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Abstract—The availability of coarse-resolution cost-effective 

Optical Spectrum Analyzers (OSA) allows its widespread 

deployment in operators’ networks. In this paper, we explore 

several machine learning approaches for soft-failure detection, 

identification and localization that take advantage of OSAs. In 

particular, we present three different solutions for the two most 

common filter-related soft-failures; filter shift and tight filtering 

which noticeably deform the expected shape of the optical 

spectrum. However, filter cascading is a key challenge as it 

affects the shape of the optical spectrum similarly to tight 

filtering; the approaches are specifically designed to avoid the 

misclassification of properly operating signals when normal filter 

cascading effects are present. The proposed solutions are: i) 

multi-classifier approach, which uses features extracted directly 

from the optical spectrum, ii) single-classifier approach, which 

uses pre-processed features to compensate for filter cascading, 

and iii) residual-based approach, which uses a residual signal 

computed from subtracting the signal acquired by OSAs from an 

expected signal synthetically generated. Extensive numerical 

results are ultimately presented to compare the performance of 

the proposed approaches in terms of accuracy and robustness. 

 

Index Terms—Soft-Failure Detection and identification, 

Optical Performance Monitoring, Elastic Optical Networks. 

I. INTRODUCTION 

ETWORK performance monitoring [1] is a key enabler 

for failure identification and localization, which can 

greatly bring down both, the repair time and operational cost 

of optical networks [2]. Many research efforts have been 

dedicated to develop failure localization techniques for hard 

failures, i.e., unexpected events that suddenly interrupt the 

established connections (see e.g., [3]). Nonetheless, although 

some works can be found in the literature focused on the 

identification and localization of soft failures, i.e., events that 

progressively degrade the quality of transmission (QoT) (see 

e.g., [4]), this topic remains rather unexplored. Owing to the 

fact that soft failures might eventually evolve to hard failures, 

it is of paramount importance not only to detect them a priori 

before connections disruption, but also to localize their cause 

in order to take proper action, e.g., finding a restoration path 

for the affected connections avoiding the failed element [5]. 

Such performance monitoring is enabled by the ability of 

optical components to take measurements. In fact, one of the 

key features to be exploited in next generation optical 

networks is the availability of monitoring data that now can be 

used by data analytics applications, especially those based on 
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machine learning (ML) [6]. This paves the way to future 

autonomic networking [7], including self-protection and self-

healing. 

Aiming at detecting traffic anomalies in packet networks, 

the authors in [8] proposed bringing data analytics toward the 

network nodes to reduce the amount of monitoring data to be 

conveyed to the control and management plane, while 

improving detection times. Following such idea, the authors in 

[9] and [10] proposed a distributed Monitoring and Data 

Analytics (MDA) framework that includes MDA agents 

running close to the observation points in the network nodes, 

as well as a centralized MDA controller running in the control 

and management plane besides the Software Defined 

Networking (SDN) controller. Such MDA framework is the 

base to build autonomic optical networks, especially in the 

case of utilizing white boxes which might include specific 

optical monitoring devices [11]. 

Recently, the authors in [12] proposed several solutions to 

monitor the performance of lightpaths at the transponders side 

to verify their proper operation, as well as to detect bit-error-

rate (BER) degradations thus, anticipating connection 

disruptions. The authors studied several soft failure causes 

affecting signal QoT, such as laser drift, Filter Shift(FS), and 

Filter Tightening(FT), and proposed algorithms to detect and 

identify the most probable failure. Some of these failures 

happen in the optical switching intermediate nodes, so 

monitoring the signal solely at the egress node (or even 

ingress) does not allow their localization. Hence, monitoring 

techniques to analyze and evaluate QoT in-line are required. 

As the abovementioned failures noticeably affect the optical 

spectrum of the lightpaths, Optical Spectrum Analyzers (OSA) 

can be used to monitor the spectrum along the transmission 

line aiming at detecting and localizing that type of failures. 

Practically speaking, the realization of such solutions become 

possible with the emergence of a new generation of compact 

cost-effective OSAs with sub-GHz resolution in the form of 

optical components [13] allowing real-time monitoring of the 

optical spectrum of the lightpaths and their corresponding 

optical signal to noise ratio (OSNR). 

