

8 SOLVING BOOLEAN EQUATIONS

Many problems in Boolean algebra with a finite number of

elements can be reduced to solving a system of Boolean

equations (cf. [9, pp. 153-154]). In this section, we illustrate

how to solve a system of Boolean equations by solving the

corresponding BR. We use characteristic functions to

represent BRs. The overall strategy for solving a system of

Boolean equations is given as follows:

Definition 8.1. Boolean equation. A Boolean equation is

defined as

P ðX; YÞ 
QðX; YÞ;

where P and Q are multiple-output Boolean functions of

independent variables X and dependent variables Y , and 
 is

the equivalence (¼ ) or the inclusion-relation operator ð�Þ.
Definition 8.2. A particular solution (or, simply, a solution) of

a Boolean equation is a multiple-output function Y ðXÞ such

that P ðX; YðXÞÞ 
QðX; YðXÞÞ is a tautology. A Boolean

equation is consistent if it has at least one solution. A

general solution of a Boolean equation is a representation of

the set of all its particular solutions [9]. A parametric general

solution can be formed from any particular solution using the

Löwenheim formula [9].

Here, we will focus of finding particular solutions for the

system of Boolean equations.

Definition 8.3. Boolean system. A Boolean system is a set of

Boolean equations:

P1ðX; YÞ 
 Q1ðX; YÞ
..
.

PkðX; YÞ 
 QkðY; YÞ:

Property 8.1. A Boolean equation P ðX; YÞ 
QðX; YÞ can be

transformed to the form T ðX; YÞ ¼ 1 using the following

equivalence properties [9]:

P ¼ Q,P �Q ¼ 1;

P � Q,P þQ ¼ 1:
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Fig. 8. Example of a symmetry in BRs.



Example 8.1. The following system of Boolean equations
with a set of independent variables fa; bg and a set of
dependent variables fx; y; zg

xþ by zþ bz ¼ a;
xyþ xzþ yz ¼ 0;

can be transformed using the previous equivalence
properties to

abzþ axþ aby zþ abx zþ abxyþ abxz ¼ 1;

x yþ x zþ y z ¼ 1:

Note that the characteristic function of a Boolean
equation matches with the definition of the characteristic
function of a BR. Fig. 9a depicts the two Boolean equations
of the system as sets of vertices of BRs with fa; bg as input
variables and fx; y; zg as output variables of the BRs.

Theorem 8.1. Reduction. A Boolean system

T1ðX; YÞ ¼ 1

..

.

TkðX; YÞ ¼ 1

can be reduced to a single equation IEðX; YÞ ¼ 1, where IE is
the characteristic function

IEðX; YÞ ¼
k̂

i¼1

TiðX; YÞ:

The characteristic function IEðX; YÞ only contains the
feasible solutions of the system. Note that IEðX; YÞ can be
also represented as a BR.

Example 8.2. The Boolean system in Example 8.1 is reduced
to the following single equation:

aby zþ ab x yzþ axy zþ abxyzþ a b x y zþ a b x z ¼ 1:

Fig. 9b shows the single BR associated with the
characteristic function used in the above equation. It is
easy to see from the figure that this BR only covers the
solutions that are feasible in both BRs represented in
Fig. 9a.

Property 8.2. Consistency of a Boolean system. A Boolean
system is consistent if for all x 2 X, there exists a y 2 Y such
that ðx; yÞ 2 IEðX; YÞ.

As shown in [9],4 Boolean equation IEðXÞ ¼ 1 is consis-
tent iff the existential quantification of all variables (also
called smoothing of all variables) gives constant 1:

9XIEðXÞ ¼ 1:

Given a Boolean system, we convert it to a single Boolean
equation and then check its consistency using quantifica-
tion. If the system is inconsistent, then it has no solutions,
and therefore, there is no corresponding well-formed BR.
If the system is consistent, an equivalent well-defined BR
exists, and an optimized particular solution is obtained by
solving the corresponding BR using the BREL solver.

Example 8.3. The set of functions x ¼ ab, y ¼ ab, and
z ¼ abþ ab forms a particular solution of the Boolean
system in Example 8.1. This can be checked by substitu-
tion into the equation in Example 8.2 and checking that
the equations simplifies to a tautology 1 ¼ 1. Hence, this
system is consistent.

9 EFFICIENCY OF THE METHOD

9.1 Comparison with the
Expand-Reduce-Irredundant Paradigm

In this section, we illustrate the limitations of the expand-
reduce-irredundant paradigm used in the Herb [18] and
gyocro [33] BR solvers. Let us consider the BR depicted in
Fig. 10. The best compatible function with the smallest
number of product terms is fða; b; x; yÞ ¼ ðx, bÞðy, aÞ.
Although this relation covers a small set of only eight
compatible functions, the expand-reduce-irredundant local
search technique is not able to explore the whole search
space and find the best one.

