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Positive-sense, single-stranded RNA viruses are important pathogens infecting almost all types11

of organisms. Experimental evidence from distributions of mutations and from viral RNA amplifi-12

cation suggest that these pathogens may follow different RNA replication modes, ranging from the13

stamping machine replication (SMR) to the geometric replication (GR) mode. Although previous14

theoretical work has focused on the evolutionary dynamics of RNA viruses amplifying their genomes15

with different strategies, little is known in terms of the bifurcations and transitions involving the so-16

called error threshold (mutation-induced dominance of mutants) and lethal mutagenesis (extinction17

of all sequences due to mutation accumulation and demographic stochasticity). Here we analyze18

a dynamical system describing the intracellular amplification of viral RNA genomes evolving on19

a single-peak fitness landscape focusing on three cases considering neutral, deleterious, and lethal20

mutants. We analytically derive the critical mutation rates causing lethal mutagenesis and error21

threshold, governed by transcritical bifurcations that depend on parameters α (parameter introduc-22

ing the mode of replication), replicative fitness of mutants (k1), and on the spontaneous degradation23

rates of the sequences (ε). Our results relate the error catastrophe with lethal mutagenesis in a model24

with continuous populations of viral genomes. The former case involves dominance of the mutant25

sequences, while the latter, a deterministic extinction of the viral RNAs during replication due to26

increased mutation. For the lethal case the critical mutation rate involving lethal mutagenesis is27

µc = 1−ε/√α. Here, the SMR involves lower critical mutation rates, being the system more robust28

to lethal mutagenesis replicating closer to the GR mode. This result is also found for the neutral29

and deleterious cases, but for these later cases lethal mutagenesis can shift to the error threshold30

once the replication mode surpasses a threshold given by
√
α = ε/k1.31

Keywords: Bifurcations; Dynamical systems; Error threshold; Replication modes; RNA viruses; Single-peak32

fitness landscape33

I. INTRODUCTION34

RNA viruses are characterized as fast replicators35

and reaching enormous populations sizes within infected36

hosts. However, virus’ fast replication comes with the37

cost of extremely high mutation rates due to the lack38

of correction mechanisms of their RNA-dependent RNA39

polymerases (RdRp) [1, 2]. Indeed, mutation rates are40

so high that viral populations are thought to replicate41

close to the so-called error threshold (also named error42

catastrophe), beyond which it is not possible to retain43

genetic information as mutant genomes outcompete the44

mutation-free genome [3]. These mutation rates are or-45

ders of magnitude higher than those characteristic for46

their cellular hosts. While the combination of fast repli-47

cation, large population size and high mutation rate cre-48

ate the potential for quick adaptation to new environ-49

mental conditions (e.g., changes in host species or the50

addition of an antiviral drug), in a stable environment51

such a strategy has the drawback of generating a high52
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load of deleterious mutations. Therefore, natural selec-53

tion may have favored life history traits mitigating the54

accumulation of deleterious mutations.55

One such life history trait that has received a good deal56

of attention is the mechanism of within-cell viral repli-57

cation. In the continuum of possible modes of replica-58

tion, the two extremes have been particularly well stud-59

ied. At the one extreme, the stamping machine mode [4],60

hereafter referred as SMR, implies that the first infecting61

genome is transcribed into a small number of molecules62

of opposite polarity that will then be used as templates63

to generate the entire progeny of genomes. At the other64

extreme, the geometric replication mode [5], hereafter65

named as GR, means that the newly generated progeny66

also serves as template to produce new opposite polar-67

ity molecules that, themselves, will also serve to generate68

new progeny genomes, repeating the cycle until cellular69

resources are exhausted and replication ends. The ac-70

tual mode of replication of a given virus may lie between71

these two extremes. Some RNA viruses such as bacte-72

riophages φ6 [6] and Qβ [7] and turnip mosaic virus [8]73

tend to replicate closer to the SMR. In contrast, for other74

RNA viruses such as poliovirus [9] or vesicular stom-75

atitis virus [10], replication involves multiple rounds of76
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copying per cell, and thus a mode of replication that77

