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Abstract. In this work we introduce a new set of invariants associated to the linear
strands of a minimal free resolution of a Z-graded ideal I ⊆ R = k[x1, . . . , xn]. We
also prove that these invariants satisfy some properties analogous to those of Lyubeznik
numbers of local rings. In particular, they satisfy a consecutiveness property that we
prove �rst for the Lyubeznik table. For the case of squarefree monomial ideals we get
more insight on the relation between Lyubeznik numbers and the linear strands of their
associated Alexander dual ideals. Finally, we prove that Lyubeznik numbers of Stanley-
Reisner rings are not only an algebraic invariant but also a topological invariant, meaning
that they depend on the homeomorphic class of the geometric realization of the associated
simplicial complex and the characteristic of the base �eld.

1. Introduction

Let A be a noetherian local ring that admits a surjection from an n-dimensional regular
local ring (R,m) containing its residue �eld k, and I ⊆ R be the kernel of the surjection.
In [13], Lyubeznik introduced a new set of invariants λp,i(A) as the p-th Bass number of
the local cohomology module Hn−i

I (R), that is

λp,i(A) := µp(m, Hn−i
I (R)) = dimk Ext

p
R(k, H

n−i
I (R))

and they depend only on A, i and p, but not on the choice of R or the surjection R−→A.
In the seminal works of Huneke-Sharp [10] and Lyubeznik [13] it is proven that these
Bass numbers are all �nite. Denote d = dimA, Lyubeznik numbers satisfy the following
properties1:

i) λp,i(A) ̸= 0 implies 0 ≤ p ≤ i ≤ d.
ii) λd,d(A) ̸= 0.
iii) Euler characteristic: ∑

0≤p,i≤d

(−1)p−iλp,i(A) = 1.

The �rst author was partially supported by Generalitat de Catalunya 2014SGR-634 project and Spanish
Ministerio de Economía y Competitividad MTM2015-69135-P. The second author was partially supported
by JSPS KAKENHI 25400057.
1Property iii) was shown to us by R. García-López (see [2] for details).
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Therefore, we can collect them in the so-called Lyubeznik table:

Λ(A) =

 λ0,0 · · · λ0,d

. . .
...

λd,d


and we say that the Lyubeznik table is trivial if λd,d = 1 and the rest of these invariants
vanish.

Despite its algebraic nature, Lyubeznik numbers also provide some geometrical and
topological information as it was already pointed out in [13]. For instance, in the case
of isolated singularities, Lyubeznik numbers can be described in terms of certain singular
cohomology groups in characteristic zero (see [6]) or étale cohomology groups in positive
characteristic (see [5], [4]). The highest Lyubeznik number λd,d(A) can be described using
the so-called Hochster-Huneke graph as it has been proved in [15], [31]. However very little
is known about the possible con�gurations of Lyubeznik tables except for low dimension
cases [12], [24] or the just mentioned case of isolated singularities.

In Section 2 we will give some new constraints to the possible con�gurations of Lyubeznik
tables. Namely, the main result, Theorem 2.1, establishes some consecutiveness of the
non-vanishing superdiagonals of the Lyubeznik tables using spectral sequence arguments.

In Section 3 we introduce a new set of invariants associated to the linear strands of a
minimal free resolution of a Z-graded ideal I ⊆ R = k[x1, . . . , xn]. It turns out that these
new invariants satisfy some analogous properties to those of Lyubeznik numbers including
the aforementioned consecutiveness property. Moreover, we provide a Thom-Sebastiani
type formula for these invariants that is a re�nement of the formula for Betti numbers
given by Jacques and Katzman in [11]. This section should be of independent interest
and we hope it could be further developed in future work.

In the rest of the paper we treat the case where I is a monomial ideal in a polynomial
ring R = k[x1, . . . , xn], and m = (x1, . . . , xn) is the graded maximal ideal. Bass numbers

are invariant with respect to completion so we consider λp,i(R/I) = λp,i(R̂/IR̂) where

R̂ = k[[x1, . . . , xn]]. In this sense, our study on the Lyubeznik tables of monomial ideals is
a (very) special case of that for local rings. However, advanced techniques in combinatorial
commutative algebra are very e�ective in this setting, and we can go much further than
general case, so we hope that monomial ideals are good �test cases� for the study of
Lyubeznik tables.

Since local cohomology modules satisfy H i
I(R) ∼= H i√

I
(R) we often will assume that a

monomial ideal I is squarefree, i.e., I =
√
I. In this case, I coincides with the Stanley-

Reisner ideal I∆ of a simplicial complex ∆ ⊆ 2{1,...,n}, more precisely,

I = I∆ := (
∏
i∈F

xi | F ⊆ {1, . . . , n}, F ̸∈ ∆).
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The Stanley-Reisner ring R/I∆ is one of the most fundamental tools in combinatorial
commutative algebra, and it is known that R/I∆ re�ects topological properties of the
geometric realization |∆| of ∆ in several ways.

In Section 4 we get a deeper insight to the relation, given by the �rst author and
A. Vahidi in [1], between Lyubeznik numbers of monomial ideals and the linear strands of
their associated Alexander dual ideals. In particular, we give a di�erent approach to the
fact proved in [2] that if R/I∆ is sequentially Cohen-Macaulay, then its Lyubeznik table
is trivial. We also provide a Thom-Sebastiani type formula for Lyubeznik numbers.

One of the main results of this paper is left for Section 5. Namely, Theorem 5.3 states
that Lyubeznik numbers of Stanley-Reisner rings are not only an algebraic invariant but
also a topological invariant, meaning that the Lyubeznik numbers of R/I∆ depend on the
homeomorphic class of the geometric realization |∆| of ∆ and the characteristic of the
base �eld.

The proof of this result is quite technical and irrelevant to the other parts of the paper,
so we decided to put it in the �nal section. We also remark that this result holds in a wider
setting. More precisely, if R is a normal simplicial semigroup ring which is Gorenstein,
and I is a monomial ideal, then the corresponding result holds. We will work in this
general setting, since the proof is the same as in the polynomial ring case.

2. Consecutiveness of nontrivial superdiagonals of the Lyubeznik table

To give a full description of the possible con�gurations of Lyubeznik tables of any
local ring seems to be a very di�cult task and only a few results can be found in the
literature. The aim of this section is to give some constraints to the possible con�gurations
of Lyubeznik tables, aside from the Euler characteristic formula.

Let (R,m) be a regular local ring of dimension n containing its residue �eld k, and
I ⊆ R be any ideal with dimR/I = d. For each j ∈ N with 0 ≤ j ≤ d, set

ρj(R/I) =

d−j∑
i=0

λi,i+j(R/I).

For example, ρ0(R/I) (resp. ρ1(R/I)) is the sum of the entries in the diagonal (resp.
superdiagonal) of the Lyubeznik table Λ(R/I). Clearly,

∑
j∈N(−1)jρj(R/I) = 1. We say

ρj(R/I) is non-trivial, if

ρj(R/I) ≥

{
2 if j = 0,

1 if j ≥ 1.

Clearly, Λ(R/I) is non-trivial if and only if ρj(R/I) is non-trivial for some j.
It is easy to see that λ0,d(R/I) = 0 if d ≥ 1 and λ0,d(R/I) = 1 if d = 0, that is, ρd(R/I)

is always trivial.

A key fact that we are going to use in this section is that local cohomology modules
have a natural structure over the ring of k-linear di�erential operators DR|k (see [13], [14]).
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In fact they are DR|k-modules of �nite length (see [3, Thm. 2.7.13] and [13, Ex.2.2] for
the case of characteristic zero and [14, Thm. 5.7] in positive characteristic). In particular,
Lyubeznik numbers are nothing but the length as a DR|k-module of the local cohomology

modules Hp
m(H

n−i
I (R)), i.e.

λp,i(R/I) = lengthDR|k
(Hp

m(H
n−i
I (R))).

The DR|k-module length, that will be denoted simply as e(−), is an additive function, i.e
given a short exact sequence of holonomic DR|k-modules 0−→M1−→M2−→M3−→0 we
have

e(M2) = e(M1) + e(M3).

The main result of this section is the following:

Theorem 2.1. Let (R,m) be a regular local ring of dimension n containing its residue
�eld k, and I ⊆ R be any ideal with dimR/I = d. Then:

• If ρj(R/I) is non-trivial for some j with 0 < j < d, then either ρj−1(R/I) or
ρj+1(R/I) is non-trivial.

