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DECOMPOSITION SPACES, INCIDENCE ALGEBRAS AND MÖBIUS
INVERSION I: BASIC THEORY

IMMA GÁLVEZ-CARRILLO, JOACHIM KOCK, AND ANDREW TONKS

Abstract. This is the first in a series of papers devoted to the theory of decomposition
spaces, a general framework for incidence algebras and Möbius inversion, where algebraic
identities are realised by taking homotopy cardinality of equivalences of ∞-groupoids.
A decomposition space is a simplicial ∞-groupoid satisfying an exactness condition,
weaker than the Segal condition, expressed in terms of active and inert maps in ∆. Just
as the Segal condition expresses composition, the new exactness condition expresses
decomposition, and there is an abundance of examples in combinatorics.

After establishing some basic properties of decomposition spaces, the main result of
this first paper shows that to any decomposition space there is an associated incidence
coalgebra, spanned by the space of 1-simplices, and with coefficients in ∞-groupoids.
We take a functorial viewpoint throughout, emphasising conservative ULF functors;
these induce coalgebra homomorphisms. Reduction procedures in the classical theory of
incidence coalgebras are examples of this notion, and many are examples of decalage of
decomposition spaces. An interesting class of examples of decomposition spaces beyond
Segal spaces is provided by Hall algebras: the Waldhausen S•-construction of an abelian
(or stable infinity) category is shown to be a decomposition space.

In the second paper in this series we impose further conditions on decomposition
spaces, to obtain a general Möbius inversion principle, and to ensure that the various
constructions and results admit a homotopy cardinality. In the third paper we show that
the Lawvere–Menni Hopf algebra of Möbius intervals is the homotopy cardinality of a
certain universal decomposition space. Two further sequel papers deal with numerous
examples from combinatorics.

Note: The notion of decomposition space was arrived at independently by Dyckerhoff
and Kapranov [17] who call them unital 2-Segal spaces. Our theory is quite orthogonal
to theirs: the definitions are different in spirit and appearance, and the theories differ in
terms of motivation, examples, and directions.
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0. Introduction

The notion of incidence algebra of a locally finite poset is an important construction
in algebraic combinatorics, with applications to many fields of mathematics. In this work
we generalise this construction in three directions: (1) we replace posets by categories
and ∞-categories; (2) we replace scalar coefficients in a field by ∞-groupoids, working at
the objective level, ensuring natively bijective proofs [22]; and most importantly: (3) we
replace the Segal condition, which essentially characterises∞-categories among simplicial
∞-groupoids, by a weaker condition that still allows the construction of incidence algebras.
Simplicial ∞-groupoids satisfying this axiom are called decomposition spaces, seen as
a systematic framework for decomposing structures, whereas categories constitute the
systematic framework for composing structures.
In the present work we focus on incidence coalgebras ; incidence algebras are just the

convolution algebras given by their linear duals. The fundamental role played by coal-
gebras was established by Rota and his collaborators, the work with Joni [31] being a
milestone.
We briefly preface the historically motivated introduction below with a preview of one

of the examples that motivated us, and which will serve as a running example.

0.1. Running example: the Hopf algebra of rooted trees. (We return to this
example in 3.3, 5.2, 9.5, 10.4.) The Butcher–Connes–Kreimer Hopf algebra of rooted
trees [8, 14, 47] is the free commutative algebra on the set of iso-classes of rooted trees T ,
with the comultiplication defined by summing over certain admissible cuts c:

(1) ∆(T ) =
∑

c∈adm.cuts(T )

Pc ⊗ Rc

An admissible cut c partitions the nodes of T into two subsets or ‘layers’

(2)
Rc

Pc

One layer must form a rooted subtree Rc (or be empty), and its complement forms the
‘crown’, a subforest Pc regarded as a monomial of trees.
We can formalise this construction as follows. Let Hk denote the groupoid of forests

with k−1 compatible admissible cuts, partitioning the forest into k layers (which may be
empty). These form a simplicial groupoid H, where simplicial degeneracy maps repeat
a cut, inserting an empty layer, and face maps forget a cut, joining adjacent layers, or
discard the top or bottom layer.
The comultiplication (1) arises from this simplicial groupoid by a pull-push formula

(see 5.1, 5.2 below): for a tree T ∈ H1, take the homotopy sum over the homotopy fibre
d−1
1 (T ) ⊂ H2, and for each element c in the fibre return the pair (d2c, d0c) consisting of

the two layers. Finally take homotopy cardinality to arrive at Pc ⊗Rc.
We note three things about this construction. Firstly, it is essential to work with

simplicial groupoids rather than simplicial sets: had we passed to sets of iso-classes (of
forests with cuts), crucial information would be lost, essentially because trees with a cut
admit isomorphisms that do not fix the underlying tree — see [26] for detailed explanation
of this point. Secondly, we took homotopy cardinality at the last step, but in fact the whole
construction is so formal and natural that it works on the ‘objective level’ of groupoid
slices. Refraining from taking cardinality yields a natively ‘bijective’ version. Finally,
and most importantly, this simplicial groupoid is not a Segal object: that is, is not the
(fat) nerve of a category. Indeed, the Segal condition would imply that any tree with an
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admissible cut could be reconstructed uniquely knowing just the layers above and below
the cut. But this is manifestly false: there are many trees with cuts that have the same
layers as (2).
The main discovery is that there is a weaker condition than the Segal condition that

allows the construction of a coassociative incidence coalgebra: this is the decomposition-
space axiom that we introduce in §3. It has a clear combinatorial interpretation (see the
pictures in 3.3), has a clean categorical description as an exactness condition 3.1, and is a
general condition satisfied also by examples from other areas of mathematics, such as the
Waldhausen S•-construction 10.7. See Dyckerhoff and Kapranov [17] for further outlook.

Background and motivation

Leroux’s notion of Möbius category [52] generalises at the same time locally finite
posets (Rota [63]) and Cartier–Foata finite-decomposition monoids [10], the two classical
settings for incidence (co)algebras and Möbius inversion. The finiteness conditions in the
definition of Möbius category ensure that the comultiplication law

(3) ∆(f) =
∑

b◦a=f

a⊗ b

is well defined on the vector space spanned by the set of arrows. This defines the classical
incidence coalgebra.
An important advantage of having the classical settings of posets and monoids on the

same footing is they may then be connected by an appropriate class of functors, the
CULF functors (standing for ‘conservative’ and ‘ULF’ = ‘unique lifting of factorisations’;
see §4). In particular it gives a nice explanation of the important process of reduction,
to get the most interesting algebras out of posets, a process that was sometimes rather
ad hoc. For the most classical example of this process, consider the divisibility poset
(N×, |) as a category. It admits a CULF functor to the multiplicative monoid (N×,×),
considered as a category with only one object. This functor induces a homomorphism
of incidence coalgebras which is precisely the reduction map from the ‘raw’ incidence
coalgebra of the divisibility poset to its reduced incidence coalgebra, which is isomorphic
to the Cartier–Foata incidence coalgebra of the multiplicative monoid.
Shortly after Leroux’s work, Dür [14] studied more involved categorical structures to

extract further examples of incidence algebras and study their Möbius functions. In par-
ticular he realised the Hopf algebra of rooted trees as the reduced incidence coalgebra of
a certain category of root-preserving forest embeddings, modulo the equivalence relation
that identifies two root-preserving forest embeddings if their complement crowns are iso-
morphic forests (see 10.4). Another prominent example fitting into Dür’s formalism is
the Faà di Bruno bialgebra, previously obtained in [32] from the category of surjections,
which is however not a Möbius category.
Our work on Faà di Bruno formulae in bialgebras of trees [20] prompted us to look for

a more general version of Leroux’s theory, which would naturally realise the Faà di Bruno
and Butcher–Connes–Kreimer bialgebras directly as incidence coalgebras. A sequence of
generalisations and simplifications of the theory led to the notion of decomposition space
which is the central notion of the present work.

Abstraction steps: from numbers to sets, and from sets to ∞-groupoids

The first abstraction step is to follow the objective method, pioneered in this context
by Lawvere and Menni [50], working directly with the combinatorial objects, using linear
algebra with coefficients in Set rather than working with numbers and functions on the
vector spaces spanned by the objects.
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To illustrate the objective method, observe that a vector in the free vector space on
a set S is just a collection of scalars indexed by (a finite subset of) S. The objective
counterpart is a family of sets indexed by S, i.e. an object in the slice category Set/S, and
linear maps at this level are given by spans S ←M → T . The Möbius inversion principle
states an equality between certain linear maps (elements in the incidence algebra). At
the objective level, such an equality can be expressed as a bijection between sets in the
spans representing those linear functors (see the second paper in this series [23]). In this
way, algebraic identities are revealed to be just the cardinality of bijections of sets, which
carry much more information.
In the present work we take coefficients in S, the∞-category of∞-groupoids. The role

of vector spaces is then played by slice ∞-categories S/S. In [22] we have developed the
necessary ‘homotopy linear algebra’ and the notion of homotopy cardinality, extending
many results of Baez–Hoffnung–Walker [3] who worked with 1-groupoids. In order to
be able to recover numerical or algebraic results by taking cardinality, suitable finiteness
conditions must be imposed, but as long as we work at the objective level, where all results
and proofs are naturally bijective, these finiteness conditions do not play an essential
role. Outside of this introduction we are not concerned with finiteness conditions and
cardinality in the present paper, but will return to them in the second and third papers
in this series [23, 24].
The price to pay for working at the objective level is the absence of additive inverses: in

particular, Möbius functions cannot exist in the usual form of an alternating sum indexed
by chains of different lengths. However, we can prove the following explicit equivalence
of ∞-groupoids (cf. [23]):

ζ ∗ Φeven ≃ ε + ζ ∗ Φodd.

We shall not here go into the definition of these∞-groupoids. The point we wish to make
is that upon taking homotopy cardinality, under the appropriate finiteness assumptions,
and putting µ = |Φeven|−|Φodd|, one recovers the usual Möbius inversion formula ζ∗µ = ε,
which has thus been given a ‘bijective’ interpretation.
There are two levels of finiteness conditions needed in order to take cardinality and

arrive at algebraic (numerical) results [23]: namely, just in order to obtain a numerical
coalgebra, for each arrow f and for each n ∈ N, there should be only finitely many
decompositions of f into a chain of n arrows. Second, in order to obtain also Möbius
inversion, the following additional finiteness condition is needed: for each arrow f , there
is an upper bound on the number of non-identity arrows in a chain of arrows composing
to f . The latter condition is important in its own right, as it is the condition for the
existence of a length filtration (cf. [23, §6], useful in many applications [20, 43, 45]).
The importance of chains of arrows naturally suggests a simplicial viewpoint, regarding

a category C as a simplicial set via its nerve NC. Leroux’s theory can be formulated
in terms of simplicial sets, and many of the arguments then rely on certain simple pull-
back conditions, the first being the Segal condition which characterises categories among
simplicial sets. Most importantly, in our exploitation of this simplicial viewpoint the co-
multiplication (3) can be written in terms of NC as a push-pull formula, ∆ = (d2, d0)!◦d∗1 .
The fact that combinatorial objects typically have symmetries prompted the upgrade

from sets to groupoids, in fact a substantial conceptual simplification [20]. This upgrade is
essentially straightforward, as long as the notions involved are taken in a correct homotopy
sense: bijections of sets are replaced by equivalences of groupoids; the slices playing
the role of vector spaces are homotopy slices, the pullbacks and fibres involved in the
functors are homotopy pullbacks and homotopy fibres, and the sums are homotopy sums
(i.e. colimits indexed by groupoids, just as ordinary sums are colimits indexed by sets).
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In this setting one may abandon also the strict notion of simplicial object in favour of a
pseudo-functorial analogue. For example, the monoidal nerve of (B,+, 0), the monoidal
groupoid of finite sets and bijections under disjoint union, is actually only a pseudofunctor
B : ∆

op → grpd (see 2.17–2.18). This level of abstraction allows us to state for example
that the incidence algebra of B is the category of species with the Cauchy product [26,
§2.1] (suggested as an exercise by Lawvere and Menni [50]).
While it is doable to handle the 2-category theory involved to deal with groupoids,

pseudo-functors, pseudo-natural isomorphisms, and so on, much conceptual clarity is
obtained by passing immediately to the ∞-category S of ∞-groupoids: thanks to the
monumental effort of Joyal [34], [35], Lurie [55] and others, ∞-groupoids can now be
handled efficiently. At the elementary level where we work, all that is needed is some
basic knowledge about (homotopy) pullbacks and (homotopy) sums, and everything looks
very much like the category of sets. So we work throughout with certain simplicial ∞-
groupoids. The appropriate notion of weak category in ∞-groupoids is that of Rezk
complete Segal space [61]. Our theory at this level says that for any Rezk complete Segal
space there is a natural incidence coalgebra defined with coefficients in∞-groupoids (this
is a special case of Theorem 7.4) and that the objective sign-free Möbius inversion principle
holds [23].

The idea of decomposition spaces

The final abstraction step, which becomes the starting point for the paper, is to notice
that in fact neither the Segal condition nor the Rezk condition is needed in full in order to
get a (co)associative (co)algebra and a Möbius inversion principle. Coassociativity follows
from (in fact is essentially equivalent to) the decomposition-space axiom (see §3 for the
axiom, and the discussion at the beginning of §5 for its derivation from coassociativity): a
decomposition space is a simplicial ∞-groupoid X : ∆

op → S sending active-inert pushout
squares in ∆ to pullbacks. Whereas the Segal condition is the expression of the ability
to compose morphisms, the new condition is about the ability to decompose, which of
course in general is easier to achieve than composability.
It is likely that all incidence (co)algebras can be realised directly (without imposing

a reduction) as incidence (co)algebras of decomposition spaces. If a reduced incidence
algebra construction is known, the decomposition space can be found by analysing the
reduction step. For example, Dür [14] realises the q-binomial coalgebra as the reduced
incidence coalgebra of the category of finite-dimensional vector spaces over a finite field
and linear injections, by imposing the equivalence relation identifying two linear injections
if their quotients are isomorphic. Trying to realise the reduced incidence coalgebra directly
as a decomposition space immediately leads us to the Waldhausen S•-construction, which
is a general class of examples: we show that for any abelian category or stable∞-category,
the Waldhausen S•-construction is a decomposition space (which is not Segal), cf. 10.7.
Under the appropriate finiteness conditions, the resulting incidence algebras include the
Hall algebras, as well as the derived Hall algebras first constructed by Toën [70].
Other examples of coalgebras that can be realised as incidence coalgebras of decom-

position spaces but not of categories are Schmitt’s Hopf algebra of graphs [66] and the
Butcher–Connes–Kreimer Hopf algebra of rooted trees [11]. In a sequel paper [25], these
examples are subsumed as examples of decomposition spaces induced from restriction
species and directed restriction species.

