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B. Pérez, E. Stafford, J. L. Bosque, R. Beivide

Department of Computer Science and Electronics. Universidad de Cantabria. Santander,

Spain. {perezpavonb,stafforde,bosquejl,beivider}@unican.es

S. Mateo, X. Teruel, X. Martorell, E. Ayguadé
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Abstract

The emergence of heterogeneous systems has been very notable recently. Still

their programming is a complex task. The co-execution of a single OpenCL ker-

nel on several devices is a challenging endeavour, requiring considering the dif-

ferent computing capabilities of the devices and application behaviour. OmpSs

is a framework for task based parallel applications, that does not support co-

execution between several devices. This paper presents an extension of OmpSs

that solves two main issues. First, the automatic distribution of datasets and

the management of device memory address spaces. Second, the implementation

of a set of load balancing algorithms to adapt to the particularities of appli-

cations and systems. All this is accomplished with negligible impact on the

programming. Experimental results reveal that the use of all the devices in the

system is beneficial in terms performance and energy consumption. Also, the

Auto-Tune algorithm gives the best overall results without requiring manual

parameter tuning.

Keywords: Heterogeneous systems, OmpSs programming model, OpenCL,

co-execution
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1. Introduction

The undeniable success of computing accelerators in the supercomputing

scene nowadays, is due not only to their high performance, but also to their

outstanding energy efficiency. Interestingly, this success comes in spite of the

fact that efficiently programming machines with these devices is far from trivial.5

Not long ago, the most powerful machines would have a set of identical proces-

sors. To further increase the computing power, now they are sure to integrate

some sort of accelerator device, like GPGPUs or Intel Xeon Phi. Consequently,

the once homogeneous machines are turned into heterogeneous systems, with

computing devices of very different capabilities.10

It seems that the rapid development of heterogeneous systems has caught

the programming language stakeholders unaware. As a result, there is a lack

of a convenient language, or framework, to fully exploit modern multi-GPU

heterogeneous systems. Leaving the programmer to face these complex systems

alone.15

It is true that several frameworks exist, like CUDA[1] and OpenCL[2], that

can be used to program GPGPUs. However, they all regard heterogeneous

systems as a collection of independent devices, and not as a whole. These

enable programmers to access the computing power of the devices, but does not

help them to squeeze all the performance out of the heterogeneous system, as20

each device must be handled independently. Guided by the host-device model

introduced by these frameworks, programmers usually offload tasks, or kernels,

to accelerator devices one at a time. Meaning that during the completion of a

task the rest of the machine is left idle. Hence, the excellent performance of

these machines is tarnished by an energy efficiency lower than could be expected.25

Some programmers have seen this flaw, and have tried to divide the computing

tasks among all the devices of the system [3, 4] and [5]. But it is an expensive

path in terms of coding effort, portability and scalability.

Code length and complexity considerations aside, the problem of load bal-

ancing data-parallel applications on heterogeneous systems is not to be taken30
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lightly. It requires deciding what portions of the data-set of a given kernel are

offloaded to the different devices, so that they all complete it at the same time

[6, 7, 8].

To achieve this, it is necessary to consider the behaviour of the kernels them-

selves. When the data-set of a kernel is divided in equally sized portions, or35

packages, it can be expected that each one will require the same execution

time. This happens in well behaved, regular kernels but it is not always the

case. The execution time of the packages of some kernels may have a wide

variation, or even be unpredictable. These are considered irregular kernels. If

how to balance a regular kernel can be decided prior to execution, achieving40

near optimal performance, the same can not be said about irregular ones. Their

unpredictable nature forces the use of a dynamic approach that marshals the dif-

ferent computing devices at execution time. This however, increases the number

of synchronisation points between devices, which is sure to have some overhead

that will reduce the performance and efficiency of the system. In conclusion, the45

diverse nature of kernels prevents the success of a single data-division strategy

in maximising the performance and efficiency of a heterogeneous system.

Aside from kernel behaviour, the other key factor for load distribution is the

configuration of the heterogeneous system. For the load to be well balanced,

each device must get the right amount of work, adapted to the capabilities of50

the device itself. Therefore, a work distribution that has been hand-tuned for a

given system is likely to underperform on a different one.

The OmpSs programming model presents a change of paradigm in many

ways. It provides support for task parallelism due to its benefits in terms of

performance, cross-platform flexibility and reduction of data motion [9]. The55

programmer divides the code in interrelating tasks and OmpSs essentially or-

chestrates their parallel execution maintaining their control and data depen-

dences. To that end, OmpSs uses the information supplied by the programmer,

via code annotations with pragmas, to determine at run-time which parts of the

code can be run in parallel. It enhances OpenMP with support for irregular60

and asynchronous parallelism, as well as support for heterogeneous architec-
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tures. OmpSs is able to run applications on symmetric multiprocessor (SMP)

systems with GPUs, through OpenCL and CUDA APIs [10].

However, OmpSs did not support co-execution of kernels, that is to automat-

ically run a single kernel instance on all the available devices in a heterogeneous65

system. Doing so would require extra effort from the programmer, who would

have to decompose the kernel in smaller tasks so that OmpSs could send them

to the devices. However, there would be no guarantee that the resources would

be efficiently used and the load properly balanced. The programmer would also

be left alone in terms of dividing and combining the data. This would lead to70

longer code, which would be harder to maintain.

As a solution to the above problems this article presents an OmpSs exten-

sion which enables the efficient co-execution of massively data-parallel OpenCL

kernels in heterogeneous systems. By automatically using all the available re-

sources, regardless of their number and characteristics, it presents an easy way75

to perform kernel co-execution and extracting the maximum performance of

these systems. The extension takes care of load balancing, input data partition-

ing and output data composition. To suit the different behavior of applications,

the extension presents the programmer with four different load balancing algo-

rithms.80

The experimental results presented here indicate that, for all the used bench-

marks, the utilization of the whole heterogeneous system has a positive impact

on performance. In fact, the results show that it is possible to reach an ef-

ficiency of the heterogeneous system over 0.85. Furthermore, the results also

show that, although the systems exhibit higher power demand, the shorter exe-85

cution time grants a notable reduction in the energy consumption. Indeed, the

average energy efficiency improvement observed is 53%.

