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ABSTRACT 

A methodology is proposed to compare the power of normality tests with a wide variety of 

alternative unimodal distributions. It is based on the representation of a distribution mosaic in which 

kurtosis varies vertically and skewness horizontally. The mosaic includes distributions such as 

exponential, Laplace or uniform, with normal occupying the center. Simulation is used to determine 

the probability of a sample from each distribution in the mosaic being accepted as normal. We 

demonstrate our proposal by applying it to the analysis and comparison of some of the most well-

known tests.  

  

KEYWORDS: Goodness-of-Fit, Test Power, Graphical Techniques, Comparing Normality Tests, 

Anderson-Darling, Shapiro-Wilk 

  

1 Introduction 

There are a wide variety of normality tests, from the classic Kolmogorov-Smirnov to the widely used 

Shapiro-Wilk and Anderson-Darling tests. Books are dedicated exclusively to normality tests, such 

as Thode [1], who describes dozens of them. The problem is not yet closed, as new tests and 

modifications of existing ones continue to emerge (see, for example, Desgagné and de Micheaux 

[2]).  

The fact that so many exist surely indicates that not one is better than all the others in all 

circumstances. The comparison of normality tests has been addressed in articles such as Farell and 

Rogers-Stewart [3], where 14 test types are compared to 48 possible alternative distributions and 

the results are presented in a table with the power of the test indicated against each alternative for 

a significance level of 0.10 and a sample size of n=20. Yacini and Yolocan [4] compare 12 tests against 

5 alternative distributions and present the results also in a table where the power of the test is 

indicated according to the alternative distribution for =0.05 and sample sizes of n=20, 30, 40 and 

50. Romão et al. [5] present an exhaustive study in which they describe and analyze the performance 

of 33 normality tests against data from a wide variety of distributions, presenting the power 



obtained in tables but also with line charts in which the horizontal axis indicates which test was 

performed. In a similar manner, Yap and Sim [6] compare 8 types of tests against 9 alternative 

distributions, presenting the results in tables as well as graphs, where for each alternative 

distribution the power curves are presented according to the size of the sample.  

Our work proposes a methodology for comparing the power of normality tests to a wide variety of 

alternative unimodal distributions in a highly visual manner and with a single graph. It is based on 

the representation suggested by Sánchez-Espigares et al. [7], who builds a distribution mosaic in 

which the kurtosis varies vertically and the skewness horizontally. The mosaic includes distributions 

such as exponential, Laplace and uniform, with normal occupying the center. Simulation is used to 

determine the probability of a sample from each of the distributions in the mosaic being accepted 

as normal.  

The next section describes the tests to be compared. Next, we describe the characteristics of the 

distribution mosaic, how the power of the tests is represented in the mosaic and, finally, the studied 

tests are analyzed and compared.  

2 Test Selection 

To demonstrate the possibilities of the proposed procedure and also compare some of the most 

well-known tests, we have chosen three from each of the strategies in which normality tests can be 

grouped: regression tests, tests based on the empirical distribution function (EDF) and tests based 

on moments.  

Regression tests are based on the fact that the distribution function 𝐹(𝑥) of a random variable 

𝑋~𝑁(𝜇, 𝜎) is a straight line when represented on a normal probability plot (Q-Q plot). Therefore, 

given an ordered sample of values 𝑥(1) ⋯ 𝑥(𝑛) with 𝐹(𝑥(𝑖)), ⋯ 𝐹(𝑥(𝑛)) values of their distribution 

function, points (𝑥(𝑖), 𝐹(𝑥(𝑖))) should align approximately according to a straight line in a Q-Q plot, 

and any departure from that alignment indicates the data’s lack of normality. From among the tests 

based on this idea, we have selected: 

 Shapiro-Wilk (SW) is probably the best known and most often used (a detailed description can 

be found, for instance, in Thode [1]). The original version [8] has some computational limitations, 

especially for large sample sizes. Royston [9] suggested a transformation of the original statistic 

that allows it to be applied to sample sizes of up to 𝑛 = 2000 without any demand for great 

computational resources.  

