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Chapter 1

Introduction

1.0.1 Fluid-Structure Interaction Problems

Fluid-structure interaction (FSI) problems include a fluid flow mutually interacting with a

moving or deforming structure. Fluid flow exerts surface forces on the solid’s wet bound-

ary and the movement of the structure alters the fluid’s motion. There is a wide range of

applications cited for FSI, from civil to biomedical engineering. An interesting example

of FSI application in biomedical engineering is simulation of blood flow inside deformable

vessels in human arteries. The simulations help on shedding light on the flow of blood

inside the vessels and improving the quality of artificial blood vessels and predicting the

rupture of aneurysms during specific medical treatments [1, 2]. To have a more clear un-

derstanding of the importance of studies in the field of fluid-structure interactions, the case

of aneurysms treatment will be discussed in details:

An aneurysm is an abnormal localized enlargement of a portion of an artery, resulted

of the weakness in the wall of the blood vessel. The relative fatality rate is unusually high:

when the thoracoabdominal aneurysms (TAs) approaches the size of d=6–10 cm or more,

in 62% of the cases it leads to rupture or dissect [3]. In these cases, according to Elefteri-

ades [4], the surgical interferences are suggested for aneurysms with the size of d=0.5 cm

below the critical diameter. However, surgical repairs of TA are hazardous and expensive.

According to Culliford et al. [5] operating on patients with ruptured or dissected aneurysms

leads to the death of at least 15% of the patients; moreover, surgical treatment of aneurysms

have serious disadvantages, e.g. paraparesis or paraplegia in 4.6% of the cases. Further-

more, Vorp et al. [6] has suggested that the failure of an ascending thoracic aneurysm wall
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is not linked to its diameter. Using numerical simulations of patient-specific geometry,

however researchers are able to perform patient-specific wall stress analysis to provide fur-

ther information on the role of anatomical features such as the shape and wall composition

on the stress pattern and consequently the potential rupture of thoracic aneurysms [2].

Another exciting application of fluid-structure-interaction problems is predicting the

flow and wake induced vibration which has a wide range of applications in engineering e.g.

the submerged structures in offshore equipment [7]. Over the past decades, flow and wake

induced oscillations have gained growing interests from both the scientific and practical

communities.

Wake induced vibration can occur when long and flexible objects are immersed in the

flow field, they will be excited to vibrate by the external forces from the flow that passes

by. Meanwhile, the movements of the cylinders will in return change the flow features and

characteristics. If there is only one object freely oscillating in the flow field, usually recog-

nized flow patterns including “2P”, “2S” and “P+S” (where “P” stands for a pair of vertices,

and “S” means one) can be found for different parameter settings. Meantime, the “lock-

in” or “lock-on” performance may appear meaning that as the vortex shedding frequency

approaches its natural frequency, the cylinder experiences a vibration with relatively high

amplitude.

Another case of flow induced vibration is when there are two (or more) bluff bodies (for

example circular cylinders) dominated by a cross flow with one of them placed downstream

in the wake of the other object. This framework is common, for example, in the cases of

overhead electric power transmission lines subjected to the wind, clustered offshore risers

under the effect of ocean currents, bridges and heat exchangers, to name a few. In these

cases a pattern as shown in 1.1 is frequently witnessed in the flow trajectory of the cylin-

der movement specially in the ocean platform systems. More details about flow induced

oscillations could be found in review work of Williamson and Govardhan [8].

Wake induced vibrations are the strongest for the in-line composition. For this arrange-

ment, the downstream body is placed entirely behind the upstream body along the flow

direction. However, the complete mechanism of wake-induced vibration is yet to be dis-

covered [10]. According to Paidoussis, J. Price, and Langre [10], the downstream body can

oscillate transversely with an excessive peak-to-peak amplitude of 10D. These vibrations
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FIGURE 1.1: Evolution of vorticity for fluid induced vibration of four circu-
lar cylinders [9].

can cause significant structural damages due to fatigue and thus impose severe concerns in

engineering applications.

Experiments and numerical simulations are widely used in studying the flow induced

vibration problems. In most of the experimental works, the flow parameters including

Reynolds number are in the turbulent flow regime and limited. Contrary, the flexibility

of numerical simulations on implementing different initial conditions, boundary conditions

and fluid properties, as well as their capability to extract substantial information on the flow

field, makes them extra appealing on studying these problems. Numerical simulations of

flow induced vibrations can provide significant details on the nature of the problem, e.g.

oscillation analysis of the structure, structural fatigue, velocity and vorticity fields which

are difficult or impossible to capture experimentally or analytically. As a result, significant

attention is given to numerical simulations of flow induced vibration problems [11, 12].

Now that important aspects of numerical simulation of fluid structure interaction prob-

lems are discussed, we are going to review the approaches in solution of these problems.

Generally, two different strategies are widely used to solve FSI problems, namely

monolithic and partitioned methods. In monolithic approach, a single solver is used to
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solve the governing fluid and structure equations simultaneously. Since these equations are

solved concurrently, the interaction between the fluid and structural domains is inherently

taken into account. The main advantage of the monolithic approach is that there would

be no need for any extra coupling procedures between fluid and structure interface which

reduces the complexity of the original problem. Nevertheless, this technique demands to

apply the same numerical methods in discretization and solution of the fluid and struc-

tural equations. However, the fluid and structural governing equations are different and

specific considerations have to be taken into account for each of them separately. As a

result, the monolithic methods are reported to be less efficient or reliable in some applica-

tions [13]. Another disadvantage of the monolithic approach is its inability to employ the

already-developed fluid and structural solvers. Therefore, it requires an extensive numeri-

cal programming effort which generally leads to a less modular solver [13, 14].

partitioned methods, on the other hand, employ separate solvers for fluid and struc-

tural equations and utilize a coupling scheme to consider the interaction of the domains.

The coupling scheme resolves the order and frequency in which the fluid and structural

equations need to be solved. Moreover, It determines the communication technique and

information exchange between the two solvers. This information exchange is primarily

bounded to the fluid-structure interface. Partitioned approaches mitigate both mentioned

disadvantages of the monolithic schemes. It enables utilizing the most suitable numerical

methods for each sub-problem, e.g. fluid problem and structural problem. Each of these

methods for solving the sub-problems could previously be tested and verified on numerous

cases which significantly increases the reliability of the numerical simulations. It also al-

lows the application of the previously developed solvers for fluid and structural equations

separately which reduces the required development effort and increases the modularity of

the solvers. Despite the mentioned advantages, the partitioned approaches append a new

challenge to the problem, i.e. the coupling technique required in the interface between the

two solvers [13, 14].

Partitioned methods are further divided into two categories of explicit (loosely cou-

pled) and implicit (strongly coupled) schemes. In an explicit coupling method, the fluid

and structural equations are solved only once and in a sequence at every timestep. As a

result, explicit methods do not satisfy the exact coupling condition at the fluid–structure
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interface. In this sub-category, the most basic explicit scheme is the conventional serial

staggered method [15]. Contrary, Implicit methods, enforce the equilibrium condition at

the interface through coupling iterations between the fluid and structural solvers at each

time step. Two most commonly used techniques to accomplish the FSI coupling iterations

are Fixed-point (Gauss–Seidel or Jacobi) iterations [13, 16] and Newton-based methods

[17, 18, 19]. Besides them, vector extrapolation methods have also been used for this end

[16].

Explicit methods perform correctly for aeroelastic problems concerning compressible

flows [15, 20]. Nevertheless, they are unstable for a wide range of problems, particularly

incompressible flow problems and low solid/fluid density ratios (ρm/ρ f ≈ 1). This insta-

bility is regardless of the time step or discretization schemes of the governing equations

of each domain. It is inherent to the coupling method named “the added-mass effect”.