The main contributions of this article are the following:

• The OmpSs programming model is extended with a new scheduler, that

allows a single OpenCL kernel instance to be co-executed by all the devices90

of a heterogeneous system.
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• The scheduler implements two classic load balancing algorithms, Static

and Dynamic, for regular and irregular applications.

• Aiming to give the best performance on both kinds of applications, two

new algorithms are presented, HGuided and Auto-Tune, which is a pa-95

rameterless version of the former.

• An exhaustive experimental study is presented, that corroborates that

using the whole system is beneficial in terms of energy consumption as

well as performance.

The rest of this paper is organized as follows. Section 2 presents background100

concepts key to the understanding of the paper. Next, Section 3 describes the

details of the load balancing algorithms. Followed by Section 4, that covers the

implementation of the OmpSs extension. Section 5 presents the experimental

methodology and discusses its results. Finally, Section 7 offers some conclusions

and future work.105

2. Background

This section explains the main concepts of the OmpSs programming model

that will be used throughout the remainder of the article.

OmpSs is a programming model based on OpenMP and StarSs. Which has

been extended in order to allow the inclusion of CUDA and OpenCL kernels110

in Fortran and C/C++ applications as a simple solution to execute on hetero-

geneous systems [9, 10]. It supports the creation of data-flow driven parallel

programs that, through the asynchronous parallel execution of tasks, can take

advantage of the computing resources of a heterogeneous machine. The pro-

grammer declares the tasks through compiler directives (pragma) in the source115

code of the application. These are used at runtime to determine when the tasks

may be executed in parallel.

OmpSs is built on top of two tools:
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• Mercurium is a source-to-source compiler that processes the high-level di-

rectives, and transforms the input code into a parallel application [11]. In120

this manner, the programmer is spared of low level details like the thread

creation, synchronization and communication, as well as the offloading of

kernels in a heterogeneous system.

• Nanos++ is a run-time library that provides the necessary services for

the execution of the parallel program [12]. Among others, these include125

task creation and synchronization, but also data marshaling and device

management.

In the pragma annotations, the programmer specifies the data dependences

between the tasks. Then, when the execution of the parallel program com-

mences, a thread pool is created. Of these, only the master thread is active,130

and uses the services of the run-time library to generate tasks, identified by

work descriptors, and adding them to a dependence graph. The master thread

then schedules the execution of the tasks to the threads in the pool as soon as

their input dependences are satisfied.

In terms of heterogeneous systems, OmpSs provides a target directive that135

indicates a set of devices in which a given task can run. In addition to a task,

the target directive can be applied to a function definition. OmpSs also offers

the ndrange clause that, together with the data-directionality clauses in and

out, guides the data transfer between the devices and the host CPU, so the

programmer perceives a single unified address space.140

However, OmpSs does not support the execution of a single kernel instance

in several devices. The extension proposed in this article modifies the Nanos++

runtime system so that it can automatically divide a kernel into sub-kernels

and manage the different memory address spaces. In order to make the co-

execution efficient, four load balancing algorithms have been implemented to145

suit the behavior of different applications.
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3. Load Balancing Algorithms

The behavior of the algorithms is illustrated in Figure 1. It shows the ideal

case in which in the execution of a regular application all devices finish simul-

taneously, thus achieving perfect load balance.150

3.1. Static algorithm

This algorithm works before the kernel starts its execution by dividing the

dataset in as many packages as devices are in the system. The division relies on

knowing the computing power of the devices in advance. Then the execution

time of each device can be equalized by proportionally dividing the dataset155

among the devices. As a consequence, there is no idle time in any device, which

would signify a waste of resources. The idea of assigning a single package to

each device is depicted in Figure 1.

A formal description of the algorithm can be made considering a heteroge-

neous system with n devices. Each device i has computational power Pi, which160

is defined as the amount of work that a device can complete per time unit,

including the communication overhead. This value depends on the architecture

of the device, but also on the application that is being run. These powers are

input parameters of the algorithm and can be extracted by a simple profiled

execution.165

The application will execute a kernel over W work-items, grouped in G work-

groups of fixed size Ls = W
G . Since the work-groups do not communicate among

themselves, it makes sense to distribute the workload taking the work-group as

the atomic unit. Each device i will have an execution time of Ti. Then the

execution time of the heterogeneous system will be that of the last device to170

finish its work, or TH = maxni=1Ti. Also, since the whole system is capable of

executing W work-items in TH , it follows that its total computational power of

the heterogeneous system is PH = W
TH

. Note that it also can be computed as

the sum of the individual powers of the devices.
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Static

CPU 1 2 3 4 5 6

GPU1 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

GPU2 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Dynamic

CPU 1 2 19 20 37 38

GPU1 3 4 7 8 11 12 15 16 21 22 25 26 29 30 33 34 39 40 43 44 47 48 51 52

GPU2 5 6 9 10 13 14 17 18 23 24 27 28 31 32 35 36 41 42 45 46 49 50 53 54

HGuided/Auto-Tune

CPU 1 2 3 4 39 40

GPU1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 41 42 43 44 48 49 52 53

GPU2 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 45 46 47 50 51 54

Time

Figure 1: Depiction of how the four algorithms perform the data division among three devices.

The work groups assigned to each device, identified by numbers, are joined in packages shown

as larger rounded boxes. Note that the execution time of work groups in the CPU is four

times larger than in the GPUs.

PH =
W

TH
=

n∑
i=1

Pi

The goal of the Static algorithm is to determine the number of work-groups175

to assign each device, so that all the devices finish their work at the same time.

