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Abstract. The influence of the Prandtl number on the stable station-
ary and periodic flows of the fluids contained in laterally heated slots
under realistic conditions, namely non-slip boundaries, insulated top
and bottom horizontal limits and perfectly conducting lateral sides, is
analyzed by using continuation methods. The branches of solutions are
computed by decreasing the Prandtl number, for four Rayleigh num-
bers. The dynamical behavior depends strongly on both parameters.
For a Rayleigh number, Ra = 103, the steady flow remains stable in
the wide range of Prandtl numbers computed. At Ra = 104 and O(105)
the first bifurcations are of Hopf type giving rise to a type of oscillations
that affects the bulk of the fluid, alternating from a general circulation
to multi-vortex solutions, or the boundary layer, respectively. However,
it is found that, in any case, the location of the shear determines the
type of the oscillations. Moreover, at Ra = 104 the critical multipli-
ers at the secondary bifurcations on the main branch of POs are real,
giving rise to different kinds of very bounded stable periodic states of
different symmetries and periods. At Ra of order 105 the instability of
the periodic orbits gives rise directly to quasi-periodic flows.

1 Introduction

The knowledge of thermal convection in Cartesian geometries heated by the side is
important for several industrial applications as for the successful growth of crystals in
liquid media [1], the design of large-scale laser systems [2] or the optimal heating or
cooling and isolation of buildings. Their systematic study started in the seventies, but
it is from the nineties when this problem has been intensively analyzed. A detailed
review of the bibliography up to the last decade can be found in Ref. [3]. With the
diffusion of continuation methods for steady flows and travelling waves in large scale
dissipative systems [4,5], most of the research focused on their dynamics and stability
(see for instance Ref. [6–10]), but now, with the development of continuation methods
for periodic orbits [11–13], it is possible to go deeper into the study of the periodic
dynamics at the same level than for the stationary flows.

Laterally heated gases (Pr order one) in tall closed cavities with adiabatic hor-
izontal walls first develop a basic stable flow consisting of a single steady vortex
centered in the domain. This flow is center-symmetric. The type of instability of
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this flow depends strongly on the ratio between the thermal and the viscous time
scales, i.e. on the Prandtl number, Pr, and the aspect ratio. The numerical simula-
tions of S. Wakitani [14], among others, showed that in very tall containers (aspect
ratio Γ = h/d & 11, h being the height of the cavity, and d its width), filled with
air of Pr = 0.71, the general circulation is superseded by multi-vortex steady states
when Ra is increased. This parameter gives the ratio between the work done by the
buoyancy force, and the energies dissipated by the viscosities. Then, the steady flows
lose stability giving rise to multi-vortex oscillations. The study of the transition from
the steady to oscillatory flows for Pr = 0.71 and 7 . Γ . 11 showed the coexis-
tence of various branches of periodic orbits consisting of waves travelling along the
boundary layer, and a stable core of fluid almost horizontally stratified [15,8,16,17],
consequently the global circulation is maintained.

The dependence on Γ of the steady and oscillatory flows in slots, for air (Pr = 0.71)
and liquid metals (Pr = 0.025), has been studied by many authors. However, in be-
tween, there is a gap of Pr not covered before. This study tries to fill this gap by
examine the origin and behavior of fluids of intermediate Prandtl numbers. New
computations by using continuation methods with Pr as continuation parameter, and
stability analysis, are presented. As in [17], a rectangular domain of Γ = 8 is taken
because it is tall enough as to allow to capture the dynamics of the convection in very
tall systems. In the range 0.2 < Pr < 0.3 time periodic solutions, not described before
in the literature, consisting in transients between a time global circulation filling the
slot and the formation of isolated vortices have been found. Although the problem
considered is two-dimensional it is relevant because the onset of time-dependent flows
is two-dimensional for boxes of large aspect ratios if there is enough space in the pe-
riodic transverse direction, and the orders of magnitude of the heat flux and kinetic
energy averages calculated in this study should not differ very much from those of the
three-dimensional problem. Its knowledge is significant, for instance for the working
of binary gaseous mixtures in thermoacoustic engines [18]. According to this study,
the better working gases are mixtures of helium and xenon that can reach low Prantl
numbers and the highest ratio of specific heats at pressures lower than 4.5 MPa. The
thermal penetration depth is an important factor to take into account in the design
of this type of engines.