The instability arises since fluid forces in the explicit coupling depend on a predicted dis-

placement of the structure, rather than the correct one. As the structure moves, it ought to

accelerate the bulk of the fluid around it as well. Consequently, part of the fluid acts as an

extra mass in the structural dynamics system, causing the added-mass effect. This effect

is especially strong when densities of the fluid and the structure are alike. For any loosely

coupled method, there is a density ratio limit in which the method experiences instabil-

ity beyond it [21, 22]. While added-mass effect causes instability in the loosely coupled

schemes, it deteriorates convergence of the strongly coupled methods. Hence, an FSI prob-

lem with strong added-mass effect is also challenging for implicit methods, as it requires

many coupling iterations in order to converge at each time step [21, 22].

Implicit methods provide a stable solution for FSI problems with strong added-mass

effect, of which explicit methods are not capable. However, significantly higher computa-

tional resources are required as several iterations of solving the complete system of govern-

ing equations many times per time step are needed. To mitigate this deficiency, Fernández

and Moubachir [18] introduced a semi-implicit coupling technique in which they used a

projection method to solve the fluid equations and only implicitly coupled the projection

step with the structure. Consequently, the pressure stress term of the fluid has strongly

coupled with the structure. According to Causin, Gerbeau, and Nobile [21], the pressure
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stress term is the main contributor to the added-mass effect and coupling this term explic-

itly causes numerical instability. With implicit treatment of the pressure stress added-mass

term, the semi-implicit method maintains the promising stability of the implicit schemes,

while explicit treatment of the other terms helps to avoid excessive computational cost [18].

A very similar method was suggested by Breuer and Münsch [23] to solve FSI problems

in turbulent flows. A similar approach is presented in the hybrid monolithic-partitioned

method of Grétarsson, Kwatra, and Fedkiw [24] for FSI problems with compressible flows

which strongly couples the fluid pressure and structure velocity by solving them implicitly

in a monolithic way, while the remaining terms are loosely coupled in a partitioned manner.

Other semi-implicit methods are also reported in the literature which share the same basic

idea. The reader is recommended to refer to [25, 26] and [27] for more details.

Despite receiving attentions from researchers in the past decade, semi-implicit coupling

methods are far from maturity. Most of the reported methods lack modularity and simplicity

and are only tested in a few ranges of specific FSI problems and their robustness in solving

different types of FSI problems is yet to be evaluated.

1.0.2 Non-Newtonian Fluids

Newtonian fluids are named after Issac Newton which first described the flow character-

istics of fluids with a simple linear relation between shear stress τ and shear rate γ̇ . This

relation is known as Newton’s Law of Viscosity, where the proportionality constant µ is

the viscosity of the fluid as:

τ = µ× γ̇ (1.1)

where τ is the local shear stress of the fluid, γ̇ is the local shear rate of the fluid, and

µ is the viscosity of the fluid. Some examples of Newtonian fluids include water and air,

in which their viscosity is only a function of temperature. Newtonian fluids are usually

constituted of small isotropic molecules, symmetric in shape and properties, which are not

oriented by the flow field. However, it is also feasible to witness Newtonian behaviour
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in large an-isotropic molecules e.g. low concentration proteins which they might show a

constant viscosity regardless of flow field’s shear rate.

In reality, however, most of the fluids are showing non-Newtonian behaviour, meaning

their viscosity is dependent on shear rate or the deformation history. Non-Newtonian fluids

can display either a non-linear relation between shear stress and shear rate, can have yield

stress or viscosity that is dependent on deformation history or a combination of them.

In this work, we will study three types of non-Newtonian shear-thinning/ shear-thickening/

Viscoelastic fluids interacting with structure. For this reason we will briefly review the no-

tion and pioneering works in each of these fields.

Shear-Thinning Fluids

The most common type of time-independent non-Newtonian fluids are shear-thinning (or

pseudoplastic), in which their apparent viscosity decreases with increasing shear rate. In

these types of fluids, however, both at very low and very high shear rates, Newtonian be-

haviour is observed, meaning shear stress is having a linear relation with shear rate. The

values of the apparent viscosity at these very low and high shear rates are known as the

zero shear viscosity, µ0, and the infinite shear viscosity, µ∞.

Figure 1.3 illustrates the variation of apparent viscosity along with µ0 and µ∞ as a

function of shear rate (γ̇) for a shear-thinning fluid. The order of changes in the shear rate

and apparent viscosity for this case are very wide. According to Chhabra and Richardson

[28], shear rates associated to µ0 and µ∞ viscosities are dependent on several parameters,

including the type and concentration of polymer, the molecular weight distribution and

the nature of its solvent, making it difficult to present a valid generalizations. However,

many materials exhibit their µ0 and µ∞ at shear rates below 10−2 s−1 and above 105 s−1

respectively. When the molecular weight of the polymer decreases, since its molecular

weight distribution becomes restricted, and its polymeric concentration in solution declines,

the range of shear rate where µ = µ0 (apparent viscosity is constant in the zero-shear

region) increases [28].

Utilizing the Generalized Newtonian Fluid (GNF) formulation for modeling the shear-

thinning and shear-thickening fluids is very common among researchers to represent the

rheology of this types of fluids. However, some cares must be taken into account. The
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FIGURE 1.2: Illustration of µ0 and µ∞ for a Shear-Thinning fluid

possibility of its usage in fluid flows other than simple shear is not straightforward. Con-

sequently, in these cases, the numerical models should be verified by experimental results.

On the other hand, GNF constitutive equation is unable to predict the normal shear stresses,

which are elastic effects. As a result, GNF constitutive equations are mainly suitable and

accurate for flows in which the elastic effects are negligible. Besides, in the GNF mod-

els, the history of deformation is not taken into account which is not proper for materials

with memory. Therefore, the GNF models could successfully be applied to fluids in which

represent notable shear-rate dependent viscosity, but negligible small normal stress differ-

ences or fluids in which the effect of a variable shear viscosity is dominant compared to the

normal stresses [29].
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Various mathematical formulations with diverse complexity and types have been sug-

gested by researchers to model shear-thinning features. Some of these attempts are con-

cerned with curve fitting of the available experimental data, providing empirical relation-

ships for the shear stress–shear rate curves. On the other hand, other attempts have theo-

retical basis in statistical mechanics. In this research, we discuss a selection of the most

common viscosity models. The reader is refereed to Bird [30] for a more comprehensive

analysis of the available models.

• The power-law or Ostwald de-Waele model:

This model is one of the most widely used formulation to characterize shear-thinning

fluids, among the researchers. In this model, the relationship between shear stress

(τ) and shear rate (γ̇) could be approximated by a formulation of following over a

limited range of shear rate.

τyx = mγ̇
n
yx (1.2)

Consequently, the apparent viscosity of this model would be as:

µ(γ̇) = τyx/γ̇yx = mγ̇
n−1
yx (1.3)

where m and n are empirical curve-fitting parameters named fluid consistency co-

efficient and the flow behaviour index, respectively. note that for n=1 the model

exhibits Newtonian behaviour. Even though this model offers a simple representa-

tion of shear-thinnig fluids, it has disadvantages. One is the parameters m and n, are

not entirely constant and are dependent on the value of shear rate γ̇ . Another problem

of this model could be seen in figure 1.2, as it does not predict the zero and infinity

shear viscosities (µ0 and µ∞).