This means finding a tuple {α1, ...αn}, where αi is the number of work-groups

assigned to the device i, such that:

TH = T1 = · · · = Tn ⇔
Lsα1

P1
= · · · = Lsαn

Pn

This set of equations can be generalised and solved as follows:

TH =
Lsαi

Pi
⇔ αi =

THPi

Ls
=
THPiG

W
=

PiG∑n
i=1 Pi
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Since αi is the number of work-groups, its value must be an integer. For this180

reason, the expression used by the algorithm is:

αi =

⌊
PiG∑n
i=1 Pi

⌋
If there is not an exact solution with integers then

∑n
i=1 αi < G. In this

case, the remaining work-groups are assigned to the most powerful device.

The advantage of the Static algorithm is that it minimises the number of

synchronisation points. This makes it perform well when facing regular loads185

with known computing powers that are stable throughout the dataset. However,

it is not adaptable, so its performance might not be as good with irregular loads.

3.2. Dynamic algorithm

Some applications do not present a constant load during their executions.

To adapt to their irregularities, the dynamic algorithm divides the dataset into190

small packages of equal size. The number of packages is well above the number

of devices in the heterogeneous system. During the execution of the kernel,

a master thread in the host is in charge of assigning packages to the different

devices, following the next strategy:

1. The master splits the G work-groups in packages, each with the package195

size specified by the user. This number must be a multiple of the work-

group size. If the number of work-items is not divisible by the package

size, the last package will be smaller

2. The master launches one package on each device, including the host itself

if it is desired.200

3. The master waits for the completion of any package.

4. When device i completes the execution of a package:

(a) The device returns the partial results corresponding to the processed

package.

(b) The master stores the partial results.205

(c) If there are outstanding packages, a new one is launched on device i.
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(d) If all the devices are idle and there are no more packages, the master

jumps to step 5.

(e) The master returns to step 3.

5. The master ends when all the packages have been processed and the results210

have been received.

This behaviour is illustrated in Figure 1. The dataset is divided in small,

fixed size packages and the devices process them achieving equal execution time.

As a consequence, this algorithm adapts to the irregular behaviour of some

applications. However, each completed package represents a synchronisation215

point between the device and the host, where data is exchanged and a new

package is launched. This overhead has a noticeable impact on performance.

The Dynamic algorithm takes the size of the packages as a parameter.

3.3. HGuided algorithm

The two above algorithms are well known approaches to the problem of220

load balancing in general. But none satisfy three key aspects. First, take

into account the heterogeneity of the system. Second, control the overhead

of the synchronisation. And third, give reasonable performance with regular

or irregular applications. Thus a new load balancing algorithm method called

HGuided is proposed, which is based on the Guided method from OpenMP.225

The main difference between the Hguided and the Dynamic Algorithm is the

size and quantity of the packets. In Dynamic, the size of the packets is constant,

while in HGuided they vary throughout the execution and between the devices.

As execution progresses, the size of the packets decreases with the remaining

workload. This size is weighted with the relative computational capacity of230

each device. This way the less powerful devices (CPUs in this case) run smaller

packets than they would in a homogeneous system, and the more powerful run

larger packets. The package size for device i is calculated as follows:

package sizeH =

⌊
Gr

kN
· Pi∑N

j=1 Pj

⌋
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Note that the first term gives diminishing size of the packages, as a function

of the number of pending work-groups Gr, the number of devices N and the235

constant k. The latter is introduced due to the unpredictable behavior of the

irregular applications. It limits the maximum package size and, in the exper-

imental evaluation of Section 5, was empirically fixed to 2. The second term

adjusts the package size with the ratio of the computing capacity of the device

Pi to the total capacity of the system.240

On the other hand, in the dynamic algorithm, the programmer sets the

number of packages for each execution. However, in the HGuided, since the size

of the packets depends on the device. Therefore, the number of packages will

vary according to the order in which the packets are assigned to the devices.

This can differ greatly between runs and especially in irregular applications.245

Therefore, this algorithm reduces the number of synchronization points and the

corresponding overhead, compared to the Dynamic.

Figure 1 shows how the size of the packages is large at the beginning of the

execution, and decreases towards the end.

3.4. Auto-Tune algorithm250

The HGuided algorithm strikes a balance between adaptiveness and over-

heads, which makes it a good all-around solution that adequately distributes

the workload for both regular and irregular applications. However, it still re-

quires two parameters to be provided by the programmer: the computing power

and the minimum package size. These have a key impact on performance and are255

dependent on both the application to be executed and the system itself. More-

over, the HGuided algorithm is quite sensitive to the parameters, so choosing

an adequate value for them is sometimes a demanding task that requires a thor-

ough experimental analysis. The sensitivity of the HGuided algorithm to its

parameters is further analyzed in Section 5.3.260

In addition, determining the minimum package size parameter is compli-

cated, especially for GPUs, because it is essential to do a sweep to obtain a

value that gives good results. The computing capability is easier to evaluate.
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Figure 2: Speedup per application.

It only requires obtaining the response times in each device independently and

calculating the capacities.265

The Auto-Tune algorithm is an evolution of the previous algorithm that

achieves near optimal performance for both regular and irregular loads without

the hassle of parameters. It uses the same formula to calculate the package size,

but uses nominal parameter values that are adjusted at runtime and handles

the minimum package size differently depending on the device that each package270

will be sent to.

The computing power for the first package launched at each device is calcu-

lated using the theoretical GFLOPs of the hardware. These can be obtained at

the installation of OmpSs either by querying the available devices or by running

a simple compute intensive benchmark. For the successive packages, the power275

is updated taking into account the computing speed displayed by each device.