• If ρ0(R/I) is non-trivial, then so is ρ1(R/I).

Proof. Consider Grothendieck's spectral sequence

Ep,n−i
2 = Hp

m(H
n−i
I (R)) =⇒ Hp+n−i

m (R).

This is a spectral sequence of DR|k-modules where λp,i(R/I) = e(Ep,n−i
2 ). Notice also that

the local cohomology modules Hr
m(R) vanish for all r ̸= n and in this case e(Hn

m(R)) = 1.

We will prove the assertion by contradiction. So assume that ρj(R/I) is non-trivial for
some 0 < j < d, but both ρj−1(R/I) and ρj+1(R/I) are trivial (the case j = 0 can be
proved by a similar argument). We have some p, i with i = p+ j such that λp,i(R/I) ̸= 0

(equivalently, Ep,n−i
2 ̸= 0). Consider the maps on E2-terms

Ep−2,n−i+1
2

d2−→ Ep,n−i
2

d′2−→ Ep+2,n−i−1
2 .

We will show that d2 = d′2 = 0.

Consider �rst the case j > 1. We have Ep−2,n−i+1
2 = Ep+2,n−i−1

2 = 0 just because
e(Ep−2,n−i+1

2 ) = λp−2,i−1(R/I) and e(Ep+2,n−i−1
2 ) = λp+2,i+1(R/I) concern ρj+1(R/I) and

ρj−1(R/I) respectively. Therefore d2 = d′2 = 0 is satis�ed trivially. When j = 1, i.e. the
case when (p+ 2, n− i− 1) = (d, n− d), we have:

Ed−4,n−d+2
2

d2−→ Ed−2,n−d+1
2

d′2−→ Ed,n−d
2 .

The triviality of ρ2(R/I) and ρ0(R/I)means that Ed−4,n−d+2
2 = 0 and λd,d = e(Ed,n−d

2 ) = 1

so d2 = 0. Now we assume that the map d′2 : Ed−2,n−d+1
2 → Ed,n−d

2 is non-zero. Then

Im d′2 = Ed,n−d
2 due to the fact that Ed,n−d

2 is a simple DR|k-module. It follows that

Ed,n−d
3 = Ed,n−d

2 /Im d′2 = 0 so

0 = Ed,n−d
3 = Ed,n−d

4 = · · · = Ed,n−d
∞ .
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On the other hand, since ρ0(R/I) is trivial, we have

0 = Ei,n−i
2 = Ei,n−i

3 = · · · = Ei,n−i
∞

for all i < d. Therefore we get a contradiction since, by the general theory of spectral
sequences, there exists a �ltration

(2.1) 0 ⊆ Fn
n ⊆ · · · ⊆ Fn

1 ⊆ Hn
m(R),

where Ei,n−i
∞ = Fn

i /Fn
i+1.

Anyway, we have shown that d2 = d′2 = 0 in all cases, and this implies that Ep,n−i
3 =

Ep,n−i
2 ̸= 0. Now we consider the maps on E3-terms

Ep−3,n−i+2
3

d3−→ Ep,n−i
3

d′3−→ Ep+3,n−i−2
3 .

Since Ep−3,n−i+2
3 and Ep+3,n−i−2

3 concern ρj+1(R/I) and ρj−1(R/I) respectively, we have

d3 = d′3 = 0 by the same argument as above. Hence we have Ep,n−i
4 = Ep,n−i

3 ̸= 0.
Repeating this argument, we have 0 ̸= Ep,n−i

2 = Ep,n−i
3 = · · · = Ep,n−i

∞ so we get a
contradiction with the fact that Hp+n−i

m (R) = 0 (recall that j = i− p ̸= 0). □

The behavior of the consecutive superdiagonals is re�ected in the following example.

Example 2.2. Let I ⊆ R = k[[x1, . . . , x8]] be the Alexander dual ideal of the edge ideal
of an 8-cycle, i.e. I∨ = (x1x2, x2x3, . . . , x7x8, x8x1). Using the results of [1] we get the
Lyubeznik table

Λ(R/I) =



0 0 0 0 1 0 0
0 0 0 0 0 0

0 0 0 1 0
0 0 1 0

0 0 0
0 1

1


.

Notice that ρ0(R/I) being trivial does not imply that ρ1(R/I) = 0.

Remark 2.3. Using similar spectral sequence arguments to those considered in Theo-
rem 2.1, Kawasaki [12] and Walther [24] described the possible Lyubeznik tables for rings
up to dimension two. Namely, their result is:

• If d = 2, then λ2,2(R/I)− 1 = λ0,1(R/I) and the other Lyubeznik numbers are 0.

If we take a careful look at the spectral sequence we can also obtain the following:

• If d ≥ 3, then λ2,d(R/I) = λ0,d−1(R/I) and

λ1,d−1(R/I) ≤ λ3,d(R/I) ≤ λ1,d−1(R/I) + λ0,d−2(R/I)

≤ λ3,d(R/I) + λ2,d−1(R/I).

For d = 3 we can re�ne the last inequality, that is,

λ1,2(R/I) + λ0,1(R/I) = λ3,3(R/I) + λ2,2(R/I)− 1.
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Indeed, using the �ltration (2.1) we have

d∑
i=0

e(Ei,n−r−i
∞ ) = e(Hn−r

m (R)) =

{
1 if r = 0,

0 otherwise.

Then the result follows considering the di�erentials d2 : E0,n−d+1
2 −→ E2,n−d

2 , d2 :

E1,n−d+1
2 −→ E3,n−d

2 , d2 : E0,n−d+2
2 −→ E2,n−d+1

2 and d3 : E0,n−d+2
3 −→ E3,n−d

3 . Fi-

nally, we point out that E0,n−d+1
3 = E0,n−d+1

∞ , E1,n−d+1
3 = E1,n−d+1

∞ , E2,n−d
3 = E2,n−d

∞ ,

E0,n−d+2
4 = E0,n−d+2

∞ and E3,n−d
4 = E3,n−d

∞ .

3. Linear strands of minimal free resolutions of Z-graded ideals

Throughout this section we will consider Z-graded ideals I in the polynomial ring
R = k[x1, . . . , xn], in particular I is not necessarily a monomial ideal. For simplicity, we
will assume that I ̸= 0. The minimal Z-graded free resolution of I is an exact sequence
of free Z-graded modules:

(3.1) L•(I) : 0 // Ln
dn // · · · // L1

d1 // L0
// I // 0 ,

where the i-th term is of the form

Li =
⊕
j∈Z

R(−j)βi,j(I),

and the matrices of the morphisms di : Li −→ Li−1 do not contain invertible elements.
The Betti numbers of I are the invariants βi,j(I). Notice that Li

∼= Rβi(I) as underlying
R-modules where, for each i, we set βi(I) :=

∑
j∈Z βi,j(I). Hence, (3.1) implies that∑

0≤i≤n

(−1)iβi(I) = rankR(I) = 1.

Given r ∈ N, we also consider the r-linear strand of L•(I):

L<r>
• (I) : 0 // L<r>

n

d<r>
n // · · · // L<r>

1

d<r>
1 // L<r>

0
// 0 ,

where
L<r>

i = R(−i− r)βi,i+r(I),

and the di�erential d<r>
i : L<r>

i −→ L<r>
i−1 is the corresponding component of di.

Remark 3.1. Sometimes we will also consider the minimal Z-graded free resolution L•(R/I)
of the quotient ring R/I:

(3.2) L•(R/I) : 0 // Ln
dn // · · · // L1

d1 // L0 = R // R/I // 0 ,

Its truncation at the �rst term L≥1(R/I) gives a minimal free resolution L•(I) of I. For
r ≥ 2, L<r>

• (I) is isomorphic to the (r − 1)-linear strand L<r−1>
• (R/I) up to translation.

However, this is not true for r = 1, since L<0>
• (R/I) starts from the 0-th term R, which

is irrelevant to L<1>
• (I).
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To the minimal Z-graded free resolution of I we may associate a set of invariants that
measure the acyclicity of the linear strands as follows: Let K denote the �eld of fractions
Q(R) of R, and set

νi,j(I) := dimK[Hi(L<j−i>
• (I)⊗R K)].