The paper is organized as follows. The mathematical model is summarized in
Sec. 2, after the introduction. Secs. 3 and 4 contain the results obtained for the
steady states (SSs) and the periodic orbits (POs) bifurcated from the steady branch,
respectively. They include the study of the origin of the instabilities of the steady
flows and the dynamics of those periodic. The paper finishes in Sec. 5 with some
conclusions, and a summary of the main results obtained.

2 Mathematical formulation

The thermal convection of fluids of Pr ranging from 0.683 to 0.014, filling a rect-
angular slot, Ω, is studied. The boundaries are taken non-slip, and the lateral sides
are maintained at uniform temperatures, the left higher than the right. The top and
bottom contours are insulating, and the fluid is subject to a vertical gravity g = −gj,
j being the unit vector pointing upwards.

The problem is formulated as in Ref. [17]. The Boussinesq approximation of the
Navier-Stokes and temperature equations in terms of the stream function, ψ, and
the deviation of the temperature, Θ, is used. The stream function is related to the
velocity field by (u, v) = (∂yψ,−∂xψ). These equations are nondimensionalized by
taking d, the difference of temperature ∆T > 0 between the left and right sides,
and d2/κ, κ being the thermal diffusivity, as distance, temperature and thermal time
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scales, respectively. In non-dimensional units Ω = [0, 1]× [0, Γ ]. With that the system
solved is

∂t∆ψ − J(ψ,∆ψ) = Pr∆2ψ + Ra Pr(1− ∂xΘ), (1)

∂tΘ − J(ψ,Θ) = ∆Θ + ∂yψ, (2)

with J(f, g) = ∂xf∂yg−∂yf∂xg. The deviation of the temperature Θ comes from the
splitting the full temperature as T(x, y, t) = (1 − x) + Θ(x, y, t), in order of having
homogeneous boundary conditions on the vertical walls. The symbols x and y account
for the horizontal and vertical coordinates, respectively.

The boundary conditions are

ψ = ∂xψ = 0 on y = 0, Γ, and ψ = ∂yψ = 0 on x = 0, 1 (3)

∂yΘ = 0 on y = 0, Γ and Θ = 0 on x = 0, 1. (4)

The problem depends on the Rayleigh and Prandtl numbers defined as

Ra =
αg∆Td3

κν
and Pr =

ν

κ
,

where α is the thermal expansion coefficient, ν the kinematic viscosity, κ the thermal
diffusivity. The second will be used as control parameter.

System (1)-(4) is Z2 equivariant. It remains invariant under the center-symmetry

S : (t, x, y, ψ,Θ)→ (t, 1− x, Γ − y, ψ,−Θ). (5)

The functions ψ, and Θ are approximated by a pseudo-spectral collocation method
on a stretched mesh of nx × ny = 40× 140 Gauss-Lobatto points, which accumulate
at the boundaries of the domain. It was checked that this number of points is enough
to solve even the thin boundary layers of the convective flows of fluids of Pr = 0.7.
This study focuses on Prandtl numbers lower than that, for which the boundary
layers are wider. The stiff system of ODEs obtained after the spatial discretization
is integrated by means of five-order semi-implicit BDF-extrapolation formulas. To
compute branches of steady and time periodic solutions Newton-Krylov methods are
used. The linear systems are solved using GMRES, and to compute the stability
ARPACK is employed. The matrix-matrix products are calculated by means of the
BLAS library. Additional details about the resolution of the problem can be found in
Ref. [19].

3 Steady flows and their stability

The branches of the steady solutions and their stability have been computed from
Pr = 0.683 by decreasing the continuation parameter. Fig. 1 shows these branches
and the POs bifurcated from the point where the former lose stability, for Ra = 103,
Ra = 104, Ra = 105 and Ra = 3×105, as a function of Pr. The vertical axis represents
the averaged heat flux at the section x = 1, defined as

[∂xT] =
1

T Γ

∫ T

0

∫ Γ

0

∂xT dy dt. (6)

The time average concerns only the POs.
The shape of the curves of SSs changes a lot by changing Ra. At low Ra they are

smooth in the range of Pr calculated. See for instance Figs. 1a, b for Ra = 103 and
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Fig. 1. Bifurcation diagrams showing branches of SSs and POs for a) Ra = 103, b) Ra = 104,
c) Ra = 105 and d) Ra = 3× 105. The averaged heat transport versus Pr is depicted. Solid
lines mean stable solutions while dashed lines indicate those that are unstable. Online POs
are depicted in red. The arrows mark the position of the solutions shown in Figs. 2 and 3.