should be closer to the GR. For DNA viruses, GR is the78

most likely mechanism of replication given their double-79

stranded nature, e.g., bacteriophage T2 [5]. Exceptions80

maybe be single-stranded DNA viruses, such as bacterio-81

phage φX174, that replicate via the SMR mode because82

it uses a rolling circle mechanism [11].83

At which point of the continuum between these two84

extreme modes of genome replication resides a particu-85

lar virus has important evolutionary consequences. Un-86

der SMR only the parental virus is used as template87

for the production of progeny. In this case the distri-88

bution of mutants remains purely Poisson because mu-89

tants do not replicate. The resulting Poisson distribu-90

tion has the characteristic of its mean and variance be-91

ing the same. On the other hand, under the GR, the92

mutant progeny also serves as template for additional93

progeny and the resulting distribution has a variance94

larger than mean because mutant progeny produce more95

mutant viruses. This particular distribution is known as96

the Luria-Delbrück distribution [12]. For this reason, it97

has been suggested that the SMR model has been selec-98

tively favored in RNA viruses because it compensates for99

the extremely high error rate of their RdRps [13–15]. Al-100

ternatively, by having a larger variance in the number of101

mutant genotypes may be beneficial in terms of evolvabil-102

ity under fluctuating environments. However, it remains103

unknown whether a given virus can modify its replica-104

tion mode in response to specific selective pressures to105

promote or down-regulate mutational output.106

Despite some previous theoretical results aiming to ex-107

plore the implications of the different replication modes108

on the accumulation of mutations and possible popula-109

tion extinctions [14, 16], the evolutionary dynamics and,110

especially, the bifurcations tied to both the SMR or the111

GR modes are not fully understood. For example, the112

role of the topography of the underlying fitness land-113

scape on error thresholds and, especially, on lethal muta-114

genesis have not been investigated in RNA viruses with115

asymmetric replication modes. Lethal mutagenesis, as116

compared to the error threshold, is the process by which117

viral genotypes go extinct due to an unbearable accumu-118

lation of mutations along with stochastic effects of small119

effective population sizes [17]. Evidence for lethal muta-120

genesis come from in vitro experiments in which mutation121

rates were artificially increased by adding different chem-122

ical mutagens to HIV-1 [18], lymphocytic choriomeningi-123

tis virus [19] or influenza A virus [20]. In vivo evidence of124

lethal mutagenesis have also been recently reported for125

tobacco mosaic virus [21].126

Transitions in viral populations leading to extinctions127

or decreased viral replication capabilities could corre-128

spond to bifurcations. Bifurcations are extremely rele-129

vant phenomena since they can be useful to understand130

how the population dynamics of replicators behave when131

parameters change. Also, the nature of the bifurcations132

(i.e., either smooth or abrupt) can have important im-133

plications in the ecological and evolutionary dynamics of134

pathogens. Recently, the analysis of a dynamical system135

given by a model with two variables identified a tran-136

scritical bifurcation at crossing a bifurcation threshold.137

For this model, the bifurcation could be either achieved138

by tuning the parameter that adjusted for the mode of139

replication or by increasing the degradation rate of the140

strands [22]. However, this model only considered the141

amplification dynamics of both (+) and (-) sense RNA142

strands. That is, evolution was not taken into account in143

the model.144

In this article, we sought to investigate a quasispecies-145

like model given by a dynamical system describing the146

processes of replication and mutation of viral RNA con-147

sidering an asymmetry parameter to take into account148

different replication modes. This parameter allows us149

to investigate the impact of different modes of replica-150

tion (either the extreme cases: purely SMR or GR, or151

a mixture of replication modes, see Fig. 1a). The dy-152

namics is assumed to take place on the Swetina-Schuster153

single-peak fitness landscape (see Fig. 1b) [23]. This154

landscape, albeit being an extreme oversimplification of155

highly rugged [24] and time-varying [25] fitness land-156

scapes identified in RNA viruses, has been widely inves-157

tigated [26–28].158

The single-peak fitnes landscape allows us to group159

together the entire mutant spectrum into an average se-160

quence with a lower or equal fitness than the mutation-161

free (master) sequence, which is located at the top of the162

only peak in the landscape. Such a landscape allows us163

to consider the three different cases for the mutant se-164

quences, given by a pool of (1) neutral, (2) deleterious165

and (3) lethal mutants, thus making the distance from166

the optimum to the base of the peak and its steepness167

as large as desired. Indeed, an additional well-studied168

property of the Swetina-Schuster landscape is the error169

threshold, which emerges as an inherent property of the170

landscape for deleterious mutations. To keep it as simple171

as posible, the model does not incorporate recombination172

as an additional source of variation. This dynamical sys-173

tem is investigated analytically and numerically focusing174

on three main parameters: mutation rates, the mode of175

replication, and the fitness of the mutant sequences which176

allow us to consider three different mutational fitness ef-177

fects mentioned above.178

The structure of the paper is as follows. In Section II179

we introduce the basic properties of the mathematical180

model that will be analysed in the following sections.181

The existence of non-trivial equilibrium points, that is,182

situations in which coexistence of mutants and master se-183

quences may be possible as a function of the mechanism184

of replication are evaluated in Section III, while their sta-185

bility is analysed in Section IV. In Section V we describe186

the type of bifurcations found in the model and their187

properties in terms of virus dynamics. Finally, Section188

VI is devoted to summarize and drawn some conclusions189

from the previous sections. In the Appendix Section we190

provide the proofs for the propositions developed in Sec-191

tions III and IV. It is presented keeping in mind more192
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FIG. 1. (a) Schematic diagram of the processes modeled by Eqs. (1)-(4), which consider (+) and (−) sense viral genomes
(denoted by variables p and n, respectively). Upon infection, the viral genome is released within the host cell. Such a genome
can be amplified following the Stamping Machine Replication (SMR) mode, the Geometric Replication (GR) model, or mixed
modes. Asymmetries in replication are introduced through parameter α (studied as

√
α): with 0 . α � 1 for SMR modes;

0 < α < 1 for mixed modes; and α = 1 for GR. Note that for SMR the offspring is produced from the (-) sense template,
while for GR each RNA strand is replicated with the same efficiency. (b) The model includes evolution on a Swetina-Schuster
single-peak fitness landscape with master (p0, n0) and mutant (p1, n1) genomes. At low mutation, the quasispecies is located
at the peak, but at high mutations the quasispecies can suffer an error catastrophe and the population falls to the valley.

mathematically-oriented readers but can be skipped by193

others without losing the main messages of the paper.194

II. MATHEMATICAL MODEL195

Here we introduce a minimal model describing the dy-196

namics of symmetric and differential replication modes197

between (+) and (-) RNA viral genomes. As a difference198

from the model investigated in [14], which considered a199

more detailed description of the intracellular amplifica-200

tion kinetics, our model only considers the processes of201

replication and mutation, together with the degradation202

of RNA strands and their competition. The model con-203

siders four state variables: master and mutant classes of204

(+) sense genome and master and mutant classes of (-205

) sense viral genomes, labeled as p and n, respectively.206

Subindices 0 and mutant 1 indicate whether we are deal-207

ing with master or mutant types, respectively (see Fig.208

1). The dynamical equations are defined by:209

dp0
dt

= k0(1− µ)n0 · φ(~p, ~n)− ε0p0, (1)

dn0
dt

= αk0(1− µ)p0 · φ(~p, ~n)− ε0n0, (2)

dp1
dt

= (k0µn0 + k1n1) · φ(~p, ~n)− ε1p1, (3)

dn1
dt

= α(k0µp0 + k1p1) · φ(~p, ~n)− ε1n1. (4)

The concentration variables or population numbers span
the 4th-dimensional open space:

R4 : {p0, p1, n0, n1;−∞ < pi, ni <∞, i = 0, 1},

only part of which is biologically meaningful:210

Π4 ⊂ R4; Π4 : {p0, p1, n0, n1; pj , nj ≥ 0, j = 0, 1}.

The constants k0 > 0 and k1 ≥ 0 are the replication
rates of the master and the mutant genomes, respec-
tively. Mutation rate is denoted by 0 ≤ µ ≤ 1. Since we
are studying deleterious fitness landscapes and lethality,
we will set k0 = 1. The term φ, present in all of the
equations, is a logistic-like constraint, which introduces
competition between the viral genomes and bounds the
growth of the system [22]. This term is given by

φ(~p, ~n) = 1−K−1
1∑

i=0

(pi + ni),

K being the carrying capacity (hereafter we assume211

K = 1). Parameters ε0 and ε1 correspond to the sponta-212

neous degradation rates of master and mutant genomes,213

with 0 < ε0,1 � 1. Finally, parameter α introduces the214

mode of replication for the RNAs [22]. Two extreme cases215

can be identified: when α = 1, both (+) and (-) sense216

strands replicate at the same rates, following GR that217

results in exponential growth at low population numbers218

[14]. When 0 . α � 1, the contribution from (+) as219

templates to produce (-) strands is much lower, and thus220
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the progeny of genomes is mainly synthesized from the221