 Shapiro-France (SF) (see Thode [1]) is a variant of SW. When it appeared in 1972 [10], its main 

advantage was the demand for fewer computational resources than the original SW. This 

advantage has ceased to be of interest, especially after Royston’s contributions to the SW test; 



but it continues to be among the most representative of this group of tests that are based on 

correlation.  

 Filliben [11] uses the correlation between the sample order statistics and the estimated median 

values of the theoretical order statistics. Its main advantage is that the calculations are very easy 

because there is no need to calculate the expected values of the normal order statistics.  

The test statistic in tests based on the EDF is a measure of the discrepancy between the EDF and the 

theoretical distribution function. The most typical is that of Kolmogorov-Smirnov (KS), which uses 

the maximum distance – in absolute value – between both distributions. The tests of this type that 

we analyze here are: 

 Lilliefors. This uses the same test statistic as that of KS, but with a different reference distribution, 

due to the fact that  the KS test requires knowledge of the population parameters, while Lilliefors 

bases its estimation on the sample. Lilliefors deduced the critical values through simulation, but 

analytical methods for determining them have also been published [12].  

 Cramer-von Mises (CvM). The test statistic is determined from the discrepancy between the 

theoretical distribution function 𝐹 and the empirical function 𝐹𝑛 accumulated throughout all the 

variation space of 𝑥. It is specified in a relatively simple formula (see, for example, [13]). The 

critical values depend on the size of the sample and the number of known population 

parameters.  

 Anderson-Darling (AD). This is surely the most commonly used of this group. It is similar to the 

CvM but gives more weight to the discrepancy in the tails of the distribution (see, for example, 

[13]).  

Finally, we have the group that uses a test statistic based on the difference between, on the one 

hand, the kurtosis and the skewness of the data (third and fourth moment) and, on the other, their 

theoretical values. For this group, we have selected: 

 D’Agostino-Pearson 𝐾2 (DA). The test statistic is a function of the kurtosis and skewness of the 

sample. It follows a Chi-square distribution with 2 degrees of freedom if the hypothesis of 

normality is true [14].  

 Jarque-Bera (JB). Conceptually similar to the one above. The test statistic is also calculated from 

the kurtosis and skewness of the sample. Thus, it is also distributed as a Chi-square with 2 

degrees of freedom; but when 𝑛 <  2000, the p-value is determined by simulation [15].  

 Adjusted Jarque-Bera (AJB). It uses a new test statistic computed from the first four moments 

about the origin. The p-values are determined by simulation [16].  

To apply these tests and analyze their performance, we have used functions that have already been 

developed and implemented in R statistical software packages [17]. Table 1 indicates which package 

and function were used for each test.  



Table 1: Tests analyzed and the R packages and functions that were used to apply them. 

Test Package Function 

Shapiro-Wilk stats, R Core Team [17] shapiro.test(x) 

Shapiro-Francia nortest, Gross and Ligges [18] sf.test(x) 

Filliben’s ppcc, Pohlert [19] ppccTest(x, “qnorm”) 

Lilliefords nortest, Gross and Ligges [18] lillie.test(x) 

Cramer-von Mises nortest, Gross and Ligges [18] cvm.test(x) 

Anderson-Darling nortest, Gross and Ligges [18] ad.test(x) 

D’Agostino-Pearson 𝐾𝑠
2 fBasics, Wuertz et al. [20] dagoTest(x) 

Jarque-Bera normtest, Gavrilov and Pusev [21] jb.norm.test(x) 

Adjusted Jarque-Bera normtest, Gavrilov and Pusev [21] ajb.norm.test(x) 

 

3 Distribution mosaic. Representation of the power of a test  

Based on a Skewed Exponential Power Distribution (SEPD) used by Zhu and Zinde-Walsh [22], 

Sánchez-Espigares et al. [7] consider the probability density function that is used to create the 

mosaic distributions. This function is characterized by the mean and variance of the variable 

considered and also a third parameter, 𝑝, which is related to kurtosis and varies between 1 (double 

exponential distribution) and 50 (practically a uniform distribution). It also employs a fourth 

parameter, 𝛼, which is related to the asymmetry that varies between 0 (very asymmetric 

distribution with tail to the right) and 1 (with tail to the left). The values 𝑝 = 2 and 𝛼 = 0.5  

correspond to a normal distribution.  