Since the complex L<r>
• (I)⊗R K is of the form

0 // Kβn,n+r(I)
∂<r>
n // · · · // Kβ1,1+r(I)

∂<r>
1 // Kβ0,r(I) // 0 ,

we have νi,j(I) ≤ βi,j(I) for all i, j (if i > j then νi,j(I) = βi,j(I) = 0), and
n∑

i=0

(−1)iνi,i+r(I) =
n∑

i=0

(−1)iβi,i+r(I)

for each r. If we mimic the construction of the Betti table, we may also consider the
ν-table of I

νi,i+r(I) 0 1 2 · · ·
0 ν0,0(I) ν1,1(I) ν2,2(I) · · ·
1 ν0,1(I) ν1,2(I) ν2,3(I) · · ·
...

...
...

...

Next we consider some basic properties of ν-numbers. It turns out that they satisfy
analogous properties to those of Lyubeznik numbers. For instance, these invariants satisfy
the following Euler characteristic formula.

Lemma 3.2. For a Z-graded ideal I, we have∑
i,j∈N

(−1)iνi,j(I) = 1.

Proof. The assertion follows from the computation below.∑
i,j∈N

(−1)iνi,j(I)

=
∑
i,r∈N

(−1)iνi,i+r(I)

=
∑
r∈N

∑
0≤i≤n

(−1)iνi,i+r(I)

=
∑
r∈N

∑
0≤i≤n

(−1)iβi,i+r(I)

=
∑

0≤i≤n

∑
r∈N

(−1)iβi,i+r(I)

=
∑

0≤i≤n

(−1)iβi(I)

= 1
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□
We can also single out a particular non-vanishing ν-number. For each i ∈ N, let I<i>

denote the ideal generated by the homogeneous component Ii = {f ∈ I | deg(f) = i}∪{0}.
Then we have:

Lemma 3.3. If I is a Z-graded ideal with l := min{i | Ii ̸= 0}, then we have ν0,l(I) ̸= 0.

Proof. It is easy to see that there is a surjectionH0(L<l>
• (I)) ↠ I<l>. Since dimR I<l> = n,

we have H0(L<l>
• (I)⊗R K) ∼= H0(L<l>

• (I))⊗R K ̸= 0. □

This fact allows us to consider the following notion:

De�nition 3.4. Let I be a Z-graded ideal and set l := min{i | Ii ̸= 0}. We say that I
has trivial ν-table, if ν0,l(I) = 1 and the rest of these invariants vanish.

3.1. Componentwise linear ideals. It might be an interesting problem to �nd neces-
sary and/or su�cient conditions for a Z-graded ideal to have a trivial ν-table. In this
direction we have the following relation to the notion of componentwise linear ideals.

De�nition 3.5 (Herzog and Hibi, [8]). We say a Z-graded ideal I is componentwise linear
if I<r> has a linear resolution for all r ∈ N, i.e., βi,j(I<r>) = 0 unless j = i+ r.

Römer ([20]) and the second author ([25, Theorem 4.1]) independently showed that I
is componentwise linear if and only if Hi(L<r>

• (I)) = 0 for all r and all i ≥ 1.

Proposition 3.6. A componentwise linear ideal I has a trivial ν-table.

Proof. Since I is componentwise linear, we have Hi(L<r>
• (I)) = 0 for all r and all i ≥ 1,

and hence νi,j(I) = 0 for all j and all i ≥ 1. Now the assertion follows from Lemmas 3.2
and 3.3. □
The converse of the above proposition is not true. For example, in Corollary 3.13

below, we will show that if I1 ̸= 0 then it has trivial ν-table. However, there is no relation
between being componentwise linear and I1 ̸= 0.

3.2. Consecutiveness of nontrivial columns of the ν-tables. For a Z-graded ideal
I ⊆ R and i ∈ N, set

νi(I) =
∑
j∈N

νi,j(I).

If we denote L•(I) :=
⊕

r∈N L<r>
• (I), then

νi(I) = dimK Hi(L•(I)⊗R K).

By Lemma 3.2, we have
∑n

i=0(−1)iνi(I) = 1. We say νi(I) is non-trivial, if

νi(I) ≥

{
2 if i = 0,

1 if i ≥ 1.
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Clearly, the ν-table of I is non-trivial if and only if νi(I) is non-trivial for some i. If n ≥ 1,
we have proj.dimRI ≤ n− 1, and hence νn(I) = 0. In particular, νn(I) is always trivial.

The main result of this subsection is the following:

Theorem 3.7. Let I be a Z-graded ideal of R. Then;

• If νj(I) is non-trivial for 1 ≤ j ≤ n − 1, then either νj−1(I) or νj+1(I) is non-
trivial.

• If ν0(I) is non-trivial, then so is ν1(I).

In order to prove the theorem, we will reconstruct L•(I) using a spectral sequence. Let
L•(I) be the minimal free resolution of I as before. Consider the m-adic �ltration L•(I) =
F0L• ⊃ F1L• ⊃ · · · of L•(I), where FiL• is a subcomplex whose component of homological
degree j is miLj. For any given R-module M , we regard gr (M) :=

⊕
i∈N m

iM/mi+1M as
an R-module via the isomorphism grR =

⊕
i∈N m

i/mi+1 ∼= R = k[x1, . . . , xn]. Since each
Lj is a free R-module, ⊕

p+q=−j

Ep,q
0 =

(⊕
p≥0

mpLj/m
p+1Lj

)
= grLj

is isomorphic to Lj (if we identify grR with R), while we have to forget the original

Z-grading of Lj. Since L•(I) is a minimal free resolution, dp,q0 : Ep,q
0 → Ep,q+1

0 is the zero
map for all p, q, and hence Ep,q

0 = Ep,q
1 . It follows that

E(1)
j :=

⊕
p+q=−j

Ep,q
1 =

⊕
p+q=−j

Ep,q
0

is isomorphic to Lj under the identi�cation R ∼= grR. Collecting the maps

dp,q1 : Ep,q
1 (= mpLj/m

p+1Lj) −→ Ep+1,q
1 (= mp+1Lj−1/m

p+2Lj−1)

for p, q with p+q = −j, we have the R-morphism d
(1)
j : E(1)

j → E(1)
j−1, and these morphisms

make E(1)
• a chain complex of R-modules. Under the isomorphism E(1)

j
∼= Lj, E(1)

• is
isomorphic to L•(I) =

⊕
r∈N L<r>

• (I). Hence we have

E(2)
j :=

⊕
p+q=−j

Ep,q
2

∼= Hj(L•(I))

and νj(I) = dimK(E(2)
j ⊗R K). Collecting the maps dp,q2 : Ep,q

2 → Ep+2,q−1
2 , we have the

R-morphism

d
(2)
j : E(2)

j (∼= Hj(L•(I))) −→ E(2)
j−1 (

∼= Hj−1(L•(I)).

Moreover, we have the chain complex

· · · −→ E(2)
j+1

d
(2)
j+1−→ E(2)

j

d
(2)
j−→ E(2)

j−1 −→ · · · ,

of R-modules whose jth homology is isomorphic to E(3)
j :=

⊕
p+q=−j E

p,q
3 . For all r ≥ 4,

E(r)
j :=

⊕
p+q=−j E

p,q
r satis�es the same property.
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By the construction of spectral sequences, if

r > max{k | βj,k(I) ̸= 0} −min{k | βj−1,k(I) ̸= 0},

then the map dp,qr : Ep,q
r → Ep+r,q−r+1

r is zero for all p, q with p + q = −j, and hence

d
(r)
j : E(r)

j → E(r)
j−1 is zero. It implies that E(r)

j is isomorphic to

E(∞)
j :=

⊕
p+q=−j

Ep,q
∞

for r ≫ 0.

Proof of Theorem 3.7. We will prove the assertion by contradiction using the spectral
sequence introduced above. First, assume that νj(I) is non-trivial for some 2 ≤ j ≤ n−1,
but both νj−1(I) and νj+1(I) are trivial (the cases j = 0, 1 can be proved using similar

arguments, and we will give a few remarks later). Then we have E(2)
j ⊗R K ̸= 0 and

E(2)
j+1 ⊗R K = E(2)

j−1 ⊗R K = 0. It follows that E(3)
j ⊗R K ̸= 0, since it is the homology of

E(2)
j+1 ⊗R K −→ E(2)

j ⊗R K −→ E(2)
j−1 ⊗R K.