Ra = 104, respectively. They only have a minimum at Pr = 0.1401 and Pr = 0.1286,
respectively. This point corresponds to the starting of a decrease of the mean kinetic
energy (not shown here), that, at least in the first case, continues after the maximum
of the curve of Fig. 1a and the following decrease of [∂xT]. At low Pr and high Ra
they look much more involved. At Ra = O(105) and Pr < 0.3 (see Figs. 1c and d) the
curves become very wavy and finally develop several cusps and loops of increasing
amplitude when Pr is decreased. There are several eigenvalues of positive real part at
the final point computed, although the largest is only O(1).

The patterns of the steady flows depend on both Ra and Pr. At large Ra and Pr of
order one the flow consists of a single stationary vortex filling the domain with narrow
vertical boundary layers. The fluid goes up near the hot side and down along the cold.
In the central region of the slot the horizontal temperature gradient is very weak. By
fixing Pr, the effect of decreasing Ra is to confine the big vortex to the center of the
slot. Fig. 2, shows the velocity field (black arrows) superposed to the contour plots of
the full temperature, T, for Pr ≈ 0.32. Since the solutions are stationary, the arrows
of the velocity field are tangent to the contour plots of ψ, and indicate the trajectories
of the particles of fluid. New initially weak vortices appear near the lower left and
upper right corners (Fig. 2a). When Ra becomes smaller, the extra vortices intensify
as in Fig. 2b, and after they weaken and move to the center (Fig. 2c) reducing the
size of the central one. However, as can be seen in Fig. 2d, at Ra = 103 the extra
vortices have not yet appeared, and lower values of Pr are needed to observe them.
At very low Pr they become as strong as the initial. Moreover, the contour plots
of the temperature show that the stronger interior horizontal velocity field injects
hot fluid to the cold region and cold to the hot at different levels (depending on
the position of the external vortices), tending to undulate the contour plots of the
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Fig. 2. Velocity field (arrows) superposed to the contour plots of the full temperature for
(a) Ra = 3 × 105 and Pr = 0.32007, (b) Ra = 105 and Pr = 0.32012, (c) Ra = 104 and
Pr = 0.32034, (d) Ra = 103 and Pr = 0.31983.

temperature. Depending on the value of Pr these effects are more or less important.
Another important effect of decreasing Pr is the weakening of the boundary layers
that also contributes to the transport of hot and cold fluids to the interior of the box
in opposite directions.

The effect of decreasing Pr while fixing the value of Ra is much stronger. The
change of the dynamics is illustrated in Fig. 3 for Ra = 104. At Pr = 0.683 the big
vortex is much more confined in the center of the box than for larger Ra, and the
boundary layers are wider. At lower Pr two extra vortices appear near the first at
top and bottom. This change can be seen in Figs. 3b and 3c. In Fig. 3c the strength
of the new vortices is already comparable to the central one, and the formation of
two new vortices can be appreciated near the horizontal sides of the slot. Between
the vortices the heat transport already affects the interior of the box. At lower Pr the
five vortices are fully developed (see Fig. 3d).

The stationary flows examined are center-symmetric, i.e., they satisfy

ψ(t, 1− x, Γ − y) = ψ(t, x, y), Θ(t, 1− x, Γ − y) = −Θ(t, x, y), (7)

which means

u(t, 1− x, Γ − y) = −u(t, x, y), v(t, 1− x, Γ − y) = −v(t, x, y). (8)

Concerning to their stability, at Ra = 103 the SSs are stable for any Pr computed. For
the other values of Ra, the first four bifurcations found are of Hopf type. The results
are summarized in Fig. 1 (the solid lines indicate the stable flows), and in Table 1,
where the critical parameters are given. The first transition destabilizes the fluid,
i.e. Pr1c gives the critical Prandtl number, Prc, where the SSs change from stable to
unstable when Pr becomes smaller. Notice that the cusps and loops of the branches
at high Ra occur always in their unstable part. According to the table, the flows
depicted in Figs. 2a,b and Figs. 3b,c,d are unstable.