initial (-) sense templates transcribed at the beginning222

of the infection process, giving rise to an SMR mode.223

The initial replication dynamics for the SMR replication224

might thus follow sub-exponential growth [14]. Between225

these two extremes, our model considers a continuum of226

asymmetric replication modes i.e., 0 < α < 1. These dy-227

namical behaviors are well reproduced by Eqs. (1)-(4),228

as shown in Fig. 2, where the different initial kinetics of229

the strands is displayed for several replication modes.230

To simplify the exposition, we will assume the follow-231

ing non-restrictive assumptions on our model: (H1) equal232

degradation rates ε0 = ε1 = ε and, as mentioned, a fixed233

fitness value for the master genomes, setting k0 = 1; (H2)234

the degradation rate ε is smaller than the mutation rate,235

that is, 0 < ε ≤ min {1− µ, k1}.236

Our model assumes no backward mutations, that is,237

mutant sequences of one polarity can not give rise to mas-238

ter sequences of the complementary polarity. The length239

of RNA viral genomes (about 106 nucleotides) makes the240

probability of backward mutations to be extremely low.241

This is a common assumption in quasispecies models that242

simplifies the dynamical equations (see e.g., [26–28]).243

The quasispecies studied here inhabits a single-peak244

fitness landscape (Swetina-Schuster; Fig. 1b). Differ-245

ent heights of this fitness landscape can be studied by246

tuning 0 ≤ k1 ≤ 1, considering different mutational fit-247

ness effects. The aim of abstract quasispecies models248

since conceived by Eigen in his seminal work [3] was to249

understand the dynamics of mutation and selection of250

molecular replicators in a well mixed environment. It is251

assumed that the fitness of such replicators depends on252

their mutational load in a generic manner, which means253

that fitness is assigned according to the value of the mu-254

tations carried by a genome rather than by the effect255

these mutations may have on protein activity. From a256

real-life virology perspective, this is an extreme simpli-257

fication as the fitness of the virus would depend on the258

activity and interactions of encoded proteins, the ability259

of the virus to spread and infect other cells and, finally,260

be transmitted among individuals. However, for the sake261

of simplicity, hereafter we follow Eigen’s approach and262

refer to fitness as a property of the molecular replicators.263

In general terms, mutations can be deleterious, neutral,264

lethal, or beneficial for the replicators in their intracel-265

lular environment. Some quantitative descriptions of the266

fitness effects of mutations reveal that about 40% of mu-267

tations are lethal, and about 20% are either deleterious or268

neutral. For the within-cell replication time-scale, bene-269

ficial mutations were produced with a very low percent-270

age i.e., about 4% (see [29, 30] and references therein).271

Specifically, in our model we will distinguish three differ-272

ent cases:273

1. Neutral mutants (k0 = k1 = 1). Mutations are274

neutral and thus mutant genomes have the same275

fitness than the master ones.276

2. Deleterious mutants (0 . k1 < k0 = 1). This case277

corresponds to the classical single-peak fitness land-278

scape (see Fig. 1b), where mutations are deleteri-279

ous and thus the quasispecies can be separated into280

two classes: the master genome and an average se-281

quence containing all mutant sequences with lower282

fitness.283

3. Lethal mutants (k1 = 0). For this case, mutations284

are assumed to produce non-viable, lethal geno-285

types which can not replicate.286

At this point, we want to emphasise that our model is287

only considering different viral genotypes with different288

kinetic properties since we are interested in the impact289

of differential RNA amplification in simple fitness land-290

scapes. This is why fitness is introduced as genomes’291

replication speed. Our model could be used to introduce292

further complexity in terms of fitness landscapes and/or293

in terms of the within-cell infection dynamics, following294

the spirit of Ref. [14].295

III. EQUILIBRIUM STATES296

In this section we first compute the equilibrium points297

of Eqs. (1)-(4) and characterize their existence condi-298

tions. That is, under which parameter values the fixed299

points live at the boundaries or inside the phase space Π.300

Let us define the following constants, which will appear301

in the equilibrium states (see Proposition 1) and also in302

their stability discussion303

ν0 :=
ε

1− µ, ν1 :=
ε

k1
, cα :=

1√
α(1 +

√
α)
,

(5)
and304

δ :=
µν0

k1(ν1 − ν0)
, δ0 :=

µν0
ε
. (6)

From these definitions, one has the equivalences:305

k1 < (1− µ)⇐⇒ ν0 < ν1, (7)

k1 = (1− µ)⇐⇒ ν0 = ν1 = ν, (8)

k1 > (1− µ)⇐⇒ ν1 < ν0. (9)

Moreover hypothesis (H2) implies that 0 < ν0 ≤ 1 and306

0 < ν1 ≤ 1.307

Proposition 1 System (1) presents the following equi-308

libria:309

1. In the Deleterious (0 < k1 < 1) and neutral (k1 =310

1) cases, there are three possible equilibrium points:311

• Total extinction: the origin, O = (0, 0, 0, 0).312

• Master sequences’ extinction: if
√
α > ν1 one313

has the point P1 = p∗1(0, 0, 1,
√
α), where p∗1 =314

cα(
√
α− ν1).315
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FIG. 3. Existence of equilibria in four different scenarios:
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√
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ν1 = ε/k. Note that y-axes do not contain any information.

• Coexistence of genomes: if
√
α > ν0 and316

ν0 < ν1, we have P2 = q0 (1,
√
α, δ, δ

√
α),317

where q0 =
cα(
√
α− ν0)

1 + δ
.318

2. Lethal case (k1 = 0). We have two equilibrium319

states:320

• Total extinction: the origin, O = (0, 0, 0, 0).321

• Coexistence of genomes: if
√
α > ν0 we have322

the point P0
2 = q00

(
1,
√
α, δ0, δ0

√
α
)

where323

q00 =
cα(
√
α− ν0)

1 + δ0
.324

Note that for the lethal case no equilibrium state corre-325

sponding to an error threshold is found, and only lethal326

mutagenesis is the alternative state to the persistence of327

all sequences. Figure 3 displays a diagram with the ex-328

istence of the different equilibria in terms of the values329

of
√
α and the parameters ν0, ν1. The emergence of the330

non-trivial fixed points P1,P2 and P0
2 as a function of331 √

α illustrates the transcritical bifurcations identified in332

the system (see Section IV below).333

Remark 1 The coexistence points P2 and P0
2 are located334

on straight lines passing through the origin and director335

vectors (1,
√
α, δ, δ

√
α) and (1,

√
α, δ0, δ0

√
α).336

In the case µ = 1, there are no master sequences p0 ↔337

n0, since all master sequences mutate with probability 1.338

For this case, the equilibria are:339

Proposition 2 If µ = 1, system (1) presents the follow-340

ing equilibria:341

1. In the deleterious and neutral cases: the origin O342

(for any value of
√
α ∈ [0, 1]) and the point P1343

given at the Proposition 1 provided
√
α > ν1.344

2. In the lethal case, the unique equilibrium is the ori-345

gin O, for any value of
√
α ∈ [0, 1].346

Figure 4 displays time series achieving the equilibrium347

points previously described. For low mutation rates,348

both (+) and (-) sense strands persist, and thus P2 is349

stable (Fig. 4a). Note that close to the SMR the rela-350

tive frequency of (+) and (-) strands is asymmetric, as351

expected, while for GR both polarities achieve similar352

population values at equilibrium (see also Fig. 2). The353
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increase in mutation rates can involve crossing over the354

error thresholds (since P1 becomes stable), and the qua-355

sispecies is dominated by the mutant sequences (Fig. 4b356

with α = 0.1 and Fig. 4c for α = 0.1 and α = 0.9). The357

relative population of master (green) and mutant (blue)358

(+) sense sequences is displayed in the second and fourth359

columns of Fig. 4. Here also the relative frequencies of360

p0 and p1 achieve values close to 0.5 for the GR model,361

indicating that the production of both strands polarities362

occurs at similar rates.363

Figure 5 displays the equilibrium populations of the364

four state variables at increasing mutation rates com-365

puted numerically. These results illustrate the scenarios366

of lethal mutagenesis (all-sequences extinction) and er-367

ror threshold (outcompetition of the master sequence by368

the mutants). The first column displays the results for a369

replication mode close to the SMR (α = 0.1) while the370

second one displays the same results for α = 0.9, a case371

closer to the GR model. When the fitness of the mutants372

is low, the SMR is less robust to lethal mutagenesis at373

increasing mutation. Extinction of the master sequences374

under GR takes place at higher mutation rates (see Fig.375

5a). For those cases with higher fitness for mutants (Fig.376

5b,c), the full extinction of genomes is replaced by an377

error threshold, since there exists a critical value of µ in-378

volving the dominance of the mutant genomes and the379

extinction of the master sequences. Hence, this figure380

indicates that the shift from lethal mutagenesis to er-381

ror threshold mainly depends on the fitness of sequences,382

and that the mode of replication has the strongest impact383

low-fitness mutants, driving to lethal mutagenesis.384

In the following sections we generalize the results dis-385

played in Figs. 4-6 by means of a deep analysis of the386

stability and the bifurcations of Eqs. (1)-(4).387

IV. LOCAL STABILITY OF THE EQUILIBRIA388

After determining the equilibrium points, our next step389

is to evaluate their stability to small variations in the390

model parameters. An stable equilibrium would mean391

that the complex viral population composed by master392

and mutants of both polarities is robust to external per-393

turbations whereas an unstable equilibrium would mean394

that the viral population will rapidly change in response395

to perturbations without returning to the equilibrium.396

This section is devoted to the study of the linear (and397

also in the majority of cases of the nonlinear) stability of398

the equilibria found in the previous section. We will con-399

sider separately the three equilibrium points O, P1 and400
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FIG. 5. Equilibrium populations at increasing mutation rate
µ, with α = 0.1 (first column) and α = 0.9 (second col-
umn). We analyse three different cases with: k1 = 0.1 (a);
k1 = 0.5 (b); and k1 = 0.9 (c). In all of the panels we have set
ε = 0.1 and the initial condition (p0(0), n0(0), p1(0), n1(0)) =
(0.1, 0, 0, 0). Here, as in Fig. 4: (+) sense master (solid
black line); (+) sense mutant (solid red line); (-) sense master
(dashed black line); and (-) sense mutant (dashed red line).