We want the number of distributions on each side of the mosaic to be odd so that the normal 

distribution remains exactly in the center. It is easily deduced that for 𝛼 to vary between 0 and 1 in 

equidistant intervals and for 𝛼 = 0.5 to remain in the center, it is sufficient that the i-th position 

has the value 𝛼 =
𝑖−1

𝑚−1
, with 𝑚 being the number of distributions on each side of the mosaic. 

Regarding the values of 𝑝, their determination is not so immediate. Each value must be equal to the 

previous one raised to a power of 𝑗 = √
log 50

log 2

𝑚
2 −0.5

, except for the second one, which always equals 

21 𝑗
(

𝑚
2

−1.5)
⁄  [7]. For example, if the mosaic is of size 11x11 (𝑚 = 11), we have 𝑗 = 1.4136 and the 

values of 𝛼 and 𝑝 will be:  

 

𝑖 1 2 3 4 5 6 7 8 9 10 11 

𝛼 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

𝑝 1 1.19 1.28 1.41 1.63 2 2.66 3.99 7.08 15.92 50 

 



Figure 1 shows an 11x11 mosaic. The values of 𝜇 and 𝜎 are the same for all distributions and do not 

affect their shape but only the scale of the axes, which we do not consider here. Each distribution 

corresponds to the values of 𝛼 and 𝑝 that are indicated. In [7], the R code is included to create 

mosaics as large as 49x49, although it can easily be changed to obtain larger mosaics.  

From each of the distributions that appear in the mosaic, a random sample of size 𝑛 can be obtained 

and contrasted against the normal distribution by means of the test whose power we want to 

analyze. We chose, for example, the Anderson-Darling test and generate 10000 samples of size 

n=100 from each of the distributions that appear in the mosaic of Figure 1. We consider that the 

hypothesis of normality is not rejected if the 𝑝-value obtained is greater than 0.05; and we annotate 

on each distribution the proportion of times that the hypothesis of normality would not be rejected 

with samples from that distribution. The values obtained are indicated in Figure 2. The area is 

outlined for the distributions with values of this proportion greater than 0.5. In this figure, it can be 

observed that, if the population from which the sample comes is exponential, the probability of not 

rejecting the hypothesis of normality is practically null with a sample size of n=100 when applying 

the AD test. The probability of not rejecting is approximately 18% if the sample comes from a Laplace 

distribution and around 5-6% if it comes from a uniform distribution.  

Naturally, a larger mosaic can be constructed. Figure 3 shows one with 101 distributions on each 

side, with curves outlining the distributions in which normality is not rejected for the proportion of 

times indicated. The thickest line corresponds to the proportion p=0.5. The appearance of these 

curves can also be compared when the sample size is varied.  

Figure 4 shows the curves that delimit the areas in which normality is not rejected with a probability 

of 50%, depending on the sample size, which is indicated on the curve itself. The curve that 

corresponds to 𝑛 = 10 does not appear in the figure because any of the mosaic distributions for 

that sample size would be accepted with a probability greater than 50%. If the distribution from 

which the data come is uniform, a sample of 𝑛 = 20 observations will also result in a greater than 

50% probability of not rejecting the hypothesis of normality.  

  



  

 Figure 1: Mosaic of 11x11 distributions with the p and 𝛼 values that correspond to each one 

  

 

 

 Figure 2: The box corresponding to each distribution indicates the proportion of times that the 

hypothesis of normality is not rejected when applying the Anderson-Darling test to samples of size 

n=100. The area where this proportion is greater than 0.5 is outlined.  
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 Figure 3: Curves on a 101x101 mosaic that indicate the proportion of times that the hypothesis of 
normality is not rejected when applying the Anderson-Darling test to samples of size n=100.  

  

  

  

Figure 4: Curves that delimit the distributions for which normality is not rejected more than 50% of 

the time with the Anderson-Darling test for the sample sizes indicated 

0.90

0.80
0.70

0.60
0.50

0.40
0.30

0.20

0.10

1000

500

200

100

50

50 5030 3020 20



4 Comparison of tests 

As an example of the possibilities of our method, 10000 samples of 𝑛 = 20, 50 and 100 observations 

have been generated from each of the distributions that appear in the mosaic. The figures indicate 

the curves that enclose the distributions for which the hypothesis of normality is not rejected more 

than 50% of the time. The smaller the surface this curve encloses, that is, the fewer distributions it 

includes, the better the test is. This is because it is then more likely to reject the hypothesis of 

normality of a greater number of distributions that are not actually normal (those that are outside 

the curve). 