• The Carreau viscosity equation:

In order to overcome the shortcoming of power-law model in deviation at very high
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and very low shear rates, Carreau [31] proposed a model based on the molecular net-

work considerations, which incorporates limiting viscosities of µ0 and µ∞ as follow:

µ−µ∞

µ0−µ∞

=
(
1+(λ γ̇yx)

2)(n−1)/2
(1.4)

In this formulation, the parameters n(<1) and λ are empirical curve-fitting parame-

ters. For either λ or n equal to zero and µ = µ0 the model predicts a Newtonian fluid

behaviour.

In this work we use the discusses model of 1.2 to simulate the shear-thinning fluids.

Shear-Thickening Fluids

Shear thickening is defined in the British Standard Rheological Nomenclature as the in-

crease of viscosity with increase in shear rate. The shear-thickening behaviour of fluids

had been an important topic of interest for rheologists over the last two decades. The term

shear-thickening is usually used to refer to fluids in which dynamic viscosity increases

as the applied shear rate has risen. The phenomenon is frequently encountered in vari-

ous industries [32]. The onset of shear-thickening marks the point when hydrodynamic

interactions begin to predominate in the system. However, the microstructural basis for

this behaviour remains unresolved. Hoffman [33], in his pioneering studies, used a com-

bination of rheology with in situ light diffraction to clarify microstructural variations that

happen during shear-thickening. He concluded that the incipience of shear-thickening at

a critical shear rate (γ̇) corresponds to a transition from an easy flowing status where the

particles are organized into layers to a disordered state where this ordering is absent. This

mechanism is commonly called an order-disorder transition. Researchers have been study-

ing to answer this question: whether an order-disorder transition indeed takes place in all

shear-thickening fluids. Stokesian dynamics simulations done by Bossis and Brady [34]

and Brady and Bossis [35] have shown that clusters of particles characterize the shear-

thickened state. The formation of these flow-induced clusters leads to an increase in the

energy dissipation, and as a result, the viscosity increases. Hence, according to Bossis and

Brady [34] and Brady and Bossis [35], shear-thickening is not related to the elimination of

ordered layers but the generation of particle clusters. However, under certain conditions,
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both events may co-occur (i.e., the disruption of the ordered layer structure can be caused

by the clustering of particles). Nevertheless, for the clustering theory to hold, the existence

of an ordered state before the shear-thickening transition is not necessary.

Because of its specific characteristics, shear-thickening fluids are used widely in dif-

ferent engineering applications, e.g. energy absorbers, vibration controllers and safety

protects [36, 37, 38, 39, 40, 41, 42, 43, 44]. For instance, Petel et al. [38] studied the

effect of the particle strength and volume fraction on the deceleration performance of STF.

Lu et al. [43] studied the compressive behaviour of warp-knitted fabrics impregnated with

shear-thickening fluids. Park et al. [42] experimentally and numerically investigated the

absorption characteristics of Kevlar fabrics impregnated by shear-thickening fluids at a ve-

locity of V ≈ 1−2km/s.

Another current investigation being performed is related to the integration of STFs into

composite structures. Tan et al. [41] investigated the energy absorption features of a sand-

wich plate with a shear-thickening fluids core subjected to penetration loading. Fischer et

al. [44] reported the effect of a shear-thickening fluid core on the vibration suppression of

a sandwich beam. Since these composite sandwich structures tune their part stiffness and

damping capacity under dynamic deformation, they may be used in ski boards pursuing the

absorption of vibrations, what would lead to increase the comfort and the control of the

skier, reducing also the possibility of joint injuries.

Similar to what happens in some electro-rheological and magneto-rheological fluids,

stabilized concentrated colloidal suspensions of rigid nanometric particles in a carrier fluids

exhibits shear thickening behaviour exclusively under mechanical deformation and without

the necessity of an external power source. which could help in vibration control using

STFs [45]. Nevertheless, shear thickening is an unwanted behaviour in many other cases

and since this could lead to technical problems and even to the destruction of equipments

like pumps or stirrers, special care should be taken into account in the design process of

devices with STFs [46]. Figure 1.3 schematically represents the shear-stress as a function of

shear-rate for Newtonian/Shear-Thickening/Shear-Thinning fluids discussed in this section.

Shear-thickening fluids exhibit three characteristics regions:

• Region a, where a minor shear-thinning behaviour exists up to a critical shear rate

(γ̇c).
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FIGURE 1.3: Shear stress as a function of shear rate for Newtonian/Shear-
Thickening/Shear-Thinning fluids.

• A relatively wide region b, in which shear-thickening happens. This shear-thickening

takes place between two values of γ̇c and a higher critical value γ̇max, where the

apparent viscosity is maximum.

• Region c by an abrupt shear thinning behaviour for values of γ̇ > γ̇max

These regions are schematically depicted in figure 1.4.

Various formulations have been developed and applied as Generalized Newtonian Fluid

models for the case of shear-thinning fluids. Contrary, for shear-thickening fluids, despite

the considerable amount of works in the literature devoted to microscopic models, it is

prevalent to model the shear-thickening fluids utilizing the simple power-law model as

described in section 1.0.2, equation 1.2 for n values greater than 1. Although the power-law

constitutive equation can successfully model the shear rates intervals where the viscosity

increases with the shear rate (n > 1), it fails to predict the low and high shear rate regions,

where shear-thinning behaviours are normally observed [47].

An efficient approach to tackle this problem is to use a piecewise definition to take the

mentioned three different regions into account separately. Different piecewise functions
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FIGURE 1.4: Conventional viscosity curve of a shear thickening-fluid

are suggested by researchers in the literature for shear-thickening fluids. Among all of

them, the model proposed by Galindo-Rosales, Rubio-Hernández, and Sevilla [48] has

drawn significant attention in the scientific comunity. In this model the apparent viscosity

is described as below:

µ(γ̇) =


µI(γ̇) = µc +

µ0−µc

1+
[
λI

(
γ̇2

γ̇c−γ̇

)]nI , γ̇ ≤ γ̇c.

µII(γ̇) = µmax +
µc−µmax

1+[λII( γ̇−γ̇c
γ̇max−γ̇ )γ̇]

nII , γ̇c < γ̇ ≤ γ̇max.

µIII(γ̇) =
µmax

1+[λIII(γ̇−γ̇max)]
nIII , γ̇max < γ̇ .

(1.5)

The model parameters are usually determined from simple shear flow data [48]. In this

equation, λi parameters are positive characteristic time constants. In this work we use this
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model to simulate the shear-thickening fluids.

Viscoelastic Fluids

In the classical elasticity theory, the stress is proportional to the strain. For tension, Hooke’s

law applies and the mentioned coefficient of proportionality is known as Young’s modulus,

G. If an elastic solid is deformed, after the stress is being removed, it regains its original

form. Although, if the applied stress surpasses the characteristic yield stress of the material,

the deformed solid will not face full restoration and a phenomenon called creep will happen.

On the other hand, as discussed before, in a Newtonian fluid, the shear stress is pro-

portional to the shear rate. Many materials show both elastic and viscous behaviours under

given circumstances. These materials are said to be viscoelastic. Ideal elastic deformation

and ideal viscous flow are in fact, extreme cases of viscoelastic behaviour. For a wide range

of materials, mainly these extreme conditions are observed, e.g. the elasticity of water and

the viscosity of ice are usually unnoticed.