For our present purposes, the appropriate notion of morphism between decomposition
spaces is that of CULF functor, as these induce coalgebra homomorphisms (8.2). Many
relationships between incidence coalgebras, and in particular most of the reductions that
play a central role in the classical theory (from Rota [63] and Dür [14] to Schmitt [66]),



6 IMMA GÁLVEZ-CARRILLO, JOACHIM KOCK, AND ANDREW TONKS

are induced from CULF functors. The simplicial viewpoint taken in this work reveals
furthermore that many of these CULF functors are actually instances of the notion of
decalage 4.7, which goes back to Lawvere [48] and Illusie [29]. Decalage is in fact an
important ingredient in the theory to relate decomposition spaces to Segal spaces: we
observe that the decalage of a decomposition space is a Segal space 4.10.

Throughout we have strived for deriving all results from elementary principles, such as
pullbacks, factorisation systems and other universal constructions. It is also characteris-
tic for our approach that we are able to reduce many technical arguments to simplicial
combinatorics. The main notions are formulated in terms of the active-inert factorisation
system in ∆ (see 2.2). To establish coassociativity we explore also ∆ (the algebraist’s
Delta, including the empty ordinal) and establish and exploit a universal property of its
twisted arrow category (§6). Sequels to this paper further vindicate this philosophy: In
[24], in order to construct the universal decomposition space of intervals, we study the
category Ξ of finite strict intervals, yet another variation of the simplex category, related
to it by an adjunction. In [25], as a general method for establishing functoriality in inert
maps, we study a certain category

∆

of convex correspondences in ∆. These ‘simplicial
preliminaries’ are likely to have applications also outside the theory of decomposition
spaces.

Related work: 2-Segal spaces of Dyckerhoff and Kapranov

The notion of decomposition space was arrived at independently by Dyckerhoff and
Kapranov [17]: a decomposition space is essentially the same thing as what they call a
unital 2-Segal space. We hasten to give them full credit for having arrived at the notion
first. Unaware of their work, we arrived at the same notion from a very different path,
and the theory we have developed for it is mostly orthogonal to theirs.
The definitions are different in appearance: the definition of decomposition space refers

to preservation of certain pullbacks, whereas the definition of 2-Segal space (reproduced
in 3.2 below) refers to triangulations of convex polygons. The coincidence of the notions
was noticed by Mathieu Anel because two of the basic results are the same: specifically,
the characterisation in terms of decalage and Segal spaces (our Theorem 4.10) and the
result that the Waldhausen S•-construction of a stable ∞-category is a decomposition
space (our Theorem 10.15) were obtained independently (and first) in [17].
We were motivated by rather elementary aspects of combinatorics and quantum field

theory, and our examples are all drawn from incidence algebras and Möbius inversion,
whereas Dyckerhoff and Kapranov were motivated by representation theory, geometry,
and homological algebra, and develop a theory with a much vaster range of examples in
mind: in addition to Hall algebras and Hecke algebras they find cyclic bar construction,
mapping class groups and surface geometry (see also [18] and [16]), construct a Quillen
model structure and relate to topics of interest in higher category theory such as (∞, 2)-
categories and operads.
In the end we think our contribution is just a little corner of a vast theory, but an

important little corner, and we hope that our viewpoints and insights will prove useful
also for the rest of the theory.

Related work on Möbius categories

Where incidence algebras and Möbius inversion are concerned, our work descends from
Leroux et al. [12, 52, 53], Dür [14], and Lawvere–Menni [50].
There is a different notion of Möbius category, due to Haigh [28]. The two notions

have been compared, and to some extent unified, by Leinster [51], who calls Leroux’s
Möbius inversion fine and Haigh’s coarse, as it only depends on the underlying graph of
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the category. We should mention also the K-theoretic Möbius inversion for quasi-finite
EI categories of Lück and collaborators [54], [19].
The classical theory of incidence algebras of posets reached a culmination with Schmitt’s

paper [66]. Subsequently, Ray and Schmitt [60] introduced a certain category of cell-sets
consisting of sets equipped with an equivalence relation (and a compatible dimension
function), whose morphisms are given by a clever multiset construction. They showed
that coalgebraic structures could be defined at this level, prior to taking free vector
spaces, and in this sense their theory can be seen as a precursor to the fullblown objective
method of slices (indeed, their multiset morphisms are subsumed in the natural notion
of linear functor between slices). Although cell-sets have equivalence relations built in,
they do not account for symmetries in the same automatic way as groupoids do, and
essentially their examples are still poset based. It seems likely that the main structures
and constructions of [60] can be subsumed in the theory of decomposition spaces, and we
hope to get the opportunity to take up this issue on a later occasion.

Outline of the present paper, section by section

We begin in Section 1 with a review of some elementary notions from the theory of
∞-categories, to render the paper accessible also to readers without prior experience with
these notions. Section 2 contains a few preliminaries on simplicial objects and Segal
spaces, and in Section 3 we introduce the main notion of this work, decomposition spaces:

Definition. A simplicial space X : ∆
op → S is called a decomposition space when it takes

active-inert pushouts in ∆ to pullbacks of ∞-groupoids.

We give some equivalent pullback characterisations, and observe that every Segal space
is a decomposition space.
In Section 4 we turn to the relevant notion of morphism, that of CULF functor (meaning

‘conservative’ and ‘ULF’ = ‘unique lifting of factorisations’):

Definition. A simplicial map is called CULF if it is cartesian on all active maps.

After some variations, we come to decalage, which features in the following important
relationship between Segal and decomposition spaces:

Theorem 4.10. A simplicial space X is a decomposition space if and only if both Dec⊤X
and Dec⊥X are Segal spaces, and the two comparison maps back to X are CULF.

In Section 5 we introduce the incidence coalgebra associated to a decomposition space
X . It is the slice ∞-category S/X1

, with the comultiplication map given by the span

X1
d1←−−− X2

(d2,d0)
−−−−→ X1 ×X1.

We explain how a naive view of coassociativity provided the motivation for the decomposition-
space axioms, but to formally establish the coassociativity result we first require more
simplicial preliminaries, introduced in Section 6. In particular we introduce the twisted
arrow category D of the category of finite ordinals, which is monoidal under external sum.
We show that simplicial objects in a cartesian monoidal category can be characterised as
monoidal functors on D, and characterise decomposition spaces as those simplicial spaces
whose extension to D preserves certain pullback squares.
In Section 7 the homotopy coassociativity of the incidence coalgebra is established

exploiting the monoidal structure on D:

Theorem 7.4. For X a decomposition space, the slice ∞-category S/X1
has the structure

of a strong homotopy comonoid in the symmetric monoidal ∞-category LIN, with the
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comultiplication defined by the span

X1
d1←−−− X2

(d2,d0)
−−−−→ X1 ×X1.

In Section 8 we show that CULF functors induce coalgebra homomorphisms. We also
comment on a certain contravariant functoriality holding for simplicial maps that are
equivalences in degree zero and are relatively Segal.

In Section 9 we introduce the notion of monoidal decomposition space, as a monoid ob-
ject in the monoidal∞-category of decomposition spaces and CULF maps. The incidence
coalgebra of a monoidal decomposition space is naturally a bialgebra.

In Section 10 we give some basic examples to provide a taste of the breadth of appli-
cations. Further examples are expounded in detail in [25] and [26]. We begin with the
example of finite sets and injections (which leads to the binomial coalgebra), to illustrate
how decalage formalises reduction processes, and how the convolution product at the
objective level is the Cauchy product of species. Coming to examples of decomposition
spaces which are not Segal, we take a short look at Schmitt’s Hopf algebra of graphs,
and revisit the running example of the Butcher–Connes–Kreimer Hopf algebra, compar-
ing with the construction of Dür [14]. Finally we consider the example of finite vector
spaces, which leads to the general case of Waldhausen’s S•-construction and Hall algebras.
We establish that the S• construction of an abelian category or a stable ∞-category is
a decomposition space. This result was first proved by Dyckerhoff and Kapranov and
constitutes a cornerstone in their work [17], [18], [16], [15], to which we refer for the
remarkable richness of this class of examples.

Brief summary of the four sequels to this paper

The present paper originally formed the first two sections of a large manuscript [21]
which has been split into altogether six papers of more manageable size. We briefly
comment on the contents of the sequels.
The long appendix of [21] has become an independent paper [22] developing the neces-

sary background on homotopy linear algebra.
In paper [23], the second in the trilogy, we introduce the notion of complete decom-

position space in order to provide a notion of nondegeneracy necessary for the theory of
Möbius inversion. In this context we can consider the linear functors Φn defined by spans
X1 ← ~Xn → 1, where ~Xn ⊂ Xn is the subspace of nondegenerate n-simplices, and prove
the general Möbius inversion principle on the objective level:

ζ ∗ Φeven ≃ ε + ζ ∗ Φodd.

Having established this, we analyse the finiteness conditions necessary to take cardi-
nality and obtain numerical incidence algebras, and for the Möbius inversion principle
to descend to these Q-algebras. We identify two conditions on complete decomposition
spaces: having locally finite length and being locally finite. Complete decomposition spaces
that satisfy both finiteness conditions are called Möbius decomposition spaces. The first
finiteness condition is equivalent to the existence of a certain length filtration, which is
useful in applications. Although many examples coming from combinatorics do satisfy
this condition, it is actually a rather strong condition, as witnessed by the following result:

Every decomposition space with length filtration is the left Kan extension of a semi-
simplicial space.
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This result holds for more general simplicial spaces that we term stiff, and we digress
to establish this. We also consider an even weaker notion of split simplicial space, in
which all face maps preserve nondegenerate simplices. This condition is the analogue of
the condition for categories that identities are indecomposable, enjoyed in particular by
Möbius categories in the sense of Leroux.

In paper [24] we come to what is perhaps the deepest theorem so far in our work. Law-
vere showed in the 1980s that there is a Hopf algebra of Möbius intervals which contains
the universal Möbius function [50]. This Hopf algebra, obtained from the collection of all
iso-classes of Möbius intervals, is universal for incidence coalgebras of Möbius categories
X , by virtue of the canonical coalgebra homomorphism from the incidence coalgebra of
X sending an arrow in X to its factorisation interval. The universal Hopf algebra is not,
however, the incidence coalgebra of a Möbius category.
We show that it is a decomposition space. We construct a (large) complete decompo-

sition space U of all ‘subdivided intervals’, together with a canonical CULF classifying
functor X → U for any complete decomposition space X . We prove that the space of
CULF maps from X to U is connected, and conjecture that it is contractible.
If we also impose the relevant finiteness conditions, we obtain the result that the space

of all Möbius intervals is a Möbius decomposition space. It follows that it admits a Möbius
inversion formula with coefficients in finite ∞-groupoids or in Q, and since every Möbius
decomposition space admits a canonical CULF functor to it, we conclude that Möbius
inversion in every incidence algebra is induced from this master formula.

In paper [25] we show that Schmitt coalgebras of restriction species [65] (such as graphs,
matroids, posets, etc.) naturally define decomposition spaces. We also introduce a new
notion of directed restriction species: whereas ordinary restriction species are presheaves
of the category of finite sets and injections, directed restriction species are presheaves
on the category of finite posets and convex maps. Examples covered by this notion are
the Butcher–Connes–Kreimer bialgebra and the Manchon–Manin bialgebra of directed
graphs. Both ordinary and directed restriction species are shown to be examples of a
construction of decomposition spaces from what we call sesquicartesian fibrations, certain
cocartesian fibrations over the category of finite ordinals that are also cartesian over
convex maps.

In paper [26] we give examples from classical (and less classical) combinatorics. The
first batch of examples, similar to the binomial posets of Doubilet–Rota–Stanley [13], are
straightforward but serve to illustrate two key points: (1) the incidence algebra in question
is realised directly from a decomposition space, without a reduction step, and reductions
are typically given by CULF functors; (2) at the objective level, the convolution algebra
is a monoidal structure of species (specifically: the usual Cauchy product of species, the
shuffle product of L-species, the Dirichlet product of arithmetic species, the Joyal–Street
external product of q-species, and the Morrison ‘Cauchy’ product of q-species). In each of
these cases, a power series representation results from taking cardinality. The next class of
examples includes the Faà di Bruno bialgebra, the Butcher–Connes–Kreimer bialgebra of
trees, with several variations, and similar structures on directed graphs (cf. Manchon [58]
and Manin [59]). Another important class of examples is given by Hall algebras, cf. also
10.7 below. We conclude the paper by computing the Möbius function in a few cases,
and commenting on certain cancellations that occur in the process of taking cardinality,
substantiating that these cancellations are not possible at the objective level. This is
related to the distinction between bijections and natural bijections.
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1. Preliminaries on ∞-groupoids and ∞-categories

1.1. Groupoids and ∞-groupoids. Although most of our motivating examples can
be naturally formulated in the 2-category Grpd of 1-groupoids, we have chosen to work
in the ∞-category S of ∞-groupoids. This is on one hand the natural generality of the
theory, and on the other hand a considerable conceptual simplification: thanks to the
monumental effort of Joyal [34], [35] and Lurie [55], the theory of ∞-categories has now
reached a stage where it is just as workable as the theory of 1-groupoids — if not more! It
also contains ordinary category theory: one regards a category C as an∞-category via its
nerve NC. Some details can be found in 1.3 below. The philosophy is that, modulo a few
homotopy caveats, one is allowed to think as if working in the category of sets. A recent
forceful vindication of this philosophy is Homotopy Type Theory [69], in which a syntax
that resembles set theory is shown to be a powerful language for general homotopy types.
A recurrent theme in the present work is to upgrade combinatorial constructions from

sets to∞-groupoids. To this end the first step consists in understanding the construction
in abstract terms, often in terms of pullbacks and sums, and then the second step consists
in copying over the construction to the ∞-setting. The ∞-category theory needed will
be accordingly elementary, and it is our contention that it should be feasible to read this
work without prior experience with ∞-groupoids or ∞-categories, simply by substituting
the word ‘set’ for the word ‘∞-groupoid’. Even at the set level, our theory contributes
interesting insight, revealing many constructions in the classical theory to be governed by
very general principles proven useful also in other areas of mathematics.
The following short review of some basic aspects of ∞-categories should suffice for

reading this paper and its sequels.

1.2. From posets to Rezk categories. A few remarks may be in order to relate the
homotopy viewpoint with classical combinatorics. A 1-groupoid is the same as an ordinary
groupoid, and a 0-groupoid is the same as a set. A (−1)-groupoid is the same as a truth
value: up to equivalence there exist only two (−1)-groupoids, namely the contractible
groupoid (a point) and the empty groupoid. A poset is essentially the same as a category
in which all the mapping spaces are (−1)-groupoids. An ordinary category is a category
in which all the mapping spaces are 0-groupoids. Hence the theory of incidence algebras
of posets of Rota and collaborators can be seen as the (−1)-level of the theory. Cartier–
Foata theory and Leroux theory take place at the 0-level. We shall see that in a sense
the natural setting for combinatorics is the 1-level, since this level naturally takes into
account that combinatorial structures can have symmetries. (From this viewpoint, it
looks as if the classical theory compensates for working one level below the natural one
by introducing reductions.) It is convenient to follow this ladder to infinity: the good
notion of category with ∞-groupoids as mapping spaces is that of Rezk complete Segal
space, also called Rezk category; this is the level of generality of the present work.