Similarly, we have E(3)
j−1 ⊗R K = E(3)

j+1 ⊗R K = 0. Repeating this argument, we have

E(r)
j ⊗R K ̸= 0 for all r ≥ 4. Hence Ep,q

∞ ̸= 0 for some p, q with p + q = −j. However it
contradicts the facts that

Ep,q
r =⇒ H−p−q(L•(I))

and Hj(L•(I)) = 0 (recall that j > 0 now).
Next we assume that ν1(I) is non-trivial, but ν0(I) and ν2(I) are trivial, that is,

E(2)
1 ⊗R K ̸= 0, E(2)

0 ⊗R K ∼= K and E(2)
2 ⊗R K = 0.

As we have seen above, we must have E(r)
1 = 0 for r ≫ 0. Since E(r)

2 ⊗R K = 0 for

all r now, if d
(r)
1 ⊗R K : E(r)

1 ⊗R K −→ E(r)
0 ⊗R K are the zero maps for all r, then

E(r)
1 ⊗R K ∼= E(2)

1 ⊗R K ̸= 0 for all r, and this is a contradiction. So there is some

r ≥ 2 such that d
(r)
1 ⊗R K is not zero. If s is the minimum among these r, d

(s)
1 ⊗R K :

E(s)
1 ⊗R K −→ (E(s)

0 ⊗R K) ∼= K is surjective. Hence E(r)
0 ⊗R K = 0 for all r > s, and

E(∞)
0 ⊗R K = 0. However, since E(∞)

0
∼= gr (H0(L•(I)) ∼= gr (I) and dimR I = n, we have

dimR(gr (I)) = n and hence E(∞)
0 ⊗RK ̸= 0. This is a contradiction. The case when ν0(I)

is non-trivial can be proved in a similar way. □

3.3. Thom-Sebastiani type formulae. Let I, J be Z-graded ideals in two disjoint sets
of variables, say I ⊆ R = k[x1, . . . , xm] and J ⊆ S = k[y1, . . . , yn]. The aim of this subsec-
tion is to describe the ν-numbers of IT+JT , where T = R⊗kS = k[x1, . . . , xm, y1, . . . , yn],
in terms of those of I and J respectively. When we just consider Betti numbers we have
the following results due to Jacques-Katzman [11].
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Proposition 3.8 (c.f. [11, Lemma 2.1]). Let L•(R/I) and L•(S/J) be minimal graded
free resolutions of R/I and S/J respectively. Then,

(L•(R/I)⊗R T )⊗T (L•(S/J)⊗S T )

is a minimal graded free resolution of T/IT + JT .

Hence, Betti numbers satisfy the following relation:

Corollary 3.9 (c.f. [11, Corollary 2.2]). The Betti numbers of T/IT + JT have the
following form:

βi,j(T/IT + JT ) =
∑

k+k′=i
l+l′=j

βk,l(T/IT )βk′,l′(T/JT ).

Hence we have

βi,j(IT + JT ) = βi,j(IT ) + βi,j(JT ) +
∑

k+k′=i−1
l+l′=j

βk,l(IT )βk′,l′(JT ).

Our aim is to extend the result in [11] to the case of ν-numbers. To such purpose it
will be more convenient to consider separately the case of ideals with degree one elements.
Thus, let I ⊆ R be any Z-graded ideal and assume for simplicity that J is principally
generated by an element of degree one, e.g. J = (y) ⊆ S.

Lemma 3.10. Let I ⊆ R = k[x1, . . . , xm] and J = (y) ⊆ S = k[y] be Z-graded ideals and
set T = R ⊗k S = k[x1, . . . , xm, y]. For r ≥ 2, the r-linear strand L<r>

• (IT + JT ) is the
mapping cone of the chain map

×y : (L<r>
• (IT ))(−1) → L<r>

• (IT ).

Proof. It is easy to see that a minimal T -free resolution L•(T/IT + JT ) of T/IT + JT
is given by the mapping cone of the chain map ×y : L•(T/IT )(−1) → L•(T/IT ), where
L•(T/IT ) is a minimal T -free resolution of T/IT . Since the operation of taking r-linear
strand commutes with the operation of taking the mapping cone, we are done. □

The general case is more involved. Assume now that I ⊆ R = k[x1, . . . , xm] and J ⊆
S = k[y1, . . . , yn] are Z-graded ideals such that I1 = 0 and J1 = 0. Let L•(I) be a minimal
graded R-free resolution of I and L•(J) a minimal graded S-free resolution of J and
consider their extensions L•(IT ) and L•(JT ) to T = R⊗k S = k[x1, . . . , xm, y1, . . . , yn].

Lemma 3.11. Under the previous assumptions, the r-linear strand L<r>
• (IT + JT ) is

L<r>
• (IT + JT ) = L<r>

• (IT )⊕ L<r>
• (JT )⊕

( ⊕
a+b=r+1

(L<a>
• (IT )⊗T L<b>

• (JT ))[−1]

)
.

Here, for a chain complex C•, C•[−1] denotes the translated complex whose component of
homological degree j is Cj−1.
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Proof. Consider the minimal Z-graded free resolutions of R/I and S/J respectively

L•(R/I) : 0 // Lm
dm // · · · // L1

d1 // L0
// R/I // 0 ,

L′
•(S/J) : 0 // L′

n

d′n // · · · // L′
1

d′1 // L′
0

// S/J // 0 ,

where L0 = R and L′
0 = S. According to Proposition 3.8, the minimal Z-graded free

resolution L•(T/IT + JT ) has the form2:

· · · //

L2 ⊗ L′
0

⊕
L1 ⊗ L′

1

⊕
L0 ⊗ L′

2

∂2 //
L1 ⊗ L′

0

⊕
L0 ⊗ L′

1

∂1 // L0 ⊗ L′
0

// T/IT + JT // 0 ,

where, for any given xi ⊗ yp−i ∈ Li ⊗ L′
p−i, we have

∂p(xi ⊗ yp−i) = di(xi)⊗ yp−i + (−1)ixi ⊗ d′p−i(yp−i) ∈ (Li−1 ⊗ L′
p−i)⊕ (Li ⊗ L′

p−i−1).

To describe the r-linear strand L<r>
• (IT + JT ) of the ideal IT + JT we must consider

the truncation at the �rst term of the above resolution and take a close look at the free
modules and the components of the corresponding di�erentials. Recall that L<r−1>

• (R/I)
corresponds to L<r>

• (I) for all r ≥ 2. It is easy to see that both

L<r>
• (IT ) : 0 −→ L<r−1>

m ⊗ L′
0 −→ · · · −→ L<r−1>

2 ⊗ L′
0 −→ L<r−1>

1 ⊗ L′
0 −→ 0

and

L<r>
• (JT ) : 0 −→ L0 ⊗ L′<r−1>

n −→ · · · −→ L0 ⊗ L′<r−1>
2 −→ L0 ⊗ L′<r−1>

1 −→ 0

are subcomplexes of L<r>
• (IT + JT ). Moreover, L<r>

• (IT ) and L<r>
• (JT ) are direct

summands of L<r>
• (IT + JT ). In fact, since I1 = J1 = 0, the linear parts of the maps

Li ⊗ L′
1 → Li ⊗ L′

0 and L1 ⊗ L′
j → L0 ⊗ L′

j vanish.
In order to obtain the remaining components of L<r>

• (IT + JT ) we must consider the
r-linear strand of

· · · //

L3 ⊗ L′
1

⊕
L2 ⊗ L′

2

⊕
L1 ⊗ L′

3

∂4 //
L2 ⊗ L′

1

⊕
L1 ⊗ L′

2

∂3 // L1 ⊗ L′
1

∂2 // 0
∂1 // 0 .

This complex starts at the second term (i.e., the term of homological degree 1), and the
�rst term of the r-linear strand is

⊕
a+b=r+1 L

<a>
0 (IT )⊗TL<b>

0 (JT ). If we take a close look

2By an abuse of notation we denote (Li ⊗R T )⊗T (L′
j ⊗S T ) simply as Li ⊗ L′

j
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at the free summands of these components and its di�erentials we obtain the following
description ⊕

a+b=r+1

(L<a>
• (IT )⊗T L<b>

• (JT ))[−1].