Looking at the distributions in group 1 (Figure 5), based on correlation and regression measures, we 

observe that the Shapiro-France and Filliben tests have practically identical performance. With 

sample sizes of 𝑛 = 20, the curve corresponding to the Shapiro-Wilk test is not very different either. 

For 𝑛 = 50, and much more clearly for 𝑛 = 100, the Shapiro-Wilk test shows greater power with 

regard to low kurtosis distributions, since its curve moves away from the lower zone. However, it 

extends somewhat further into the zone of symmetrical distributions with high kurtosis (towards 

the Laplace distribution). Overall, and taking the area enclosed by the curves as a measure of the 

performance of the test, we can say that SW produces the best performance.  

Regarding the distributions of group 2 (Figure 6), their ranking is clear. The one that performs best 

for the 3 sample sizes considered is AD. It is noteworthy that if the Lilliefors test is applied with 

sample size 𝑛 = 20, the probability of rejecting the null hypothesis for data coming from a uniform 

distribution is greater than 50%, and only slightly lower if they come from an exponential 

distribution.  

In group 3 (Figure 7), the d’Agostino test clearly performs better when the sample size is n=100, 

whereas Jarque-Bera test performs slighthly better for n=20. The performance of both is very similar 

when n=50. Keeping in mind that we generally work with small samples, Jarque-Bera test is best for 

us, although it is a debatable point since it depends on the sample size. Figure 8 compares those 

that have been considered the best from each group, and in this case it is very clear that for any of 

the sample sizes considered the test that performs best is Shapiro-Wilk.  

As additional material to this paper, we include a file in html format created with R Markdown with 

the explanations and the R code to draw the curves that allow comparing the Lilliefords, Cramer-

Von Misses and Anderson-Darling tests with n = 100 (Figure 6, right). The values of the probability 

of rejecting the hypothesis of normality are calculated separately since the computation time is long. 

We also include an html file, built in the same way as the previous one, with the explanations and 

the code to calculate those probability values. In order to be able to quickly see the result obtained 

by the program that draws the curves, three files are also included in txt format with the data for 

each one of the tests represented.  

 



  
Figure 5: Tests based on correlation measures. If the sample comes from one of the distributions enclosed by 

the curve, the probability of not rejecting the hypothesis of normality is greater than 50% 

   
Figure 6: Tests based on EDF. If the sample comes from one of the distributions enclosed by the curve, the 

probability of not rejecting the hypothesis of normality is greater than 50%.  

   
Figure 7: Tests based on moments. If the sample comes from one of the distributions enclosed by the curve, 

the probability of not rejecting the hypothesis of normality is greater than 50%.  

n = 20
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__                                                                              __                                                           __       
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Figure 8: Comparison of the tests considered best for each group.  

  
  

5     Final remarks 

The proposed method allows visualizing the power of a normality test in comparison to a wide range 

of unimodal distributions. This procedure is especially useful for graphically comparing the power 

of different tests as well as the influence of the sample size.  

This way of visualizing the results allows us to consider the difference between a statistically 

significant difference and an important difference in the context of normality tests. When a 

n = 20 n = 50

n = 100

__
Shapiro-Wilk

__
Anderson-Darling

__
Jarque-Bera



statistical method is valid only under the hypothesis of normality of the data, it is worth asking what 

deviation from normality is tolerable. For example, if the data belongs to one of the distributions 

that are next to the normal in a mosaic of 101x101 distributions, would the method be good? The 

answer is surely yes, but at what distance from normal would that no longer be true? And if we 

know the answer to this question, then what sample size is necessary for a high probability of 

rejecting the normality hypothesis if the data come from that distribution? Furthermore, what test 

performs best for that objective? 

The proposed graphics naturally give rise to questions of this type, and they also allow a clearer view 

of the possibilities and limitations of normality tests.  
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