Considering the optical spectrum of a lightpath, when a 

signal is properly configured, its central frequency should be 

around the center of the assigned frequency slot to avoid 

filtering effects, and it should be symmetrical with respect to 

its central frequency. The authors in [14], presented several 

descriptive features to characterize the optical spectrum of a 

lightpath. Such features were used to train a set of ML 

algorithms to detect and identify failures. The most common 
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filtering related failures are FS and FT; the optical spectrum 

becomes asymmetrical in the case of FS, and its edges get 

noticeably rounded in the case of FT. These irregularities 

allow distinguishing optical spectra suffering from such 

failures from the properly configured ones. 

However, one of the challenging tasks in [14] was to 

distinguish whether a signal is affected by a FT failure or it is 

just degraded due to filter cascading effects, as both 

phenomena show similar effects. Therefore, aiming at 

developing sufficiently robust solutions, it is essential to cope 

with this issue thus, preventing the misclassification of a 

properly configured signal as a failed one.  

In this paper, we extend our previous work in [15] and study 

three different approaches to detect filter related failures thus, 

improving the results obtained by the approach followed in 

[14]. Each of the approaches deals with filter cascading effects 

differently allowing the development of even more robust 

solutions when they are combinedly exploited. The 

approaches are based on a set of classifiers that make 

predictions; more specifically, the approaches can be 

categorized in two groups: i) feature-based approaches that 

use optical spectrum features for classification. Two different 

approaches can be considered to deal with filter cascading 

effects: i.a) the multi-classifier approach, in which different 

classifiers are employed for signals experiencing different 

levels of filter cascading and i.b) the single-classifier 

approach, in which the lightpaths’ features are pre-processed 

to compensate for the filter cascading effect allowing the use 

of a single classifier for lightpaths disregarding the level of 

filter cascading, and ii) the residual-based approach, in which 

the received signal is pre-processed using a theoretically-

calculated expected signal allowing the use of a single 

classifier as in i.b). Ultimately, the optical spectrum analysis 

can be used by sophisticated algorithms able to localize 

failures.  

The classifiers used in the above-mentioned approaches are 

developed with two different ML-based algorithms: Decision 

Trees (DT) and Support Vector Machines (SVM) [6]. The 

differences between feature-based and residual-based 

approaches lie in the inputs that those ML algorithms require 

for predicting failure classes. Assuming the distributed MDA 

framework discussed above, the proposed approaches for 

failure detection and identification can be deployed in the 

MDA agents, close to the devices generating measurements, 

whereas other algorithms, including the one for failure 

localization, need be deployed in the MDA controller, so as to 

provide the global network vision required for their purposes. 

The rest of the paper is organized as follows. Section II 

explores the opportunities that OSAs provide for failure 

detection, identification and localization and proposes options 

for feature-based approaches. Section III is exclusively 

devoted to the residual-based approach that includes new ML-

based classifiers. Simulation results showing the benefits and 

drawbacks of different approaches are presented in Section IV. 

Finally, Section V concludes the paper. 
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Fig. 1. Evolved architecture for failure identification and localization. 

II. APPLICATION OF OSA FOR SOFT-FAILURE DETECTION, 

IDENTIFICATION AND LOCALIZATION 

Real-time optical spectrum monitoring provides 

opportunities for soft-failure detection and identification; 

particularly, those failures significantly deforming the optical 

spectrum of a lightpath. For precise detection and 

identification, algorithms need to be capable of classifying a 

properly operating lightpath from a failed one, which entails 

that a set of descriptive features should be identified for 

classification purposes; building upon such features, 

sophisticated classifiers can be trained to perform the 

classification task. For the sake of completeness, we review 

the soft-failure detection, identification, and localization 

processes utilizing the optical spectrum proposed in [14] and 

describe how such process is improved in the rest of the paper. 

A. Soft-failure detection, identification, and localization 

The failure detection, identification, and localization 

process involves modules running in the MDA agents and 

modules running in the MDA controller, as shown in Fig. 1; 

this follows principle of data analytics distribution proposed in 

[8]. In the MDA controller, the FailurE causE Localization for 

optIcal NetworkinG (FEELING) algorithm is primarily 

responsible for supervising the failure detection and 

identification modules running in the MDA agents. 

Ultimately, it performs the failure localization task. 