So we are done. □

The main result of this subsection is the following:

Proposition 3.12. The ν-numbers of IT + JT have the following form:

i) If I1 ̸= 0 or J1 ̸= 0 then IT + JT has trivial ν-table.
ii) If I1 = 0 and J1 = 0 then we have:

νi,j(IT + JT ) = νi,j(IT ) + νi,j(JT ) +
∑

k+k′=i−1
l+l′=j

νk,l(IT )νk′,l′(JT ).

Proof. i) If J1 ̸= 0, we may assume that yn ∈ J without loss of generality. Now we have
J = (f1, . . . , fr, yn), where f1 . . . , fr are homogeneous polynomials in k[y1, . . . .yn−1]. Set
R′ := k[x1, . . . , xm, y1, . . . , yn−1], S

′ = k[yn], and let I ′ = IR′ + (f1, . . . , fr) be an ideal in
R′ (note that f1 . . . , fr are elements in R′), and J ′ = (yn) an ideal in S ′. Then we have
T = R⊗k S = R′ ⊗k S

′, and IT + JT = I ′T + J ′T . This means that we may assume that
J = (y) ⊆ S = k[y] from the beginning. For r ≥ 2, the r-linear strand L<r>

• (IT + JT )
is given by the mapping cone of the chain map ×y : (L<r>

• (IT ))(−1) → L<r>
• (IT ) by

Lemma 3.10. Hence L<r>
• (IT + JT )⊗T K is given by the mapping cone of the chain map

×y : L<r>
• (IT )⊗T K −→ L<r>

• (IT )⊗T K,

where K is the �eld of fractions of T . Clearly, this is the identity map, and its mapping
cone is exact. It means that Hi(L<r>

• (IT + JT )⊗T K) = 0 for all r ≥ 2 and all i.
On the other hand, (IT + JT )<1> is a complete intersection ideal generated by degree

1 elements, and hence we have dimK Hi(L<1>
• (I)⊗T K) = δ0,i. Summing up, we see that

IT + JT has trivial ν-table.

ii) Follows immediately from Lemma 3.11. □

The following is just a rephrasing of part i) of the previous result.

Corollary 3.13. Let I ⊆ R be a Z-graded ideal with I1 ̸= 0, then I has trivial ν-table.

The following is another corollary of Proposition 3.12.

Corollary 3.14. With the same notation as in Proposition 3.12, if I1 = J1 = 0, then
IT + JT always has non-trivial ν-table.

Proof. Set l := min{i | Ii ̸= 0} and l′ := min{i | Ji ̸= 0}. Then we have ν1,l+l′(IT +JT ) ≥
ν0,l(IT )ν0,l′(JT ) > 0 by Proposition 3.12 ii). □
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4. Lyubeznik numbers vs ν-numbers for monomial ideals

In [26], the second author showed that, via Alexander duality, the study of local coho-
mology modules with supports in monomial ideals can be �translated� into the study of
the minimal free resolutions of squarefree monomial ideals. This fact was later re�ned by
A. Vahidi and the �rst author in [1] in order to study Lyubeznik numbers of squarefree
monomial ideals in terms of the linear strands of its Alexander dual ideals. The aim of
this section is to go further in this direction.

In the sequel we will only consider monomial ideals in the polynomial ring R =
k[x1, . . . , xn] and m = (x1, . . . , xn) will denote the graded maximal ideal. Recall that
Lyubeznik numbers are well de�ne in this non-local setting since they are invariant with
respect to completion so we consider λp,i(R/I) = λp,i(R̂/IR̂) where R̂ = k[[x1, . . . , xn]].
For a vector a = (a1, . . . , an) ∈ Nn, set supp(a) := {i | ai ̸= 0} ⊆ {1, . . . , n}. For each
1 ≤ i ≤ n, let ei ∈ Zn be the ith standard vector. The following notion was introduced
by the second author, and serves a powerful tool for combinatorial commutative algebra.

De�nition 4.1. We say a �nitely generated Nn-graded R-module M =
⊕

a∈Nn Ma is
squarefree, if the multiplication maps Ma ∋ y 7−→ xiy ∈ Ma+ei is bijective for all a ∈ Nn

and all i ∈ supp(a).

The theory of squarefree modules is found in [25, 26, 28, 29]. Here we list some basic
properties.

• For a monomial ideal I, it is a squarefree R-module if and only if I =
√
I

(equivalently, the Stanley-Reisner ideal I∆ for some ∆). The free modules R
itself and the Zn-graded canonical module ωR = R(−1) are squarefree. Here
1 = (1, 1, . . . , 1) ∈ Nn. The Stanley-Reisner ring R/I∆ is also squarefree.

• Let M be a squarefree R-module, and L• its Zn-graded minimal free resolution.
Then the free module Li and the syzygy module Syzi(M) are squarefree for each
i. Moreover, ExtiR(M,ωR) is squarefree for all i.

• Let *modR be the category of Zn-graded �nitely generated R-modules, and SqR
its full subcategory consisting of squarefree modules. Then SqR is an abelian
subcategory of *modR. We have an exact contravariant functor A from SqR to
itself. The construction of A is found in (for example) [29]. Here we just remark
that A(R/I∆) ∼= I∆∨ , where ∆∨ := {F ⊆ {1, . . . , n} | ({1, . . . , n} \ F ) ̸∈ ∆} is the
Alexander dual simplicial complex of ∆.

In this framework we have the following description of Lyubeznik numbers.

Theorem 4.2 ([26, Corollary 3.10]). Let R = k[x1, . . . , xn] be a polynomial ring, and I∆
a squarefree monomial ideal. Then we have

λp,i(R/I∆) = dimk[Ext
n−p
R (Extn−i

R (R/I∆, ωR), ωR)]0 < ∞.

For a squarefree R-module M , the second author de�ned the cochain complex D(M)
of squarefree R-modules satisfying H i(D(M)) ∼= Extn+i

R (M,ωR) for all i (see [29, �3]). By
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[25, Theorem 4.1] or [28, Theorem 3.8], we have the isomorphism

(4.1) A ◦D(Extn−i
R (R/I∆, ωR)) ∼= (L<n−i>

• (I∆∨))[−i]

of cochain complexes of Zn-graded R-modules3. Here, for a cochain complex C•, C•[−i]
means the −ith translation of C•, more precisely, it is the cochain complex whose compo-
nent of cohomological degree j is Cj−i, and we regard a chain complex C• as the cochain
complex whose component of cohomological degree j is C−j.

The following is a variant of a result given by the �rst author and A. Vahidi.

Theorem 4.3 (c.f. [1, Corollary 4.2]). Let I∆ ⊆ R = k[x1, . . . , xn] be a squarefree
monomial ideal. Then we have

λp,i(R/I∆) = νi−p,n−p(I∆∨).

Proof. By (4.1) and the construction of A, we have an isomorphism

([D(Extn−i
R (R/I∆, ωR)]0)

∗ ∼= (L<n−i>
• (I∆∨))1[−i]

of cochain complexes of k-vector spaces. Here (−)∗ means the k-dual. We also remark
that, for a squarefree module M , we have

dimk M1 = rankR M = dimK M ⊗R K.

Thus we have the following computation.

λp,i(R/I∆) = dimk[Ext
n−p
R (Extn−i

R (R/I, ωR), ωR))]0

= dimk[H
−p(D(Extn−i

R (R/I, ωR))]0

= dimk[Hi−p(L<n−i>
• (I∆∨))]1

= dimK Hi−p(L<n−i>
• (I∆∨))⊗R K

= νi−p,n−p(I∆∨).

□

As mentioned in Introduction, for a local ring A containing a �eld, we have∑
0≤p,i≤n

(−1)p−iλp,i(A) = 1.

In the monomial ideal case, this equation is an immediate consequence of Lemma 3.2 and
Theorem 4.3.
As a special case of Theorem 2.1, the Lyubeznik tables of monomial ideals in R =

k[x1, . . . , xn] satisfy the consecutiveness property of nontrivial superdiagonals. However,
it also follows from the consecutiveness property of nontrivial columns of the ν-tables
(Theorem 3.7) via Theorem 4.3. In this sense, both �consecutiveness theorems� are related.