P2. As it is standard, it will be performed by consider-401

ing the linearized system around the three equilibrium402

points. Particular attention will be given to the change403

of stability of the equilibrium points that can indicate404

the presence of bifurcations, which are investigated in405

Section V. From now on we denote by F the vector field406

related to our system given by Eqs. (1)-(4).407

A. Stability of the origin408

Proposition 3 Let us consider the constants ν0, ν1, cα409

defined in (5). Then, the jacobian matrix at the origin410

DF (O) has the following eigenvalues:411

λ1 = −ε+
√
α(1− µ),

λ2 = −ε−√α(1− µ),

λ3 = −ε+ k1
√
α,

λ4 = −ε− k1
√
α.

Observe that all of them are real and that λ2, λ4 are al-412

ways negative since 0 < µ < 1 and k1 ≥ 0. This means413

that the linear (and local nonlinear) stability of the ori-414

gin will be determined by the signs of λ1 and λ3. Let us415

consider the following two cases:416

1. Deleterious and neutral case (0 < k1 ≤ 1): the417

three following scenarios hold:418

(i) If k1 < 1 − µ or, equivalently, ν0 < ν1: The419

origin O is asymptotically stable (a sink) for420 √
α < ν0 and unstable for

√
α > ν0. For421 √

α = ν0 we have the birth of P2. More pre-422

cisely, if ν0 <
√
α < ν1 then dimWu

loc(O) = 1423

and if
√
α > ν1 then dimWu

loc(O) = 2, where424

Wu
loc(O) denotes the local unstable invariant425

manifold of the equilibrium point O.426

(ii) If k1 = 1 − µ or, equivalently, ν0 = ν1 = ν:427

In this situation, O is asymptotically stable (a428

sink) for
√
α < ν and unstable for

√
α > ν.429

This change in its stability coincides with the430

birth of P1. Recall that if ν0 = ν1 the point431

P2 does not exist. Moreover, when crossing432

the value
√
α = ν one has that dimWu

loc(O)433

passes from 0 to 2.434

(iii) If k1 > 1−µ or, equivalently, ν1 < ν0: Again,435

the origin is asymptotically stable (a sink) for436 √
α < ν1 and unstable for

√
α > ν1, coinciding437

with the birth of the equilibrium point P1. As438

in the precedent case, no point P2 exists. As439

above, if ν1 <
√
α < ν0 then dimWu

loc(O) = 1440

and if
√
α > ν0 then dimWu

loc(O) = 2,441

2. Lethal case (k1 = 0): Taking into account again442

Proposition 1, the origin O changes its stability443

from asymptotically stable (a sink) to unstable (a444

saddle) when
√
α crosses ν0. As above, this coin-445

cides with the birth of P2.446

Cases (i), (ii), and (iii) are displayed in Fig. 6a, 6b,447

and 6c, respectively. Specifically, the local stability of448

the origin for each case is shown as a function of
√
α:449

the upper panels in Fig. 6 displays how the origin be-450

comes unstable as the replication model changes from451

SMR to mixed modes. This means that under SMR the452

sequences are more prone to extinction, as suggested in453

[22]. These stability diagrams are also represented by454

means of the eigenvalues λ1, .., λ4. The phase portraits455

display the orbits in the subspace (p1, n1). Note that the456

label of each phase portrait corresponds to the letters in457

the upper panels. Panels a.1, b.1, and c.1 show results458

when the origin is a global attractor. Panels a.2 and a.3459

display the orbits when the origin is unstable and the460

stable fixed point is P2, where the four genomes coexist.461

Finally, panels b.2, c.2, b.3, and c.3 display examples of a462

full dominance of the mutant genomes. For these latter463

examples, the increase of
√
α involves the change from464

the full extinction to survival of the mutant sequences.465

Biologically, this means that at very high mutation rates,466

SMR can be driven to extinction whereas GR maintains a467

population replicating into the error catastrophe regime468

(i.e., no more master sequences exist).469
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FIG. 6. Local stability of the origin O in three different scenarios: (a) 0 < k1 < 1 − µ; (b) k1 = 1 − µ; (c) k1 ≥ 1 − µ (AS
means “asymptotically stable”; U denotes “unstable” and in all these cases means saddle type). Below each case we plot the
eigenvalues of DF (O) increasing

√
α with µ = 0.5, ε = 0.1, and: k1 = 0.25 (a); k1 = 0.5 (b); and k1 = 0.75 (c). Here λ1 (red),

λ2 (blue), λ3 (green), and λ4 (magenta). Phase portraits projected in the subspace (p1, n1) of the phase space Π are displayed
setting µ = 0.6, ε = 0.1, and k1 = 0.15 (a), k1 = 0.4 (b), and k1 = 0.75 (c). Each panel corresponds to a value of

√
α: 0.15

(a.1); 0.25 (a.2); 0.75 (a.3); 0.15 (b.1); 0.5 (b.2); 0.95 (b.3); 0.09 (c.1); 0.2 (c.2); 0.5 (c.3). Fixed points: O (magenta); P1

(blue); P2 (orange). The red orbit in panel a.2 shows a trajectory that approaches the origin O but then returns to P2.

B. Stability of the point P1470

Proposition 4 Let us assume
√
α > ν1, in order for471

the equilibrium points P1 to exist. Then, the eigenvalues472

of the jacobian matrix DF (P1) are all real and they are473
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FIG. 7. Bifurcations of the equilibrium points O,P1,P2 (deleterious-neutral cases) and P0
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and left to right: deleterious-neutral case, (i) 0 < k1 < 1− µ, (ii) k1 = 1− µ, (iii) k1 > 1− µ; and (iv) lethal case. The phase
portraits correspond to the parameter values indicated with the letters in the bifurcation diagrams with: k1 and

√
α = 0.85

(a); k1 = 0.4 and
√
α = 0.5 (b); k1 = 0.75 and

√
α = 0.5; and k1 = 0,

√
α = 0.5 (b). Initial conditions: p1(0) = n1(0) = 0

(a); p0(0) = n0(0) = 0.1 (b); and p0(0) = n0(0) = 0 (c-d). In all of the panels we use µ = 0.6 and ε = 0.1. Fixed points: O
(magenta); P1 (blue); P2 (orange); P0

2 (green).

given by474

λ1 = −ε+ (1− µ)ν1,

λ2 = −ε− (1− µ)ν1,

λ3 = −2ε,

λ4 = ε− k1
√
α.

The eigenvalues λ2 and λ3 are always negative. λ4 < 0475

since
√
α > ν1 = ε/k1. Having in mind that ν0 = ε/(1−476

µ), it is easy to check that:477

λ1 < 0if ν1 < ν0,

λ1 = 0if ν1 = ν0,

λ1 > 0if ν1 > ν0.