This is calculated as the average number of work-items processed per second for

the last three packages launched to each device. By using the average speed of

the last packages, a gradual adaptiveness is attained that keeps the algorithm

resistant to bursts of irregularity that would not be representative of the actual280

speed for the next packages. Figure 2 depicts the evolution of the computing

power during the execution of one of the used for experimentation. The nominal

computing powers are used at the beginning of the execution until all the devices

have finished at least one package. Then, the computing powers are updated

at runtime. In the figure, the nominal power for the GPU was higher than the285

actual one for the application. Note that the use of the nominal powers for the
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initial packages does not disturb the load balancing, as all the devices are kept

busy and do not delay the completion of the benchmark.

Package size also has an influence on the computing speed of throughput

based architectures, such as GPUs. Consequently, package size must be kept290

relatively high to prevent an inefficient use of the hardware and overheads.

However, this is also a potential source for imbalance. If the computing power of

the devices differs greatly, a high minimum package size that reduces overheads

is likely to be too big for slow devices, namely, CPUs, which would cause delays.

To prevent this, the Auto-Tune HGuided algorithm uses different minimum295

values for CPUs and GPUs. The value selected for the CPU is one work-group

per CPU core, so no hardware is left unused and imbalance is avoided. This is

because the CPU is not a throughput device, so its computing speed is usually

much less sensitive to package size than the GPUs. Moreover, CPUs are often

the least powerful device of the system, so using a small minimum package size300

with them will improve the load balancing. Two values are considered for the

GPU minimum package size. First, the equations implemented in the CUDA

Occupancy Calculator are used to obtain the minimum number of work-groups

that will achieve maximum occupancy for the current kernel and GPU. The

CUDA Occupancy Calculator is part of the CUDA Toolkit since version 4.1.305

This value is a lower bound for the minimum package size, but might be too low

if the application launches a large amount of work-items, producing too many

packages and high overheads. To prevent this, the number of work-items is also

analyzed and the final minimum package size is set to the maximum between

the value obtained the Occupancy Calculator and 5% of the work-items. This310

percentage has been experimentally set to keep the number of packages low and

avoid performance degradation in the GPU.

These enhancements give forth an algorithm with improved adaptiveness,

that delivers comparable performance to the HGuided approach for a fraction

of the effort. It completely eliminates the need to provide any parameter and315

saves a great deal of pre-processing time per application and system, as will be

seen in Section 5.3.
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4. Implementation

As stated before, the OmpSs infrastructure relies on the combination of two

components: Mercurium, which is a source-to-source compiler, and Nanos++,320

which is a runtime capable of managing tasks, their data and the Task De-

pendence Graph (TDG) they generate. As a first approach, the new load bal-

ancing algorithms have been implemented focusing on making the changes as

self-contained as possible and minimizing the impacts on the OmpSs specifica-

tion, Mercurium and the rest of Nanos++. As a result, neither directives nor325

clauses have been added to Mercurium. Nanos++ implements a set of differ-

ent schedulers that deal with the management of the tasks submitted to the

runtime. To offer the work distribution strategies for a single OpenCL task

presented in the previous section, a new scheduler has been implemented as a

Nanos++ plugin, which has been called maat. The parameters of the algorithms330

are the following:

• The device computing powers for Static and HGuided.

• The package size for Dynamic.

• The minimum package size for HGuided.

To avoid altering the OmpSs specification, the selected algorithm and its pa-335

rameters are set through environment variables, which is the normal way to

specify the scheduler in Nanos++.

Figure 3 represents the outline of an OmpSs implementation of the Binomial

benchmark used later in the experimentation. It shows how a call to a function

defined as a task is followed by a wait. The header of that function, which is340

shown in Figure 4, indicates that the task must be run in an OpenCL device,

as well as its launch parameters, input and output data. Figure 5 displays the

environment variables that need to be set to run the task with each of the four

algorithms presented in Section 3. As shown, the selection of the auto-tune

algorithm eliminates the need of specifying any other load balancing related345

parameter.
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// Initializations

binomial_options(NUM_STEPS , SAMPLES ,

randArray , output );

#pragma omp taskwait

//Free resources

Figure 3: Basic outline of an OmpSs application.

#pragma omp target device(opencl) copy_deps

ndrange(1,samples *( numSteps +1),

numSteps +1)

#pragma omp task in([ samples]randArray) \

out([ samples]output)

__kernel void binomial_options(int numSteps ,

int samples , const __global float4*

randArray , __global float4* output );

Figure 4: Header file for the task.

Despite the efforts made to minimize the impact on Mercurium, a minor

change was unavoidable. The original implementation did not make OpenCL

kernel configuration parameters available to Nanos++. This information is nec-

essary for the operation of the plugin, as it defines the amount of work that will350

be performed. Nanos++ work descriptors do not hold this information either.

Consequently, a new Mercurium work descriptor creation function has been

implemented, which behaves like the original but including these parameters.

When a work descriptor is submitted, the new scheduler manages its division

in as many work descriptors as the selected algorithm and parameters require.355

These work descriptors are considered as children of the one submitted, and

represent an aggregate workload equivalent to that of their parent. For the

Static and Dynamic algorithms, in which the number and size of the packages

are known when the launch of the workload is made, all the work descriptors

16



# Static load balancing

NX_SCHEDULE=maat

NX_ALGORITHM=static

NX_GPU_POWER =34.0

# Dynamic load balancing

NX_SCHEDULE=maat

NX_ALGORITHM=dynamic

NX_DYN_PACKAGE_SIZE =409600

# HGuided load balancing

NX_SCHEDULE=maat

NX_ALGORITHM=hguided

NX_GPU_POWER =34.0

NX_MIN_PACKAGE_SIZE =115200

# Auto -Tune load balancing

NX_SCHEDULE=maat

NX_ALGORITHM=auto -tune

Figure 5: Environment variables to use standard OmpSs and the different load balancing

algorithms.

are created at the submission of their parent. They are stored in the scheduler360

and adequately returned when a thread is idle, receptive to another task. In

the case of the HGuided and Auto-Tune algorithms, the packages have varying

sizes that depend on the prior execution and the device that will run them. As

a consequence, the children work descriptors will be created when required by

an idle thread, considering the device it manages and the execution.365

Each of the children work descriptors is identical to its parent except for two

key differences. First, it has different OpenCL parameters, namely offset and

global work size, defining the workload of the package it represents. Second, its
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output data is just a portion of that of its parent, which is conveniently offset

so the results are written adequately. This is represented by an independent370

CopyData object, holding the start address and size that the package will have

to work on. As a result, coherence problems are avoided in the OmpSs directory.