Optical spectrum acquired by OSAs is collected and 

becomes available in MDA agents, where it is used to feed the 

Feature Extraction (FeX) module. An example of a 30-GBaud 

QPSK modulated optical spectrum acquired by an OSA of 

312.5 MHz resolution is shown in Fig. 2. In general, QPSK 

and 16QAM -modulated optical signals present, once filtered, 

a flat spectral region around the central frequency, sharp 

edges, and a round region between the edges and the central 

one. In contrast, the impact of FS and FT on the properly 

operating lightpaths makes that some or all these features 

change, as presented in Fig. 3 for the specified failure 

magnitude, where the impact of filter cascading after crossing 

several wavelength selective switches (WSS) is also depicted. 
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Fig. 2. Relevant points of a QPSK modulated signal 

The FeX module processes the acquired optical spectrum 

for a given lightpath, which consists of an ordered list of 

frequency-power (<f, p>) pairs in the allocated frequency slot. 

After equalizing power, so the maximum power is set to be 0 

dBm, the derivative of the power with respect to the frequency 

is computed; Fig. 2b illustrates the derivative of the example 

optical signal, where sharp convexity can be observed close to 

the edges. Next, the FeX module characterizes the mean (μ) 

and the standard deviation (σ) of the power around the central 

frequency (fc±Δf), as well as a set of primary features 

computed as cut-off points of the signal with the following 

power levels: i) edges of the signal computed using the 

derivative, denoted as ∂; ii) a family of power levels computed 

w.r.t. μ-kσ, denoted as kσ; and iii) a family of power levels 

computed with respect to μ-mdB, denoted as -mdB. Each of 

these power levels generates a couple of cut-off points denoted 

as f1(·) and f2(·). In addition, the assigned frequency slot is 

denoted as f1slot, f2slot. Other features, which are computed as 

linear combinations of the relevant points, focus on 

characterizing a given optical signal (see embedded equations 

in Fig. 2a); they include: bandwidth (bw), central frequency 

(fc), and symmetry (sym) with respect to a reference 

(frequency slot or derivatives). Some features are more 

appropriate for filter-related failure detection and 

identification, such as bandwidth and symmetry, whereas 

other features, such as the central frequency, are more 

appropriate for laser drift identification. 

When the extracted features from the measured signal are 

available, a classification module, named Signal Spectrum 

Verification (SSV), running also in the MDA agents analyzes 

them to detect a soft-failure. The SSV module was 

implemented as a multiclass classifier in the form of a DT that 

produces a diagnosis which consists of: i) a predicted class 

among ‘Normal’, ‘LaserDrift’, and ‘FilterFailure’; and ii) a 

subset of relevant signal points for the predicted class. In the 

case that a filter failure is detected, another classifier is used to 

predict whether the failure is due to FS or to FT.  

As discussed before, one of the key challenges in the 

identification of filter related failures is the misclassification 

of a normal signal that has passed through several filters, i.e., 

affected by filter cascading, as a signal that has suffered from 

filter failure. Therefore, to improve failure identification 

accuracy, the FEELING algorithm must be able to distinguish 

between actual failures and normal effects arising from filter 

cascading. In the next section, we propose and study three 

alternatives to prevent such misclassification. Furthermore, 

since filter failures have impact on the OSNR, and ultimately 

in the BER, in [14] we took advantage of OSNR computation 

in intermediate nodes from the optically acquired signal and 

compare such measurements against the expected value using 

analytic formulae. As such method could also be used for 

failure localization, it can be used to complement and enhance 

FEELING. 

B. Options for Classification using FeX relevant points 

As a result of filter cascading, signal features change in a 

similar way as when a tight filtering failure takes place; this 

increases the likelihood of misclassify a properly operating 

lightpath as a failed one. In the following, we propose two 

different strategies preventing such misclassification. The 

strategies, built in the SSV module, are based on processing 

the features extracted by the FeX module; strategies are 

summarized in Fig. 4a-b. Selected features for classification 

are: bw∂, bw5σ, bw-3dB, bw-6dB, sym5σ-∂, sym-3dB-∂, and sym-6dB-∂. 