Therefore, in the deleterious-neutral case we have the fol-478

lowing subcases:479

(i) If k1 < 1 − µ or, equivalently, ν0 < ν1: P1 is480

unstable (saddle). Indeed, dimW s
loc(P1) = 3 and481

dimWu
loc(P1) = 1, where W s,u

loc (P1) denote the sta-482

ble and unstable local invariant manifolds of P1.483

(ii) If k1 = 1 − µ or, equivalently, ν0 = ν1 = ν: P1484

has a 1-dimensional neutral direction (tangent to485

the eigenvector associated to the eigenvalue λ1 = 0)486

and a 3-dimensional local stable manifold.487

(iii) If k1 > 1−µ or, equivalently, ν1 < ν0: In this case488

P1 is a sink so, therefore, a local attractor.489

Regarding the lethal case (k1 = 0), the eigenvalue λ4 = ε490

is always positive and so P1 is unstable (saddle).491

The proof follows from straightforward computations.492
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FIG. 8. Two-dimensional parameter spaces displaying the stability of the fixed points. (a) (
√
α, k1)-plane bifurcation diagram

for the deleterious-neutral cases. The thick red line indicates the boundary for the full dominance of the mutant sequences
as a function of k1. Crossing this boundary (vertical red arrows) causes the extinction of the master sequences p0, n0 and
the dominance of the pool of mutants (green surface). Below this line all genomes coexist (blue area). (b) (
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bifurcation diagram indicating the stability of the fixed points for the lethal case. The vertical black lines indicate the entry
into lethal mutagenesis, where full extinctions occur (light blue). The regions with survival of all sequences is colored in orange.

C. Stability of the points P2 and P0
2493

From Section III we know that the equilibrium point494

P2 exists if
√
α > ν0 and in the following two cases:495

1. In the deleterious case (0 < k1 < 1) provided that496

0 < k1 < 1− µ (or, equivalently, ν0 < ν1).497

2. In the lethal case (k1 = 0).498

Next proposition determines the local stability of P2 in499

these two situations.500

Proposition 5 Let us assume that
√
α > ν0 in order P2501

and P0
2 to exist. Then, the eigenvalues of the differential502

DF (P2) and DF (P0
2 ) are, respectively:503

1. In the deleterious case (0 < k1 < 1) provided that504

0 < k1 < 1− µ (or, equivalently, ν0 < ν1):505

λ1 = −2ε, λ2 = −ε− k1ν0,
λ± = − 1

2(1− µ)
(A± |A− 2((1− µ)− k1)ε|) ,

where A =
√
α(1− µ)2 − k1ε. Notice that assump-506

tions
√
α > ν0 and 0 < k1 < 1 − µ imply that507

A > 0.508

2. In the lethal case (k1 = 0):509

λ1 = −2ε,

λ2 = −ε,

λ± = − (1− µ)

2

√
α±

∣∣∣∣
(1− µ)

2

√
α− ε

∣∣∣∣ .

Then, in both cases all four eigenvalues are real and neg-510

ative, and so the equilibrium points P2 and P0
2 are sinks511

for any
√
α > ν0.512

V. BIFURCATIONS513

As mentioned, the identification of the bifurcations as514

well as their nature (whether they are smooth or catas-515

trophic) is important to understand how viral sequences516

can enter into either error threshold or lethal mutagenesis517

states. Essentially, the system under investigation only518

experiences transcritical bifurcations. This means that519

the collapse of the viral sequences or their entry into er-520

ror threshold is governed by smooth transitions. These521

bifurcations coincide with the appearance of a new equi-522

librium point, P1, P2 or P0
2 . It is remarkable that the523

latter equilibria, once becoming an interior fixed point,524

remains a sink, not undergoing any bifurcation. Let us525

detail them in all our cases. Namely,526
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the error catastrophe as α increases.

1. Deleteterious-neutral case (0 < k1 ≤ 1):527

(i) Case 0 < k1 < 1−µ (that is, ν0 < ν1): the ori-528

gin O is a sink up to
√
α = ν0. At that point,529

the equilibrium point P2 appears. Then, O530

changes its stability by means of a transcrit-531

ical bifurcation, becomes a saddle point (un-532

stable), with dimWu
loc(O) = 1. The coexis-533

tence equilibrium point P2 is a sink (i.e., an534

attractor) for
√
α ∈ (ν0, 1]. At

√
α = ν1,535

the equilibrium point P1 appears. It will be536

a saddle point (with dimWu
loc(P1) = 1) for537 √

α ∈ (ν1, 1]. At this point,
√
α = ν1, the di-538

mension of Wu
loc(O) increases to 2, remaining539

like this up to
√
α = 1.540

(ii) Case k1 = 1−µ (that is, ν0 = ν1): in this situ-541

ation there are only two equilibrium points, O542

and P1, the latter appearing at
√
α = ν0 = ν1.543

As above, the originO is a sink up to
√
α = ν0.544

With the appearing of P1 it undergoes a tran-545

scritical bifurcation, becoming a saddle point546

with dimWu
loc(O) = 2. Concerning the point547

P1, linearisation criteria do not decide its non-548

linear local stability since it has (linear) centre549

and stable local invariant manifolds of dimen-550

sion 1 and 3, respectively. No others bifurca-551

tions show up.552

(iii) Case k1 > 1 − µ (that is, ν1 < ν0): similarly553

to the precedent cases, the origin is a sink (an554

attractor) until the appearance of the equilib-555

rium P1 at
√
α = ν1. At this point, O be-556

comes unstable, a saddle with dimWu
loc(O) =557

1. Later on, at
√
α = ν1, the dimension of558

Wu
loc(O) increases to 2, keeping this dimension559

until
√
α = 1. No bifurcations undergone by560

the point P1, which is a sink for
√
α ∈ (ν0, 1].561

2. Lethal case (k1 = 0): there are only two equilibria:562

the origin O and the coexistence point P0
2 , this lat-563

ter appearing at
√
α = ν0. The origin is a sink for564 √

α ∈ (0, ν0), undergoes a transcritical bifurcation565

at
√
α = ν0, becoming unstable (saddle point) with566

dimWu
loc(O) = 1. The point P0

2 is always a sink.567

Figure 7 summarizes the bifurcations found in Eqs. (1)-568

(4) obtained by choosing different values of k1 and tuning569

α from the SMR to the GR model. Here, for complete-570

ness, we overlap the information on stability for the ori-571

gin, O, displayed in Fig. 6. Several phase portraits are572

displayed for each case. The panel in Fig. 7a shows the573

orbits for
√
α = 0.85 in the subspace (p0, n0), close to the574

GR mode. Here the attractor is P2, which is asymptoti-575

cally globally stable and involves the coexistence between576

master and mutant genomes. For the case k1 = 1−µ and577

for
√
α = 0.5 the attractor achieved is P1, indicating that578

the population is dominated by the pool of mutants at579

equilibrium (Fig. 7b). The same asymptotic dynamics is580

found in the phase portrait of Fig. 7c. Finally, for k1 = 0581

we plot a case for which P2 is also globally asymptotically582

stabe, while O is unstable (Fig. 7d).583

Let us now focus our attention on the bifurcation dia-584

gram for the deleterious-neutral case. In this context, for585

a given value 0 < µ < 1 we consider a plane in the pa-586

rameters
√
α and k1. By hypothesis (H2), the diagram587

is restricted to the rectangle (
√
α, k1) ∈ [0, 1] × [ε, 1].588

The bifurcation curves
√
α = ν1 and

√
α = ν0 are, re-589

spectively, the hyperbola
√
αk1 = ε and the vertical line590 √

α = ε/(1− µ). The three colored areas in Fig. 8a cor-591

respond to the ω-limit (i.e., stationary state achieved in592

forward time) of the solution starting with initial condi-593

tions p0(0) = 1, n0(0) = p1(0) = n1(0) = 0 (the same594

result hold with p0(0) = 0.1, n0(0) = p1(0) = n1(0) = 0).595

Namely, convergence to the origin O (red area ); con-596

vergence to the equilibrium point P1 (light green area);597

attraction by the equilibrium point P2 (blue area). Ob-598

serve that, when crossing these two bifurcation curves599

the equilibrium points change stability - by means of a600

transcritical bifurcation - or change the dimension of its601

associated local unstable invariant manifold (when they602

are saddles).603

Similarly, we can plot a bifurcation diagram in the604

lethal case (k1 = 0, Fig. 8b), now depending on the605

parameters (
√
α, 1− µ). Again, hypothesis (H2) implies606

that it takes places in the rectangle [0, 1] × [ε, 1]. The607

bifurcation curve
√
α = ν0 becomes a branch of the hy-608

perbola
√
α(1 − µ) = ε. This curve also divides the609
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FIG. 10. Phase diagrams for the deleterious-neutral case displayed in Fig. 10a. We display the asymptotic dynamics in the
parameter space (