Apart from the aforementioned details, data transfer relies on the methods used

by standard OmpSs. To perform the correspondence between work descriptors

and output data, an assumption is made: each OpenCL work-item will produce375

the result for the position of the output buffers indexed by its identifier. This

may seem a strong requirement, but it is met by most kernels widely used in

the industry and research.

The creation of the children work descriptors is performed by a modified

version of the duplicateWD function that does this extra work. This function380

is also responsible for making the OpenCL parameters of the divided work

descriptors available to the Mercurium code, which will trigger the actual kernel

launches.

Once the submission of the original work descriptor is completed, the done

function is called. This is a Nanos++ function that is used to signal the com-385

pletion of a work descriptor. It also waits for the completion of the children

of the calling work descriptor. In this way, no task dependent on the divided

one will be run until all the children resulting from the work distribution are

completed, so the dependencies of the task graph are maintained.

5. Evaluation390

This Section begins with a description of the system and the benchmarks

used in the experiments, as well as definitions of the metrics used in the evalu-

ation. Additionally experimental results are showed and analyzed.

5.1. System Set-up

The test machine has two processor chips and two GPUs and 16 GBs of395

DDR3 memory. The chips are Intel Xeon E5-2620, with six cores that can
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run two threads each at 2.0 GHz. They are connected via QPI, which allows

OpenCL to detect them as a single device. Thus, any reference to the CPU

considers both processors. The GPUs are NVIDIA Kepler K20m with 13 SIMD

lanes and 2496 cores and 5 GBytes of VRAM each. These are connected to the400

system using independent PCI 2.0 slots.The experiments build upon a baseline

system which uses a single GPU but consider the static energy of all the devices,

regardless of if they are contributing work or not.

Six applications have been chosen for the experimentation. Three of them:

NBody, Krist and Perlin are part of the OmpSs examples offered by BSC, and405

the other three: Binomial, Sparse Matrix and Vector product (SpMV) and Rap

have been specifically adapted to OmpSs from existing OpenCL applications.

The first four (NBody, Krist, Binomial and Perlin) are regular, meaning that all

the work-groups represent a similar amount of work. On the contrary, SpMV

and Rap are irregular, which implies that each work-group represents a differ-410

ent amount of work. The parameters associated to each of the load balancing

algorithms have been set to maximize performance.The computing power for

a device/application pair has been obtained as the relative performance of the

device, with respect to that of the fastest device for the application.

Perlin implements an algorithm that generates noise pixels to improve the415

realism of moving graphics. Krist is used on crystallography to find the exact

shape of a molecule using Röntgen diffraction on single crystals or powders.

Rap is an implementation of the Resource Allocation Problem. It has a certain

pattern in its irregularity, because each successive package represents an amount

of work larger than the previous.420

The evaluation of the performance of the benchmarks is done through their

response time. This includes the time required by the communication between

host and the devices, comprising input data and result transfer, as well as

the execution time of the kernel itself. The benchmarks are executed in two

scenarios, the heterogeneous system, taking advantage of the GPUs and CPU,425

and the baseline, that only uses one GPU. Note that in both instances, the

same version of the program is run, as there is no need to modify the source or
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Table 1: Maximum achievable speedup per application.

Application NBody Krist Binomial Perlin SpMV RAP

Max. Speedup 2.61 2.2 2.03 2,04 2.05 2,16

recompile, only set environment variables.

Based on these response times, two metrics are analyzed. The first is the

speedup for each benchmark when comparing the baseline and the heterogeneous430

system response times. Note that, for the employed benchmarks, the CPU is

much less powerful than the GPUs, then the maximum achievable speedup using

the three devices is not 3, but a fraction over 2 which depends on the computing

power of the CPU for the application. The speedup for each application using

a perfectly balanced work distribution is shown in Table 1. These values give435

an idea of the advantage of using the complete system. They were derived from

the response time Ti of each device as shown in Equation 1.

Smax =
1

maxni=1{Ti}

n∑
i=1

Ti (1)

The second metric is the load balancing efficiency, obtained by dividing the

reached speedup by the maximum speedup, shown in Table 1. The obtained

value ranges between 0 and 1 giving an idea of the usage of the heterogeneous440

system. Efficiencies close to 1 indicate the best usage of the system is being

made. The measured values do not reach this ideal because of the communica-

tion and synchronization times between the host and the devices.

5.2. Energy measurement

To evaluate the energy efficiency of the system it is necessary to take into445

account the power drawn by each device. Modern computing devices include

Performance Management Units (PMU) that allow applications to measure and

control the power consumption. However, the power measured is associated to

the device and not the kernel or process in execution. Together with the fact that
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it is impractical to add measurement code to all the test applications, this led to450

the development of a power monitoring tool named Sauna. It takes a program

as its parameter, and is able to configure the PMUs of the different devices in

the system, run the program while performing periodic power measurements.

This tool required an unexpected amount of thought for its development.

Since it had to monitor several PMUs, it had to adapt to the particularities of455

each one while giving consistent and homogeneous output data. For instance,

each device has a different way to access its PMUs. Recent versions of the Linux

kernel provides access to the Running Average Power Limit (RAPL) registers

[13] of the Intel processors, which provide accumulative energy readings. On

contrast, NVIDIA provides a library to access their PMUs. But this NVIDIA460

Management Library (NVML) [14] gives instant power measurements.