1) Multi-Classifier Approach 

The most straightforward solution is to use different 

classifiers as a function of the number of WSSs that a given 

lightpath has passed through. As shown in Fig. 4a, a set of 

classifiers are required in every intermediate node and the 

appropriate one is used when an optical spectrum is acquired.  
 

Ingress
After 4 WSSs
After 8 WSSs

c) 23 GHz Filter Tighteninga) Normal b) 8 GHz Filter Shift

 
Fig. 3. The shape of the optical spectrum for a normal signal (a), a signal experiencing FS (b), and a signal experiencing FT (c).  
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Fig. 4. Approaches to solve the filter cascading problem: a) multi-

classifier, b) single-classifier, and c) residual computation. 

This approach can be considered as the baseline, as the 

selected classifier decides based on the features extracted 

directly from the acquired spectrum and do not need any kind 

of feature pre-processing. However, a very large dataset of 

optical spectra with different levels of filter cascading is 

required for training all the classifiers, which is the main 

drawback of this approach. 

To avoid using multiple classifiers, some pre-processing 

needs to be done so one single classifier can be used despite 

the level of filter cascading. The second approach proposes a 

strategy to pre-process the extracted features. 

2) Single-Classifier Approach 

Filter cascading strongly affect some of the features that a 

classifier uses for prediction. Therefore, if the alteration of 

those features due to filter cascading would be compensated, a 

single classifier could be considered regardless of the number 

of filters a signal passes through. The features of a signal 

acquired after passing N filters can be compensated by 

adding/subtracting the differences between the values of a 

properly configured signal at that node w.r.t. those just after 

the transponder. These differences are stored in a vector called 

correction mask; note that, different levels of filter cascading 

require different correction masks to be used.  

Correction masks can be computed a priori, assuming the 

effects that the spectrum of a normal signal experiences while 

passing through different number of filters. It is worth 

mentioning that the calculation of the correction masks 

requires just the spectrum of a single properly configured 

lightpath passing through the desired number of filters, from 

zero to the maximum allowed cascaded filters in a network; 

this is in contrast to the previous approach, where the training 

phase requires that spectral data with different failures and 

with various magnitudes to be captured after every filter up to 

the maximum allowed number of filters. The Correction Mask 

Calculator (CMC) module placed in the MDA controller (see  
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Fig. 5. ESC module (a) and generated signals (b) 

Fig. 1) is responsible for generating the correction masks to be 

sent to the MDA agents. Note that all the correction masks 

need to be available in the MDA agents, so the proper one can 

be selected. Following this approach, the classifier can be 

trained based on the observations of a signal passing through a 

single filter after the ingress node, where the impact of filter 

cascading is negligible, making the training phase less data-

hungry by far compared to the previous approach. 

These two approaches use features extracted from the 

optical spectrum to decide whether a lightpath experiences a 

soft-failure; the next section presents, a totally new approach 

that analyzes the optical spectrum in a very different way. 

III. RESIDUAL-BASED APPROACH FOR OPTICAL SPECTRUM 

ANALYSIS AND SIGNAL CLASSIFICATION 

An alternative approach compared to the ones in the 

previous section is to pre-process the acquired optical 

spectrum by comparing it to the one that would be expected 

after passing the same number of filters than the signal (shown 

in Fig. 4c). This comparison / computation produces a residual 

signal representing the differential deformation in its shape 

that might be due to a failure. Note that this approach does not 

use the FeX module. In order to compute the residual signal, 

we consider two new modules, as shown in Fig. 4c: i) the 

Expected Signal Calculation (ESC) and ii) the residual 

computation module.  

The ESC module generates a theoretically-calculated optical 

spectrum emulating a properly operating lightpath. The aim of 

ESC module is to synthetically reproduce an averaged noise-

free version of the optical signal. In order to do so, the signal 

is modelled as an ideal square pulse, with bw-3dB equal to the 

baud rate of the optically modulated signal, shaped by a 

raised-cosine shaping filter with 0.15 roll-off factor [16]. 

Then, in order to model different levels of filter cascading a 

2nd order Gaussian filter, emulating a WSS, is used (Fig. 5a). 