The first bifurcation found with Ra = 104 and Ra = 105 does not break the
symmetry (7-8), then POs arising at these points keep the symmetry at any time
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a) b) c) d) 

Fig. 3. Idem Fig. 2 for Ra = 104 and (a) Pr = 0.683, (b) Pr = 0.22984, (c) Pr = 0.11703,
(d) Pr = 0.092051.

Table 1. Critical Prandtl numbers, Pric, i = 1, · · · 4 and frequencies, ωi
c of the first bifurca-

tions found on the branches of the steady flows in the interval 0.014 < Pr < 0.683 for three
values of Ra. The periods are given in diffusion time units.

10−4Ra Pr1c ω1
c Pr2c ω2

c Pr3c ω3
c Pr4c ω4

c

1 0.2790 27.526 0.2622 22.425 0.1087 24.904 0.1073 24.630
10 0.3267 350.68 0.3245 280.51 0.3018 217.7 0.2678 169.96
30 0.6368 764.01 0.6314 703.81 0.6244 816.50 0.6054 636.23

(F -cycles), and the bifurcated POs can destabilize via period doubling bifurcations.
However it is broken when Ra = 3 × 105, but then, they keep the spatio-temporal
reflection

ψ(t, 1− x, Γ − y) = ψ(t+ T/2, x, y), Θ(t, 1− x, Γ − y) = −Θ(t+ T/2, x, y), (9)

which means

u(t, 1− x, Γ − y) = −u(t+ T/2, x, y), v(t, 1− x, Γ − y) = −v(t+ T/2, x, y), (10)

therefore, the orbits are symmetric cycles (S-cycles). For more details see Ref. [17].
To evaluate the physical mechanisms of the instabilities, the contribution of the

energies generated by shear, Ks, and by buoyancy, Kb, and of the energy dissipated
in the fluid, Kd, to the rate of change of the kinetic energy of the perturbation are
computed. They are included in Table 2. As can be seen in the table the beginning of
the oscillations is triggered by the shear of the steady flow, and the viscous dissipation
almost balance this shear in the three cases. Consequently the energy generated by
buoyancy represents a small fraction of the total energy balance at the transition.
However, in agreement with Ref. [9], the buoyant kinetic energy is very small and
stabilizing when the onset of the oscillations takes place at low Ra and Pr. Notice
that since the mean energies of the table depend on a linear problem, only their
relative values have physical meaning. By inspecting the contour plots of each of
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Table 2. Total energy generated by shear, Ks, and by buoyancy, Kb, and dissipated, Kd,
for the perturbations at the bifurcation points. Notice that at the transition the three terms
are in balance.

10−4Ra Prc Ks Kb Kd

1 0.2790 1.26032 -0.03127 -1.22905
10 0.3267 8.75613 0.12228 -8.87845
30 0.6368 20.9519 1.05814 -22.0100

these quantities over the domain it is clear that the perturbations evolve in different
locations of the slot. For Ra = 3× 105, Prc = 0.6368, the shear is concentrated near
the left upper and the right lower corners of the cavity, while for Ra = 1× 105, Prc =
0.3267 it is restricted to a thin strip going from y ≈ Γ/5 to y ≈ 4Γ/5 outside the
lateral boundary layers of the basic flow. For Ra = 1× 104, Prc = 0.2790 the shear
affects the central part of the fluid. In any case, most of the viscous dissipation is
concentrated in the lateral boundary layer in the neighborhood where the production
of shear energy takes place. These differences give rise to very different types of
oscillations for the distinct parameters of the problem considered.