During the development of Sauna, it was observed that these energy or power

readings have an impact on the kernel or process execution. Then, finding an

adequate sampling period is an important task. To strike a balance between

the overhead that was observed in the GPUs with high sampling rates and465

the accuracy loss that is inherent of lower ones, it was decided to use 45ms

as the sampling period. The performance and the energy consumption can be

combined in a single metric representing the energy efficiency of the system.

This paper uses the Energy Delay Product (EDP) [15] for this purpose.

5.3. Parameter sensitivity470

As explained in Section 3, the Static, Dynamic and HGuided algorithms

require different parameters for their operation. These have to be provided by

the programmer and are one of the key factors for a successful load balancing.

However, determining the most adequate values for a workload is not trivial, as

they may differ greatly between applications and device configurations. Conse-475

quently, the selection of parameters is often a work intensive process, usually

based on experimentation.

The importance of adequately choosing the parameter values is illustrated in

Figure 6, which displays the execution time for the applications when varying
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Figure 6: Parameter sensitivity analysis
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the parameters for each of the algorithms. Note that for the HGuided algo-480

rithm, when one of the parameters is modified, the other is set to the identified

optimal value. As shown in the figure, for every of the parameters, the applica-

tions show very different behaviors, ranging from near insensitivity to delivering

greatly degraded performance, sometimes even lacking a clear relation with the

parameter value, as is for example the case of Rap for the minimum package485

size. Moreover, the applications are not affected equally by the parameters. For

example, Binomial is highly sensitive to the computing power in the Static algo-

rithm and moderately sensitive to almost insensitive to the rest of parameters,

while Rap behaves just the opposite: it is insensitive to the Static computing

power and tremendously sensitive to the other parameters.490

Considering these results, it is obvious that, in order to achieve an accurate

load balancing, an experimental tuning of the algorithm parameters is often

a must. The Auto-Tune algorithm frees the programmer from this burden by

automatically adjusting the parameters, matching and even surpassing the per-

formance of the HGuided.495

5.4. Experimental results

The experiments presented in this section have been developed with the

optimal values for the parameters required by each algorithm, obtained in the

previous section. This implies that the results for the static, dynamic and

HGuided algorithms are the best that can be achieved, but require a great500

effort to tune the parameters.

Figure 7 shows the speedup obtained for each application calculated with

respect to their execution time using the baseline system, as was explained in

Section 5.1. This section also showed that the maximum achievable speedup

depends on the application. These values, presented in Table 1, are shown in505

the graph as horizontal lines above each benchmark. Additionally, the geometric

mean is shown, which includes both four regular benchmarks and two irregular

ones.

From the results of the geometric mean it can be seen that the best result
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Figure 7: Speedup per application.

is obtained by the Auto-Tune algorithm, closely followed by the Static, the510

HGuided and finally the Dynamic. Furthermore, it should be emphasized that

the Auto-Tune algorithm is much easier to use, because it does not require

finding optimal values for any parameter.

A detailed analysis of the speedups reveals that the Static algorithm is the

best option for regular applications. However, except in the case of Perlin, the515

Auto-Tune algorithm achieves very similar results, with less effort. The other

two algorithms achieve good results, however suffer from a problem that reduces

performance. If one of the last packages is assigned to the slowest device it is

likely to delay the execution of the whole application. This problem could be

avoided by increasing the number of packages, but in that case overheads come520

into play, which also degrades performance. The HGuided algorithm due to its

very nature, partially solves this issue.

For irregular applications, the best results are obtained by Auto-Tune and

HGuided algorithms. Their adaptive behaviour favours load balancing in these

applications, where the workload of each work-group is completely unknown525

and unpredictable. On the other hand, the reduction in synchronization points

reduces the runtime overhead, which is inherent to this type of algorithm. Fi-

nally, the Static algorithm fails to balance the load because it can not cope with

the irregularity of these applications.

The load balancing efficiency gives an idea of how well a load is balanced. A530
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Figure 8: Efficiency of the heterogeneous system.

value of one represents that all the devices have been working all the time, thus

achieving the maximum speedup. In Figure 8 the geometric mean efficiencies

show that the best result is achieved by Auto-Tune with a efficiency around

0.85. In addition, there is at least one load balancing algorithm for every ap-

plication that achieves an efficiency over 0.9. This is true even for the irregular535

applications, in which obtaining a balanced work distribution is significantly

harder. In general it can be said that the efficiency can be largely improved,

for instance it can be as high as 0.98, reached by Binomial and Perlin with the

Static.

Nowadays, performance is not the only figure of merit used to evaluate com-540

puting systems. Their energy consumption and efficiency are also very impor-

tant. Figure 9 gives an idea of the energy saving the whole heterogeneous system

brings, compared to the baseline system. The latter only uses one GPU while

the other devices are idle and still consuming. Therefore, the Figure shows for

each benchmark the energy consumption of each algorithm normalized to the545

baseline consumption, meaning that less is better.

The values of the geometric mean indicate that the algorithms that consume

less energy are Static and Auto-Tune, with a saving of almost 20% compared

to the baseline. Moreover, all the algorithms reduce consumption, despite using

the whole system. Regarding the individual benchmarks, it is always possible550

to find an algorithm where the normalised energy is less than one. The use of
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Figure 9: Normalised energy consumption per application.

more devices necessarily increases the instantaneous power at any time. But,

since the total execution time is reduced, the total energy consumption is also

less. This saving is further improved by the fact that idle devices still consume

energy, so making all devices contribute work is beneficial.555

The analysis of the algorithms shows a strong correlation between perfor-

mance and energy saving. Consequently, the best algorithm for regular applica-

tions is also the Static, with an average saving of 26.5%. However, for irregular

applications, it wastes 7.4% of energy. On the other hand, the Auto-Tune gives

an average energy saving of 16% regardless of the kind of application.560

Regarding the results of concrete benchmarks, it is interesting to comment

Krist. In this benchmark the highest energy saving is provided by Auto-Tune,

although it is not the best in performance. There are only two particular cases

where the use of the whole system employs more energy than the baseline. These

are Perlin with Dynamic, Hguided and Auto-Tune, and SpMV with Static. This565

is because, in all other algorithms, the gain in performance is too small and

cannot compensate for the increased power consumption involved in using the

complete system.