This results in an emulated noise-free spectrum, similar to a 

noise-free 100G DP-QPSK (or 200G DP-16QSPK) modulated  
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Fig. 6. Residual signal calculation (a) and residual based 

classification approach (b). 
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Fig. 7. Example of residual based approach workflow considering a 

normal signal (a), filter shift (b), and filter tightening (c). 

signal (Fig. 5b). Every time a new spectrum is acquired for a 

given lightpath, the residual computation module subtracts it 

from the expected signal produced by the ESC module. 

Fig. 6 presents an illustrative case of the computed residual 

signal from the expected and the measured signals. As the 

residual signal experiences undesired changes at the two ends 

of the acquisition window of the OSA (see Fig. 6), we just 

consider a central spectral window of size 34.375 GHz out of 

37.5 GHz. Note that in case of a normal signal, the residual 

value fluctuates around a mean value along the whole signal 

spectrum range. To analyze the residual signal, we normalize 

the values, so the mean equals 0; in such case, the most likely 

situation is to have as many positive as negative values. 

However, in the event of a filter failure, that similar proportion 

between positive and negative residuals will be altered. Fig. 7 

shows an example of how residuals behave in all considered 

cases. Out of the whole range of the residuals, the left and the 

right hand-sides capture the effects of soft-failures and are the 

operational regions for the analysis presented next. The 

spectral window of the left (LH) and the right (RH) hand-sides 

are set to 7.8125 GHz, as they contain the sufficient number of 

points to capture the effects taking place in the edges. In the 

normal case (Fig. 7a), the residuals oscillate uniformly 

between positive and negative values (dots in Fig. 7 are 

computed from the normalized residuals applying the sign() 

function). In the case of filter shift (Fig. 7b), the residuals 

show a clear distortion toward positive and negative parts in  
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Fig. 8. Residual-based classification procedure 

the LH and RH side, respectively. Finally, in the case of filter 

tightening (Fig. 7c), the residuals move toward the positive 

part in both the LH and RH sides. 

In conclusion, comparing LH and RH sides, one can predict 

whether the signal is normal (symmetric sides and unbiased 

distribution) or either it is affected by filter shift (asymmetric 

sides) or a filter tightening (symmetric and biased 

distribution). 

In light of this analysis, we propose the residual-based 

procedure presented in Fig. 8, where the residuals are first 

normalized with respect to their mean value and centered in 

zero; then, the sign() function is applied to convert normalized 

residuals into points of amplitude +1 or -1. After selecting the 

sides, the proportion of positive points in the LH and the RH 

sides (P+
LH and P+

RH, respectively) is computed. For 

illustrative purposes, Fig. 8 plots possible observations in the 

semi-plane P+
LH,P+

RH. According to the rationale previously 

presented, normal observations should be kept within an area 

centered around (0.5,0.5), FS observations should be in the 

quadrants (>0.5,<0.5) or (<0.5,>0.5), while FT observations 

should be in the quadrant (>0.5,>0.5), both FS and FT outside 

the normal area. Therefore, the coordinates of the observations 

in the semi-plane P+
LH,P+

RH can be used as features for DT 

and SVM -based classifiers. In the proposed procedure, two 

classifiers are trained; the first one for soft-failure detection 

and the second one for its identification. 

IV.  ILLUSTRATIVE RESULTS 

In this section, we numerically compare the performance of 

different approaches described in the previous sections. 

Firstly, the description of the transmission set-up modeled in 

VPI Photonics is described; the set-up is used to generate the 

optical spectrum database required for training and testing the 
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proposed algorithms. Next, the two feature-based approaches 

implemented as DT and SVM classifiers are evaluated thus, 

revealing their benefits/drawbacks for filter failure 

identification tasks. Finally, the performance of the three 

proposed approaches for failure detection and localization are 

compared. 

A. VPI set-up for data collection 

The VPI set-up is shown in Fig. 9a. In the transmitter side 

(N1), a 30 GBd DP-QPSK signal is generated, passes through 

7 intermediate nodes performing optical switching and ends in 

a coherent receiver (N9) that compensates for the impairments 

introduced throughout the transmission. Nodes are 

interconnected by single mode fiber spans; after each span, 

Erbium-Doped Fiber Amplifiers (EDFA) compensate for the 

accumulated attenuation of the fiber. The transmitter and 

receiver are assumed to be installed in optical nodes, which 

are modeled with two 2nd order Gaussian filters emulating 

optical switching functionality for add/drop and pass-through 

performed by WSSs [17], [18]; filters bandwidth is set to 37.5 

GHz, leaving 7.5 GHz as a guard band. 