The initial solution fða; b; x; yÞ ¼ ðx, 1Þðy, abþ abÞ is
obtained using the procedure QuickSolver. This solution is a
local minimum, and therefore, gyocro gets trapped and
cannot explore the complete set of compatible functions.
From the initial solution, the reduce procedure cannot
simplify the function any further. The expand procedure can
only be applied to the input vertex {10} to reach another MISF
compatible with the original relation with the output vertices
f�1g ¼ f01; 11g. This expansion results in two possible
solutions: the initial compatible function and the function
fða; b; x; yÞ ¼ ðx, aþ bÞðy, abþ abÞ that has a higher cost.
The expansion of the other input vertices {00, 01, 11} produces
MISFs incompatible with the original relation. At this point,
the exploration is stopped. Therefore, there is no feasible
cube expansion that leads to the optimal solution. The reason
for this limitation is that this local search exploration is not
capable of exploring the range of output vertices since they
cannot be covered with a set of cubes.

9.2 Experimental Results

Table 2 presents comparative results with gyocro. In [33], a
similar analysis is done between gyocro and the exact
minimizer in [6] and Herb [18]. The cost function used by
BREL in these runs is the sum of BDD sizes for each output,
aiming at area minimization. The tree of solutions has been
limited to the partial exploration of 10 BRs. During this
exploration, the QuickSolver procedure is applied on each
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4. The consistency check presented in this paper is a modification of
[9, Theorem 6.1.1], which gives conditions for a complemented form of a
Boolean equation.

Fig. 9. Representing a Boolean system of equations as BRs.



smaller BR to obtain a solution, as explained in Section 7.2.
Exploring more solutions did not significantly contribute to
improving the results. The table summarizes the number of
input (PI) and output (PO) variables for all BR examples
and reports the number of cubes (CB) and literals (LIT) in
the sum-of-product representation obtained by each solver.

When comparing cubes and literals, gyocro obtains better
results in several examples, since its objective cost function
aims at reducing these parameters.

For more practical comparisons, we also performed two
more experiments to check the quality of solutions after
multilevel logic synthesis and technology mapping in SIS
[31]. First, the multiple-output Boolean function in the sum-
of-product representation obtained from the BR solvers is
transformed to a multilevel Boolean network in SIS by
applying the algebraic script. This script reduces the size of
the network by sharing common subexpressions. BREL

obtains an 11 percent improvement on the average in literal
count after algebraic (ALG column). gyocro obtains better
results only in two cases: int1 and int10.

The improvement is also observed after technology
mapping. For this comparison, we used the technology
mapper map [25], [32] and the library lib2 of SIS for mapping
a multilevel logic network into the library of logic gates. The
area results obtained by BREL are better than that by gyocro

in all cases except for she1 (see the column labeled with
AREA). BREL obtains, on the average, a 14 percent area
reduction. Although gyocro aims at minimizing the number
of cubes, while BREL minimizes the number of BDD sizes,
there are cases in which the solution obtained by BREL is

significantly better (b9 and vtx) in the number of cubes as

well. We attribute this phenomenon to the fact that gyocro

could be trapped in a local minimum (e.g., after generating

the initial solution), from which it cannot easily escape by

simply reducing and expanding cubes. On the other hand,

the BFS strategy used by BREL allows it to perform hill

climbing and explore a larger set of solutions.
Finally, the runtime (columns CPU) is usually better for

BREL, with a tangible speedup for two examples (b9 and

vtx). The runtime of gyocro is significantly better than

BREL’s only for gr.

10 APPLICATION OF BOOLEAN RELATIONS

In this section, we present an application to the problem of a

multiway logic decomposition and report experimental

results.

10.1 Logic Decomposition

The multiway logic decomposition problem can be for-

mulated as follows:

Definition 10.1. Let us assume a function F ðXÞ with the set of

variables X ¼ fx1; x2; � � � ; xmg and a gate GðY Þ with the set

Y ¼ fy1; y2; � � � ; yng. The decomposition of the function F ðXÞ
with the gate GðY Þ is F ðXÞ ¼ GðF1ðXÞ; F2ðXÞ; . . . ; FnðXÞÞ.
The BR that specifies all possible decompositions of the

function F ðXÞ with the gate GðY Þ is defined as follows:

RðX;Y Þ ¼ F ðXÞ , GðY Þ:
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Fig. 10. Example of the expand-reduce-irredundant approach.

Fig. 11. Some decompositions of fðx1; x2; x3Þ using a multiplexor.