3Our situation is closer to that of [25, Theorem 4.1] ([29] works in a wider context). However, [25] does
not recognize D and A as individual operations, but treats the composition A ◦ D. In fact, A ◦ D
corresponds to the operation F•(−) of [25] up to translation.
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4.1. Sequentially Cohen-Macaulay rings. LetM be a �nitely generated graded mod-
ule over the polynomial ring R = k[x1, . . . , xn]. We say M is sequentially Cohen-Macaulay
if Extn−i

R (M,R) is either a Cohen-Macaulay module of dimension i or the 0 module for
all i. The original de�nition is given by the existence of a certain �ltration (see [22, III,
De�nition 2.9]), however it is equivalent to the above one by [22, III, Theorem 2.11]. The
sequentially Cohen-Macaulay property of a �nitely generated module over a regular local
ring is de�ned/characterized in the same way.

In [2], the �rst author showed that the sequentially Cohen-Macaulay property implies
the triviality of Lyubeznik tables in positive characteristic as well as in the case of square-
free monomial ideals. Using Proposition 3.6 we can give a new proof/interpretation of
this result for the case of monomial ideals.

Proposition 4.4 (c.f. [2, Theorem 3.2]). Let I be a monomial ideal of the polynomial
ring R = k[x1, . . . , xn] such that R/I is sequentially Cohen-Macaulay. Then the Lyubeznik
table of R/I is trivial.

Proof. By [9, Theorem 2.6], R/
√
I is sequentially Cohen-Macaulay again. Hence we may

assume that I is the Stanley-Reisner ideal I∆ of a simplicial complex ∆. Herzog and Hibi
[8] showed that R/I∆ is sequentially Cohen-Macaulay if and only if I∆∨ is componentwise
linear. Now the assertion immediately follows from Proposition 3.6 and Theorem 4.3. □

The converse of Proposition 4.4 is not true, that is, even if R/I has trivial Lyubeznik
table it need not be sequentially Cohen-Macaulay. For example, if I is the monomial ideal

(x1, x2) ∩ (x3, x4) ∩ (x1, x5) ∩ (x2, x5) ∩ (x3, x5) ∩ (x4, x5)

in R = k[x1, . . . , x5], then R/I has trivial Lyubeznik table, but this ring is not sequentially
Cohen-Macaulay. Since all associated primes of I have the same height, it is the same
thing to say R/I is not Cohen-Macaulay. However, R/I does not even satisfy Serre's
condition (S2).

In Proposition 4.5 below, we will see that if a monomial ideal I has height one (i.e.,
admits a height one associated prime), then the Lyubeznik table of R/I is trivial. Of
course, R/I need not be sequentially Cohen-Macaulay in this situation.

4.2. Thom-Sebastiani type formulae. Let I ⊆ R = k[x1, . . . , xm] and J ⊆ S =
k[y1, . . . , yn] be squarefree monomial ideals in two disjoint sets of variables. Let ∆1 and ∆2

be the simplicial complexes associated to I and J by the Stanley-Reisner correspondence,
i.e. I = I∆1 and J = I∆2 . Then, the sum IT + JT = I∆1∗∆2 corresponds to the simplicial
join of both complexes. Let ∆∨

1 (resp. ∆∨
2 ) be the Alexander dual of ∆1 (resp. ∆2)

as a simplicial complex on {1, 2, . . . ,m} (resp. {1, 2, . . . , n}). Set I∨ := I∆∨
1
⊆ R and

J∨ := I∆∨
2
⊆ S. Then it is easy to see that

A(T/IT ) ∼= I∨T, A(T/JT ) ∼= J∨T, and A(T/IT ∩ JT ) ∼= I∨T + J∨T,

where A denotes the Alexander duality functor of SqT .
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Proposition 4.5. The Lyubeznik numbers of T/IT ∩ JT have the following form:

i) If either the height of I or the height of J is 1, then T/IT∩JT has trivial Lyubeznik
table.

ii) If both the height of I and the height of J are ≥ 2, then we have:

λp,i(T/IT ∩ JT ) = λp,i(T/IT ) + λp,i(T/JT ) +
∑

q+r=p+dimT
j+k=i+dimT−1

λq,j(T/IT )λr,k(T/JT )

= λp−n,i−n(R/I) + λp−m,i−m(S/J) +
∑

q+r=p
j+k=i−1

λq,j(R/I)λr,k(S/J).

Proof. The assertion easily follows from Proposition 3.12 and Theorem 4.3, but for com-
pleteness, we will give a few remarks.
(i) Recall that, for a simplicial complex ∆, the height of I∆ is 1 if and only if [I∆∨ ]1 ̸= 0.
(ii) The last equality follows from the fact that

λp,i(T/IT ) = λp−n,i−n(R/I) and λp,i(T/JT ) = λp−m,i−m(S/J),

which can be seen from Theorem 4.3 and the construction of linear strands. □

Example 4.6. It is well-know that local cohomology modules as well as free resolutions
depend on the characteristic of the base �eld so Lyubeznik numbers depend on the char-
acteristic as well. The most recurrent example is the Stanley-Reisner ideal associated to
a minimal triangulation of P2

R, i.e. the ideal in R = k[x1, . . . , x6]:

I = (x1x2x3, x1x2x4, x1x3x5, x2x4x5, x3x4x5, x2x3x6, x1x4x6, x3x4x6, x1x5x6, x2x5x6).

Its Lyubeznik table has been computed in [1, Ex. 4.8]. Namely, in characteristic zero and
two respectively, we have:

ΛQ(R/I) =


0 0 0 0

0 0 0
0 0

1

 ΛZ/2Z(R/I) =


0 0 1 0

0 0 0
0 1

1


One can slightly modify this example and use Proposition 4.5 to obtain some interesting

behavior of Lyubeznik numbers:

• The ideal J = I ∩ (x7) in R = k[x1, . . . , x7] has trivial Lyubeznik table in any
characteristic, so we obtain an example where the local cohomology modules depend on
the characteristic but Lyubeznik numbers do not.

• The ideal J = I ∩ (x7, x8) ∩ (x9, x10) in R = k[x1, . . . , x10] satis�es

1 = λQ
6,7(R/J) ̸= λ

Z/2Z
6,7 (R/J) = 2

and both Lyubeznik numbers are di�erent from zero.
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5. Lyubeznik table is a topological invariant

While the other sections treat the case where R is a regular local ring or a polynomial
ring, in this section we will work in a slightly di�erent situation. Here the ring R means a
normal semigroup ring. When R is simplicial and Gorenstein, the second author proved
in [27] that the local cohomology modules Hr

I (R) have �nite Bass numbers for radical
monomial ideals I ⊂ R. In fact, without these conditions, Bass numbers are out of
control and can be in�nite (see [7] for details).

Before going to the main result of this section (Theorem 5.3), we will introduce the
setup on which we will work with. For more details we refer to [27].

Let C ⊂ Zn be an a�ne semigroup (i.e., C is a �nitely generated additive submonoid
of Zn), and R := k[xc | c ∈ C] ⊂ k[x±1

1 , . . . , x±1
n ] the semigroup ring of C over k.

Here xc denotes the monomial
∏n

i=1 x
ci
i for c = (c1, . . . , cn) ∈ C. Regarding C as a

subset of Rn = R ⊗Z Zn, let P := R≥0C ⊂ Rn be the polyhedral cone spanned by C.
We always assume that ZC = Zn, Zn ∩ P = C and C ∩ (−C) = {0}. Thus R is a
normal Cohen-Macaulay integral domain of dimension n with the graded maximal ideal
m := (xc | 0 ̸= c ∈ C). We say R is simplicial, if the cone P is spanned by n vectors in Rn.
The polynomial ring k[x1, . . . , xn] is a typical example of a simplicial semigroup ring k[C]
for C = Nn. Clearly, R =

⊕
c∈C kxc is a Zn-graded ring. We say that a Zn-graded ideal

of R is a monomial ideal and we will denote *modR the category of �nitely generated
Zn-graded R-modules and degree preserving R-homomorphisms.

Let L be the set of non-empty faces of the polyhedral cone P . Note that {0} and P
itself belong to L. Regarding L as a partially ordered set by inclusion, R is simplicial if
and only if L is isomorphic to the power set 2{1,...,n}. For F ∈ L, pF := (xc | c ∈ C \ F )
is a prime ideal of R. Conversely, any monomial prime ideal is of the form pF for some
F ∈ L. Note that R/pF ∼= k[xc | c ∈ C ∩ F ] for F ∈ L. For a point c ∈ C, we always
have a unique face F ∈ L whose relative interior contains c. Here we denote s(c) = F .

The following is a generalization of the notion of squarefree modules (see De�nition 4.1)
to this setting.