1.3. ∞-categories. By ∞-category we mean quasi-category [34]. These are simplicial
sets satisfying the weak Kan condition: inner horns admit a filler. (An ordinary category
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is a simplicial set in which every inner horn admits a unique filler.) This theory has already
been developed by Joyal [34, 35] and Lurie [55]. The main point, Joyal’s great insight, is
that category theory can be generalised to quasi-categories, and that the results look the
same, although to bootstrap the theory very different techniques are required. There are
other implementations of∞-categories, such as complete Segal spaces; see Bergner [7] for
a survey. We will only use results that hold in all implementations, and for this reason
we say ∞-category instead of referring explicitly to quasi-categories. Put another way,
we shall only ever distinguish quasi-categories up to (categorical) equivalence, and most
of the constructions rely on universal properties such as pullback, which in any case only
determine the objects up to equivalence. Every 1-category is also a quasi-category via its
nerve. In particular we have, for each n ≥ 0, the ∞-category ∆[n] which is the nerve of
the linearly ordered set {0 ≤ 1 ≤ · · · ≤ n}.

1.4. ∞-groupoids. An∞-groupoid is an∞-category in which all morphisms are invert-
ible. We often say ‘space’ instead of ∞-groupoid, as they are a combinatorial substitute
for topological spaces up to homotopy; for example, to each object x in an∞-groupoid X ,
there are associated homotopy groups πn(X, x) for n > 0. In terms of quasi-categories,
∞-groupoids are precisely Kan complexes, i.e. simplicial sets in which every horn, not
just the inner ones, admits a filler.
∞-groupoids play the role analogous to sets in classical category theory. In particular,

for any two objects x, y in an∞-category C there is (instead of a hom set) a mapping space
MapC(x, y) which is an ∞-groupoid. ∞-categories form a (large) ∞-category denoted
Cat∞. ∞-groupoids form a (large) ∞-category denoted S; it can be described explicitly
as the coherent nerve of the (simplicially enriched) category of Kan complexes. Given two
∞-categories D, C, there is a functor ∞-category Fun(D,C). In terms of quasi-categories,
the functor ∞-category is just the internal hom of simplicial sets. As an important
example of a functor ∞-category, for a given ∞-category I we have the ∞-category of
presheaves Fun(Iop, S), and there is a Yoneda lemma that works as in the case of ordinary
categories [55, Lemmas 5.1.5.2, 5.5.2.1]. Since D and C are objects in the ∞-category
Cat∞ we also have the ∞-groupoid MapCat∞

(D,C), which can also be described as the
maximal sub-∞-groupoid inside Fun(D,C).

1.5. Defining ∞-categories and sub-∞-categories. While in ordinary category the-
ory one can define a category by saying what the objects and the arrows are (and how
they compose), this from-scratch approach is more difficult for∞-categories, as one would
have to specify the simplices in all dimensions and verify the filler condition (that is, de-
scribe the ∞-category as a quasi-category). In practice, ∞-categories are constructed
from existing ones by general constructions that automatically guarantee that the result
is again an ∞-category, although the construction typically uses universal properties in
such a way that the resulting ∞-category is only defined up to equivalence. To specify a
sub-∞-category of an ∞-category C, it suffices to specify a subcategory of the homotopy
category of C (i.e. the category whose hom sets are π0 of the mapping spaces of C), and
then pull back along the components functor. What this amounts to in practice is to
specify the objects (closed under equivalences) and specifying for each pair of objects x, y
a full sub-∞-groupoid of the mapping space MapC(x, y), also closed under equivalences,
and closed under composition.

1.6. Diagrams. Since arrows in an∞-category do not compose on the nose (one can talk
about ‘a’ composite, not ‘the’ composite), the 1-categorical notion of commutative dia-
gram in the naive sense is not appropriate here. Commutative triangle in an ∞-category
C means instead ‘object in the functor ∞-category Fun(∆[2],C)’: the 2-dimensional face
of ∆[2] is mapped to a 2-cell in C mediating between the composite of the 01 and 12
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edges and the long edge 02. Similarly, ‘commutative square’ means object in the functor
∞-category Fun(∆[1] × ∆[1],C). In general, ‘commutative diagram of shape I’ means
object in Fun(I,C).

1.7. Adjoints, limits and colimits. There are notions of adjoint functors, limits and
colimits, which behave essentially in the same way as these notions in ordinary category
theory, and are characterised by universal properties up to equivalence — although to set
up the theory and prove the theorems, much more technical proofs are required. Most
importantly, the limit over an empty diagram defines terminal object, which may or may
not exist. It does exist in S where it is the singleton set, or any contractible ∞-groupoid,
in any case denoted 1.

1.8. Pullbacks and fibres. Central to this work is the notion of pullback: given two
morphisms of ∞-groupoids X → B ← Y , there is a commutative square

X ×B Y
❴
✤

//

��

Y

��
X // B

called the pullback, an example of a limit. It is defined via a universal property, as a
terminal object in a certain auxiliary∞-category consisting of commutative squares with
sides X → B ← Y . All formal properties of pullbacks of sets carry over to ∞-groupoids.
For an object b in an ∞-groupoid B, we denote by pbq : 1 → B the morphism that

picks out b. Given a morphism of ∞-groupoids p : X → B and an object b ∈ B, the fibre
of p over b is by definition the pullback

Xb
❴
✤

//

��

X

p

��
1

pbq
// B.

1.9. Monomorphisms. A map of ∞-groupoids f : X → Y is a monomorphism when
its fibres are (−1)-groupoids, that is, are either empty or contractible. In some respects,
this notion behaves like for sets: for example, if f is a monomorphism, then there is a
complement Z := Y rX such that Y ≃ X +Z. Hence a monomorphism is essentially an
equivalence from X onto some connected components of Y . On the other hand, a crucial
difference between sets and ∞-groupoids is that diagonal maps of ∞-groupoids are not
in general monomorphisms. In fact X → X ×X is a monomorphism if and only if X is
discrete (i.e. equivalent to a set).

1.10. Working in the ∞-category of ∞-groupoids, versus working in the model
category of simplicial sets. When working with ∞-categories in terms of quasi-
categories, one often works in the Joyal model structure on simplicial sets (whose fibrant
objects are precisely the quasi-categories). This is a very powerful technique, exploited
masterfully by Joyal [35] and Lurie [55], and essential to bootstrap the whole theory. In
the present work, we can benefit from their work, and since our constructions are gener-
ally elementary, we do not need to invoke model structure arguments, but can get away
with synthetic arguments. To illustrate the difference, consider the following version of
the Segal condition (see 2.10 for details): we shall formulate it and use it by simply saying
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the natural square
X2

//

��

X1

��
X1

// X0

is a pullback. This is a statement taking place in the ∞-category of ∞-groupoids. A
Joyal–Lurie style formulation would rather take place in the category of simplicial sets
with the Joyal model structure and say something like the natural map X2 → X1×X0

X1 is
an equivalence. Here X1×X0

X1 refers to the actual 1-categorical pullback in the category
of simplicial sets, which does not coincide with X2 on the nose, but is only naturally
equivalent to it.

The following lemma extends a familiar result in 1-category theory and is used many
times in our work.

Lemma 1.11. If in a prism diagram of ∞-groupoids

·

��

// ·

��

// ·

��
· // · // ·

the outer rectangle and the right-hand square are pullbacks, then the left-hand square is a
pullback.

A few remarks are in order. Note that we talk about a prism, i.e. a ∆[1]×∆[2]-diagram:
although we have only drawn two of the squares of the prism, there is a third, whose
horizontal sides are composites of the two indicated arrows. The triangles of the prism are
not drawn either, because they are the fillers that exist by the axioms of quasi-categories.
The proof follows the proof in the classical case, except that instead of saying ‘given two
arrows such and such, there exists a unique arrow making the diagram commute, etc.’,
one has to argue with equivalences of mapping spaces (or slice ∞-categories). See for
example [55, Lemma 4.4.2.1]. for the dual case of pushouts.

1.12. Homotopy sums. In ordinary category theory, a colimit indexed by a discrete
category (that is, a set) is the same thing as a sum (coproduct). For ∞-categories, the
role of sets is played by ∞-groupoids. A colimit indexed by an ∞-groupoid is called a
homotopy sum. In the case of 1-groupoids, these sums are ordinary sums weighted by
inverses of symmetry factors. Their importance was stressed in [20]: by dealing with
homotopy sums instead of ordinary sums, the formulae start to look very much like in the
case of sets. For example, given a map of ∞-groupoids X → B, we have that X is the
homotopy sum of its fibres.

1.13. Slice categories. Maps of ∞-groupoids with codomain B form the objects of a
slice ∞-category S/B, which behaves very much like a slice category in ordinary category
theory. For example, for the terminal object 1 we have S/1 ≃ S. Again a word of warning
is due: when we refer to the ∞-category S/B we only refer to an object determined up
to equivalence of ∞-categories by a certain universal property (Joyal’s insight of defining
slice categories as adjoint to a join operation [34]). In the Joyal model structure for
quasi-categories, this category is represented by an explicit simplicial set. However, there
is more than one possibility, depending on which explicit version of the join operator is
employed (and of course these are canonically equivalent). In the works of Joyal and
Lurie, these different versions are distinguished, and each has some technical advantages.
In the present work we shall only need properties that hold for both, and we shall not
distinguish them.
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1.14. Families. A map of ∞-groupoids X → B can be interpreted as a family of ∞-
groupoids parametrised by B, namely the fibres Xb. Just as for sets, the same family can
also be interpreted as a presheaf B → S. Precisely, for each ∞-groupoid S, we have the
fundamental equivalence

S/B
∼→ Fun(B, S),

which takes a family X → B to the functor sending b 7→ Xb. In the other direction, given
a functor F : B → S, its colimit is the total space of a family X → B.

1.15. Beck–Chevalley equivalence. Pullback along a map of ∞-groupoids f : J →
I defines an ∞-functor f∗ : S/I → S/J . This functor is right adjoint to the functor
f! : S/J → S/I given by post-composing with f . (The latter construction requires some
care: as composition is not canonically defined, one has to choose composites. One can
check that different choices yield equivalent functors.) The following Beck–Chevalley rule
(push-pull formula) [27] holds for ∞-groupoids: given a pullback square

·
❴
✤

f //

p

��

·

q

��
· g

// ·

there is a canonical equivalence of functors

(4) p! ◦ f∗ ≃ g∗ ◦ q!.

1.16. Symmetric monoidal ∞-categories. There is a notion of symmetric monoidal
∞-category, but it is technically more involved than the 1-category case, since in general
higher coherence data has to be specified beyond the 1-categorical associator and MacLane
pentagon condition. This theory has been developed in detail by Lurie [56, Ch.2], sub-
sumed in the general theory of∞-operads. In the present work, a few monoidal structures
play an important role, but since they are directly induced by cartesian product, we have
preferred to deal with them in an informal (and possibly not completely rigorous) way,
with the same freedom as one deals with cartesian products in ordinary category theory.
The following case is the most important for our theory. It is defined rigorously in [22],
as a straightforward consequence of results of Lurie.

1.17. The symmetric monoidal ∞-category LIN . The∞-categories of the form S/I

form the objects of a symmetric monoidal ∞-category LIN , described in detail in [22]:
the morphisms are the linear functors, meaning that they preserve homotopy sums, or
equivalently indeed all colimits. Such functors are given by spans: the span

I
p
← M

q
→ J

defines the linear functor

q! ◦ p∗ : S/I −→ S/J .

The∞-category LIN plays the role of the category of vector spaces (although to be strict
about that interpretation, and in particular to entertain a notion of cardinality to embody
the analogy, certain finiteness conditions should be imposed — these play no essential role
in the present paper).
The symmetric monoidal structure on LIN is easy to describe on objects:

S/I ⊗ S/J = S/I×J

just as the tensor product of vector spaces with bases indexed by sets I and J is the
vector space with basis indexed by I × J . The neutral object is S.
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2. Simplicial preliminaries and Segal spaces

Our work relies heavily on simplicial machinery. We briefly review the notions needed,
to establish conventions and notation.

2.1. The simplex category (the topologist’s Delta). Recall that the ‘simplex cate-
gory’ ∆ is the category whose objects are the nonempty finite ordinals

[k] := {0, 1, 2, . . . , k},

and whose morphisms are the monotone maps. These are generated by the coface maps
di : [n − 1] → [n], which are the monotone injective functions for which i ∈ [n] is not
in the image, and codegeneracy maps si : [n + 1] → [n], which are monotone surjective
functions for which i ∈ [n] has a double preimage. We write d⊥ := d0 and d⊤ := dn for
the outer coface maps.

2.2. Active and inert maps (generic and free maps). The category ∆ has an
active-inert factorisation system. An arrow of ∆ is termed active (also called generic),
and written g : [m] → \ [n], if it preserves end-points, g(0) = 0 and g(m) = n. An arrow
is termed inert (also called free), and written f : [m] ֌ [n], if it is distance preserving,
f(i+1) = f(i)+1 for 0 ≤ i ≤ m−1. The active maps are generated by the codegeneracy
maps and the inner coface maps, and the inert maps are generated by the outer coface
maps. Every arrow in ∆ factors uniquely as an active map followed by an inert map, as
detailed below.

2.3. Background remarks. The notions of generic and free maps are general notions
in category theory, introduced by Weber [72, 73], who extracted the notions from earlier
work of Joyal [33]. A recommended entry point to the theory is Berger–Melliès–Weber [6].
The notions make sense for example whenever there is a cartesian monad on a presheaf
category C: in the Kleisli category, the free maps are those from C, and the generic maps
are those generated by the monad. In practice, this is restricted to a suitable subcategory
of combinatorial nature. In the case at hand the monad is the free-category monad on
the category of directed graphs, and ∆ arises as the restriction of the Kleisli category to
the subcategory of non-empty linear graphs. Other important instances of generic-free
factorisation systems are found in the category of rooted trees [40] (where the monad is
the free-operad monad), the category of Feynman graphs [36] (where the monad is the
free-modular-operad monad), the category of directed graphs [44] (where the monad is the
free-properad monad), and Joyal’s cellular category Θ [5] (where the monad is the free-
omega-category monad). The more recent terminology ‘active/inert’ is due to Lurie [56],
and is more suggestive for the role the two classes of maps play.

2.4. Amalgamated ordinal sum. The amalgamated ordinal sum over [0] of two objects
[m] and [n], denoted [m] ∨ [n], is given by the pushout of inert maps

(5)

[0] //
(d⊤)n

//

��
(d⊥)m

��

[n]
��
(d⊥)m

��
[m] //

(d⊤)n
// [m] ∨ [n] = [m+ n]

❴✤

This operation is not functorial on all maps in ∆, but on the subcategory ∆act of ac-
tive maps it is functorial and defines a monoidal structure on ∆act (dual to ordinal sum
(cf. Lemma 6.2)).
The inert maps f : [n] ֌ [m] are precisely the maps that can be written

f : [n] ֌ [a] ∨ [n] ∨ [b].
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Every active map with source [a] ∨ [n] ∨ [b] splits as

( [a]
g1 ✤// [a′] ) ∨ ( [n]

g ✤// [k] ) ∨ ( [b]
g2 ✤// [b′] )

With these observations we can be explicit about the active-inert factorisation:

Lemma 2.5. With notation as above, the active-inert factorisation of the composite of
an inert map f followed by an active map g1 ∨ g ∨ g2 is given by

(6)

[n] // f //

g

❴��

[a] ∨ [n] ∨ [b]

g1∨g∨g2
❴��

[k] // // [a′] ∨ [k] ∨ [b′]

2.6. Identity-extension squares. A square (6) in which g1 and g2 are identity maps is
called an identity-extension square.