Various materials including polymer melts, polymer and soap solutions, synovial fluid

and etc., present viscoelastic behaviour. These materials can store and recover shear energy,

as viscous liquid energy is dissipated, but elastic solid energy is recoverable. Many strange

phenomena have been witnessed in viscoelastic fluids, e.g. die swell, rod climbing or

Weissenberg effect, tubeless siphon, negative wake of rising bubbles and the development

of secondary flows at low Reynolds numbers. Figure 1.5 illustrates the two phenomena of

die-swell and negative wake observed in viscoelastic fluids. The reader is reffered to Bird

[30] and Carreau [31] for more details on behaviour of viscoelastic fluids.

As mentioned before, in viscoelastic materials, the stress response does not only de-

pend on their current deformation but also on their deformation history. Therefore, time

is a crucial parameter in understanding the viscoelastic materials. Viscoelastic materials

usually show stress relaxation, creep deformation and shape memory.

Viscoelastic behaviour of fluid is prevalent in a wide range of applications including

food processing, pharmaceuticals, casting industry and chemical industry [49]. One of the

important applications of Viscoelastic fluids is in microfluidic devices, for instance mem-

ory and control devices [50] and microfluidic rectifiers [51], use Viscoelastic materials as

working fluid. A huge portion of biological fluids in nature exhibit viscoelastic behavior.
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FIGURE 1.5: Left: die swell phenomena observed in viscoelastic fluids,
Right: negative-wake and cusp-shaped trailing edge of gas bubble rising in

viscoelastic fluids.

Thus it is important to understand the dynamics of Viscoelastic fluids. Numerical simu-

lation has become a powerful method in studying the underlying physics of viscoelastic

behaviour of the fluid and also an important tool in design and manufacturing process of

Viscoelastic applications. In numerical simulations, the Viscoelastic flow is solved using

Navier-Stokes equations integrated with an extra constitutive equations which describes the

relation of stress with strain rate tensor [52]. A variety of numerical methods, including fi-

nite difference, finite element, finite volume and hybrid methods, have been developed to

simulate viscoelastic flows [53, 54, 55, 56].

The relative effect of viscoelasticity is usually quantified by either one of the dimen-

sionless Weissenberg number or dimensionless Deborah number. Weissenberg number is
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the ratio of elastic forces to viscous forces and is formulated as product of characteristic

relaxation time λ and shear rate. Deborah number is mainly used in flows with a non-

constant stretch history, and physically represents the rate at which elastic energy is stored

or released. It is defined as the ratio between the characteristic relaxation time and the time

scale of observation:

Wi = λ γ̇ (1.6)

De = λ /tscale (1.7)

Continuum constitutive equations for viscoelastic fluids could be driven from the kinet-

ics theories. In most numerical simulations of practical applications concerning viscoelastic

fluids, however, the constitutive model and the material properties are extracted from rheo-

logical experiments. Many of the conventional constitutive models can predict un-physical

characteristics, called constitutive instabilities. They can be categorized into two classes:

the Hadamard instability and the dissipative instability [57]. The Hadamard instability is

referred to as the elastic response under sudden or high-frequency wave distributions. The

dissipative instability is referred to as boundless free energy or rate of energy dissipation

with increasing deformations. As a result, special care must be taken into account to find

proper constitutive models. In constitutive models extracted from molecular theories, the

stress response to the deformation of the fluid, τ , is decomposed into two parts of solvent

(τs) and polymerice (τp) stresses, which corresponds to the instantaneous response of the

solvent, and time-dependent contribution of the polymer (τ = τs + τp). In this formulation

τs = 2µsγ̇ and τp = G0 fs(c), where µs = β µ0 is the solvent viscosity, G0 = (1−β )µ0/λ

is the plateau elastic moduli, fs(c) is the strain function determined by the constitutive for-

mulation, µ0 is the steady-state viscosity and β is the retardation ratio or solvent viscosity

ratio. Conformation tensor c is an internal tensor variable representing the macro-molecular

configuration of the polymeric chains. The conformation tensor is a second-order internal

structural tensor correlated with the second moment of the chain end-to-end distribution

function. According to Beris and Housiadas [58], the eigenvalues of this tensor have the

physical meaning of the square of the average macromolecular size along the principle three
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directions and their corresponding eigenvectors have the physical meaning of the orienta-

tion of those directions in space. As a result of their physical meaning, all those eigenvalues

need to be positive, i.e. the conformation tensor needs to be positive definite. Although on

the continuum space, the conformation tensor remains positive definite as it evolves in time,

on the discretised space this may not happen. An improper discretisation of the constitu-

tive equation of viscoelastic fluid can ignore this property, leading to numerical instability.

Figure 1.6 illustrates the molecular topology of polymeric chain in different constitutive

models of FENE, PTT, Rolie-Poy and XPP models.

FIGURE 1.6: Molecular topology in different constitutive models: (a)
Dumbbell molecule in the FENE model (b) Pom–Pom molecule in the XPP
model (c) Polymer network in the PTT model (d) Entangled linear polymer

in the Rolie–Poly model

The conformation tensor is by definition a symmetric positive definite tensor, in which

is equal to the identity matrix I while the polymeric chain is at the equilibrium state. A
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TABLE 1.1: Summary of the strain and relaxation functions for most pop-
ular constitutive formulations of viscoelastic fluids, derived from molecular

theories.

Name fs(c) fR(c)

Oldroyd–B c-I c-I

Giesekus c-I αc2 +(1−2α)c− (1−α)I

FENE–CR c-I
1−tr(c)/L2

c-I
1−tr(c)/L2

FENE-P c
1−tr(c)/L2 − I c

1−tr(c)/L2 − I

differential equation governs the primary mechanism of stress build-up and stress relaxation

concerning the conformation tensor as:

∇
c = − 1

λ
f R(c) (1.8)

In this formulation, ∇ is the upper-convected time derivative operator, which for and

arbitrary tensor of A is defined as:

∇

A =
∂A
∂ t

+ u.∇A−∇uT .A−A.∇u (1.9)

In equation 1.8, fR(c) is a relaxation function defined according to the constitutive

model. In the constitutive models based on molecular theories, the strain and relaxation

functions of, fs(c) and fR(c), are polynomials functions of the conformation tensor in which

their coefficients can depend on the first, second and third invariants of c. The strain and

relaxation functions are usually first and second-order polynomials, respectively.

Table 1.1 represents a summary of the strain and relaxation functions for most popular

constitutive formulations of viscoelastic fluids, derived from molecular theories. In the

formulations in this table, tr(c) stands for the trace of c as it is equal to its first invariant.

• The Oldroyd–B model which is also called contravariant convected Jeffreys model,

was initially introduced by Oldroyd [59]. It was the first material frame-invariant

phenomenological model describing viscoelastic fluids.
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• The Giesekus model proposed by Giesekus [60] includes quadratic terms of the

stress, which can be interpreted as the effect of anisotropic hydrodynamic drag in-

duced by the polymer–polymer interactions.

• The family of the FENE (Finitely Extensible Nonlinear Elastic) models are based on

the kinetic theory of polymer chains behaving like non-linear elastic springs and are

adapted to represent the viscoelastic behavior of dilute polymeric solutions.

It is well known that most viscoelastic computations based on the conformation ten-

sor encounters numerical instabilities at some limiting value of the Weissenberg number.

This problem know as High Weissenberg Number Problem (HWNP) is due the extension

of large stresses, and stress gradients in narrow regions of the flow domain. This prob-

lem remains the main difficulty in numerical simulation of viscoelastic fluid flow. HWNP

happens independent of the selected discretization technique, i.e. finite-difference, finite-

volume or finite-element methods all have encountered this problem. In order to han-

dle HWNP in numerical simulations of viscoelastic fluids, several stabilization approaches

have been promoted. Although none of these approaches completely solves the problem,

they enable us to stably simulate the viscoelastic flow at Weissenberg numbers close to

the applications. The most outstanding approaches in the field of finite-volume are both-

sides diffusion (BSD), the positive definiteness preserving scheme (PDPS) by Stewart et al.