De�nition 5.1 ([27]). We say a module M ∈ *modR is squarefree, if it is C-graded (i.e.,
Ma = 0 for all a ̸∈ C), and the multiplication map Ma ∋ y 7−→ xby ∈ Ma+b is bijective
for all a,b ∈ C with s(a+ b) = s(a).

For a monomial ideal I, R/I is a squarefree R-module if and only if I is a radical ideal

(i.e.,
√
I = I). We say that ∆ ⊆ L is an order ideal if ∆ ∋ F ⊃ F ′ ∈ L implies F ′ ∈ ∆. If

∆ is an order ideal, then I∆ := (xc | c ∈ C, s(c) ̸∈ ∆) ⊆ R is a radical monomial ideal.
Conversely, any radical monomial ideal is of the form I∆ for some ∆. Clearly,

[R/I∆]c ∼=

{
k if c ∈ C and s(c) ∈ ∆,

0 otherwise.
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If R is simplicial, an order ideal ∆ is essentially a simplicial complex on the vertices
1, 2, . . . , n. If R is the polynomial ring k[x1, . . . , xn], then R/I∆ is nothing but the Stanley-
Reisner ring of the simplicial complex ∆.

For each F ∈ L, take some c(F ) ∈ C ∩ rel-int(F ) (i.e., s(c(F )) = F ). For a squarefree
R-module M and F,G ∈ L with G ⊃ F , [27, Theorem 3.3] gives a k-linear map

φM
G,F : Mc(F ) → Mc(G).

These maps satisfy φM
F,F = Id and φM

H,G ◦ φM
G,F = φM

H,F for all H ⊃ G ⊃ F . We have

Mc
∼= Mc′ for c, c

′ ∈ C with s(c) = s(c′). Under these isomorphisms, the maps φM
G,F do

not depend on the particular choice of c(F )'s.

Let SqR be the full subcategory of *modR consisting of squarefree modules. As shown
in [27], SqR is an abelian category with enough injectives. For an indecomposable square-
free module M , it is injective in SqR if and only if M ∼= R/pF for some F ∈ L.

Let ωR be the Zn-graded canonical module of R. It is well-known that ωR is isomorphic
to the radical monomial ideal (xc | c ∈ C, s(c) = P ). As shown in [27, Proposition 3.7]
we have ExtiR(M,ωR) ∈ SqR for M ∈ SqR.

5.1. Lyubeznik numbers. Let R = k[C] be a normal simplicial semigroup ring which
is Gorenstein, and I a monomial ideal of R. As in the polynomial ring case, we set the
Lyubeznik numbers as

λp,i(R/I) := µp(m, Hn−i
I (R)).

Work of the second author in [27] states that this set of invariants are well de�ned in
this framework. Namely, Theorem 4.2 holds verbatim in this situation.

Theorem 5.2 ([27, Corollary 5.12]). Let R = k[C] be a normal simplicial semigroup ring
which is Gorenstein, and I∆ a radical monomial ideal. Then we have

λp,i(R/I∆) = dimk[Ext
n−p
R (Extn−i

R (R/I∆, ωR), ωR)]0 < ∞.

Notice that in this setting we have that whenever we have a multigraded isomorphism
k[C]/I∆ ∼= k[C ′]/I∆′ between quotients of Gorenstein normal simplicial semigroup rings
by radical monomial ideals, then the corresponding Lyubeznik numbers coincide. This
multigraded framework slightly di�ers from the original situation for regular local rings
stated in [13]. However, as stated in [27, Remark 5.14], if ∆ ∼= ∆′ as simplicial complexes,
then R/I∆ and R′/I∆′ have the same Lyubeznik numbers. In this sense, to study the
Lyubeznik numbers of a quotient R/I∆ of a Gorenstein normal simplicial semigroup ring
R by a radical monomial ideal I∆, we may assume that R is a polynomial ring and R/I∆
is a Stanley-Reisner ring. In Theorem 5.3, we will prove a stronger result.

It is also worth to point out that several features of Lyubeznik numbers are still true
in this setting. In what follows, we assume that I is a monomial ideal of R.
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(1) As in the polynomial ring case, we have the Euler characteristic equation,∑
0≤p,i≤d

(−1)p−iλp,i(R/I) = 1.

Moreover, the statements corresponding to Theorem 2.1 (the consecutiveness of nontrivial
lines) still holds. In fact, we may assume that I is a radical ideal, and hence I = I∆ for
some simplicial complex ∆ and then reduce to the case when R is a polynomial ring as
in [27, Remark 5.14 (b)].

If we assume that I =
√
I, Proposition 4.4 also holds in the present situation. However,

we cannot drop this assumption, since we have no idea whether the condition of being
sequentially Cohen-Macaulay is preserved after taking radicals. What is known is that
if R/I is Cohen-Macaulay then so is R/

√
I (see [30, Theorem 6.1]). Hence if R/I is

Cohen-Macaulay then the Lyubeznik table of R/I is trivial.

(2) For a radical monomial ideal I∆ with dimR/I∆ = d, the highest Lyubeznik number

λd,d(R/I∆) = dimk[Ext
n−d
R (Extn−d

R (R/I∆, ωR), ωR)]0

has a simple topological (or combinatorial) meaning. In fact, to study this number we
may assume that R is a polynomial ring, and we can use a combinatorial description of

Extn−d
R (Extn−d

R (R/I∆, ωR), ωR)

given in [22, P.96]. Roughly speaking, λd,d(R/I∆) is the number of �connected in codi-
mension one components� of |∆|. (This result holds in a much wider context, see [31].) In
particular, if R/I∆ satis�es Serre's condition (S2) then λd,d(R/I∆) = 1, while the converse
is not true.

5.2. Lyubeznik table is a topological invariant. Recall that if R = k[C] is simplicial
then an order ideal ∆ of L is essentially a simplicial complex, and hence it has the
geometric realization |∆|. It is natural to ask how Lyubeznik numbers of R/I∆ depend on
|∆|. The next theorem shows that Lyubeznik numbers are not only an algebraic invariant
but also a topological invariant.

Theorem 5.3. Let R = k[C] be a simplicial normal semigroup ring which is Gorenstein
and I∆ ⊂ R a radical monomial ideal. Then, λp,i(R/I∆) depends only on the homeomor-
phism class of |∆| and char(k).

Bearing in mind Theorem 5.2, it su�ces to show that

dimk[Ext
n−p
R (Extn−i

R (R/I∆, ωR), ωR)]0

depends only on the topology of |∆| and char(k). For this statement, the assumption that
R is simplicial and Gorenstein is irrelevant (if R is not simplicial, then ∆ is essentially a
CW complex). In [19, Theorem 2.10], R. Okazaki and the second author showed that the
invariant which is (essentially) equal to

depthR(Ext
n−i
R (R/I∆, ωR)) = min{ j | Extn−j

R (Extn−i
R (R/I∆, ωR), ωR) ̸= 0 }
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depends only on |∆| and char(k) for each i. Our proof here uses similar arguments to
the aforementioned result. To do so, we have to recall some previous work of the second
author in [28].

Recall that P = R≥0C is a polyhedral cone associated with the semigroup ring R =
k[C]. We have a hyperplane H ⊂ Rn such that B := H ∩ P is an (n − 1)-polytope (an
(n − 1)-simplex, if R is simplicial). For F ∈ L, set |F | to be the relative interior of the
face F ∩ H of B. We can regard an order ideal ∆ ⊆ L as a CW complex (a simplicial
complex, if R is simplicial) whose geometric realization is |∆| :=

∪
F∈∆ |F | ⊆ B.

For F ∈ L,

UF :=
∪

F ′∈L,F ′⊃F

|F ′|

is an open set of B. Note that {UF | {0} ̸= F ∈ L } is an open covering of B. In [28],
from M ∈ SqR, we constructed a sheaf M+ on B. More precisely, the assignment

Γ(UF ,M
+) = Mc(F )

for each F ̸= {0} and the map

φM
F,G : Γ(UG,M

+) = Mc(G) −→ Mc(F ) = Γ(UF ,M
+)

for F,G ̸= {0} with F ⊃ G (equivalently, UG ⊃ UF ) de�nes a sheaf. Note that M0 is
�irrelevant� to M+.