Lemma 2.7. Active and inert maps in ∆ admit pushouts along each other, and the re-
sulting maps are again active and inert. In fact, active-inert pushouts are precisely the
identity extension squares.

[n] // //

g

❴��

[a] ∨ [n] ∨ [b]

id∨g∨id
❴��

[k] // // [a] ∨ [k] ∨ [b]

These pushouts are fundamental to this work. We will define decomposition spaces to
be simplicial spaces X : ∆

op → S that send these pushouts to pullbacks.
The previous lemma has the following easy corollary.

Corollary 2.8. Every codegeneracy map is a pushout (along an inert map) of s0 : [1]→
[0], and every active coface maps is a pushout (along an inert map) of d1 : [1]→ [2].

2.9. Simplicial spaces and Segal spaces. Our main object of study will be simplicial
∞-groupoids subject to various exactness conditions, all formulated in terms of pullbacks.
More precisely we work in the functor ∞-category

Fun(∆op, S),

whose objects are functors X : ∆
op → S, from the ∞-category ∆

op to the ∞-category S.
We prefer to call these objects simplicial spaces rather than simplicial ∞-groupoids. As
explained in 1.6 the simplicial identities for X are not strictly commutative squares but
∆[1]×∆[1]-diagrams in S, hence come equipped with a homotopy between the two ways
around in the square. But this is precisely the setting for pullbacks.
Consider a simplicial space X : ∆

op → S. We recall the Segal maps

(∂0,1, . . . , ∂r−1,r) : Xr −→ X1 ×X0
· · · ×X0

X1, r ≥ 0,

where ∂k−1,k : Xr → X1 is induced by the map [1] ֌ [r] sending 0,1 to k − 1, k.
A Segal space is a simplicial space satisfying the Segal condition, namely that the Segal

maps are equivalences. (This is automatic for r = 0, 1 as the Segal map is just the identity
map Xr → Xr, by convention).

Lemma 2.10. The following conditions are equivalent, for any simplicial space X:

(1) X satisfies the Segal condition,

Xr
≃
−→ X1 ×X0

· · · ×X0
X1 for all r ≥ 0.
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(2) The following square is a pullback for all p, q ≥ r ≥ 0

Xp−r+q

dp+1
q−r

��

❴
✤

d0
p−r

// Xq

dr+1
q−r

��
Xp

d0
p−r

// Xr .

(3) The following square is a pullback for all n > 0

Xn+1

d⊤
��

❴
✤

d⊥ // Xn

d⊤
��

Xn
d⊥

// Xn−1 .

(4) The following square is a pullback for all p, q ≥ 0

Xp+q

dp+1
q

��

❴
✤

d0
p

// Xq

d1
q

��
Xp

d0
p

// X0 .

Proof. It is straightforward to show that the Segal condition implies (2). Now (3) and
(4) are special cases of (2). Also (3) implies (2): the pullback in (2) is a composite of
pullbacks of the type given in (3). Finally one shows inductively that (4) implies the Segal
condition (1). �

A simplicial map F : Y → X is cartesian on an arrow [n] → [k] in ∆ if the naturality
square for F with respect to this arrow is a pullback.

Lemma 2.11. If a simplicial map F : Y → X is cartesian on outer coface maps, and if
X is a Segal space, then Y is a Segal space too.

2.12. Rezk completeness. Let J denote the (ordinary) nerve of the groupoid generated
by one isomorphism 0→ 1. A Segal space X is Rezk complete when the natural map

Map(1, X)→ Map(J,X)

(obtained by precomposing with J → 1) is an equivalence of ∞-groupoids. It means that
the space of identity arrows is equivalent to the space of equivalences. (See [61, Thm.6.2],
[7] and [38].) A Rezk complete Segal space is also called a Rezk category.

2.13. Ordinary nerve. Let C be a small 1-category. The nerve of C is the simplicial set

NC : ∆
op −→ Set

[n] 7−→ Fun([n],C),

where Fun([n],C) is the set of strings of n composable arrows. Subexamples of this are
given by any poset or any monoid. The simplicial sets that arise like this are precisely
those satisfying the Segal condition (which is strict in this context). If each set is regarded
as a discrete ∞-groupoid, NC is thus a Segal space. In general it is not Rezk complete,
since some object may have a nontrivial automorphism. As an example, if C is a one-
object groupoid (i.e. a group), then inside (NC)1 the space of equivalences is the whole
set (NC)1, but the degeneracy map s0 : (NC)0 → (NC)1 is not an equivalence (unless the
group is trivial).
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2.14. The fat nerve of an essentially small 1-category. In most cases it is more
interesting to consider the fat nerve. Given a 1-category C, the fat nerve of C is the
simplicial 1-groupoid

NC : ∆
op −→ Grpd

[n] 7−→ Map([n],C),

where Map([n],C) is the mapping space, defined as the maximal subgroupoid of the functor
1-category Fun([n],C). In other words, (NC)n is the 1-groupoid whose objects are strings
of n composable arrows in C and whose morphisms are isomorphisms of such strings:

· //

∼

��

·

∼

��

// · //

∼

��

· · · // ·

∼

��
· // · // · // · · · // ·

It is straightforward to check the Segal condition, remembering that the pullbacks involved
are homotopy pullbacks. For instance, the pullback X1 ×X0

X1 has as objects strings of
‘weakly composable’ arrows, in the sense that the target of the first arrow is isomorphic
to the source of the second, and a comparison isomorphism is specified. The Segal map
X2 → X1 ×X0

X1 is the inclusion of the subgroupoid consisting of strictly composable
pairs. But any weakly composable pair is isomorphic to a strictly composable pair, and the
comparison isomorphism is unique, hence the inclusion X2 →֒ X1×X0

X1 is an equivalence.
Furthermore, the fat nerve is Rezk complete. Indeed, it is easy to see that inside X1, the
equivalences are the invertible arrows of C. But any invertible arrow is equivalent to an
identity arrow.
Note that if C is a category with no non-trivial isomorphisms (e.g. any Möbius category

in the sense of Leroux) then the fat nerve coincides with the ordinary nerve, and if C
is just equivalent to such a category then the fat nerve is level-wise equivalent to the
ordinary nerve of any skeleton of C.

2.15. Joyal–Tierney t! — the fat nerve of an ∞-category. The fat nerve con-
struction is just a special case of the general construction t! of Joyal and Tierney [38],
which is a functor from quasi-categories to complete Segal spaces, meaning specifically
certain simplicial objects in the category of Kan complexes: given a quasi-category C, the
complete Segal space t!C is given by

∆
op −→ Kan

[n] 7−→
[

[k] 7→ sSet(∆[n]×∆′[k],C)
]

where ∆′[k] denotes (the ordinary nerve of) the groupoid freely generated by a string of
k invertible arrows. They show that t! constitutes in fact a (right) Quillen equivalence
between the simplicial sets with the Joyal model structure, and bisimplicial sets with the
Rezk model structure.
Taking a more invariant viewpoint, talking about ∞-groupoids abstractly, the Joyal–

Tierney t! functor associates to an ∞-category C the Rezk complete Segal space

NC : ∆
op −→ S

[n] 7−→ Map(∆[n],C).

If C is a 1-category regarded as an ∞-category (via its ordinary nerve) this agrees with
the fat nerve 2.14 regarded as a simplicial ∞-groupoid.

2.16. Fat nerve of bicategories with only invertible 2-cells. From a bicategory C

with only invertible 2-cells one can get a simplicial bigroupoid by a construction analogous
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to the fat nerve. (In fact, this can be viewed as the t! construction applied to the Duskin
nerve of C.) The fat nerve of a bicategory C is the complete Segal bigroupoid

NC : ∆
op −→ 2Grpd

[n] 7−→ PsFun([n],C),

the bigroupoid of normalised pseudofunctors.

2.17. Monoidal groupoids. Important examples of the previous situation come from
monoidal groupoids (M,⊗, I). Consider M as a one-object bicategory BM with compo-
sition ⊗. This is often termed the classifying space of M. Applying the fat nerve yields
a Segal bigroupoid N(BM), as above, whose zeroth space is the classifying space of the
full subgroupoid Meq spanned by the tensor-invertible objects.
The fat nerve construction can be simplified considerably in the case that Meq is con-

tractible. This happens precisely when every tensor-invertible object is isomorphic to the
unit object I and I admits no non-trivial automorphisms.

Proposition 2.18. If (M,⊗, I) is a monoidal groupoid such that Meq is contractible, then
the Segal bigroupoid NBM is equivalent to the monoidal nerve: the simplicial 1-groupoid

∆
op −→ Grpd(7)

[n] 7−→ M×M× · · · ×M

where the outer face maps project away an outer factor, the inner face maps tensor to-
gether two adjacent factors, and the degeneracy maps insert a neutral object. This weakly
simplicial 1-groupoid is strictly simplicial if and only if the monoidal structure of M is
strict.

We have omitted the proof, to avoid going into 2-category theory.
Examples of monoidal groupoids satisfying the conditions of the proposition are the

monoidal groupoid (B,+, 0) of finite sets and bijections, or the monoidal groupoid of vector
spaces and linear isomorphisms under direct sum. In contrast, the monoidal groupoid of
vector spaces and linear isomorphisms under tensor product is not of this kind, as the
unit object k has many automorphisms. In this case the monoidal nerve (7) gives a Segal
1-groupoid that is not Rezk complete.

3. Decomposition spaces

Recall from Lemma 2.7 that active and inert maps in ∆ admit pushouts along each
other.

3.1. Definition. A decomposition space is a simplicial space

X : ∆
op → S

such that the image of any pushout diagram in ∆ of an active map g along an inert map
f is a pullback of ∞-groupoids,

X











[p]
❴
✤

[m]
g′✤oo

[q]

OO
f ′

OO

[n]g
✤oo

OO
f

OO











=

Xp

f ′∗

��

g′∗ //

❴
✤

Xm

f∗

��
Xq

g∗
// Xn.

3.2. Remark. The notion of decomposition space can be seen as an abstraction of coal-
gebra, cf. §5 below: it is precisely the condition required to obtain a counital coassociative
comultiplication on S/X1

.
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The notion is equivalent to the notion of unital (combinatorial) 2-Segal space introduced
by Dyckerhoff and Kapranov [17] (their Definition 2.3.1, Definition 2.5.2, Definition 5.2.2,
Remark 5.2.4). Briefly, their definition goes as follows. For any triangulation T of a convex
polygon with n vertices, there is induced a simplicial subset ∆T ⊂ ∆[n]. A simplicial
space X is called 2-Segal if, for every triangulation T of every convex n-gon, the induced
map Map(∆[n], X)→ Map(∆T , X) is a weak homotopy equivalence. Unitality is defined
separately in terms of pullback conditions involving degeneracy maps, similar to our (8)
below. The equivalence between decomposition spaces and unital 2-Segal spaces follows
from Proposition 2.3.2 of [17] which gives a pullback criterion for the 2-Segal condition.

3.3. Running example: the decomposition space of rooted trees. We give an
example, briefly previewed in 0.1, of a decomposition space which is not a Segal space,
to illustrate the combinatorial meaning of the pullback condition: it is about structures
that can be decomposed but not always composed. This example corresponds to the
Butcher–Connes–Kreimer Hopf algebra of trees, as will shall see when we return to it in
5.2.
We define a simplicial groupoid H: take H1 to be the groupoid of forests and, more

generally, let Hk be the groupoid of forests with k − 1 compatible admissible cuts, parti-
tioning the forest into k layers (which may be empty), numbered from leaves to the root.
Thus H0 is the trivial groupoid with one object: the empty forest.
These groupoids form a simplicial object: the outer face maps delete the bottom or

the top layer, and the inner face maps join adjacent layers. The degeneracy maps insert
an empty layer (i.e. duplicate an admissible cut). The simplicial identities are obviously
verified, and one can easily check that H is in fact a decomposition space. Having the
pullback

H2

d2
��

H3
✤
❴

d1oo

d3
��

H1 H2
d1

oo

means any tree with two compatible admissible cuts (∈ H3) is uniquely determined by a
pair of elements in H2 with common image in H1 (under the indicated face maps). For
example, the following picture represents elements corresponding to each other in the four
groupoids.

∈ H1 ∈ H2

∈ H2 ∈ H3

d1

d1

d2 d3

The horizontal maps join layers one and two (i.e. forget the first admissible cut). The
vertical maps discard the last layer. Clearly the diagram commutes. To reconstruct
the tree with two admissible cuts (upper right-hand corner), most of the information is
already available in the upper left-hand corner, namely the underlying tree and one of
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the cuts. But the remaining cut is precisely available in the lower right-hand corner, and
their common image in H1 says precisely how this missing piece of information is to be
implanted.
Note that H is not a Segal space: in the diagram above there is a forest with a cut

where the two layers do not determine the forest. Thus the square

H2
d0 //

d2
��

H1

d1
��

H1
d0

// H0 = 1

is not a pullback square as required by the Segal condition 2.10 (4) (with p = q = 1).

3.4. Alternative formulations of the pullback condition. To verify the conditions
of the definition, it will in fact be sufficient to check a smaller collection of squares. On
the other hand, the definition will imply that many other squares of interest are pullbacks
too. The formulation in terms of active and inert maps is preferred both for practical
reasons and for its conceptual simplicity compared to the smaller or larger collections of
squares.
Recall from Lemma 2.7 that the active-inert pushouts used in the definition are just

the identity extension squares,

[n]
��

��

g ✤// [k]
��

��
[a] ∨ [n] ∨ [b]

id∨g∨id

✤// [a] ∨ [k] ∨ [b] .

Such a square can be written as a vertical composite of squares in which either a = 1 and
b = 0, or vice-versa. In turn, since the active map g is a composite of inner coface maps
di : [m− 1]→ [m] (0 < i < m) and codegeneracy maps sj : [m+ 1]→ [m], these squares
are horizontal composites of pushouts of a single active di or sj along d⊥ or d⊤. Thus, to
check that X is a decomposition space, it is sufficient to check the following special cases
are pullbacks, for 0 < i < n and 0 ≤ j ≤ n:

X1+n

d⊥
��

❴
✤

d1+i // Xn

d⊥
��

Xn
di

// Xn−1,

Xn+1

d⊤
��

❴
✤

di // Xn

d⊤
��

Xn
di

// Xn−1,

(8)

X1+n

s1+j //

❴
✤

d⊥
��

X1+n+1

d⊥
��

Xn sj
// Xn+1,

Xn+1

d⊤
��

❴
✤

sj // Xn+1+1

d⊤
��

Xn sj
// Xn+1.