4 Periodic orbits and their stability

As for the SSs, the stable and unstable POs have been computed by Newton-Krylov
continuation methods, and their stability by means of the ARPACK package, based
on Arnoldi algorithms [19,20]. The first branches of periodic solutions have been
continued for the Ra mentioned in Sec.3. Since the bifurcations are supercritical by
decreasing Pr, the solutions are stable from the bifurcation point. Each of the sub-
sequent branches (which have not been calculated) has, initially, another Floquet
multiplier (FM) or a complex-conjugate pair of them (depending on the type of bi-
furcation) outside the unit circle more than the preceding.

Table 3. For i = 0, critical Prandtl number, Pr0c , and frequency ω0
c of the bifurcations where

the branches of SSs lose stability. The capital letters S or F beside the corresponding values
state if the POs arising from this point are S-cycles or F -cycles, respectively. For i = 1 · · · 6,
Pric of the bifurcations, and initial periods, T i, of the branches of POs. The symbols (•/◦)
indicate whether the critical multipliers get in or out the unit circle, respectively.

i/Ra 104 105 3× 105

0 (0.2790, 27.526) F (0.3267, 350.68) F (0.6368, 764.01) S
1 (0.2728, 0.2552) ◦ (0.3230, 0.01774) ◦ (0.5216, 0.008430) ◦
2 (0.2676, 0.3214) ◦ (0.2972, 0.01653) ◦ (0.5168, 0.008433) ◦
3 (0.2684, 0.3991) • (0.2734, 0.01553) ◦ (0.5047, 0.008439) ◦
4 (0.2450, 0.4689) • (0.4935, 0.008442) ◦
5 (0.2383, 0.4716) ◦ (0.4798, 0.008441) ◦
6 (0.2022, 0.6972) ◦ (0.4794, 0.008440) ◦

Figure 4a shows a detail of the branch of POs of Fig. 1b, and those bifurcated
from it, and Table 3 contains the critical parameters found on the main branch. With
Ra = 104 the branch of POs arising from the bifurcation point at Pr1c = 0.2790 has a
double fold very near the beginning, and turns again towards higher values of Pr at
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Fig. 4. Blow-ups of Figs. 1b-d showing details of the POs. a) Ra = 104, b) Ra = 105 and
c) Ra = 3 × 105. In a) and d) solid lines mean stable solutions and dashed lines unstable,
and online red refers to POs, blue to POs of doubled period, brown to POs of quadrupled
period, and green to POs with broken symmetry. d) Detail of the beginning of the period
doubling cascade. The arrows in plot a) indicate the position of the POs shown in Figs. 5
and 6.

0.2022, developing a small loop (in terms of the averaged heat transport). The branch
turns again to lower values of Pr at 0.2034. Before the first saddle-node bifurcation
there is a period doubling bifurcation of POs at Pr = 0.2728 that destabilizes the
fluid, and after the second saddle node, there is another period-doubling of POs at
Pr = 0.2450 that stabilizes the branch, followed by a pitchfork bifurcation of POs
at Pr = 0.2383 that destabilizes it again. At the third turning point at Pr = 0.2022
a second real FM crosses out the unit circle. Both multipliers increase quickly their
modulus, and at Pr = 0.20283826 they are 2152.4 and 8.2. The period of the orbits
increases along the branch. At the lower Pr computed the period of the orbit is four
times that at the onset.

Along the principal branch, the F -cycles consist of an oscillation of the amplitude
of a central and two upper an lower vortices and their merging and splitting. When
the vortices are disconnected tongues of hot/cold fluid can penetrate between them
to the interior of the slot. The sequence is depicted in Fig. 5 where snapshots along
a period of the stable PO at Pr = 0.2450 are plotted. They are not equally-spaced in
time in order to capture a detailed description. At the beginning the central vortex
loses intensity while the upper and lower gain it. Soon the central vortex regains
intensity while all three stretch out and connect forming a global circulation that
maintains the hot and cold fluid confined near the lateral sides in most of the box.
Later, the long vortex shrinks and the upper and lower vortices start to develop and
to increase their strength, closing the cycle.