[61], the log-conformation tensor representation (LCR) by Fattal and Kupferman [62] and

the square-root-conformation representation (SRCR) by Balci et al. [63]. Each of these ap-

proaches has their advantages and disadvantage and knowing them beforehand is important

in choosing the appropriate approaches to cope with different kinds of stability problems

caused by large Weissenberg number or by small viscosity ratios as well as to fulfill differ-

ent requirements such as high accuracy, low computation cost etc.

According to Amoreira and Oliveira [64], the absence of an explicit diffusive term

in the momentum equation including viscoelastic constitutive equation causes numerical

instabilities in the convergence of iterative algorithms. A common practice to deal with

this instability is to include extra diffusive terms on both sides of the momentum equation

in which one is treated explicitly like a source and the other one implicitly. According to

Sarkar and Schowalter [65], in this method which is called BSD, this implicit term gives rise

to the algebraic coefficients that regulate convergence of the iterative numerical algorithm
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Three other mentioned approaches of PDPS, LCR and SRCR are based on the posi-

tive definiteness preserving of the conformation tensor. Besides the LCR or SRCR, it is

possible to obtain other logarithm-based, root-based or more generic transformations for

the constitutive equation of the conformation tensor, aiming at resolving the exponential

growth of the stress. For instance, Afonso, Pinho, and Alves [66] presented a general

kernel-conformation tensor transformation for a large class of different constitutive mod-

els. Chen et al. [67] comprehensively analyzed the implementation and application of four

approaches of BSD, PDPS, LCR and SRCR in stabilization of finite-volume viscoelastic

fluids compared with standard discretization of constitutive equation. According to them:

• BSD and PDPS are more convenient to implement than LCR and SRCR. Comparing

the last two approaches, SRCR could be implemented with less effort.

• Regarding the high Weissenberg number problem, LCR and SRCR are more sta-

ble compared to PDPS, BSC and standard formulation of the constitutive equation.

Despite the BSD approach, PDPS preserves the positive definiteness of the confor-

mation tensor. However, an attractive advantage of BSD is its ability to well resolve

the instability problem caused by small viscosity ratios. Besides, because of its low

implementation complexity, this approach could be coupled with other stabilisation

approaches to deal with both numerical instability problems of HWNP and small

viscosity ratios.

1.0.3 Non-Newtonian Fluid-Structure Interaction Problems

Many numerical methods have been developed to accurately simulate fluid-structure inter-

action problems. However, most of the previous works have studied the interaction of a

Newtonian fluid with an elastic structure. Although Newtonian fluids account for many

important problems, there are many practical situations where the working fluid cannot be

modeled as Newtonian. Thus the mathematical modeling for simulation of the FSI problem

must account for the non-Newtonian behavior of the fluid as well.

For example the Navier-Stokes equations of an incompressible viscous fluid are a good

approximation for blood flow in medium-to-large arteries, such as the coronary arteries

and the abdominal aorta. However, in order to solve the blood flow in the microcirculation,
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where the flow rates are low, the non-Newtonian rheological behaviour of blood including

shear-thinning and viscoelastic cannot be ignored [68, 69]. The choice of the constitu-

tive equation is of high importance in balancing the computational cost, thermodynamic

consistency of the models, and microstructural insight.

Despite many numerical methods proposed for non-Newtonian fluids, few works in the

literature have studied the problem of a non-Newtonian fluid interacting with a deform-

ing structure. Also, In spite of significant progress in the field of single phase viscoelastic

fluid flow, the key questions in the field of non-Newtonian Viscoelastic Fluid-Structure

Interaction (VFSI) has not been answered and works in this area are limited in numbers.

Chakraborty and Prakash [70] studied the flow in a 2D collapsible channel considering

three different viscoelastic fluid models of the Oldroyd-B, the FENE-P and the Owens

model [71] for blood. In their study, the collapsible channel consisted of a deformable wall

of finite-thickness incompressible neo-Hookean solid. In their work, the channel dimen-

sions are compatible with the microcirculation. Lukácova-Medvidova and Zaušková [72]

investigated the numerical modelling of non-Newtonian flow in two-dimensional compli-

ant vessels with application in hemodynamics for shear-thinnig fluids and compared the

results with Newtonian fluids. Chen, Schäfer, and Bothe [73] used an implicit partitioned

coupling algorithm to investigate the interaction between a viscoelastic Oldroyd-B fluid

and an elastic structure for a flow through a channel with a flexible wall and a lid-driven

cavity flow with flexible bottom. They reported that the solid deformation is influenced by

the Weissenberg number in the fluid flow in both forced and free oscillation.

In this study we propose a numerical method to study the non-Newtonian shear-thinning/shear-

thickening/viscoelastic fluid interacting with an elastic structure. We use a semi-implicit

approach to develop an efficient coupling technique for non-Newtonian FSI problems with

strong added-mass effect.
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Chapter 2

Mathematical Formulations

In this chapter, the governing equations for each sub-problem domain and the coupling

conditions on the interface are presented. The fluid and structural domains are referred to

as Ω f (t) and Ωs(t) respectively, as they both vary in time. The interface of the domains

is the shared boundary denoted by Γ(t) = ∂ Ω f (t)∩ ∂ Ωs(t). An Arbitrary Lagrangian-

Eulerian (ALE) formulation together with a conforming mesh technique is used to solve

the fluid flow in a moving domain. A Lagrangian formulation is used for the structural

equations.

2.0.1 Fluid equations

The unsteady flow of an incompressible fluid is governed by the Navier-Stokes equations.

An Arbitrary Lagrangian-Eulerian (ALE) formulation of these equations in a moving do-

main is given by:

∂u
∂ t

+ c ·∇u =
1

ρ f
∇ ·σ f (2.1)

∇ ·u = 0 (2.2)

where u is the fluid velocity and ρ f the fluid density. Vector c is the ALE convective

velocity c = u−w, which is the fluid velocity relative to a domain moving with a velocity

w. The stress tensor σ f is defined as:
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σ f = −pI+ 2µsγ̇ + µpτ (2.3)

where p is the fluid pressure, I the unit tensor, µs the dynamic viscosity of the solvent, µp

is the dynamic viscosity of the polymeric part and γ̇ the strain rate tensor given by:

γ̇ =
1
2
(∇u+∇uT ) (2.4)

In equation 2.3, τ is the extra stress tensor related to non-Newtonian viscoelastic behaviour

of the fluid. The Oldroyd-B constitutive equation is used to model this extra stress tensor

as follow:

τ +λ
∇

τ = 2µpγ̇ (2.5)

where λ is the relaxation time characteristic of viscoelastic fluid. In this formulation
∇

τ

is the upper convected time derivative of stress tensor. This operator for an arbitrary tensor

of A defines as:

∇

A =
∂A
∂ t

+ u.∇A−∇uT .A−A.∇u (2.6)

2.0.2 Structural equations

The structural domain is governed by the nonlinear elastodynamics equation:

ρs
D2d
Dt2 = ∇ ·σ s (2.7)

where d stands for the structural position with respect to the reference configuration, and

the structural density is shown by ρs. The Cauchy stress tensor σ s is related to the second

Piola-Kirchhoff tensor Ss by:

Ss = JF−1
σ sFT (2.8)

where F is the deformation gradient F = ∇d and J is its determinant (J = det(F)).
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The FSI method is presented for a general structure, however, for the test case in this

paper the structure is considered to be an Euler-Bernoulli beam with stress applied from

fluid added to it, governed by the following equation:

ρA
∂ 2d
∂ t2 +

∂ 2

∂x2

(
EI

∂ 2d
∂x2

)
= q(x, t)+

h
2

∂g(x, t)
∂x

(2.9)

where d = [0,y,0]T in a Cartesian coordinate (x,y,z), A is the cross section area of the

beam and I is the second moment of area. In this formulation, q(x,t) and g(x,t) are the

normal and tangential force of per unit length components of stress tensor.