The following proposition shows we can be more economic: instead of checking all
0 < i < n it is enough to check all n ≥ 2 and some 0 < i < n, and instead of checking all
0 ≤ j ≤ n it is enough to check the case j = n = 0.
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Proposition 3.5. A simplicial space X is a decomposition space if and only if the fol-
lowing diagrams are pullbacks

X1
s1 //

❴
✤

d⊥
��

X2

d⊥
��

X0 s0
// X1,

X1

d⊤
��

❴
✤

s0 // X2

d⊤
��

X0 s0
// X1,

and the following diagrams are pullbacks for some choice of i = in, 0 < i < n, for each
n ≥ 2:

X1+n

d⊥
��

❴
✤

d1+i // Xn

d⊥
��

Xn
di

// Xn−1,

Xn+1

d⊤
��

❴
✤

di // Xn

d⊤
��

Xn
di

// Xn−1.

Proof. To see the non-necessity of the other degeneracy cases, observe that for n > 0,
every degeneracy map sj : Xn → Xn+1 is the section of an inner face map di (where i = j
or i = j + 1). Now in the diagram

X1+n

s1+j //

d⊥
��

X1+n+1

d⊥
��

d1+i // X1+n

d⊥
��

Xn sj
// Xn+1

di

// Xn,

the horizontal composites are identities, so the outer rectangle is a pullback, and the
right-hand square is a pullback since it is one of cases outer face with inner face. Hence
the left-hand square, by Lemma 1.11, is a pullback too. The case s0 : X0 → X1 is the
only degeneracy map that is not the section of an inner face map, so we cannot eliminate
the two cases involving this map. The non-necessity of the other inner-face-map cases is
the content of the following lemma. �

Lemma 3.6. The following are equivalent for a simplicial space X.

(1) For each n ≥ 2, the following diagram is a pullback for all 0 < i < n:

X1+n

d⊥
��

❴
✤

d1+i // Xn

d⊥
��

Xn
di

// Xn−1











resp.

Xn+1

d⊤
��

❴
✤

di // Xn

d⊤
��

Xn
di

// Xn−1











.

(2) For each n ≥ 2, the above diagram is a pullback for some 0 < i < n.
(3) For each n ≥ 2, the following diagram is a pullback:

X1+n

d⊥
��

❴
✤

d2
n−1

// X2

d⊥
��

Xn
d1

n−1

// X1













resp.

Xn+1

d⊤
��

❴
✤

d1
n−1

// X2

d⊤
��

Xn
d1

n−1

// X1













.

Proof. The hypothesised pullback in (2) is a special case of that in (1), and that in (3) is
a horizontal composite of those in (2), since there is a unique active map [1] → [n] in ∆
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for each n. The implication (3) ⇒ (1) follows by Lemma 1.11 and the commutativity for
0 < i < n of the diagram

X1+n
❴
✤

d1+i //

d⊥
��

Xn
❴
✤

d2
n−1

//

d⊥
��

X2

d⊥
��

Xn
di

// Xn−1
d1

n−1

// X1 .

Similarly for the ‘resp.’ case. �

Proposition 3.7. Any Segal space is a decomposition space.

Proof. Let X be Segal space. In the diagram (n ≥ 2)

Xn+1

d⊥
��

dn // Xn

d⊥
��

❴
✤

d⊤ // Xn−1

d⊥
��

Xn
dn−1

// Xn−1
d⊤

// Xn−2,

since the horizontal composites are equal to d⊤ ◦ d⊤, both the outer rectangle and the
right-hand square are pullbacks by the Segal condition (2.10 (3)). Hence the left-hand
square is a pullback. This establishes the third pullback condition in Proposition 3.5. In
the diagram

X1

d⊥
��

s1 // X2

d⊥
��

❴
✤

d⊤ // X1

d⊥
��

X0 s0
// X1

d⊤

// X0,

since the horizontal composites are identities, the outer rectangle is a pullback, and the
right-hand square is a pullback by the Segal condition. Hence the left-hand square is
a pullback, establishing the first of the pullback conditions in Proposition 3.5. The re-
maining two conditions of Proposition 3.5, those involving d⊤ instead of d⊥, are obtained
similarly by interchanging the roles of ⊥ and ⊤. �

3.8. Remark. This result was also obtained by Dyckerhoff and Kapranov [17] (Proposi-
tions 2.3.3, 2.5.3, and 5.2.6).

Corollary 2.8 implies the following important property of decomposition spaces.

Lemma 3.9. In a decomposition space X, every active face map is a pullback of d1 :
X2 → X1, and every degeneracy map is a pullback of s0 : X0 → X1.

Thus, even though the spaces in degree ≥ 2 are not fibre products of X1 as in a
Segal space, the higher active face maps and degeneracies are determined by ‘unit’ and
‘composition’,

X0
s0 // X1 X2.

d1oo

In ∆
op there are more pullbacks than those between active and inert. Diagram (5)

in 2.4 is a pullback in ∆
op that is not preserved by all decomposition spaces, though it

is preserved by all Segal spaces. On the other hand, certain other pullbacks in ∆
op are

preserved by general decomposition spaces. We call them colloquially ‘bonus pullbacks’:
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Lemma 3.10. Let X be a decomposition space. For all n ≥ 3 and all 0 < i < j < n, the
following squares of active face and degeneracy maps are pullbacks.

Xn+1
❴
✤

di //

dj+1

��

Xn

dj
��

Xn
di

// Xn−1

Xn−3
❴
✤

si−1 //

sj−2

��

Xn−2

sj−1

��
Xn−2 si−1

// Xn−1

Xn−1
❴
✤

di //

sj

��

Xn−2

sj−1

��
Xn

di

// Xn−1

Xn−1
❴
✤

dj−1 //

si−1

��

Xn−2

si−1

��
Xn

dj

// Xn−1.

Proof. We do the first square; the others are very similar. In the composite square

Xn+1
di //

dj+1

��

Xn

dj
��

d0i // Xn−i

dj−i

��
Xn

di

// Xn−1
d0i

// Xn−1−i

the right-hand square is a pullback by the decomposition-space axiom. The composite
horizontal maps are composites of bottom face maps, since d0

i ◦di = d0
i+1. Therefore also

the composite square is a pullback, again by the decomposition-space axiom. But then
the left-hand square is a pullback by the usual pullback argument of Lemma 1.11. �

3.11. Remark. Informally, the lemma states that a given degeneracy map si forms
pullbacks against any other face or degeneracy map, except against di+1 (and except
against itself), and that a given active face map di forms pullbacks against any other face
or degeneracy maps, except against si−1 (and except against itself). The cases excluded
will play a role to characterise important special classes of decomposition spaces: the
pullback squares with si against itself characterise complete decomposition spaces [23,
§2], while the pullback squares with si against di+1 expresses the property of being split
[23, §5].

3.12. Remark. In 1-category theory, all commuting squares of codegeneracy maps in ∆

are absolute pushouts (see Joyal–Tierney [39, Thm. 1.2.1]), hence in every simplicial set
X the squares of Case 2 of Lemma 3.10 are pullbacks. However, those pushout squares
are not absolute in the sense of ∞-categories, and not all simplicial spaces X satisfy this
condition, which is a special feature of decomposition spaces.

4. CULF functors and decalage

A simplicial map F : Y → X is called ULF (unique lifting of factorisations) if it is a
cartesian natural transformation on each active coface map of ∆. It is called conservative
if it is cartesian on each codegeneracy map. It is called CULF if it is both conservative
and ULF.

Lemma 4.1. For a simplicial map F : Y → X, the following are equivalent.

(1) F is cartesian on each inner coface map and on each codegeneracy map (i.e. CULF).
(2) F is cartesian on each active map of the form [1]→ [n].
(3) F is cartesian on all active maps.
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Proof. The implication (1) ⇒ (2) is easy since the active map [1] → [n] factors as a
sequence of inner coface maps (or is a codegeneracy map if n = 0). For the implication
(2)⇒ (3), consider a general active map [n]→ [m], and observe that if F is cartesian on
the composite of active maps [1]→ [n]→ [m] and also on the active map [1]→ [n], then
it is cartesian on [n]→ [m] also, by Lemma 1.11. The implication (3)⇒ (1) is trivial. �

Proposition 4.2. Any ULF map between decomposition spaces is conservative also.

Proof. By Lemma 4.1(2) it is enough to prove that F is cartesian on active maps of the
form [1]→ [n]. Since F is ULF, we already know it is cartesian on [1]→ [n] for n ≥ 1, so
it remains to check the map s0 : [1]→ [0]. In the diagram

Y0

s0

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

s0 //

��

Y1

s1

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

��
X0

s0

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

s0 // X1

◗◗
◗◗

◗◗
◗

s1

((◗◗
◗◗

◗◗
◗

Y1 s0
//

��

Y2

��

❴
✤

d1 //❴❴❴ Y1

��✤
✤

✤

X1 s0
// X2

d1

//❴❴❴ X1

the front square is a pullback since it is a section to the dashed square, which is a pullback
since F is ULF. The top and bottom faces of the cube are pullbacks by Lemma 3.10, so
the back face is a pullback square by the basic Lemma 1.11. �

Lemma 4.3. A simplicial map between decomposition spaces is CULF if and only if it is
cartesian on the active map [1]→ [2].

Proof. Suppose X , Y are decomposition spaces. By Lemma 3.9 all active face maps in X ,
Y are pullbacks of d1 : X2 → X1, d1 : Y2 → Y1. If F : Y → X is cartesian on the active
map [1]→ [2] it therefore follows by a basic pullback argument that it is cartesian on all
active maps of ∆. The map F is thus ULF, and hence is CULF by Proposition 4.2. �

4.4. Remark. The notion of CULF can be seen as an abstraction of coalgebra homomor-
phism, cf. 8.2 below: ‘conservative’ corresponds to counit preservation, ‘ULF’ corresponds
to comultiplicativity.
In the special case where X and Y are fat nerves of 1-categories, then the condition

that the square

Y0

��

//

❴
✤

Y1

��
X0

// X1

be a pullback is precisely the classical notion of conservative functor (i.e. if f(a) is invert-
ible then already a is invertible).
Similarly, the condition that the square

Y1

��

Y2
oo

✤
❴

��
X1 X2

oo

be a pullback is an up-to-isomorphism version of the classical notion of ULF functor,
implicit already in Content–Lemay–Leroux [12], and perhaps made explicit first by Law-
vere [49]; it is equivalent to the notion of discrete Conduché fibration [30]. See Street [68]
for the 2-categorical notion. In the case of the Möbius categories of Leroux, where there
are no invertible arrows around, the two notions of ULF coincide.
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4.5. Example. Here is an example of a functor which is not CULF in Lawvere’s sense
(is not CULF on classical nerves), but which is CULF in the homotopical sense, on fat
nerves. Namely, let OI denote the category of finite ordered sets and monotone injections.
Let I denote the category of finite sets and injections. The forgetful functor OI → I is
not CULF in the classical sense, because the identity monotone map 2 → 2 admits a
factorisation in I that does not lift to OI , namely the factorisation into two nontrivial
transpositions. However, it is CULF in our sense, as can easily be verified by checking
that the square

OI1

��

OI2oo
✤
❴

��
I1 I2oo

is a pullback of groupoids, by computing the fibres of the horizontal maps over a given
monotone injection.

Lemma 4.6. If X is a decomposition space and F : Y → X is CULF then also Y is a
decomposition space.

4.7. Decalage. (See Illusie [29, VI.1]). Given a simplicial space X (as in the top row of
the following diagram) the lower dec Dec⊥X is a new simplicial space (the bottom row
of the diagram) obtained by deleting X0 and shifting everything one place down, deleting
also all d0 face maps and all s0 degeneracy maps. It comes equipped with a simplicial
map, which we call the dec map, d⊥ : Dec⊥X → X given by the original d0:

X X0 s0 // X1
d0

oo

d1oo
s0 //
s1 //

X2

d0

oo
d1oo

d2oo

s0 //
s1 //
s2 //

X3

d0

oo
d1oo
d2oo

d3oo

···

Dec⊥X

d⊥

OO

X1

d0

OO

s1 // X2
d1

oo

d2oo

d0

OO

s1 //
s2 //

X3

d1

oo
d2oo

d3oo

d0

OO

s1 //
s2 //
s3 //

X4

d1

oo
d2oo
d3oo

d4oo

d0

OO

···

In fact Dec⊥ is a comonad on simplicial spaces, with the dec map d⊥ as its counit.
Similarly the upper dec Dec⊤X is obtained by instead deleting, in each degree, the last

face map d⊤ and the last degeneracy map s⊤. The deleted last face map becomes the dec
map d⊤ : Dec⊤X → X .

4.8. Slice interpretation. If X = NC is the strict nerve of a category C then there
is a close relationship between the upper dec and the slice construction: Dec⊤X is the
disjoint union of all (the nerves of) the slice categories of C:

Dec⊤X =
∑

x∈X0

N(C/x).

(In general it is a homotopy sum.)
Any individual slice category can be extracted from the upper dec, by exploiting that

the upper dec comes with a canonical augmentation given by (iterating) the bottom face
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map. The slices are the fibres of this augmentation:

NC/x
//

❴
✤

��

Dec⊤X

d⊥
��

1
pxq

// X0 .

There is a similar relationship between the lower dec and the coslices.

Proposition 4.9. If X is a decomposition space then Dec⊤X and Dec⊥X are Segal spaces,
and the dec maps d⊤ : Dec⊤X → X and d⊥ : Dec⊥X → X are CULF.

Proof. We put Y = Dec⊤X and check the pullback condition 2.10 (3),

Yn+1

d⊤
��

❴
✤

d⊥ // Yn

d⊤
��

Yn
d⊥

// Yn−1.

This is the same as

Xn+2

d⊤−1

��

❴
✤

d⊥ // Xn+1

d⊤−1

��
Xn+1

d⊥

// Xn,

and since here the vertically drawn maps (which with respect to Y are outer face maps)
are inner face maps in X , this pullback square is one of the decomposition-space axioms.
The CULF conditions say that the various d⊤ form pullbacks with all active maps in X .
But this follows from the decomposition-space axiom for X . �

Theorem 4.10. For a simplicial space X : ∆
op → S, the following are equivalent

(1) X is a decomposition space
(2) both Dec⊤X and Dec⊥X are Segal spaces, and the respective dec maps back to X

are CULF.
(3) both Dec⊤X and Dec⊥X are Segal spaces, and the respective dec maps back to X

are conservative.
(4) both Dec⊤X and Dec⊥X are Segal spaces, and the following squares are pullbacks:

X1
s1 //

❴
✤

d⊥
��

X2

d⊥
��

X0 s0
// X1,

X1

d⊤
��

❴
✤

s0 // X2

d⊤
��

X0 s0
// X1.

Proof. The implication (1) ⇒ (2) is just the preceding Proposition, and the implications
(2) ⇒ (3) ⇒ (4) are specialisations. The implication (4) ⇒ (1) follows from Proposi-
tion 3.5. �

4.11. Remark. Dyckerhoff and Kapranov [17] (Theorem 6.3.2) obtain the result that a
simplicial space is 2-Segal (i.e. a decomposition space except that there are no conditions
imposed on degeneracy maps) if and only if both Decs are Segal spaces.