The first period-doubled branch of POs of Figs. 4a,d, starting at Pr = 0.2728,
is subcritical, and gains stability in a turning point at Pr = 0.2730 to lose it soon
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Fig. 5. Snapshots of the velocity field (arrows) superposed to the contour plots of the
full temperature in a period of a stable PO. The snapshots are taken at t = 0, 2T/20,
3T/20, 5T/20, 8T/20, 10T/20, 12T/20, 14T/20, 16T/20, 18T/20, 19T/20. The parameters
are Ra = 104 and Pr = 0.2450.

at Pr = 0.2703 in a Hopf bifurcation. From this point the leading FM increases
their modulus quickly. The second period-doubled branch of POs is supercritical, and
consequently unstable. It never regains stability since the modulus of the unstable
FM soon becomes larger than 104. In both period-doubling bifurcations, the critical
eigenfunctions are antisymmetric. The POs on these two branches are S-cycles (see
Eq.(9)). The temporal evolution of one of these orbits is depicted in Fig. 6. There
is a connection of the upper and lower vortices with the central one, but now the
intensities of the two external vortices alternate, and that of the central scarcely
varies, while its center oscillates vertically.

The pitchfork bifurcation gives rise to stable POs without symmetries. However
this branch loses stability soon in a new supercritical period doubling bifurcation at
Pr = 0.234139, and again the unstable FM becomes quickly of modulus much larger
than one. The dynamics of the stable POs along a period resembles to that of Fig. 5,
with three asymmetric vortices well defined that slowly connect and fastly disconnect.
When they are separated the tongues of hot fluid almost penetrate up to the cold
boundary layer, and vice versa. The new branch of quaternary flows of doubled period
is supercritical, and only stable up to Pr = 0.233551, where a new period doubling
bifurcation has been localized. The period of the supercritical branch arising from
this point is already 1.92 and loses stability at Pr = 0.233437. The estimation of the
Feigenbaum constant given by the three bifurcation parameters is 5.158. Therefore
by decreasing Pr it would be reasonable to find a period doubling cascade.

For Ra = 105 the steady branch loses stability at Pr1c = 0.3267. The new branch of
POs is also supercritical, but the period becomes small by decreasing the continuation
parameter. It becomes unstable at 0.3230 through a Hopf bifurcation (see Fig. 4b
and table 3). The branch of the POs crisscrosses that of the steady solutions in the
projection presented. The flow consists of a tiny oscillation of the bulk of the fluid,
keeping the structure shown in Fig. 2b. In this case the next two bifurcations found
are also of Hopf type, so they give rise to branches of quasi-periodic flows, initially
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Fig. 6. Snapshots of the velocity field (arrows) superposed to the contour plots of the full
temperature in a period of a stable symmetric PO. The snapshots are taken at t = 0, T/10,
T/5, 3T/10, 2T/5, T/2, 3T/5, 7T/10, 4T/15, 9T/10, T . The parameters are Ra = 104 and
Pr = 0.2705.

unstable. The branch arrives up to Pr = 0.2587, where it seems that there is a turning
point that increases again the averaged heat transport.

For Ra = 3 × 105, the bifurcation at Pr1c = 0.6368 is again supercritical and the
period increases up to T = 8.442 × 10−3 at Pr = 0.4879. Then it starts to decrease.
The branch of POs is stable down to Pr = 0.5216, and because several eigenvalues
cross out the unit circle quickly it seems that it never regains stability. The fifth and
sixth bifurcations of Table 3 have almost the same critical parameters, consequently
by slightly moving Ra they could collide in a double Hopf bifurcation. The dynamics
of the stable flow reminds the dynamics confined near the lateral walls, found in
Ref. [17], but at Pr = 0.5351 the oscillations hardly affect the boundary layer. There
is an almost steady global circulation near the vertical sides of the cavity, and tongues
of cold (hot) fluid are transported up (down) by the velocity field near the boundary
layer. The only ’anomalies’ found on this branch are the laces that appear when the
branch of steady solutions becomes wavy. The first of them, shown in Fig. 4c, is
between Pr = 0.3799 and 0.3772, and the second between Pr = 0.3270 and 0.3238.
The last point we have been able to compute is Pr = 0.3003 when a last lace, which
starts at Pr = 0.3091, turns to high Pr values.