For example, (R/I∆)
+ ∼= j∗k|∆|, where k|∆| is the constant sheaf on |∆| with coe�cients

in k, and j is the embedding map |∆| ↪→ B. Similarly, we have that (ωR)
+ ∼= h!kB◦ , where

kB◦ is the constant sheaf on the relative interior B◦ of B, and h is the embedding map
B◦ ↪→ B. Note that (ωR)

+ is the orientation sheaf of B with coe�cients in k.
Let ∆ ⊆ L be an order ideal, and set X := |∆| ⊆ B. For M ∈ SqR, M is an R/I∆-

modules (i.e., ann(M) ⊃ I∆) if and only if Supp(M+) := {x ∈ B | (M+)x ̸= 0} ⊆ X. In
this case, we have

H i(B;M+) ∼= H i(X;M+|X)
for all i. HereM+|X is the restriction of the sheafM+ to the closed setX ⊆ B. Combining
this fact with [28, Theorem 3.3], we have the following.

Theorem 5.4 (c.f. [28, Theorem 3.3]). With the above situation, we have

H i(X;M+|X) ∼= [H i+1
m (M)]0 for all i ≥ 1,

and an exact sequence

(5.1) 0 −→ [H0
m(M)]0 −→ M0 −→ H0(X;M+|X) −→ [H1

m(M)]0 −→ 0.

In particular, [H i+1
m (R/I∆)]0 ∼= H̃ i(X; k) for all i ≥ 0, where H̃ i(X; k) denotes the ith

reduced cohomology of X with coe�cients in k.

Recall that X admits Verdier's dualizing complex D•
X with coe�cients in k. For exam-

ple, D•
B is quasi-isomorphic to (ωR)

+[n − 1]. The former half of (1) of the next theorem
is a restatement of [28, Theorem 4.2], and the rest is that of [30, Lemma 5.11].
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Theorem 5.5 ([28, Theorem 4.2] and [30, Lemma 5.11]). With the above notation, we
have the following:

(1) Supp(Extn−i
R (M,ωR)

+) ⊆ X and

Extn−i
R (M,ωR)

+|X ∼= Ext1−i(M+|X ,D•
X).

Moreover, for i ≥ 2, we have

[Extn−i
R (M,ωR)

+]0 ∼= Ext1−i(M+|X ,D•
X).

(2) Via the isomorphisms in (1), for i ≥ 2, the natural map

Ext1−i(M+|X ,D•
X) −→ Γ(X; Ext1−i(M+|X ,D•

X))

coincides with the middle map

[Extn−i
R (M,ωR)]0 −→ Γ(X;Extn−i

R (M,ωR)
+|X)

of the sequence (5.1) for Extn−i
R (M,ωR) ∈ SqR.

The proof of Theorem 5.3. We show that the dimension of [Extn−p
R (Extn−i

R (R/I∆, ωR), ωR)]0
(∼= [Hp

m(Ext
n−i
R (R/I∆, ωR))

∗]0) depends only on X and char(k). If p ≥ 2, then we have

[Hp
m(Ext

n−i
R (R/I∆, ωR))]0 ∼= Hp−1(X; Ext1−i(kX ,D•

X))

by Theorems 5.4 and 5.5 (1). The right side of the equation clearly depends only on
X and char(k) for each p, i. Next we consider the case p = 0, 1. By Theorem 5.4,
H0

m(Ext
n−i
R (R/I∆, ωR)) and H1

m(Ext
n−i
R (R/I∆, ωR)) are the kernel and the cokernel of the

map
[Extn−i

R (R/I∆, ωR)]0 −→ Γ(X;Extn−i
R (R/I∆, ωR)

+|X)
respectively. If i ≥ 2, the above map is equivalent to the natural map

Ext1−i(kX ,D•
X) −→ Γ(X; Ext1−i(kX ,D•

X))

by Theorem 5.5 (2), and the dimensions of its kernel and cokernel are invariants of X.
It remains to show the case (p = 0, 1 and) i = 0, 1. Clearly, ExtnR(R/I∆, ωR) ̸= 0, if

and only if ExtnR(R/I∆, ωR) = k, if and only if I∆ = m, if and only if X = ∅. Hence
λ0,0(R/I∆) ̸= 0, if and only if λ0,0(R/I∆) = 1, if and only if X = ∅. On the other hand,
it is easy to check out that λ1,1(R/I∆) is always �trivial�, that is,

λ1,1(R/I∆) =

{
1 if dim(R/I∆) = 1 (i.e., dim |∆| = 0),

0 otherwise

(the same is true for the local ring case using the spectral sequence argument as in the
proof of Theorem 2.1 or adapting the techniques used in [24]). Hence the remaining case
is only λ0,1(R/I∆), but the following fact holds.

Claim. If R = k[C] is a simplicial normal semigroup ring which is Gorenstein, then we
have

λ0,1(R/I∆) =

{
c− 1 if dim(R/I∆) ≥ 2 (i.e., dim |∆| ≥ 1),

0 otherwise,
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where c is the number of the connected components of |∆′| := |∆| \ {isolated points}.

Let us prove the claim. We may assume that dim(R/I∆) > 0. If dim(R/I∆) = 1, then
R/I∆ is Cohen-Macaulay, and the assertion is clear. So we may assume that dim(R/I∆) ≥
2. First, we consider the case when I∆ does not have 1-dimensional associated primes,
equivalently, |∆| does not admit isolated points (i.e., |∆| = |∆′|). Then we have

dimR(Ext
n−1
R (R/I∆, ωR)) < 1.

Since Extn−1
R (R/I∆, ωR) is a squarefree module, we have

Extn−1
R (R/I∆, ωR) = [Extn−1

R (R/I∆, ωR)]0.

We also have

[Extn−1
R (R/I∆, ωR)]0 ∼= [H1

m(R/I∆)]0 ∼= H̃0(X; k) ∼= kc−1,

where the second isomorphism follows from the last statement of Theorem 5.4. Hence

λ0,1(R/I∆) = dimk[Ext
n
R(Ext

n−1
R (R/I∆, ωR), ωR)]0 = dimk[Ext

n
R(kc−1, ωR)]0 = c− 1,

and we are done.

So we now consider the case where I∆ admits 1-dimensional associated primes. Set
I := I∆′ . Then there is a monomial ideal J of R with I∆ = I ∩ J and dimR/J = 1. Note
that I + J = m. The short exact sequence 0 → R/I∆ → R/I ⊕ R/J → R/m (∼= k) → 0
yields the exact sequence

(5.2) 0 −→ Extn−1
R (R/I, ωR)⊕ Extn−1

R (R/J, ωR) −→ Extn−1
R (R/I∆, ωR) −→ k −→ 0.

Since Lyubeznik numbers of type λ1,1(−) are always trivial, we have

[Extn−1
R (Extn−1

R (R/I∆, ωR), ωR)]0 = [Extn−1
R (Extn−1

R (R/I, ωR), ωR)]0 = 0

and [Extn−1
R (Extn−1

R (R/J, ωR), ωR)]0 = k. It is also clear that ExtnR(Ext
n−1
R (R/J, ωR), ωR) =

0. Thus applying Ext•R(−, ωR) to (5.2), we obtain

0 −→ [Extn−1
R (Extn−1

R (R/J, ωR), ωR)]0 (∼= k) −→ [ExtnR(k, ωR)]0 (∼= k) −→
[ExtnR(Ext

n−1
R (R/I∆, ωR), ωR)]0 −→ [ExtnR(Ext

n−1
R (R/I, ωR), ωR)]0 −→ 0.

Since [ExtnR(Ext
n−1
R (R/I, ωR), ωR)]0 ∼= kc−1 as we have shown above, it follows that

[ExtnR(Ext
n−1
R (R/I∆, ωR), ωR)]0 ∼= kc−1,

and we are done. □

Example 5.6. This example concerns the �nal step of the proof of Theorem 5.3. Let
R = k[x1, . . . , x7] be a polynomial ring, and consider the monomial ideal

I∆ = (x2, x3, x4, x5, x6, x7) ∩ (x1, x4, x5, x6, x7) ∩ (x1, x2, x3, x6, x7) ∩ (x1, x2, x3, x4, x5).

Then |∆| consists of 1 isolated point and 3 segments, see Fig 1 below. So |∆′|, which is
|∆| \ {v1}, consists of 3 segments. We have λ0,1(R/I∆) = 3− 1 = 2.
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Figure 1
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