4.12. Right and left fibrations. A simplicial map F : Y → X is called a right fibration
if it is cartesian on all bottom face maps d⊥. This implies that it is also cartesian on
all active maps (i.e. is CULF), as follows from an easy argument with the basic pullback
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Lemma 1.11. The terminology is motivated by the case where Y and X are Segal spaces,
in which case it corresponds to standard usage in the theory of∞-categories. If X and Y
are fat nerves of 1-categories, then ‘right fibration’ corresponds to groupoid fibration in
the sense of Street [67]. Similarly, F is called a left fibration if it is cartesian on d⊤ (and
consequently on all active maps also).

Proposition 4.13. If F : Y → X is a CULF functor then Dec⊥(F ) : Dec⊥Y → Dec⊥X
is a right fibration. Similarly, Dec⊤(F ) : Dec⊤Y → Dec⊤X is a left fibration.

Proof. It is clear that if F is CULF then so is Dec⊥(F ). The further claim is that Dec⊥(F )
is also cartesian on d0. But d0 was originally a d1, and in particular was active, hence
Dec⊥(F ) is cartesian on this map. �

5. The incidence coalgebra of a decomposition space

We now turn to the incidence coalgebra (with ∞-groupoid coefficients) associated to
any decomposition space, and explain the origin of the decomposition-space axioms.
The incidence coalgebra of a decomposition space X will be a comonoid object in the

symmetric monoidal ∞-category LIN , and the underlying object is S/X1
. Since S/X1

⊗
S/X1

= S/X1×X1
, and since linear functors are given by spans, to define a comultiplication

functor is to give a span

X1 ←M → X1 ×X1 .

For any simplicial space X , we can consider the following structure maps on S/X1
.

5.1. Comultiplication and counit. The span

X1 X2
d1oo

(d2,d0)// X1 ×X1

defines a linear functor, the comultiplication

∆ : S/X1
−→ S/(X1×X1)

(A
a
→ X1) 7−→ (d2, d0)! ◦ d1∗(a).

Likewise, the span

X1 X0
s0oo t // 1

defines a linear functor, the counit

ε : S/X1
−→ S

(A
a
→ X1) 7−→ t! ◦ s0∗(a).

IfX is the nerve of a category (for example, a poset) then X2 is the set of all composable
pairs of arrows. The comultiplication is just the formula (3) from the introduction

∆(f) =
∑

b◦a=f

a⊗ b,

and the counit is the classical counit, sending identity arrows to 1 and other arrows to 0.

5.2. Running example: the Hopf algebra of rooted trees. Recall from Example 3.3
that H is the decomposition space in which H1 is the groupoid of rooted forests and H2 is
the groupoid of rooted forests with an admissible cut. Taking pullback along d1 : H2 → H1

is to consider all possible admissible cuts c of a given forest, and taking lowershriek along
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(d2, d0) : H2 → H1 × H1 is to return the forests Pc and Rc found in the two layers on
either side of the cut. We thus have a comultiplication functor

S/H1
−→ S/H1

⊗ S/H1

(pTq : 1→ H1) 7−→ (pPcq : 1→ H1)⊗ (pRcq : 1→ H1)

which is an objective version of the Butcher–Connes-Kreimer comultiplication, cf. 0.1(1).

5.3. Coassociativity of the comultiplication. The desired coassociativity diagram
(which should commute up to equivalence)

S/X1

∆
��

∆ // S/X1×X1

∆⊗id
��

S/X1×X1 id⊗∆
// S/X1×X1×X1

is a diagram of linear functors defined by the spans in the outline of the following diagram.

X1 X2
d1oo

(d2,d0) // X1 ×X1

X2

d1

OO

(d2,d0)
��

X3

/.-,()*+1

/.-,()*+2
✤
❴

✤❴

d2oo

d1

OO

(d2
2
,d0)

��

(d3,d0d0)
// X2 ×X1

d1×id

OO

(d2,d0)×id
��

X1 ×X1 X1 ×X2
id×d1

oo
id×(d2,d0)

// X1 ×X1 ×X1

Coassociativity will follow from Beck–Chevalley equivalences if the interior part of the
diagram can be established, with pullbacks /.-,()*+1 , /.-,()*+2 as indicated. Now the upper right-

hand square /.-,()*+1 , for example, will be a pullback if and only if its composite with the first
projection is a pullback:

X2

(d2,d0) // X1 ×X1

pr1 // X1

X3

/.-,()*+1d1

OO

(d3,d0d0)
// X2 ×X1

✤❴
d1×id

OO

pr1
// X2

d1

OO

But demanding the outer rectangle to be a pullback is precisely one of the basic decomposition-
space axioms. This argument is the origin of the decomposition-space axioms.
If one is just interested in coassociativity at the level of π0 of the incidence coalgebra,

this square and its twin are all that are needed. This was the case in the work of Toën [70]
who dealt with the case where X is the Waldhausen S•-construction of a dg category, and
in the work of Dyckerhoff and Kapranov [17] for exact ∞-categories.

5.4. Homotopy coherence of coassociativity. For coassociativity of the incidence
coalgebra at the objective level, higher coherence has to be established, which will require
the full decomposition-space axioms. To establish coassociativity in a strong homotopy
sense we must deal on an equal footing with all ‘reasonable’ spans

(9)
∏

Xnj
←

∏

Xmj
→

∏

Xki

which could arise from composites of products of the comultiplication and counit. We
therefore take a more abstract approach, relying on some more simplicial machinery.
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6. Decomposition spaces as monoidal functors

In this section, in order to establish the homotopy coherent coassociativity of the inci-
dence coalgebra, we study the twisted arrow category D of the category of finite ordinals,
with a certain external tensor product ⊕. In Proposition 6.6 we show that simplicial
objects in a cartesian monoidal category correspond to monoidal functors from D, which
enables us to characterise decomposition spaces as monoidal functors X : (D,⊕)→ (S,×)
satisfying an exactness condition. The purpose of this viewpoint is to deal with products
of the form

∏

Xki, as they appear in the ‘reasonable spans’ (9), to which we return in §7.

6.1. The category ∆ of finite ordinals (the algebraist’s Delta). We denote by
∆ the category of all finite ordinals (including the empty ordinal) and monotone maps.
Clearly ∆ ⊂ ∆, but this is not the most useful relationship between the two categories,
and we will use a different notation for the objects of ∆, given by their cardinality, with
an underline:

n = {1, 2, . . . , n}.

The category ∆ is monoidal under ordinal sum

m+ n := m+n,

with 0 as the neutral object.

Recall that ∆act is the subcategory of ∆ containing only the active maps, and that it is
a monoidal category under amalgamated ordinal sum ∨ (cf. 2.4).

Lemma 6.2. There is a canonical equivalence of monoidal categories (an isomorphism,
if we consider the usual skeleta of these categories)

(∆,+, 0) ≃ (∆op
act,∨, [0])

k ↔ [k]

Proof. The map from left to right sends k ∈ ∆ to

Hom∆(k, 2) ≃ [k] ∈ ∆
op
act.

The map in the other direction sends [k] to the ordinal

Hom∆act
([k], [1]) ≃ k.

In both cases, functoriality is given by precomposition. �

In both categories we can picture the objects as a line with some dots. The dots then
represent the elements in k, while the edges represent the elements in [k]; a map operates
on the dots when considered a map in ∆ while it operates on the edges when considered
a map in ∆act. Here is a picture of a certain map 5 → 4 in ∆ and of the corresponding
map [5]← [4] in ∆act.

6.3. A twisted arrow category of ∆. Consider the category D whose objects are
the arrows n → k of ∆ and whose morphisms (g, f) from a : m → h to b : n → k are
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commutative squares

m

a
��

g //

(g,f)

n

b
��

h k.
f

oo

(10)

That is, Dop is the twisted arrow category [57, 4] of ∆.

6.4. Factorisation system on D. There is a canonical factorisation system on D: any
morphism (10) factors uniquely as

m

a=fbg
��

= //

ϕ

m

bg
��

g //

γ

n

b
��

h k
f

oo k.=
oo

The maps ϕ = (id, f) : fb → b in the left-hand class of the factorisation system are
termed segalic,

m
= //

fb
��

ϕ

m

b
��

h k.
f

oo

(11)

The maps γ = (g, id) : bg → b in the right-hand class are termed ordinalic and may be
identified with maps in various slice categories ∆/k

m
g //

bg
��

γ

n

b
��

k k.=
oo

(12)

6.5. External sum. Observe that ∆ is isomorphic to the subcategory of objects with
target k = 1, termed the connected objects of D,

∆
=
−−→ ∆/1

⊆
−−→ D.(13)

The ordinal sum operation in ∆ induces a monoidal operation in D: the external sum
(n→k)⊕ (n′→k′) of objects in D is their ordinal sum n+ n′ → k+ k′ as morphisms in ∆.
The neutral object is 0 → 0. The inclusion functor (13) is not monoidal, but it is easily
seen to be oplax monoidal by means of the codiagonal map 1 + 1→ 1.
Each object m

a
−→ k of D is an external sum of connected objects,

a = a1 ⊕ a2 ⊕ · · · ⊕ ak =
⊕

i∈k

(

mi
ai−−→ 1

)

,(14)

where mi is (the cardinality of) the fibre of a over i ∈ k.
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Any segalic map (11) and any ordinalic map (12) in D may be written uniquely as
external sums

ϕ = ϕ1 ⊕ ϕ2 ⊕ · · · ⊕ ϕh =
⊕

j∈h









mj
= //

��
ϕj

mj

bj
��

1 kj
oo









(15)

γ = γ1 ⊕ γ2 ⊕ · · · ⊕ γk =
⊕

i∈k

(

mi

γi
−−→ ni

)

(16)

where each γi is a map in ∆/1 = ∆.

In fact D is a universal monoidal category in the following sense.

Proposition 6.6. For any cartesian category (C,×, 1), there is an equivalence

Fun(∆op,C) ≃ Fun⊗((D,⊕, 0), (C,×, 1))

between the categories of simplicial objects X in C and of monoidal functors X : D→ C.
The correspondence between X and X is determined by following properties.
(a) The functors X : ∆

op → C and X : D → C agree on the common subcategory
∆
op
act
∼= ∆,

∆
op
act

∼=

��

�

� // ∆op

X

((◗◗
◗◗

◗◗
◗◗

C.

∆
�

� // D X

66♠♠♠♠♠♠♠♠♠

(b) Let (m
a
→ k) =

⊕

i(mi
ai−→ 1) be the external sum decomposition (14) of any object

of D, and denote by fi : [mi] ֌ [m1] ∨ . . . ∨ [mk] = [m] the canonical inert map in ∆, for
i ∈ k. Then

X







m
= //

��
ϕ

m
a��

1 koo






= (X(f1), . . . , X(fk)) : Xm −→

∏

i∈k

Xmi

and each X(fi) is the composite of X(ϕ) with the projection to Xi.

Proof. Given X , property (a) says that there is a unique way to define X on objects and
active maps. Conversely, given X , then for any object a : m→ k in D we have

Xa =
∏

i∈k

Xai =
∏

i∈k

Xmi

using (14), and for any ordinalic map γ we have

X(γ) =
∏

i∈k

X(γi) =
∏

i∈k

X(gi)

using (16), where gi ∈ ∆
op
act corresponds to γi ∈ ∆.

Thus we have a bijection between functors X defined on ∆
op
act and monoidal functors X

defined on the ordinalic subcategory of D. Now we consider the inert and segalic maps.
Given X , property (b) says that for any inert map fr : [mr]→ [m] we may define

X(fr) =



Xm
X(ϕ)
−−−→

∏

i∈k

Xmi
։ Xmr




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We may assume k = 3: given the factorisation

ϕ =









m
= //

��
ϕ2

m<r +mr +m>r

��

= //

��
ϕ1⊕id⊕ϕ3

∑

i∈k mi

��
1 3oo koo









one sees the value X(fr) is well defined from the following diagram

Xm

X(ϕ2) //

X(fr)

//

Xm<r
×Xmr

×Xm>r

X(ϕ1)×id×X(ϕ3) //

++ ++❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱

∏

i∈k Xmi

����
Xmr

.

Functoriality of X on a composite of inert maps, say [m3] ֌ [
∑4

2mi] ֌ [
∑5

1mi], now
follows from the diagram

X∑
5
1
mi

((◗◗
◗◗

◗◗
◗◗

◗◗
◗

//
∏5

1Xmi

%% %%❑
❑❑

❑❑
❑❑

// // Xm3

Xm1
×X∑

4
2
mi
×Xm5

66♠♠♠♠♠♠♠♠♠♠♠

(( ((❘❘
❘❘

❘❘
❘❘

❘

∏4
2Xmi

;; ;;✇✇✇✇✇✇✇

X∑4
2
mi

99ssssssss

in which the first triangle commutes by functoriality of X .
Conversely, given X , property (b) says how to define X on segalic maps with connected

domain and hence, by (15), on all segalic maps. Functoriality of X on a composite of
segalic maps, say (id, 1← h← k), follows from functoriality of X :

Xm

(X([mi]֌[m]))i∈k

44

(X([mj ]֌[m]))j∈h //
∏

j∈h

Xmj

∏
j∈h(X([mi]֌[mj ]))i∈kj //

∏

j∈h

∏

i∈kj

Xmi

It remains only to check that the construction of X from X (and of X from X) is well
defined on composites of ordinalic followed by segalic (inert followed by active) maps.
One then has the mutually inverse equivalences required. Consider the factorisations in
D,

m

��

= //

ϕ

m

��

g //

γ

n

��
1 koo k=

oo

=

m

��

g //

γ′

n

��

= //

ϕ′

n

��
1 1=
oo k.oo

To show that X is well defined, we must show that the diagrams

Xm

X(ϕ)=(X(f1),...,X(fk)) //

X(γ′)=X(g̃)

��

∏

Xmi

X(γ′)=
∏

X(g̃i)
��

// // Xmr

X(g̃r)

��
Xn

X(ϕ′)=(X(f ′
1
),...,X(f ′

k
))

//
∏

Xni
// // Xnr

,

commute for each r, where g̃, g̃i in ∆act correspond to g, gi in ∆. This follows by functori-
ality of X , since g̃ restricted to nr is the corestriction of g̃r. Finally we observe that this
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diagram, with k = 3 and r = 2, also serves to show that the construction of X from X is
well defined on

[m1+m2+m3] [m2]oof2oo

[n1+n2+n3]

g̃

❴OO

[n2]

g̃2

❴OO

oo
f ′
2

oo

�

Lemma 6.7. In the category D, ordinalic and segalic maps admit pullback along each
other, and the results are again maps of the same type.

(This is a general fact about opposites of twisted arrow categories.)