√
α, k1), with (a) µ = 0.25 and ε = 0.1; (b) µ = 0.5 and ε = 0.1; (c) µ = 0.75 and ε = 0.15; (d) µ = 0.9 and

ε = 0.09. Legend: origin O (dark blue); P1 (light-blue); P2 (light-grey); and “no convergence” (dark red). Below the phase
diagrams we display the equilibrium populations obtained numerically for variables: p0 + n0 (upper row); p1 + n1 (mid row);
and p0 +p1 (lower row) O. The horizontal white lines in the upper row display those critical values k1 involving the dominance
of the mutant sequences.

domain in two coloured areas: a blue one, at the left-610

hand side of the hyperbola, characterized by the fact611

that the equilibrium point O, the origin, is the ω-limit of612

the solution starting at the initial conditions p0(0) = 1,613

n0(0) = p1(0) = n1(0) = 0; an orange one, located on614

the right-hand side of the hyperbola, where the equilib-615

rium point P0
2 is this ω-limit. Figure 9 displays the re-616

gions in the parameter space (
√
α, µ) where the different617

asymptotic states (obtained numerically) can be found618

for the detelerious-neutral cases: sequences extinction619

(red); dominance of mutant sequences (green); and co-620

existence of sequences (blue). Notice that these regions621

obtained numerically perfectly match with the analytical622

results derived in the article. In this plot we can identify623

the critical mutation values causing lethal mutagenesis624

(yellow arrows in Fig. 9), which occurs for
√
α < ε/k1.625

Above this threshold, lethal mutagenesis is replaced by626

the error catastrophe (red line in Fig. 9), with a critical627

mutation rate not depending on α. Notice that when the628

replication mode is close to the SMR lethal mutagenesis629

is achieved for lower mutation rates. This means that630

replication modes departing from the SMR provide the631

sequences with more resistance to lethal mutagenesis.632

Finally, in Fig. 10 we display the basins of attraction633

of the fixed points for the neutral and deleterious mu-634

tants displayed in Fig. 8a. The red arrows indicate those635

values of k1 responsible for the dominance of the mutant636

sequences (first and second rows in Fig. 10). Also, we637

numerically computed the relative populations for the638

master genomes (second row in Fig. 10), as well as of639

the mutants (third row) and the master and mutant (+)640

sense sequences.641



13

VI. CONCLUSIONS642

The evolutionary dynamics of RNA viruses has been643

largely investigated seeking for critical thresholds involv-644

ing error catastrophes and lethal mutagenesis [26, 28, 31].645

Typically, the so-called error catastrophe has been inves-646

tigated using differential equations model, thus assuming647

continuous populations [3, 31]. The error catastrophe648

and lethal mutagenesis concepts are rather different. Er-649

ror catastrophe is an evolutionary shift in sequence space650

[17], typically causing the outcompetition of the nonmu-651

tated master sequence by the complex cloud of mutants.652

Lethal mutagenesis has been described as a demographic653

process whereby viruses achieve extinctions due to a large654

accumulation of mutants of low fitness that reduce the ef-655

fective population size thus making stochastic extinction656

events more likely [17]. This process was suggested by657

Loeb et al. [18] as the mechanism behind the abolish-658

ment of viral replication for HIV-1 during in vitro muta-659

genic experiments. Further evidence on lethal mutagene-660

sis in eukaryotic viruses have been found in lymphocytic661

choriomeningitis virus [19] or influenza A virus [20]. Re-662

cently, evidence for lethal mutagenesis in vivo have been663

reported for a plant virus [21].664

Previous research on viral RNA replication modes has665

focused on theoretical and computational studies aiming666

at describing the evolutionary outcome of RNA sequences667

under the SMR and GR modes of replciation. Smooth668

transitions have been identified in models for viral repli-669

cation [14, 27]. For instance, a simple model consider-670

ing (+) and (-) sense genomes under differential repli-671

cation modes identified a transcritical bifurcation [22].672

This model, however, did not consider evolution. In this673

article we have studied a simple model considering both674

(+) and (-) sense sequences with differential replication675

modes evolving on a single-peak fitness landscape. De-676

spite the simplicity of this landscape, being highly unre-677

alistic, it has been used in multiple models as a simple678

approach to the dynamics of RNA viruses [26–28].679

The model studied here has allowed us to derive the680

critical mutation values involving error thresholds and681

lethal mutagenesis considering three different types of682

mutant spectra, given by neutral, deleterious, and lethal683

mutants. We must note that lethal mutagenesis has been684

described as a demographic extinction (i.e., due to finite685

population effects) [17]. Here we provide an analogous686

mechanism for continuous populations (see below).687

In the deleterious case, there are three possible scenar-688

ios when increasing the value of µ (we omit the trivial689

total extinction solution which is always assumed as a690

possible equilibrium): if 0 < k1
√
α < ε, that is, close691

to the SMR mode, there is no nontrivial equilibrium so-692

lution. This happens for any µ > 0. In the region of693

parameters ε <
√
α < ε/k1, between the SMR and GR694

modes (depending on the particular values of ε and k1),695

the bifurcation undergone by the equilibria is quite steep.696

It passes from a situation with coexistence equilibrium697

to total extinction equilibrium when crossing the curve698

µ = µc = 1− (ε/
√
α). For ε/k1 <

√
α < 1, which always699

includes the GR case. When increasing µ, the systems700

shifts from coexistence to master sequences’ extinction701

when crossing the critical value µ = 1− k1.702

Summarizing, the error threshold is achieved when the703

mutation rate is above the critical value µc, in the delete-704

rious case is given by µc = 1− ε√
α

if ε <
√
α <

ε

k1
; and705

µc = 1− k1 if
ε

k1
<
√
α < 1. In the lethal case, there are706

only two scenarios: for 0 <
√
α < ε (that is, almost pure707

SMR-mode), there are no nontrivial equilibria. For the708

rest of the cases, that is, ε <
√
α < 1 the possible equilib-709

rium solution goes from coexistence to total extinction.710

Our results have allowed us to relate the processes711

of lethal mutagenesis and error catastrophe for contin-712

uous populations of viral genomes. Typically, these two713

different processes, suggested to impair viral persistence714

[17, 18, 27, 31], have been treated separately. Our model715

establishes the parametric conditions allowing theoretical716

viral quasispecies to shift from one process to the other717

taking into account different replication modes.718
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Dynamics of a plant RNA virus intracellular accumula-759

tion: stamping machine vs. geometric replication. Ge-760

netics, 188:637–646, 2011.761

[9] M.B. Schulte, J.A. Draghi, J.B. Plotkin, and Andino R.762

Experimentally guided models reveal replication princi-763

ples that shape the mutation distribution of rna viruses.764

eLife, 4:e03753, 2015.765

[10] M. Combe, R. Garijo, R. Geller, J.M. Cuevas, and766

R. Sanjuán. Single-cell analysis of rna virus infec-767

tion identifies multiple genetically diverse viral genomes768

within single infectious units. Cell Host Microbe, 18.769

[11] C.A. III Hutchison and R.L. Sinsheimer. The process of770

infection with bacteriophage φx174. x. mutations in a φx771

lysis gene. J. Mol. Biol., 18:429–447, 1966.772

[12] S. Luria and Delbrück M. Mutations of bacteria from773

virus sensitivity to virus resistance. Genetics, 28:491–774

511, 1943.775

[13] S.F. Elena, P. Carrasco, J.A. Daròs, and R. Sanjuán.776
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VII. APPENDIX841