5 Conclusions

It has been found that for a slot of Γ = 8, at large Pr and Ra, the curves of steady
solutions are smooth, but at low Pr, always smaller than the critical value where the
SSs lose stability, they undulate and develop successive cusps and loops. In this way
there are multiple unstable steady solutions at low Pr coming from a single branch
of solutions. The stable flows found consist of a single vortex more o less confined
depending on Pr. However, in liquids of small Pr and Ra the stable flows develop
three vortices.
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The critical Prandtl number Prc at which the stationary flows become unstable
increases when Ra is increased. The steady flows destabilize via Hopf bifurcations. For
any value of Ra considered, the stable POs are confined in a small range of Prandtl
numbers. The computation of unstable POs by continuation methods have allowed to
find long stable periodic oscillations isolated in small regions of the parameter space
at Pr of order 10−1, which are very difficult to capture by chance by time integration.

Although in any case the shear is the main component to trigger the oscillations,
at high (low) Ra the averaged rate of change of the generation of mechanical energy by
the buoyancy force tends to decrease (increase) when Pr decreases in the neighborhood
of the bifurcation points, and the type of dynamics of the POs depends mainly on
the location of the perturbation. At Pr of order one the instability gives rise to waves
traveling because the perturbation is concentrated along the lateral boundary layer.
At lower Pr the perturbation affects the body of the fluid and causes the cyclical
generation of upper and lower vortices near the central area, and the return to a
global circulation. In addition, when Ra is decreased one order of magnitude the
period of the oscillations increases also one order of magnitude.

The results shown in this paper also apply to thermosolutal convection (without
Soret effect) with a very large diffusion coefficient. In this case, since the concentration
does not affect the stream function and temperature equations, and the concentra-
tion diffuses very rapidly, it is not able to destabilize the fluid. Then the dynamics
and instabilities expected are those described here. The concentration, driven by the
velocity and temperature fields, behaves dynamically as the temperature (see the
contour plots) but with opposite sign.

6 acknowledgments

This work was supported by the Spanish MCYT/FEDER grant FIS2016-76525-P.

All the authors contributed equally to this study.

References

1. R. Feigelson (Ed.), 50 years Progress in Crystal Growth. A reprint collection, Elsevier,
2004.

2. M. Christon, P. Gresho, S. Sutton, Computational Predictibility of Natural Convection
Flows in Enclosures, Int. J. Numer. Meth. Fluids 40 (2002) 953–980.

3. M. Lappa, Thermal Convection: Patterns Evolution and Stability, Wiley, Singapore,
2010.

4. C. K. Mamun, L. S. Tuckerman, Asymmetry and Hopf bifurcation in spherical Couette
flow, Phys. Fluids 7 (1995) 80–91.

5. L. S. Tuckerman, D. Barkley, Bifurcation analysis for timesteppers, in: E. Doedel,
L. S. Tuckerman (Eds.), Numerical Methods for Bifurcation Problems and Large-Scale
Dynamical Systems, Vol. 119 of IMA Volumes in Mathematics and its Applications,
Springer–Verlag, 2000, pp. 453–466.

6. K. H. Winters, Oscillatory convection in liquid metals in a horizontal temperature gra-
dient, Int. J. Numer. Meth. Engng 25 (1988) 401–414.

7. A. Y. Gelfgat, P. Z. Bar-Yoseph, A. L. Yarin, Stability of multiple steady states of
convection in laterally heated cavities, J. Fluid Mech. 388 (1999) 315–334.
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16. S. Xin, P. Le Quéré, Stability of two-dimensional (2D) natural convection flows in air-
filled differentially heated cavities: 2D/3D disturbances, Fluid Dynamics Research 44 (3)
(2012) 031419.

17. M. Net, J. Sánchez, Periodic orbits in tall laterally heated rectangular cavities, Phys.
Rev. E 95 (2017) 023102 .

18. H. Ke, Y. He, Y. Liu, F. Cui, Mixture working gases in thermoacoustic engines for
different applications, Int. J. Thermophys. 33 (2012) 1143–1163.

19. J. Sánchez, M. Net, Numerical continuation methods for large-scale dissipative dynam-
ical systems, Eur. Phys. J. Spec. Top. 225 (13) (2016) 2465–2486.

20. R. B. Lehoucq, D. C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi
iteration, SIAM J. Matrix Anal. Appl. 17 (1996) 789–821.