2.0.3 Coupling conditions

The coupling conditions apply at the interface Γ and account for the interaction of the do-

mains. They are derived from the kinematic and dynamic equilibrium between the domains,

which yield to the following conditions on a non-slip type interface:

uΓ =
∂dΓ

∂ t
(2.10)

σ s ·nΓ = σ f ·nΓ (2.11)

for any point x ∈ Γ, where nΓ is the unit normal vector on the interface. Equation (2.10)

represents equality of the velocity of the fluid and the structure on the interface to assure the

kinematic equilibrium. Equation (2.11) represents equality of the traction on the interface

for dynamic equilibrium.

2.1 Numerical Method

In this section we represent the numerical methods and discretization schemes to solve the

coupled non-linear system of governing equations.
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2.1.1 Fluid solver

A fractional-step (projection) method [74] is used to solve the velocity/pressure coupling

of the momentum equation. Thus, an intermediate velocity field is evaluated without con-

sidering the pressure gradient term. We use an explicit Adams-Bashforth method for dis-

cretization of the convective and diffusive terms. Therefore the intermediate velocity field

is evaluated as:

ρ f u∗−ρ f un

∆t
=

3
2
(Ru

h)
n− 1

2
(Ru

h)
n−1 (2.12)

where Ru
h =−Ch(ρ f u)+Dh(u) with Ch(ρ f u) =∇h ·(ρ f uu) as the convective operator

and Dh(u) = ∇h · (2µsγ̇ + µpτ) as the diffusive operator for any x ∈ Ωn+1
f . This velocity

field is then projected onto a space of divergence-free vector fields:

u∗ = un+1 +
∆t
ρ f

∇pn+1 (2.13)

∇ ·un+1 = 0 (2.14)

where pn+1 is the pressure field obtained by:

∇pn+1 =
ρ f

∆t
∇ ·u∗ (2.15)

A conjugate gradient solver with a diagonal pre-conditioner is used to solve the Pois-

son’s equation.

The boundary condition for velocity on the interface comes from the coupling condi-

tion:

un+1
Γ =

dn+1
Γ −dn

Γ
∆t

(2.16)

for any x ∈ Γn+1. We apply this boundary condition on the predicted velocity as well:

u∗Γ =
dn+1

Γ −dn
Γ

∆t
(2.17)
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In this work, the fractional-step method is used not only for solving the fluid equations,

but also as a framework for the overall FSI solution algorithm, making it fundamental to

the overall method.

2.1.2 Dynamic mesh

As the solid boundary is deformable, fluid mesh needs to move to adapt to the new location

of the interface and the discrete domain velocity on the mesh surfaces wn+1 needs to be

evaluated. A parallel moving mesh technique, based on radial basis function interpolation

method [75], is used to move the fluid grid in accordance to the new location of the in-

terface. Surface velocities are evaluated according to the so-called space conservation law

which guarantees no volume is lost while moving the grid. Detailed description of the dy-

namic mesh method could be found in [75, 11, 76]. Figure 2.1 schematically compares the

original discretized domain with a deformed discretized domain for a test case of lid-driven

cavity with elastic wall at the bottom using described dynamic mesh algorithm. Here we

will use the function M to refer to the mesh movement step:

(Ωn+1
f ,wn+1) = M (dn+1

Γ ) (2.18)

2.1.3 Structural solver

Structural equations are discretized in time using a second-order Newmark method. Defin-

ing the structural velocity v = ∂d
∂ t , the semi-discretized structural equation reads:

vn+1 = vn +
∆t

2ρsA
[(qn+1−EI

∂ 4d
∂x4 )

n+1 +(qn−EI
∂ 4d
∂x4 )

n] (2.19)

and the new location of the structure could be calculated as:

dn+1 = dn +
∆t
2
(vn+1 + vn) (2.20)

It should be noted that using a simplified structural model is not restrictive for the

proposed FSI coupling method, since it is used as a black-box module. We will use the

notation S to refer to the structural solver as a function of surface stress on the interface:
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FIGURE 2.1: Comparison between (left) the original discretized domain and
(right) a deformed discretized domain for a test case of lid-driven cavity with

elastic wall at the bottom.

dΓ = S (σ Γ) (2.21)

where dΓ is the location of the interface and σ Γ is the stress on the interface exerted by the

fluid σ Γ = σ f (p,u)Γ ·nΓ.

2.1.4 Coupling method

A semi-implicit FSI coupling method developed by Naseri et al. [27], is used in which

only the fluid pressure term is strongly coupled to the structure via coupling iterations. The

remaining fluid terms as well as the dynamic mesh step are evaluated only once per time

step.

The FSI solution method at a new time step is as follows.

step 1- Explicit step:

• Predict the location of the interface by extrapolation from previous time steps.

• Define the new discretized domain using equation 2.18.
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• Evaluate the predicted velocity field by equation ??.

step 2- Implicit step:

• Evaluate the fluid pressure (equation 2.15)

• Solve the structural equations to evaluate the deformation (equation 2.21).

• Update the boundary condition on predicted velocity (equation 2.17).

• Repeat until convergence is achieved.

step 3- Explicit step:

• Correct the velocity field (equation 2.13)

• Apply the boundary condition for velocity (equation 2.16).

Step 2 of the above algorithm is where fluid pressure is strongly coupled to the structure.

This step provides for the stability of the method for FSI problems with strong added-mass

effect.
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Chapter 3

Numerical Experiments and Discussion

In this chapter, the results regarding the flow in classical lid-driven cavity test case will

be presented. The lid-driven cavity problem has long been used a test or validation case

for new codes or new solution methods. This problem is of particular interest for testing

for several reasons. There are many data available extracted from different experimental

studies and numerical methods. The laminar solution of the flow is steady. Plus, the prob-

lem’s geometry is simple and two-dimensional, boundary conditions are simple and easy

to implement.

Numerical tests of this section are carried out on a benchmark problem studied in [22,

16], among others. The test case is a 2-D lid-driven cavity of L×L with a flexible bottom.

The top boundary of the cavity is moving with a velocity of u(x,t). There are two openings

of 0.1L on the sidewalls that allow the fluid to enter to and exit from the domain. Figure

3.1 shows a schematic description of the problem.

Dimensionless parameters of Reynolds number, Weissenberg number, retardation ratio

and cλ are defined to non-dimensionalize the problem. Reynolds number is the ratio of in-

ertial forces to viscous forces in the fluid, Weissenberg number compares the elastic forces

to the viscous forces of viscoelastic fluid, retardation ratio β (or solvent viscosity ratio) is

the ratio of solvent viscosity of viscoelastic fluid to its total viscosity, and cλ describes the

extensional stiffness of the structure. These parameters are defined as :

Re =
ρ fUL

µ0
, Wi =

λ1U
L

, β =
λ2

λ1
, cλ =

Eh
ρ fU2L

(3.1)

where U and L are characteristic velocity and length of the cavity, respectively. λ1 is
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FIGURE 3.1: Schematic view of the driven cavity test case with flexible
bottom wall. Point P is the midpoint of bottom wall.

relaxation time of the viscoelastic fluid, ρ f is the fluid viscosity, µ0 is the total viscosity

of the fluid, E is the structural Young modulus, and h is the thickness of flexible structure

at the bottom. In all the simulations, time is being non-dimensionalized as t ′ = t/t∗ with

t∗ = L/U .