TABLE 2
Comparison with gyocro [33]



We next present an example to clarify the decomposition
problem. Consider the following Boolean function:

fðx1; x2; x3Þ ¼ x1ðx2 þ x3Þ þ x1x2x3:

The goal is to decompose this function using a
multiplexor and, therefore, to absorb part of the original
function f within the multiplexor with the function
QðA;B;CÞ ¼ A � C þB � C. A BR will enclose all possible
decompositions than can be performed using the multi-
plexor. The next tabular representations show the original
function fðx1; x2; x3Þ and the corresponding BR for the
multiplexor:

The construction of the BR can be done intuitively. The
relation is built by finding all the possible values of the inputs
of the multiplexor that yield the desired output value in the
function. For instance, the multiplexor produces the output
value QðA;B;CÞ ¼ 0 regardless of whether the value of
ðA;B;CÞ is�00 or 0� 1. Therefore, the output of the relation
for the minterms where fðx1; x2; x3Þ ¼ 0 is f�00; 0� 1g. The
same reasoning can be followed to find the output set of the
remaining minterms of the relation. Note that the solution of
one output of the BR is conditioned to the values of the other
outputs. For instance, the output A can only achieve the
value 1 for the minterm x1x2x3 if BC obtains the value 00.

Many decompositions can be found using the BR. Fig. 11
depicts some of these solutions. A solver of BRs will explore

the set of solutions and will return one of them based on the
minimization objective.

10.2 Experimental Results

Table 3 reports the results of an experiment designed to
illustrate the applicability of BREL and the customization of
its cost function. We consider the existence of a flip-flop
with an embedded mux in the library, and the next-state
equation Qþ ¼ A � C þB � C. This three-input flip-flop
(typically available in the industrial gate libraries) enables
the implementation of the next-state function F ðXÞ as the
composition of three functions: AðXÞ, BðXÞ, and CðXÞ. The
BR specifying this flexibility is F ðXÞ , ðA � C þB � CÞ,
where A, B, and C are the output variables. The table
summarizes the number of primary inputs (PI), the number
of primary outputs (PO), and the number of flip-flops of
the network (FF). The last row of the table summarizes the
results and shows the global improvement obtained by the
mux-based decomposition with BRs. The table reports
the results for two different cost functions. First, the cost
function has been defined as the sum of the squares of the
BDD sizes for the three functions. The squaring favors a
tendency to balance the complexity of the function and,
therefore, reduce the delay of the circuit. In the second part
of the table, the sum of BDD sizes has been used, aiming at
minimizing the total area. In this table, BREL is limited to
explore up to 200 BRs for each next-state function.

The table reports the area and delay of the combinational
part of the circuit for each cost function. Only the area and
the delay of the combinational logic are considered. We
make an optimistic assumption considering that the mux is
embedded in the flip-flop without any extra area and delay
overhead. In the delay optimization, the results have been
obtained by collapsing the next-state functions, running the
algebraic script, speed_up,5 and technology mapping in SIS.
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5. This command in SIS produces more balanced solutions and
contributes to improve the global delay of the network.

TABLE 3
Logic Decomposition for Mux Latches



For the mux latch, the decomposition is done before running
the algebraic script. In general, the results manifest several
features of the approach:

1. The delay is usually reduced (sometimes signifi-
cantly, e.g., s382, s641, and s832).

2. In many cases, the area is also reduced due to the
power of Boolean decomposition (e.g., s420, s526,
and s641).

3. In some cases, the delay is reduced at the expense of
increasing the area due to the balancing tendency of
the cost function (e.g., s953 and sbc).

4. The CPU time is affordable.

In two cases (s349 and s1196), both the area and the delay
became worse with the mux-based decomposition.

For area optimization, the process of minimization is the
same as the previous one without the speed_up command.
The behavior of the results is similar:

1. The area is also reduced considerably (e.g., s298,
s420, s444).

2. In many cases, the delay is reduced as well.
3. Only in a few cases did the delay increase (e.g., s208,

s420, and s1494).
4. The cases in item 3 are sometimes related to circuits

where the area is also worse (e.g., s349).
5. The CPU time is similar to the delay decomposition.

There are four cases (s27, s349, s641, and 1196) where the
results were worse. Some of these circuits (s349 and 1196)
are worse in both area and delay minimization. The
heuristic methods applied in BREL and the limitation on
the number of explored BRs sometimes lose some of the
good solutions.

11 CONCLUSIONS

This paper describes a new algorithm for solving BRs and
Boolean equations. Experimental results demonstrate that
this approach is capable of finding better solutions in
shorter runtimes than the previously known techniques.
The reason for this advantage is that our exploration
technique is more immune to the danger of being trapped
in local minima and better explores the solution space.
Depending on the complexity of the original BR, our solver
can work in the exact or in the approximate mode. In this
paper, we also demonstrated a successful application of our
solver to the problem of decomposing Boolean functions.
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