One OSA per outgoing link, configured with 312.5 MHz 

resolution, is considered in every node to monitor the optical 

spectrum. As previously discussed, a correction mask should 

be considered for the features affected by filter cascading, as 

features get modified while passing through WSSs. Fig. 9b 

shows an example of the amount of reduction in the bw-3dB 

feature of a lightpath in the set-up and the corresponding 

correction mask, obtained by fitting a 2nd order polynomial. 

Aiming at emulating failure scenarios, we modify the 

characteristics of the 2nd WSS of each node (from N1 to N8) in 

the set-up; its bandwidth and central frequency are modified to 

model FT and FS failures, respectively. A large dataset of 

failures was collected by inducing failures of magnitude in the 

range [1-8] GHz for FS and in the range [1-15] GHz for FT, 

both with 0.25 GHz step-size, where the magnitude of FT is 

defined as the difference between the ideal bandwidth of the 

filter (37.5 GHz) and its actual bandwidth during the failure. 

B. ML-based classification comparison 

We compare the performance of the feature-based 

approaches in terms of its accuracy, defined as the number of 

correctly detected failures over the total failures. 

Fig. 10a-b show the accuracy of detecting FS and FT, 

respectively at node N1 in terms of the magnitude of the 

failure. Note that in N1 both multi-classifier and single-

classifier are the same as no filter mask is required. Every 

point in Fig. 10a-b aggregates failure scenarios with different 

magnitude by considering all the observations belonging to a 

particular failure magnitude and above. As shown, the 

accuracy of detecting FS larger than 1 GHz is around ~96% 

when classifiers are based on SVMs, while it hardly 

approaches 89% when they are based on DTs. On the other 

hand, the accuracy of SVMs reaches 100% for failures larger 

than 5 GHz, while this level of accuracy for DTs is achieved 

for failures larger than 6 GHz. Regarding FT detection, the 

best accuracy of the proposed classifiers for low magnitudes 

(below 6 GHz) is around 80% (achieved for SVMs), which is 

due to the fact that the shape of the optical spectrum is quite 

similar to the normal scenario, making it very challenging for 

the classifier to distinguish. This is in contrast to the case of 

FS, whose effect is more evident even for low magnitudes due 

to its asymmetric impact on the optical spectrum. For the 

magnitudes above 7 GHz, the SVM-based classifier perfectly 

detects the failure. Note that DT-based classifiers achieve 

perfect accuracy for magnitudes above 10.5 GHz. 

Let us now compare feature-based approaches implemented 

with DT and SVM -based classifiers for detecting failures in 

all 8 nodes of the set-up. Recall that multiple classifiers are 

needed for the first approach and several filter masks are 

required for the second approach. The results are shown in 

Fig. 10c-d for FS and FT, respectively, where every point 

aggregates the results for all the nodes. As observed, SVM- 

based classifiers significantly outperform DT-based ones in 

both approaches and failures. As a result, SVM-based 

classifiers can be selected as the preferred option for feature-

based approaches. 
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Fig. 9. VPI setup (a) and correction mask of bw-3dB of the setup (b) 
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Fig. 10. Accuracy of DT and SVM for FS (a, c) and FT (b, d). (a, b) 

show the accuracy at N1, while (c, d) show the average over N1-N8. 
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Comparing the different SVM-based approaches, the single-

classifier performs slightly better in the case of FS detection 

while the performance of the multi-classifier approach is much 

better than the single-classifier one in the case of FT failure. 

Therefore, we can conclude that training multiple classifiers 

with the data collected at nodes experiencing different levels 

of filter cascading performs better than correcting the features 

with the purpose of using a single classifier, as the impact of 

filter cascading is similar to the effect of FT on the shape of 

optical spectrum. 

C. Comparisons of different approaches of signal analysis 

Let us first focus on the residual-based approach and 

analyze the potential of using P+
LH and P+

RH as discriminatory 

features for training the classifiers. Fig. 11 plots the samples 

of the dataset used for training the residual-based classifiers at 

N1. It is clear, in view of Fig. 11, that the selected features 

allow classifying the different cases easily. Although not 

shown in detail, we first compared DT and SVMs classifiers 

and concluded that SVMs perform better also for this 

approach. Therefore, the results presented next compare the 

performance of all three approaches using SVM-based 

classifiers. 