Two different mesh types of structured and unstructured with the grid size of l= 0.01L

(with l as the edge size of the grid) are used to discretize the domain. Spatial discretization

is carried out using a finite volume method with second-order central difference schemes

for diffusive terms and upwind scheme for convective terms. Figure 3.2 illustrates the

discretized domain used in this section. The structure is a thin membrane so the fluid

mesh elements on the interface are also used as the computational grid for the structural

equations. Thus, the structural grid nodes match the fluid mesh on the interface and there

is no need for interpolation of parameters between the domains.

Firstly, in order to make sure of the accuracy of the viscoelastic solver, the structural

solver is being turned off. Then we study the numerical solution of an Oldroyd-B flow

inside of the lid-driven cavity using proposed method. The results are compared with the
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FIGURE 3.2: Two different mesh types of structured and unstructured used
in discretization of lid-driven cavity problem.

results of Yapici, Karasozen, and Uludag [77]. To eliminate the singularities at the corners,

the top wall moves with the space and time-dependent velocity profile as below:

u(x, t) = 8[1+ tanh(8t−4)]x2(1− x2) (3.2)

The lid velocity gradually increases until it reaches its maximum magnitude at the center

of the lid. The simulation runs long enough until the flow reaches its steady-state. No-slip

boundary condition is fixed on all other walls. Simulation with Re=100, Wi=0.7 and β=0.3

are done in domains with two different mesh types of Structured and Unstructured. The

u(y) and v(x) velocity profiles at the mid-plane normal to x and y directions are extracted

for these simulations. These results are shown in figure 3.3 and are compared with the

finite-volume results of Yapici, Karasozen, and Uludag [77]. According to this figure,

very good agreement is seen between the results of this study for fixed mesh with structural

interaction excluded and the benchmark result. It is noteworthy that the results in structured

and unstructured meshes are almost identical.

As the next step, now that we are assure of the good accuracy of viscoelastic fluid

solver, and keeping in mind that the structural solver has been already validated against
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FIGURE 3.3: Left: u(y) and right: v(x) velocity profiles at the mid-plane nor-
mal to x and y directions, of lid-driven cavity test case for a viscoelastic fluid
with Re=100, Wi=0.7 and β = 0.3 in a fixed mesh geometry (structural in-
teractions excluded) compared with the reference data of Yapici, Karasozen,

and Uludag [77].

experimental data, we perform simulation in which the top wall is oscillating with a speed

of:

u(x, t) = 16 (1− cos(ωt))x2(1− x)2 (3.3)

with ω = 2π/5. In this formulation of velocity, the lid oscillates in time with a constant

frequency, and as well is varying in x direction, in order to avoid singularities at the corners

in case of viscoelastic fluids. Figure 3.4 illustrates the value of u(x,t) for this case for

different x and t values.

In the simulations of fluid-structure interactions, the value of cλ is chosen to be equal

to 12.5 and two parameters of ρs/ρ f and h/L are 20 and 0.05, respectively. Simulations

are carried out from t ′ = 0 until t ′ = 30. The list of simulations performed with different

rheological properties are tabulated in table 3.1. For the cases with shear-thinning fluids,

Generalized Newtonian Fluid model of power-law as described in equation 1.2 with dif-

ferent n indices is used. For the case of viscoelastic fluids, and Oldroyd-B constitutive

equation as discussed in section 1.0.2 with different values of Weissenberg numbers and

retardation ratios is being used. For the cases of Wi = 0.75 and Wi = 1.0, the standard
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FIGURE 3.4: An schematic illustration of u(x,t) function in time and space
used in test cases with flexible bottom.

formulation of constitutive equation results in numerical difficulties regarding the conver-

gence of simulations. In order to deal with this issue, for these cases, the log-conformation

representation of constitutive equation is being used to solve the problem. For the case

with shear-thickening fluid, the piecewise function of equation 1.5 is used to describe the

variation of apparent viscosity by shear-rates. The value of µ0 in this case is obtained from

Reynolds number of the flow which is equal to 100. The value of other parameters of shear-

thickening test case are chosen in a way so that the shear-rate is more or less in the same

order of magnitude of its corresponding Newtonian fluid enabling us to witness the three
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TABLE 3.1: Summary of numerical simulations carried out in order to study
fluids with different rheological properties interacting with elastic structure

in the content of lid-driven cavity test case.

Name Fluid’s rheology Properties Formulation

NFSI Newtonian - -

V FSI1 Viscoelastic Wi=0.25, β = 0.3 Oldroyd_B-SVF

V FSI2 Viscoelastic Wi=0.50, β = 0.3 Oldroyd_B-SVF

V FSI3 Viscoelastic Wi=0.75, β = 0.3 Oldroyd_B-LCR

V FSI4 Viscoelastic Wi=1.00, β = 0.3 Oldroyd_B-LCR

V FSI5 Viscoelastic Wi=0.25, β = 0.6 Oldroyd_B-SVF

V FSI6 Viscoelastic Wi=0.50, β = 0.6 Oldroyd_B-SVF

V FSI7 Viscoelastic Wi=0.75, β = 0.6 Oldroyd_B-LCR

V FSI8 Viscoelastic Wi=1.00, β = 0.6 Oldroyd_B-LCR

ST hinningF1 Shear-Thinning n=0.75 Power-Law

ST hinningF2 Shear-Thinning n=0.50 Power-Law

ST F1 Shear-Thickening Eq. 3.4 Piecewise function of [48]

regions of STFs as described in figure 1.4. These parameters are as below:

(µ0,λI ,n1, µc, γ̇c,λII ,nII , µmax, γ̇max,λIII ,n3) =

(0.01,5000,0.9,0.005,0.007,142.8,1.05,0.035,0.5,0.2,0.8) (3.4)

Figure 3.5 represents the viscosity curve of the shear-thickening fluid used in the test case

of ST F1, with parameters defined in 3.4. The comparisons of the results regarding different

cases are done in two aspects. One is related to the flow inside of the domain, and other

is related to the structure response and deformation. For the first one, the u(y) and v(x)

velocity profiles at the mid-plane normal to x and y directions, along with the flow stream-

lines, velocity and pressure contours in the domain are extracted. For the second one, time

dependent oscillation of point P (as shown in 3.1) in y direction is extracted.
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FIGURE 3.5: Viscosity curves of the shear-thickenning fluid used in test case
of STF

First we analyze the effect of different rheologies of Newtonian, viscoelastic, shear-

thickening and shear-thinning on fluid’s flow inside of the domain, as the first aspect of

the comparison. Figure 3.6 represents the u(y) and v(x) velocity profiles for cases V FSI1,

ST hinningF1 and ST F1 compared with the Newtonian case of NFSI. In this figure, results

regarding four different rheological properties are demonstrated in order to gain a general

understanding of the effect of fluid’s rheology on the velocity components in the domain.

According to this figure, the magnitude of velocity components (both u and v) in the case of

shear-thickening fluid is smaller that other cases. The v velocity component in the x-wise

center-line of the domain is maximum for Newtonian fluid. The variation of u velocity

component in the y-wise center-line of the domain for Newtonian fluid is totally different

from other rheologies. These changes are a direct result of different rheological properties

of fluid and its related structural response.