Proof. In the diagram below, the map from a to b is segalic (given essentially by the
bottom map f) and the map from a′ to b is ordinalic (given essentially by the top map
g):

(17)

m

g

xxq q
q
q
q
q
q
q
q
q
q
q

��✤
✤

=

&&▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

h

n
a
��

=

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

m

g

xxqqq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
q

a′��
h

q
q

q

=

88q
q

q
q

q
q

q
q

q

k

▼
▼
▼

f

ff▼
▼
▼
▼
▼
▼
▼
▼
▼

n

b ��
k

f

ff▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

=

88qqqqqqqqqqqqqqqqqqqqqqqq

To construct the pullback, we are forced to repeat f and g, completing the squares with the
corresponding identity maps. The connecting map in the resulting object is fbg : m→ h.
It is clear from the presence of the four identity maps that this is a pullback. �

6.8. Examples. Every segalic-ordinalic pullback is the external sum of connected pull-
backs, that is, those segalic-ordinalic pullbacks as above where h = 1. A segalic-ordinalic
pullback over b = id is termed a special pullback. Any map g : m → n in ∆ defines
canonically a connected special pullback:

m

g

yyss
ss
ss
ss
ss
ss
ss
ss
ss
s

��

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑

1

n

��

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

m

g

yysss
ss
ss
ss
ss
ss
ss
ss
ss
s

g
��

1
ssss
ssss

sssssssssssssss

sssssssssssssss

n

❑❑❑❑

ee❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑

n

n

ee▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

rrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrr

We now have the following important characterisation of decomposition spaces.



DECOMPOSITION SPACES AND INCIDENCE COALGEBRAS 35

Proposition 6.9. For X : ∆
op → S a simplicial space, the following are equivalent.

(1) X is a decomposition space.
(2) The corresponding monoidal functor X : D → S preserves pullbacks of the kind

described in Lemma 6.7.
(3) For every active map g : [n]→ \ [m] the following square is a pullback

Xm
//

g∗

��

Xm1
× · · · ×Xmn

g∗
1
×···×g∗n

��
Xn

// X1 × · · · ×X1,

where g = g1 ∨ · · · ∨ gn with gi : [1] → \ [mi], and the horizontal maps are induced
by the inert maps [mi] ֌ [m1] ∨ · · · ∨ [mn] = [m] and [1] ֌ [1] ∨ · · · ∨ [1] = [n].

Proof. Since X is monoidal, condition (2) is equivalent to the condition that the connected
pullbacks are preserved. Now the X-image of a connected pullback is a diagram

Xm
//

��

Xm1
× · · · ×Xmk

��
Xn

// Xn1
× · · · ×Xnk

.

We can factor this into a vertical composite of such diagrams in which the map on the
left is a single face or degeneracy map. Then the map on the right is a product of maps,
one of which, say the ith factor, is again a single face or degeneracy map, and the rest
are identities. To check if each of these new simpler squares are pullbacks we consider the
projections onto the non-trivial factor:

Xm
//

��

Xm1
× · · · ×Xmk

��

// Xmi

��
Xn

// Xn1
× · · · ×Xnk

// Xni
.

But by construction of X, the composite horizontal maps are precisely inert maps in the
sense of the simplicial space X , and the vertical maps are precisely active maps in the
sense that they are arbitrary maps in ∆ and hence (in the other direction) active maps
in ∆, under the duality in Lemma 6.2. Since the right-hand square is always a pullback,
the standard pullback argument of Lemma 1.11 shows that the total square is a pullback
(i.e. we have a decomposition space) if and only if the left-hand square is a pullback
(i.e. the pullback condition on X is satisfied). This proves (1)⇔ (2).
The diagram in condition (3) is the image of a connected special pullback, as in Ex-

ample 6.8, so (2) ⇒ (3). Finally we show that (3) ⇒ (2). As X is monoidal, (3) is
equivalent to preservation of all special pullbacks, just as (2) is equivalent to preservation
of just the connected pullbacks. Now any connected pullback (as in the northwest half of
the following diagram) can be composed in a canonical way with a special pullback (the
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southeast half of the diagram) to form a special connected pullback:
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Hence, by the pullback Lemma 1.11, if special pullbacks are preserved then so are con-
nected pullbacks. Note that (1) ⇔ (3) can also be proved directly, without reference to
D. �

6.10. Example. If g is the bottom degeneracy map 3 → 2 in ∆, corresponding to the
active map d1 : [2]→ \ [3] in ∆act, the special connected pullback square in Example 6.8 is
sent to

X3

(d3,d0d0) //

d1
��

X2 ×X1

d1×id
��

X2
(d2,d0)

// X1 ×X1,

as in item (3) of the proposition. This is precisely square /.-,()*+1 of the basic coassociativity
argument in 5.3.

7. Proof of strong homotopy coassociativity of the incidence coalgebra

We proceed to establish that, if X is a decomposition space, then the comultiplication
and counit defined in 5.1 make S/X1

a coassociative and counital coalgebra in a strong
homotopy sense.
We have more generally, for any n ≥ 0, the generalised comultiplication maps

∆n : S/X1
−→ S/X1×···×X1

(18)

defined by the spans

X1 ← Xn → X1 × · · · ×X1.(19)

The case n = 0 is the counit map, n = 1 gives the identity, and n = 2 is the comulti-
plication ∆ we considered above. The coassociativity result will follow from Lemma 7.2
and Proposition 7.3 that say that all combinations (composites and tensor products) of
these generalised comultiplication maps are canonically equivalent whenever they have
the same source and target. For this we exploit the category D introduced in §6, designed
exactly to encode also products of the various spaces Xk.
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7.1. Reasonable spans and reasonable linear functors. A reasonable span in D is a

span a
g
← m

f
→ b in which g is ordinalic and f is segalic. Clearly the external sum of two

reasonable spans is reasonable, and the composite of two reasonable spans is reasonable
(by Lemma 6.7).
Let X : ∆

op → S be a fixed decomposition space, and interpret it also as a monoidal
functor X : D→ S, via Proposition 6.6. A span in S of the form

Xa ← Xm → Xb

is called reasonable if it is induced by a reasonable span in D.
Recall from 1.17 that a functor between slices of S is linear if it is defined by a span

in S. A linear functor is called reasonable if the defining span is reasonable. That is, a
reasonable linear functor is a functor that is defined by a pullback along an ordinalic map
followed by a lowershriek along a segalic map.

Lemma 7.2. For X a decomposition space, tensor products and composites of reasonable
linear functors are again reasonable linear functors.

Proof. Cartesian products of reasonable spans in S are again reasonable sinceX is monoidal.
Hence tensor products of reasonable linear functors are again reasonable. A composite
of reasonable linear functors is induced by the composite reasonable span in D, using
Proposition 6.9. Hence reasonable linear functors are closed under composition. �

The interest in these notions is of course that the generalised comultiplication maps
∆n of (18) are reasonable linear functors. In fact they are the ‘only’ reasonable linear
functors:

Proposition 7.3. Any reasonable linear functor

S/X1
−→ S/X1×···×X1

, n ≥ 0

is canonically equivalent to the nth comultiplication map ∆n.

Proof. We have to show that the only reasonable span of the form X1 ←
∏

Xmi
→

X1 × · · · ×X1 is (19). Indeed, the left leg must come from an ordinalic map, so since X1

has only one factor, the middle object has also only one factor, i.e. is the image of m→ 1.
On the other hand, the right leg must be segalic, which forces m = n. �

Thus we have:

Theorem 7.4. For X a decomposition space, the slice ∞-category S/X1
has the structure

of a strong homotopy comonoid in the symmetric monoidal ∞-category LIN, with the
comultiplication defined by the span

X1
d1←− X2

(d2,d0)
−−−−→ X1 ×X1.

8. Functoriality of the incidence coalgebra construction

We have associated to any decomposition space X its incidence coalgebra with under-
lying slice ∞-category S/X1

. We now investigate the functoriality of this construction.
Given a simplicial map F : X → Y between decomposition spaces there are induced
linear functors

F! : S/X1
→ S/Y1

, F∗ : S/Y1
→ S/X1

,

defined by postcomposition with, and pullback along, F1 : X1 → Y1. In this section we
will give conditions on the simplicial map F for these linear functors to be coalgebra
homomorphisms.
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8.1. Covariant functoriality. It is an important feature of CULF maps that they
induce coalgebra homomorphisms:

Lemma 8.2. If F : X → Y is a CULF map between decomposition spaces then F! :
S/X1

→ S/Y1
is a coalgebra homomorphism.

Proof. In the diagram

X1

F1

��

Xn
goo

✤
❴

f //

Fn

��

Xn
1

Fn
1

��
Y1 Yn

g′
oo

f ′

// Y n
1

the left-hand square is a pullback since F is conservative (case n = 0) and ULF (cases
n > 1). Hence by the Beck–Chevalley condition we have an equivalence of functors g′∗ ◦
F1! ≃ Fn! ◦ g∗, and by postcomposing with f ′

! we arrive at the coalgebra homomorphism
condition ∆′

nF1!
∼= F1

n
! ∆n. �

8.3. Remark. If Y is a Segal space, then the statement can be improved to an if-and-
only-if statement.

8.4. Example. An important class of CULF maps are the dec maps (Proposition 4.9):

d⊥ : Dec⊥X → X and d⊤ : Dec⊤X → X.

Many coalgebra maps in the classical theory of incidence coalgebras, notably reduction
maps, are induced from decalage in this way, as we shall see in Section 10, and as further
amplified in [26].

8.5. Contravariant functoriality. There is also a contravariant functoriality for certain
simplicial maps, which we briefly explain, although it will not be needed elsewhere in this
paper.
We will say that a functor between decomposition spaces F : X → Y is relatively Segal

when for any ‘spine’ (i.e. an inclusion of the string of principal edges into a simplex)

∆[1]
∐

∆[0]

. . .
∐

∆[0]

∆[1] −→ ∆[n],

the space of fillers in the diagram

∆[1]
∐

∆[0]

. . .
∐

∆[0]

∆[1] //

��

X

��
∆[n] //

88r
r

r
r

r
r

r

Y

is contractible. Note that the precise condition is that the following square is a pullback:

Map(∆[n], X)
❴
✤

//

��

Map(∆[1]
∐

∆[0]

. . .
∐

∆[0]

∆[1], X)

��
Map(∆[n], Y ) // Map(∆[1]

∐

∆[0]

. . .
∐

∆[0]

∆[1], Y ).

This can be rewritten

(20)

Xn
❴
✤

//

��

X1 ×X0
· · · ×X0

X1

��
Yn

// Y1 ×Y0
· · · ×Y0

Y1.
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(Hence the ordinary Segal condition for a simplicial space X is the case where Y is a
point.)

Proposition 8.6. If F : X → Y is relatively Segal and F0 : X0 → Y0 is an equivalence,
then

F∗ : S/Y1
→ S/X1

is naturally a coalgebra homomorphism, that is, there is a canonical equivalence of functors

∆nF1
∗ ≃ F1

∗n∆′
n.

where ∆n and ∆′
n are the comultiplication maps for X and Y .

Proof. In the diagram

X1

F1

��

Xn
goo f //

Fn

��

Xn
1

Fn
1

��
Y1 Yn

g′
oo

f ′

// Y n
1

we claim that the right-hand square is a pullback for all n. In this case, by the Beck–
Chevalley condition, we would have an equivalence of functors f! ◦ Fn

∗ ≃ F n
1
∗ ◦ f ′

!,
and by precomposing with g′∗ we would arrive at the required coalgebra homomorphism
condition.
The claim for n = 0 amounts to

X0
❴
✤

f //

F0

��

1

��
Y0

f ′

// 1

which is precisely to say that F0 is an equivalence. For n > 1 we can factor the square as

Xn
❴
✤

f //

Fn

��

X1 ×X0
· · · ×X0

X1

Fn
1

��

// X1 × · · · ×X1

Fn
1

��
Yn

f ′

// Y1 ×Y0
· · · ×Y0

Y1
// Y1 × · · · × Y1

Here the left-hand square is a pullback since F is relatively Segal. It remains to prove
that the right-hand square is a pullback. For the case n = 2, this whole square is the
pullback of the square

X0
❴
✤

//

��

X0 ×X0

��
Y0

// Y0 × Y0

which is a pullback precisely when F0 is mono. But we have assumed it is even an
equivalence. The general case n > 2 is easily obtained from the n=2 case by an iterative
argument. �

8.7. Remarks. It should be mentioned that in order for contravariant functoriality
to preserve finiteness as in [23], and hence restrict to coefficients in homotopy-finite ∞-
groupoids, it is necessary furthermore to require that F is finite, cf. [22].
When both X and Y are Segal spaces, then the relative Segal condition is automatically

satisfied, because the horizontal maps in (20) are then equivalences. In this case, we
recover the classical results on contravariant functoriality by Content–Lemay–Leroux [12,
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Prop. 5.6] and Leinster [51], where the only condition is that the functor be bijective on
objects (in addition to requiring F finite, necessary since they work on the level of vector
spaces).

9. Monoidal decomposition spaces

The ∞-category of decomposition spaces (as a full subcategory of simplicial spaces),
has finite products. Hence there is a symmetric monoidal structure on the ∞-category
Dcmpculf of decomposition spaces and CULF maps. We still denote this product as ×,
although of course it is not the categorical product in Dcmpculf .

9.1. Definition. Amonoidal decomposition space is a monoid object (X,m, e) in (Dcmpculf ,×, 1).
A monoidal functor between monoidal decomposition spaces is a monoid homomorphism
in (Dcmpculf ,×, 1).

By this we mean a monoid in the homotopy sense, that is, an algebra in the sense of
Lurie [56, §4.1]. We do not wish at this point to go into the technicalities of this notion,
since in our examples, the algebra structure will be given simply by sums (or products).

9.2. Example. Recall that a category E with finite sums is extensive [9] when the natural
functor E/A×E/B → E/A+B is an equivalence. The fat nerve of an extensive 1-category is
a monoidal decomposition space. The multiplication is given by taking sum, the neutral
object by the initial object, and the extensive property ensures precisely that, given a
factorisation of a sum of maps, each of the maps splits into a sum of maps in a unique
way.
A key example is the category of sets, or of finite sets. Certain subcategories, such as

the category of finite sets and surjections, or the category of finite sets and bijections,
inherit the crucial property E/A × E/B ≃ E/A+B. They fail, however, to be extensive in
the strict sense, since the monoidal structure + in these cases is not the categorical sum.
Instead they are examples of monoidal extensive categories, meaning a monoidal category
(E,⊞, 0) for which E/A × E/B → E/A⊞B is an equivalence (and it should then be required
separately that also E/0 ≃ 1). The fat nerve of a monoidal extensive 1-category is a
monoidal decomposition space.

Lemma 9.3. The lower dec of a monoidal decomposition space has again a natural
monoidal structure, and the dec map is a monoidal functor. The same is true for the
upper dec.

9.4. Bialgebras. For a monoidal decomposition space the resulting coalgebra is also a
bialgebra. Indeed, the fact that the monoid multiplication is CULF means that it induces
a coalgebra homomorphism, and similarly with the unit. Note that in the bialgebras
arising like this, the algebra and coalgebra are not on entirely equal footing: while the co-
multiplication is induced from internal, simplicial data in X , the multiplication is induced
by extra structure (the monoidal structure), and is given by spans with trivial pullback
component. In examples coming from combinatorics, the monoid structure will typically
be given by categorical sum.