A. Proof of Proposition 1842

Let us deal, first, with the deleterious case (0 < k1 <843

1). In this framework, equilibrium states will come from844

the solutions of the following system of non-linear equa-845

tions:846

(1− µ)n0φ = εp0, (10)

α(1− µ)p0φ = εn0, (11)

(µn0 + k1n1)φ = εp1, (12)

α(µp0 + k1p1)φ = εn1. (13)

It is clear that the origin O is a fixed point of our system847

in all the cases. To find nontrivial solutions we distin-848

guish three different scenarios for these equilibria: (i)849

master sequences extinction; (ii) mutant sequences ex-850

tinction and (iii) coexistence among all sequences.851

(i) Case p0 = n0 = 0 (master sequences extinction):852

If we assume p1 = 0, substituting in equation (13)853

and using that ε 6= 0, we get n1 = 0 and there-854

fore, the equilibrium is O = (0, 0, 0, 0), the trivial855
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solution. A symmetric situation undergoes when856

we start taking n1 = 0.857

Thus, let us assume that p1 6= 0 and n1 6= 0.858

Replacing p0 = n0 = 0 in (12)–(13) and divid-859

ing such equations we get p1/n1 = n1/(αp1) and860

so n1 =
√
αp1. This division is well-defined since861

p1 > 0, k1 > 0 and φ 6= 0 (if φ = 0 it is straight-862

forward to check that it leads to the origin O863

as fixed point). From equation (13) we obtain864

ε
√
α = αk1(1−√αp1 − p1) and thus865

p1 = p∗1 =
1√

α(1 +
√
α)

(
√
α− ν1)

= cα(
√
α− ν1),

where ν1 and cα have been defined in (5). There-866

fore, since n1 =
√
αp1 we get the equilibrium point867

P1 = p∗1 (0, 0, 1,
√
α) provided

√
α > ν1 (since we868

are interested in nontrivial equilibrium points with869

biological meaning).870

(ii) Case p1 = n1 = 0 (mutant sequence extinction): in871

this scenario one has to solve872

(1− µ)n0(1− p0 − n0) = εp0,

α(1− µ)p0(1− p0 − n0) = εn0,

µn0(1− p0 − n0) = 0,

αµp0(1− p0 − n0) = 0.

As before, both cases p0 = 0 and n0 = 0 lead to the873

equilibrium point O. So let us consider the case of874

p0 6= 0 and n0 6= 0. From the last two equations it875

follows that p0+n0 = 1 and substituting in the two876

ones we get p0 = n0 = 0, which is a contradiction.877

So there is no nontrivial equilibrium points with878

p1 = n1 = 0.879

(iii) Coexistence sequences equilibria: multiplying880

equation (11) by p0 and subtracting equation (10)881

multiplied by n0 it turns out that (1 − µ)φ(αp20 −882

n20) = 0. Since 0 < µ < 1, this leads to three possi-883

bilities, namely, (a) φ = 0 (that is p0+n0+p1+n1 =884

1) or (b) n0 =
√
αp0 with φ 6= 0 and (c) φ = 0 and885

n0 =
√
αp0.886

Case (c) does not apply. Indeed, substituting φ = 0887

and n0 =
√
αp0 into equation (10) one gets that888

p0 = 0 and so n0 = 0, which is not possible. A889

similar argument shows that case (a) does not hap-890

pen. In fact, taking φ = 0 in equations (10)–(13)891

leads to p0 = n0 = p1 = n1 = 0 which contradicts892

φ = 0 ⇔ p0 + n0 + p1 + n1 = 1. Thus, let us deal893

with case (b).894

Substituting n0 =
√
αp0 in (10) and using that895

p0 6= 0 (if p0 = 0 ⇒ n0 = 0, which corresponds896

to the master sequences extinction case) it turns897

out that898

(1− µ)
√
αφ = ε⇒ φ

√
α =

ε

1− µ ⇒ φ
√
α = ν0.

It is straightforward to check that equation (11)899

leads to the same condition. Performing again the900

change n0 =
√
αp0 onto equations (12) and (13)901

one gets902

µ
√
αp0φ+ k1n1φ = εp1, (14)

αµp0φ+ αk1p1φ = εn1.

Computing the division between equation (12)903

and (13), namely,904

µ
√
αp0 + k1n1

α(µp0 + k1p1)
=
p1
n1

⇒ µ
√
αp0n1 + k1n

2
1 = p1α(µp0 + k1p1)

⇒ µp0
√
α(n1 −

√
αp1) = k1(αp21 − n21),

one gets905

µp0
√
α(n1 −

√
αp1)

= −k1(n1 −
√
αp1)(

√
αp1 + n1).

So now we have two possibilities: n1 =
√
αp1 or906

n1 6=
√
αp1. Observe that the latter cannot be since907

in that case we would have that p0 = − k1
µ
√
α

(n1 −908 √
αp1) < 0, which is not possible because p0 is pos-909

itive. Therefore, it must be n1 =
√
αp1. Substi-910

tuting it into (14) we have µp0ν0 + k1p1ν0 = εp1,911

which implies912

µp0 +

(
k1 −

ε

ν0

)
p1 = 0.

Notice that k1 − (ε/ν0) = 0⇔ ν0 = ν1. In fact, we913

have that ν0 6= ν1. Indeed, if this term vanished we914

would have p0 = 0 and thus n0 = 0, which gives915

rise to point P1.916

Hence, if k1 − (ε/ν0) 6= 0, it follows that917

p1 =
µ

ε
ν0
− k1

p0 (15)

=
µν0

ε− k1ν0
p0 =

µν0
k1(ν1 − ν0)

p0 = δp0.

Thus, φ = 1−(p0+n0+p1+n1) = 1−(1+
√
α)p0−918

(1 +
√
α)p1 and so919

p0 + p1 = cα(
√
α− ν0)

Combining the previous relation with (15) the fol-920

lowing solution is obtained921

p0 = q0 =
cα(
√
α− ν0)

1 + δ
,

n0 =
√
αq0,

p1 = δq0,

n1 = δ
√
αq0,
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with ν0, cα, δ defined in (5)–(6), which leads to the922

coexistence equilibrium state923

P2 = q0
(
1,
√
α, δ, δ

√
α
)
,

for
√
α > ν0 and ν0 < ν1.924

Concerning the neutral case (k1 = 1), it is easy to check925

that all the computations carried out for the deleterious926

context are also valid for this case.927

And the last, but not least, case corresponds to the lethal928

framework (k1 = 0). Equilibrium states must be solution929

of the system930

(1− µ)n0φ− εp0 = 0, (16)

α(1− µ)p0φ− εn0 = 0, (17)

µn0φ− εp1 = 0, (18)

αµp0φ− εn1 = 0. (19)

Again, the origin O is a trivial fixed point. To seek for931

nontrivial equilibria we take into account two scenarios:932

(a) p0 = 0; (b) p0 6= 0.933

(a) Case p0 = 0: From the equation (16) we get934

(1 − µ)n0φ = 0. Since 0 < µ < 1 we have three935

possibilities: n0 = 0, φ = 0 or both. It is ob-936

vious that first and third cases lead to the origin937

O. Regarding to the case with φ = 0, it follows938

that n0 + n1 + p1 = 1. Substituting it into equa-939

tions (17)–(19) we get n0 = p1 = n1 = 0, which940

contradicts the previous equality.941

(b) Case p0 6= 0: From (16) we have that neither n0 nor942

φ vanish. Performing n0× (16) minus p0× (17) one943

gets that (1−µ)φ(n20−αp20) = 0 and so n0 =
√
αp0944

since 0 < µ < 1 and φ 6= 0. Substituting the latter945

equality into (16) it follows that (1−µ)
√
αφ = ε⇒946 √

αφ = ν0.947

Subtracting n0× (19) from αp0× (18) one has948

εp0
√
α(
√
αp1 − n1) = 0, so then n1 =

√
αp1. On949

the other hand,950

√
αφ = ν0 ⇒ 1− (1 +

√
α)(p0 + p1)

=
ν0√
α
⇒ p0 + p1 =

√
α− ν0√

α(1 +
√
α

= cα(
√
α− ν0).