Figure 3.7 presents the pressure contours at t ′ = 9 for simulations of cases (a) NFSI, (b)

V FSI1, (c) ST F1 and (d) ST hinningF1 as described in table 3.1. According to this figure, the
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FIGURE 3.6: Top: u(y) and bottom: v(x) velocity profiles at the mid-plane
normal to x and y directions, respectively, for different test cases of NFSI,

V FSI1, ST hinningF1 and ST F1 as described in table 3.1.
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FIGURE 3.7: Pressure contours at t ′ = 9 for simulations of cases (a) NFSI,
(b) V FSI1, (c) ST F1 and (d) ST hinningF1 as described in table 3.1.
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FIGURE 3.8: Velocity vectors of the fluid inside of the domain along with
velocity magnitude contours at t ′ = 9 for simulations of cases (a) NFSI, (b)

V FSI1, (c) ST F1 and (d) ST hinningF1 as described in table 3.1.
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FIGURE 3.9: Streamlines of the fluid inside of the domain along with veloc-
ity magnitude contours at t ′= 9 for simulations of cases (a) NFSI, (b) V FSI1,

(c) ST F1 and (d) ST hinningF1 as described in table 3.1.
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FIGURE 3.10: Displacement of point P as a function of time for different
cases of NFSI, V FSI1, ST hinningF1 and ST F1 as described in table 3.1.

pressure contours of cases NFSI and ST hinningF1 are similar to each other. On the other

hands, the pressure contours of two cases of V FSI1, and ST F1 are different from each other

and also are different from the other two cases. In order to gain a better understanding on

the flow behaviour inside of the domain, figure 3.8 illustrates the velocity vector represen-

tation of the flow inside of the domain and figure 3.9 illustrates the streamlines of the flow,

both along with the velocity magnitude contours at t ′ = 9 for simulations of the same cases

as figure 3.7. As can be seen in these figures, The main difference is in the flow around

the left-bottom corner of the domain, where the biggest corner-vortex of Newtonian fluid

in Re=100 forms. Changing the rheology of the fluid from Newtonian to shear-thickening

fluid eliminates the vortex in the left-bottom of the domain and creates a somewhat dif-

ferent flow pattern in this region compare with other cases. In other cases of V FSI1 and

ST hinningF1, similar to the Newtonian fluid, there exists a vortex in the left-bottom corner
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FIGURE 3.11: Top: u(y) and bottom: v(x) velocity profiles at the mid-plane
normal to x and y directions, of lid-driven cavity test case for different test

cases of NFSI, ST hinningF1 and ST hinningF2 as described in table 3.1.
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FIGURE 3.12: Displacement of point P as a function of time for different
cases of NFSI, ST hinningF1 and ST hinningF2 as described in table 3.1.

of domain, however with different structure. The magnitude of the velocity inside of the

domain for the cases of ST F1 is much smaller than other cases. This difference could be re-

lated to the shear-thickening nature of the fluid in this case. Keeping in mind that viscosity

of a fluid is being defined as the measure of its resistance to gradual deformation by shear

stress, since in the case of shear-thickening fluid the apparent viscosity of the fluid may

increase due to the specific range of shear-rate, its resistance towards gradual deformation

increases and as a result the velocity magnitude inside of the domain decreases.

In order to compare the structural response to different fluid rheologies, figure 3.10

demonstrates the displacement of point P as a function of time for different cases of NFSI,

V FSI1, ST hinningF1 and ST F1 of table 3.1. As can be seen in this figure, the minimum

value of the deformations in oscillations regarding the case ST hinningF1 is lower compared

with other cases. The peaks in deformation of cases V FSI1 and ST F1 are slightly delayed

compared with the shear-thinning and Newtonian fluids. The oscillations of point P in case

of shear-thickening fluid (ST F1) is increasing by time and has not reached monotonous
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FIGURE 3.13: Displacement of point P as a function of time for cases, Top:
V FSI1 : V FSI4 and Bottom: V FSI5 : V FSI8 compared with the case NFSI, as

described in table 3.1.
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variations within the timeframe of t ′ = 30 of the current study.

Now that some light has been shed on the effect of different rheologies of fluid inside

a cavity with deformable bottom, more analyzing on the effect of power-law index n of

shear-thinning fluids and Weissenberg number and retardation ratio of viscoelastic fluid on

the acquired results, will be provided.

Figure 3.11 represents the u(y) and v(x) velocity profiles for cases ST hinningF1 and

ST hinningF2, compared with the Newtonian case of NFSI. According to this figure, the

magnitude of velocity components (both u and v) in the case of shear-thinning fluid is

highly dependent on power-law factor, i.e. the strength of the shear-rate on changing the

apparent viscosity. Figure 3.12 demonstrates the displacement of point P as a function of

time for different cases of NFSI, ST hinningF1, and ST hinningF2 as described in table 3.1.

It is clear to see that the magnitude of oscillations in both cases of shear-thinning fluids is

smaller than the Newtonian fluid. By decreasing the power-law factor, i.e. increasing the

effect of shear-thinning fluid, the value of oscillations of point P decreases.

Figure 3.13 presents the displacement of point P as a function of time for cases V FSI1 :

V FSI8 as described in table 3.1 in two categories of top figure, all cases with β = 0.3 and

bottom figure, all cases with β = 0.6. This figure provides information regarding the ef-

fect of Weissenberg number and retardation ratio on dynamic response of the system over

time compared with Newtonian fluid. According to this figure, the maximum deforma-

tion in structure decreases as fluid is being changed from Newtonian to viscoelastic. By

increasing the Weissenberg number, the dynamic response of the system is getting more

similar to the Newtonian fluid. This effect is more visible, specially for cases with higher

β (β = 0.6). It can be seen that the deformation of elastic solid for Newtonian fluid is

uniform and homogeneous in time, however, for viscoelastic fluid cases with smaller re-

tardation ratio (β = 0.3), this variation is non-uniform specially after the maximum and

minimum of deformations. For viscoelastic cases with higher retardation ratio (β = 0.6),

the dynamic response of the system is uniform and homogeneous, similar to Newtonian

Fluid. By increasing the Weissenberg number, the first peak of the deformation for times

around t ′ = 4 for cases with small retardation ratio is as big as the rest of the peaks, which

is different from other cases.
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Chapter 4

Conclusion

A Numerical method for simulation of non-Newtonian (viscoelastic, shear-thinning and

shear-thickening) fluid-structure interaction problems is presented. Oldroyd-B model is

used as the constitutive equation for Viscoelastic fluid, power-law Generalized Newtonian

Fluid model is used for shear-thinning fluids and a recently introduced piecewise function

in the content of Generalized Newtonian Fluid is used to model shear-thickening fluids.

A semi-implicit partitioned method is used to perform coupling between fluid and struc-

ture. Different cases of Newtonian/shear-thinning/shear-thickening/viscoelastic fluids with

various rheological properties are tested for fluids inside a lid-driven cavity test case. The

results show different flow patterns inside of the domain for different rheological proper-

ties of the fluid. For the case with shear-thickening fluid, the left-bottom corner vortex of

cavity problem at Re=100 disappears. Dynamics response of the elastic wall to different

rheological properties of the fluid is provided as well. According to the results provided,

the deformation of the elastic wall could become non-uniform, as the fluid is being sub-

stituted by a viscoelastic fluid. According to the simulations performed, by increasing the

retardation ratio of the viscoelastic fluid, the structural response of the elastic wall becomes

more similar to the Newtonian fluid.

Numerical tests demonstrate the capability of the method to solve non-Newtonian FSI

problems with a wide range of application in different areas.
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