Fig. 12a-b show the accuracy of detecting FS and FT solely 

at node N1. As illustrated, multi-classifier and single-classifier 

approaches show identical performance as they are essentially 

the same at node N1, where no filter mask is necessary to be 

used. However, the residual-based approach outperforms 

feature-based approaches for the detection of FS and FT. The 

performance of the residual-based approach is noticeable for 

detecting soft-failures, as it reaches 100% accuracy for 3 GHz 

FS magnitude and 5 GHz FT magnitude, 2 GHz smaller than 

the other two approaches. 

Let us now look at the average accuracy of the approaches 

over all the nodes; the results are shown in Fig. 12c-d for FS 

and FT failures, respectively. The residual-based approach 

remains the best solution by far for detecting and identifying 
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Fig. 11. P+

LH and P+
RH features for failure detection and identification 

both, FS and FT failures. In contrast, the multi-classifier-based 

approach shows the worst overall accuracy for FS failures, as 

the features selected for classification get very close to each 

other and it becomes very difficult for the support vectors to 

distinguish them perfectly. Interestingly, the situation is 

different for FT failures, where the multi-classifier approach 

performs better than the single-classifier. 

In addition to classification accuracy, the robustness of the 

approaches with respect to the number of traversed nodes is of 

paramount importance for practical implementations. Hence, 

let us compare the robustness of different approaches in terms 

of the smallest failure magnitude after which the classification 

accuracy reaches 100%. Plots in Fig. 13a-b represent such 

robustness in terms of the location of FS and FT failures, 

respectively. Note that, points for N1 in Fig. 13a-b correspond 

to the first points in Fig. 12a-b where 100% accuracy is 

achieved. As observed, the residual-based approach shows the 

highest level of robustness compared to the feature-based ones 

for both FS and FT failures. It can be understood that the 

residual-based approach is robust regardless of the location of 

the failure as it perfectly detects and identifies failures with 

magnitude above the values in Fig. 13. 
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Fig. 12. Accuracy of the different approaches 
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Fig. 13. Robustness of the different approaches 
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Table I. Key characteristics and results for the considered approaches for failure detection and identification 

 
Pre-

processing 

Classification 

method 
Training phase 

Number 

of 

classifiers 

Availability at the 

node level 
Accuracy 

Robustness 

w.r.t # of 

nodes 

Multi 

Classifier 
not required SVM 

requires 

observations of 

every level of 

filter cascading 

# of nodes 

to support 
all classifiers good good 

Single 

Classifier 

pre-

processing of 

the features 

SVM 

requires 

observations of 

just a single level 

of filter cascading 

1 
one classifier + 

correction masks 
good good 

Residual 

Based 

pre-

processing of 

the optical 

spectrum 

SVM 

requires 

observations of 

just a single level 

of filter cascading 

1 

one classifier + ESC 

and residual signal 

computations modules 

very good very good 

 

V. CONCLUDING REMARKS 

Three different approaches for filter-related soft-failures 

detection and identification, have been proposed and their 

performance was compared in terms of accuracy and 

robustness. The key characteristics are summarized in Table I. 

On the one hand, feature-based approaches (i.e., multi-

classifier and single-classifier), even though their performance 

is comparable, have notable differences in their 

implementation complexity. While the multi-classifier 

approach requires a huge dataset for the training phase, single-

classifier approach requires N times less data, being N the 

maximum number of nodes an optical connection might pass-

though. However, this is at the cost of pre-processing optical 

spectrum features, which requires the calculation of the 

correction masks. On the other hand, the residual-based 

approach, which is based on a single classifier strategy, 

significantly outperforms the feature-based ones and brings 

down the complexity of training phase compared to multi-

classifier approach. However, it requires two additional 

modules to be available in the MDA agent. 

To conclude, it is beneficial to bring data analytics as close 

as possible to the source of the monitoring data (MDA agents) 

as the complexity of the proposed modules is low enough to 

be integrated in programmable units that are expected to be 

available in the future whitebox-based technologies for 

switching and transponder optical nodes. 
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