And last, from (19) and using that
√
αφ = ν0 and951

n1 =
√
αp1 we get αµp0φ = εn1 ⇒ p1 = δ0p0.952

Therefore the equilibrium point is given by953

P0
2 = q00

(
1,
√
α, δ, δ

√
α
)
,

where q00 = cα(
√
α−ν0)/(1+δ0) and provided that954 √

α > ν0 (to have biological meaning).955

B. Proof of Proposition 2956

As mentioned before, the case µ = 1 corresponds to the957

situation when there is no autocatalysis in the master958

sequence and so it mutates with probability 1. Thus,959

concerning their equilibrium points we have:960

• In the deleterious and neutral cases, substituting961

µ = 1 into equations (10)–(13), one gets the equa-962

tions963

ε0p0 = 0, εn0 = 0,

(n0 + k1n1)φ = εp1,

α(p0 + k1p1)φ = εn1.

From the two first equations it follows that p0 =964

n0 = 0 and, consequently965

k1n1φ = εp1, αk1p1φ = εn1. (20)

Again, we distinguish several possibilities:966

– If n1 = 0 then p1 = 0 and so we obtain the967

origin.968

– If p1 = 0 then n1 = 0 and therefore the equi-969

librium point is again the origin.970

– In case that n1 + p1 = 1, n1 6= 0, p1 6= 0 it971

follows that φ = 0 and so p1 = n1 = 0 which is972

a contradiction with the fact that n1 +p1 = 1.973

– Finally, if n1 6= 0, p1 6= 0, φ 6= 0, we can divide974

them and get αp1/n1 = n1/p1. Consequently,975

n1 =
√
αp1. This gives rise to an equilib-976

rium of the form (0, 0, p1,
√
αp1). Substituting977

this form into the first equation of (20), one978

obtains p1 = cα(
√
α − ν1), defined provided979 √

α > ν1, which corresponds to the point P1980

in Proposition 1.981

• In the lethal case, equilibria system (16)-(19) re-982

duces to εp0 = 0, εn0 = 0, n0φ = εp1, αp0φ = εn1.983

From the first two equations we have p0 = n0 = 0984

and substituting in the second ones, it turns out985

p1 = n1 = 0, that is, the origin.986

C. Proof of Proposition 3987

As usual, we use stability analysis of the linearised sys-988

tem around the equilibrium to determine, when possible,989

the local nonlinear stability of the point for the complete990

system.991

1. Deleterious and neutral case (0 < k1 ≤ 1): the992

eigenvalues of the differential matrix993

AO = DF (O) =




−ε 1− µ 0 0
α(1− µ) −ε 0 0

0 µ −ε k1
αµ 0 αk1 −ε


 ,
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are λ1 = −ε +
√
α(1 − µ), λ2 = −ε − √α(1 − µ),994

λ3 = −ε + k1
√
α, and λ4 = −ε − k1

√
α. It is995

easy to verify that v3 = OP1 = (0, 0, 1,
√
α) and996

v4 = (0, 0,−1,
√
α) are eigenvectors of λ3 and λ4,997

respectively. It is also straightforward to check that998





λ1 < 0 if
√
α < ν0,

λ1 = 0 if
√
α = ν0,

λ1 > 0 if
√
α > ν0,

and999





λ3 < 0 if
√
α < ν1,

λ3 = 0 if
√
α = ν1,

λ3 > 0 if
√
α > ν1.

Thus, we have the following three cases:1000

• Case 0 < k1 < 1 − µ or, equivalently, ν0 <1001

ν1: the origin is a sink (an attractor) for α ∈1002

(0, ν0) and unstable (saddle) for
√
α ∈ (ν0, 1).1003

For α ∈ (ν0, ν1) one has dimWu
loc(O) = 1 and1004

if
√
α > ν1 then dimWu

loc(O) = 2.1005

• Case k1 = 1− µ or, equivalently, ν0 = ν1: the1006

origin is a sink for
√
α ∈ (0, ν0) and unstable1007

(saddle) for
√
α ∈ (ν0, 1). The dimension of1008

Wu
loc(O) is 2 in this interval.1009

• Case 1− µ < k1 < 1 or, equivalently, ν1 > ν0:1010

the origin is a sink if
√
α < ν1 and unsta-1011

ble (a saddle) for
√
α > ν1. The dimension1012

dimWu
loc(O) goes from 1 to 2 when

√
α crosses1013

ν0.1014

2. Lethal case (k1 = 0): The eigenvalues of1015

AO = DF (0, 0, 0, 0) =




−ε 1− µ 0 0
α(1− µ) −ε 0 0

0 µ −ε 0
αµ 0 0 −ε




are in this case1016

λ1 = −ε+
√
α(1− µ),

λ2 = −ε−√α(1− µ),

λ3 = −ε,
λ4 = −ε.

Observe that λ2 < 0, λ3 < 0 and λ4 < 0 so the1017

stability of O depends only on λ1. Indeed:1018





λ1 < 0 if
√
α < ν0,

λ1 = 0 if
√
α = ν0,

λ1 > 0 if
√
α > ν0.

Therefore, the origin is asymptotically stable for1019 √
α < ν0 and becomes unstable for

√
α > ν0. This1020

situation is represented in Fig. 6.1021

D. Proof of Proposition 51022

Recall that
√
α > ν0 since P2 exists. We distinguish1023

two cases:1024

1. Case 1: deleterious mutants (0 < k1 < 1) with1025

0 < k1 < 1 − µ (that is, equivalently, ν0 < ν1).1026

The expression of the eigenvalues can directly from1027

algebraic computations. They are all real. Observe1028

that λ1, λ2 and λ+ are negative. Concerning λ−,1029

notice that1030

|A− 2((1− µ)− k1)ε| < A

⇔ 0 < A− ((1− µ)− k1)ε < A.

The second inequality is trivially satisfied since (1−1031

µ)−k1 > 0 and ε > 0. Regarding the first one, one1032

can check that1033

0 < A− ((1− µ)− k1)

⇔ √α(1− µ)2 − k1ε > (1− µ)ε− k1ε
⇔ √α > ν0,

which is satisfied by hypothesis. Therefore, A−|A−1034

2((1 − µ) − k1)ε| > 0 and, consequently, λ− < 0.1035

This implies that the point P2 is a sink for any1036 √
α > ν0.1037

2. Case 2: lethal mutants (k1 = 0). As above, the1038

expression for the eigenvalues follows from linear1039

algebra and straightforward computations. Again,1040

λ1, λ2, and λ− are all three real and negatives. Con-1041

cerning λ+ (real), we define B = (1−µ)
√
α/2. This1042

implies that λ+ = −B + |B − ε|. Observe that1043

|B − ε| < B ⇔ 0 < 2B − ε. Right-hand inequal-1044

ity is trivial since ε > 0. Left-hand is also satisfied1045

since it is equivalent to
√
α > ν0. So, all four eigen-1046

values are real and negative which means that the1047

point P0
2 is a sink for any

√
α > ν0.1048