Another interesting metric is the energy efficiency, which combines perfor-

mance with consumption. With the dual goal of low energy and fast execution570

in mind, the Energy Delay Product (EDP) is the product of the consumed en-

ergy and the execution time of the application. Figure 10 shows the EDP of the
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Figure 10: Normalised EDP per application.

algorithms normalised to the EDP of the baseline.

Since the EDP is a combination of the two above metrics, the previous

results are further corroborated it. Therefore Auto-Tune also achieves the best575

energy efficiency results on geometric mean, followed by Static, Hguided and

Dynamic. Attending to the individual algorithms, their relative advantages is

also maintained. Although the Static algorithm on regular applications shows a

significant reduction of the EDP of 65%, the same is not true on irregular ones,

reducing only 12.4%. In contrast, the Auto-Tune is more reliable, as it achieves580

a similar reduction on both kinds of applications; 48% on regular and 57% on

irregular.

6. Related Work

Heterogeneity has taken computing platforms by storm, ranging from HPC

systems to hand-held devices. The reason for this is their outstanding per-585

formance and energy efficiency. However, making the most of heterogeneous

systems also poses new challenges. The extra computing power also involves

new decisions on how to use all the available hardware, which currently have

to be made by the programmer without much help from the programing frame-

works and runtimes. The keys to make programming easy again are system590

abstraction, so the heterogeneous devices are handled transparently, and load

balancing, so the resources are adequately used. Nevertheless, related as they
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are, these problems are often addressed separately.

To the load balancing problem alone, there are two main approaches found

in the literature: static and dynamic, which in turn can be adaptive or not.595

Regarding static methods, Lee et al.[16] propose the automatic modification

of OpenCL code that executes on a single device, so the load is balanced among

several. De la Lama et al. [17] propose a library that implements static load

balancing by encapsulating standard OpenCL calls. The work presented in

[18] uses machine learning techniques to come up with an offline model that600

predicts an ideal static load partitioning. However, this model does not consider

irregularity. Similarly, Zhong et al. [19] use performance models to identify an

ideal static work distribution. In [20] the focus is on the static distribution of

a single kernel execution to the available devices via code modifications. Qilin

[21] is a training-based work distribution method that propose to balance the605

load using a database containing execution-time data for all the programs the

system has executed and a linear regression model. This technique is only useful

in systems that run the same applications frequently.

In the dynamic approach [22, 23] propose different techniques and runtimes.

However, these focus on task distribution and not on the co-execution of a single610

data parallel kernel. The work of [24] deals with the dynamic distribution of

TBB parallel for loops, adapting block size at each step to improve balancing.

FluidicCL [5] does focus on co-execution but for systems with a CPU and a

GPU. SnuCL [4] also tackles data parallelism, but is mostly centered on the

distribution of the load among different nodes using an OpenCL-like library.615

Kaleem’s et al. proposal in [7] and Boyer’s et al. in [6] propose adaptive

methods that use the execution time of the first packages to distribute the re-

maining load. However, they focus on a CPU/GPU scenario and do not scale

well to configurations with more devices. Similarly, HDSS [25] is a load balanc-

ing algorithm that dynamically learns the computational power of each proces-620

sor during an adaptive phase and then schedules the remainder of the workload

using a weighted self-scheduling scheme during the completion phase. How-

ever, this algorithm assumes that the packages launched in the initial phase are
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representative of the whole load, which might not be true for irregular kernels.

Besides, package size decreases linearly during the completion phase, which may625

produce unnecessary overheads as substantiated in this paper. Navarro et al.

[24] propose a dynamic, adaptive algorithm for TBB that uses a fixed package

size for the GPU and a variable one for the CPU to try to achieve good bal-

ancing. This work was extended in [26], proposing an adaptive package size for

the GPU too. This is also based on using small initial packages to identify a630

package size that obtains near optimal performance.

Scogland et al. [27] propose several work distribution schemes that fit differ-

ent accelerated OpenMP computing patterns. However, they do not propose a

single solution to the load balancing problem. The library presented in [28] also

implements several load balancing algorithms and proposes the HGuided, which635

adapts to irregularity and considers heterogeneity. This library is also used in

Xeon Phi base systems in [29]. However, it requires certain parameters from

the programmer that may not be easy to obtain and uses linearly decreasing

packages that might incur overheads.

Some papers propose algorithms to distribute the workload between CPU640

and GPU taking performance and power into account. For instance, GreenGPU

dynamically distributes work to GPU and CPU, minimizing the energy wasted

on idling and waiting for the slower device [30]. To maximize energy savings

while allowing marginal performance degradation, it dynamically throttles the

frequencies of CPU, GPU and memory, based on their utilizations. Wang and645

Ren [31] propose a power-efficient load distribution method for single applica-

tions on CPU-GPU systems. The method coordinates inter-processor work dis-

tribution and frequency scaling to minimize energy consumption under a length

constraint. SPARTA is a throughput-aware runtime task allocator for Hetero-

geneous Many Core platforms [32]. It analyzes tasks at runtime and uses the650

obtained information to schedule the next tasks maximizing energy-efficiency.

With respect to the problem of transparently managing a heterogeneous

system, the authors of [33] propose a framework for OpenCL that enables the

transparent use of distributed GPUs. In this same vein, Cabezas et al. [3]
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present an interesting architecture-supported take on efficient, transparent data655

distribution among several GPUs. Nevertheless, this works overlook load bal-

ancing, which is essential when trying to make the most of several heterogeneous

devices. Maestro [34] implements concepts related to the abstraction of the sys-

tem, but the load balancing algorithm it proposes requires training.

You [35], Zhong [8] and Ashwin [36] do address both load balancing while660

abstracting the underlying system and data movement. Nevertheless, their focus

is on task-parallelism instead of on the co-execution of a single data-parallel

kernel. Kim et al. [37] approach the problem by implementing an OpenCL

framework that provides the programmer with a view of a single device by

transparently managing the memory of the devices. Their approach is based on665

a Static load balancing strategy, so it can not adapt to irregularity. Besides,

they only consider systems with several identical GPUs, lacking the adaptability

that OmpSs offers.

There are also some contributions that focus on scheduling and load balanc-

ing for OmpSs tasks. For instance, the scheduler presented in [38] is closer to670

the idea of co-execution. It holds several implementations of a task, targeted for

different devices, that will be run iteratively. The scheduler stores the execution

time of each implementation, so it can take load balancing decisions on what

implementation is best to run next. However, the programmer is responsible for

mapping the computation on several iterative tasks, which may not be an easy675

and natural approach for the application at hand.

7. Conclusions and Future Work

This paper presents a new scheduler of the OmpSs programming model that

allows to efficiently co-execute a single OpenCL kernel instance using all the

devices in a heterogeneous system. The scheduler has been conceived so that it680

is fully transparent to the programmer, who only needs to select the algorithm

and set its parameters through environment variables.

Similarly to OpenMP, the scheduler provides different load balancing algo-
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rithms. These include the classic Static and Dynamic algorithms, as well as

a version of the Guided, called HGuided, that takes into account the hetero-685

geneity of the system. Achieving good result with these algorithms required the

tuning of several parameters. Therefore, this paper also presents a novel load

balancing algorithm called Auto-Tune, which is capable of determining suitable

parameter values for each application automatically.

Judging by the results of all the experiments presented in this paper, two690

conclusions can be reached. First, the utilization of all the devices of a het-

erogeneous system to execute the benchmarks significantly improves their per-

formance, energy consumption and efficiency. Second, although there are some

particular cases in which the Static algorithm outperforms the Auto-Tune algo-

rithm, it achieves excellent results without a tedious and time-consuming phase695

of parameter optimization, which would necessary for each new benchmark or

system.

According to our experimental results, Auto-Tune is capable of taking ad-

vantage of the whole heterogeneous system, with an average efficiency of 0.85.

Since the all the compute devices of the machine are used, the execution time is700

reduced and consequently, an average energy saving of 16% has been observed.

The combination of these two improvements gives an reduction of the EDP close

to 50%.

The future of this extension will see compatibility with new devices, like

Intel Xeon Phi, FPGAs or integrated GPUs. From the OmpSs perspective, a705

modification of the pragma specification would allow the programmer to select

different algorithms or parameters for different kernels of the same application.

It would be interesting to extend the evaluation to different systems and device

configurations.
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[28] B. Pérez, J. L. Bosque, R. Beivide, Simplifying programming and load810

balancing of data parallel applications on heterogeneous systems, in: Pro-

ceedings of the 9th Annual Workshop on General Purpose Processing Using

Graphics Processing Unit, GPGPU ’16, ACM, New York, NY, USA, 2016,

pp. 42–51. doi:10.1145/2884045.2884051.

URL http://doi.acm.org/10.1145/2884045.2884051815

[29] R. Nozal, B. Perez, J. L. Bosque, R. Beivide, Load balancing in a het-

erogeneous world: Cpu-xeon phi co-execution of data-parallel kernels, The

Journal of Supercomputingdoi:10.1007/s11227-018-2318-5.

URL https://doi.org/10.1007/s11227-018-2318-5

[30] K. Ma, X. Li, W. Chen, C. Zhang, X. Wang, Greengpu: A holistic approach820

to energy efficiency in gpu-cpu heterogeneous architectures, in: 2012 41st

Int. Conf. on Parallel Processing, 2012, pp. 48–57.

35

http://doi.acm.org/10.1145/2400682.2400716
http://doi.acm.org/10.1145/2400682.2400716
http://doi.acm.org/10.1145/2400682.2400716
http://dx.doi.org/10.1145/2400682.2400716
http://doi.acm.org/10.1145/2400682.2400716
http://www.sciencedirect.com/science/article/pii/S1877050915010212
http://www.sciencedirect.com/science/article/pii/S1877050915010212
http://www.sciencedirect.com/science/article/pii/S1877050915010212
http://dx.doi.org/https://doi.org/10.1016/j.procs.2015.05.213
http://www.sciencedirect.com/science/article/pii/S1877050915010212
http://www.sciencedirect.com/science/article/pii/S1877050915010212
http://www.sciencedirect.com/science/article/pii/S1877050915010212
http://doi.acm.org/10.1145/2884045.2884051
http://doi.acm.org/10.1145/2884045.2884051
http://doi.acm.org/10.1145/2884045.2884051
http://dx.doi.org/10.1145/2884045.2884051
http://doi.acm.org/10.1145/2884045.2884051
https://doi.org/10.1007/s11227-018-2318-5
https://doi.org/10.1007/s11227-018-2318-5
https://doi.org/10.1007/s11227-018-2318-5
http://dx.doi.org/10.1007/s11227-018-2318-5
https://doi.org/10.1007/s11227-018-2318-5


[31] G. Wang, X. Ren, Power-efficient work distribution method for cpu-gpu

heterogeneous system, in: Int. Symp. on Parallel and Distributed Process-

ing with Applications, 2010, pp. 122–129.825

[32] B. Donyanavard, T. Mück, S. Sarma, N. Dutt, Sparta: Runtime task al-

location for energy efficient heterogeneous many-cores, in: Int. Conf. on

Hardware/Software Codesign and System Synthesis, CODES ’16, ACM,

New York, NY, USA, 2016, pp. 27:1–27:10.
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