9.5. Running example: the Hopf algebra of rooted trees. The decomposition
space H of Examples 3.3 and 5.2 has a canonical monoidal structure given by disjoint
union. Recall that Hk is the groupoid of forests with k − 1 compatible admissible cuts.
The disjoint union of two such structures is given by taking the disjoint union of the
underlying forests, with the cuts concatenated. This clearly defines a simplicial map from
H×H to H. To say that it is CULF is to establish that squares like this are pullbacks:
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H1 ×H1

+
��

H2 ×H2
d1oo

✤
❴

+
��

H1 H2
d1

oo

( )

,

( )

,

But this is clear: a pair of forests each with an admissible cut can be uniquely recon-
structed if we know what the two underlying forests are (an element in H1×H1) and we
know how the disjoint union is cut (an element in H2) — provided of course that we can
identify the disjoint union of those two underlying forests with the underlying forest of
the disjoint union (which is to say that the data agree down in H1). It follows that the
resulting incidence coalgebra is also a bialgebra, in fact Hopf algebra.

Proposition 9.6. If F : X → Y is a monoidal CULF functor between monoidal decom-
position spaces, then F! : S/X1

→ S/Y1
is a bialgebra homomorphism.

10. Examples

10.1. Injections and the monoidal groupoid of sets under sum. Let I be the fat
nerve of the category of finite sets and injections, and let B be the monoidal nerve of
the monoidal groupoid (B,+, 0) of finite sets and bijections (see 2.18). If we construct
the incidence coalgebra of the decomposition space I and impose the equivalence relation
‘having isomorphic complements’ then, as observed by Dür [14], we obtain the binomial
coalgebra. The binomial coalgebra also arises directly as the incidence coalgebra of B,
and Dür’s reduction arises as a CULF functor from a decalage:

Lemma 10.2. There is a levelwise equivalence of simplicial groupoids

Dec⊥B
≃
−→ I

given in degree k by

(x0, . . . , xk) 7−→ [x0 ⊆ x0 + x1 ⊆ · · · ⊆ x0 + · · ·+ xk],

(y0, y1 \ y0, . . . , yk \ yk−1) ←−[ [y0 ⊆ y1 ⊆ · · · ⊆ yk].

The canonical CULF functor

d⊥ : Dec⊥B→ B, (x0, . . . , xk) 7→ (x1, . . . , xk)

defines the reduction map r : I→ B.

The equivalence may also be represented using diagrams reminiscent of those in Wald-
hausen’s S•-construction, cf. 10.7 below. As an example, both groupoids I3 and (Dec⊥B)3 =
B4 are equivalent to the groupoid of diagrams

x3

��
x2

��

// x2 + x3

��
x1

//

��

x1 + x2

��

// x1 + x2 + x3

��
x0

// x0 + x1
// x0 + x1 + x2

// x0 + x1 + x2 + x3

For i < 3, the face maps di : I3 → I2 and di : (Dec⊥B)3 → (Dec⊥B)2 act by erasing the
column beginning xi and the row beginning xi+1. The top face map d3 erases the last
column. The face map d0 : B4 → B3 erases the bottom row.
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Both I and B are monoidal decomposition spaces under disjoint union, and I ≃
Dec⊥B → B is a monoidal functor by Lemma 9.3, inducing a homomorphism of bial-
gebras S/I1 → S/B1

by Proposition 9.6, which is the reduction map described by Dür [14].
Recall from [22, 2.3] that the functors pSq : 1→ B1, 1 7→ S, play the role of a basis of

S/B1
as S ranges over π0B1. The comultiplication on S/B1

is

∆(pSq) =
∑

A+B=S

pAq⊗ pBq

(where the sum is more specifically over all A,B ⊂ S, A ∪ B = S, A ∩ B = ∅). The
decomposition space B is locally finite (see [23, §7]), that is, B1 has finite automorphism
groups and the maps s0 : B0 → B1 and d1 : B2 → B1 are finite. Therefore we can take
cardinality (as in [22]), giving the classical binomial coalgebra spanned by symbols δn (the
cardinality of pnq : 1→ B1) with

∆(δn) =
∑

a+b=n

n!

a! b!
δa ⊗ δb.

As a bialgebra we have (δ1)
n = δn and one recovers the comultiplication from ∆(δn) =

(

δ0 ⊗ δ1 + δ1 ⊗ δ0
)n
.

The objective level is much richer. The linear dual [23] of S/B1
is SB1 , the category of

groupoid-valued species [2], [41], and its multiplication is the monoidal structure given by
the convolution formula

(F ∗G)[S] =
∑

A+B=S

F [A]×G[B],

which is precisely the Cauchy product of species (see [1]). The cardinality of this monoidal
category is the profinite-dimensional vector space Qπ0B1 with pro-basis given by the sym-
bols δn (dual to δn), with convolution product

δa ∗ δb =
n!

a! b!
δa+b.

This is isomorphic to the algebra Q[[z]], where δn corresponds to zn/n! and the cardinality
of a species F corresponds precisely to its exponential generating series [32].

10.3. Graphs. The following coalgebra of graphs is due to Schmitt [66, §12]. For a
graph G with vertex set V (admitting multiple edges and loops), and a subset U ⊂ V ,
define G|U to be the graph whose vertex set is U , and whose edges are those edges of G
both of whose incident vertices belong to U . On the vector space spanned by iso-classes
of graphs, define a comultiplication by the rule

∆(G) =
∑

A+B=V

G|A⊗G|B.

This coalgebra is the cardinality of the coalgebra of a decomposition space (cf. [26]),
but not directly of a category. Indeed, define a simplicial groupoid with G1 the groupoid
of graphs, and more generally let Gk be the groupoid of graphs with an ordered partition
of the vertex set into k (possibly empty) parts. In particular, G0 = 1 is the contractible
groupoid consisting only of the empty graph. The outer face maps delete the first or last
part of the graph, and the inner face maps join adjacent parts. The degeneracy maps
insert an empty part. It is clear that this is not a Segal space: a graph structure on a given
set cannot be reconstructed from knowledge of the graph structure of the parts of the set,
since chopping up the graph and restricting to the parts throws away all information about
edges going from one part to another. One can easily check that it is a decomposition
space. It is clear that the cardinality of the resulting coalgebra is Schmitt’s coalgebra of
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graphs. Note that disjoint union of graphs makes this into a bialgebra, in fact a Hopf
algebra.

10.4. Running example: the Hopf algebra of rooted trees. Dür [14, IV §3]
gave an incidence-coalgebra construction of the Butcher–Connes–Kreimer Hopf algebra
by starting with the category C of rooted forests and root-preserving inclusions, gener-
ating a coalgebra (in our language the incidence coalgebra of the fat nerve of C), and
imposing the equivalence relation that identifies two root-preserving forest inclusions if
their complement crowns are isomorphic forests. To be precise, this yields the opposite
of the Butcher–Connes–Kreimer coalgebra, in the sense that the factors Pc and Rc are
interchanged. To remedy this, one should use Cop instead of C.
As we have seen (in our running example 0.1, 3.3, 5.2, 9.5), we can obtain the Butcher–

Connes–Kreimer Hopf algebra directly from the (monoidal) decomposition space (see [25]
for more details) H where H1 denotes the groupoid of forests, and H2 is the groupoid of
forests with an admissible cut, and so on. The relationship with Dür’s construction is this
(cf. [25]): the ‘raw’ decomposition space N(Cop) is the decalage of H, in close analogy
with Lemma 10.2:

Dec⊤H ≃ N(Cop).

Furthermore, under this identification, the dec map Dec⊤H → H, always a (monoidal)
CULF functor, realises precisely Dür’s reduction: on (NC

op)1 → H1 it sends a root-
preserving forest inclusion to its crown, that is, its complement. More generally, on
(NCop)k → Hk it sends a sequence of forest inclusions F0 ⊂ F1 ⊂ · · · ⊂ Fk to

F1rF0 ⊂ · · · ⊂ Fk rF0.

10.5. Restriction species, directed restriction species, and operads. The graph
example G is an example of a decomposition space coming from a restriction species
in the sense of Schmitt [65] (see also [1]). The tree example H is an example of a de-
composition space coming from a directed restriction species, a notion introduced in [25],
formalising the idea of considering only decompositions compatible with an underlying
poset structure, as exemplified clearly by the notion of admissible cut.
While the decomposition space H is not a Segal space, it admits important variations

which are Segal spaces, namely by replacing the combinatorial trees above by various
kinds of operadic trees. These yield only bialgebras instead of Hopf algebras, but the
Segal property has been exploited to good effect in various contexts [42], [20], [43], [45].
These examples are subsumed in the general notion of incidence bialgebra of an operad,
cf. [26] and [46].

10.6. q-binomials: Fq-vector spaces. Consider the finite field Fq with q elements.
The q-binomial coalgebra (see Dür [14, 1.54]) may be obtained as a reduction of the
incidence coalgebra of the category vect, of finite-dimensional Fq-vector spaces and Fq-
linear injections, by identifying two injections if their cokernels are isomorphic.
The same coalgebra can be obtained without reduction as follows. Put V0 = 1 (the

contractible groupoid of 0-dimensional vector spaces), let V1 be the maximal subgroupoid
of vect, and let V2 be the groupoid of short exact sequences. The span

V1 V2
oo // V1 ×V1

E [E ′→E→E ′′]✤oo ✤ // (E ′, E ′′)

(together with the span V1 ← V0 → 1) defines a coalgebra on S/V1
which (after taking

cardinality) is the q-binomial coalgebra, without further reduction. The groupoids and
maps involved are part of a simplicial groupoid V : ∆

op → S, namely the Waldhausen
S•-construction of vect, which is a decomposition space but not a Segal space (cf. 10.7
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below). The lower dec of V is naturally equivalent to the fat nerve of vect, and the
comparison map d0 is the reduction map of Dür.
Although we have postponed the notion of the dual incidence algebra to [23], we wish to

mention that in this case the incidence algebra is SV1 , which is the category of groupoid-
valued q-species, and the convolution tensor product resulting from our constructions is
the external product of q-species of Joyal–Street [37] (except that they work with vector-
space valued q-species). A main contribution of [37] is to show that this monoidal structure
carries a non-trivial braiding. This is a very interesting structure, which cannot be seen
after taking cardinality.
One can compute explicitly (see [26]) the section coefficients of the comultiplication (or

the convolution product) to find the Hall numbers

|SESk,n,n−k|
∣

∣Aut(Fk
q)
∣

∣

∣

∣Aut(Fn−k
q )

∣

∣

=

(

n

k

)

q

,

where SESk,n,n−k denotes the groupoid of short exact sequences of fixed vector spaces of
dimensions k, n, and n− k.
This example is a special case of the following general construction with wide-ranging

ramifications and consequences.

10.7. Waldhausen S•-construction of an abelian category [71]. We follow Lurie [56,
Subsection 1.2.2] for the account of Waldhausen’s S•-construction. For I a linearly ordered
set, let Ar(I) denote the category of arrows in I: the objects are pairs of elements i ≤ j
in I, and the morphisms are relations (i, j) ≤ (i′, j′) whenever i ≤ i′ and j ≤ j′. A gap
complex in an abelian category A is a functor F : Ar(I)→ A such that

(1) For each i ∈ I, the object F (i, i) is a zero object.
(2) For every i ≤ j ≤ k, the associated diagram

0 ≃ F (j, j) // // F (j, k)

F (i, j)

OOOO

// // F (i, k)

OOOO

is a pushout (or equivalently a pullback).

Since the pullback of a monomorphism is always a monomorphism, and the pushout of
an epimorphism is always an epimorphism, it follows that automatically the horizontal
maps are monomorphisms and the vertical maps are epimorphisms, as already indicated
with the arrow typography. Altogether, it is just a convenient way of saying ‘short exact
sequence’ or ‘(co)fibration sequence’.
Let Gap(I,A) denote the full subcategory of Fun(Ar(I),A) consisting of the gap com-

plexes, and Gap(I,A)eq its maximal subgroupoid. The assignment

[n] 7→ Gap([n],A)eq

defines a simplicial space S•A : ∆
op → S, which by definition is the Waldhausen S•-

construction of A. Intuitively (or essentially), the groupoid Gap([n],A)eq has as objects
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staircase diagrams like the following (picturing n = 4).

A34

A23
// // A24

OOOO

A12
// // A13

OOOO

// // A14

OOOO

A01
// // A02

OOOO

// // A03

OOOO

// // A04

OOOO

Informally, the face map di ‘erases’ all objects containing an i index. The degeneracy
map si repeats the ith row and the ith column.
A string of composable monomorphisms (A1 ֌ A2 ֌ · · · ֌ An) determines, up to

canonical isomorphism, short exact sequences Aij ֌ Aik ։ Ajk = Aij/Aik with A0i = Ai.
Hence the whole diagram can be reconstructed up to isomorphism from the bottom row.
(Similarly, since epimorphisms have uniquely determined kernels, the whole diagram can
also be reconstructed from the last column.)
We have

d0(A1 ֌ A2 ֌ · · ·֌ An) = (A2/A1 ֌ · · ·֌ An/A1)

s0(A1 ֌ A2 ֌ · · ·֌ An) = (0 ֌ A1 ֌ A2 ֌ · · ·֌ An)

The simplicial maps di, si for i ≥ 1 are more straightforward: the simplicial set Dec⊥(S•A)
is just the fat nerve of mono(A).

Lemma 10.8. The projection Sn+1A→ Map([n],mono(A)) is an equivalence. Similarly
the projection Sn+1A→ Map([n], epi(A)) is an equivalence.

More precisely:

Proposition 10.9. These equivalences assemble into levelwise simplicial equivalences

Dec⊥(S•A) ≃ N(mono(A))

Dec⊤(S•A) ≃ N(epi(A)).

Theorem 10.10. The Waldhausen S•-construction of an abelian category A is a decom-
position space.

Proof. For convenience we write S•A simply as S•. The previous proposition already
implies that the two Decs of S• are Segal spaces. By Theorem 4.10, it is therefore enough
to establish that the squares

S1
s1 //

d0
��

S2

d0
��

S0 s0
// S1

S1
s0 //

d1
��

S2

d2
��

S0 s0
// S1

are pullbacks. Since a zero object has no nontrivial automorphisms, s0 : S0 → S1 is a
monomorphism of groupoids, given by the inclusion of the groupoid of zero objects into
S1 = Aiso. The map d0 : S2 → S1 sends a monomorphism to its cokernel, and its fibre
over a zero object is the full subgroupoid of S2 consisting of those monomorphisms whose
cokernel is zero. Clearly these are precisely the isos, so the fibre is just Aiso = S1. The
other pullback square is established similarly, but arguing with epimorphisms instead of
monomorphisms. �
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10.11. Remark. Waldhausen’s S•-construction was designed for more general categories
than abelian categories, namely what are now called Waldhausen categories, where the
cofibrations play the role of the monomorphisms, but where there is no stand-in for the
epimorphisms. The theorem does not generalise to Waldhausen categories in general,
since in that case Dec⊤(S•) is not necessarily a Segal space of any class of arrows.

10.12. Waldhausen S• of a stable ∞-category. The same construction works in the
∞-setting, by considering stable ∞-categories instead of abelian categories. Let A be a
stable ∞-category (see Lurie [56, §1.1.1]). Just as in the abelian case, the assignment

[n] 7→ Gap([n],A)eq

defines a simplicial space S•A : ∆
op → S, which by definition is the Waldhausen S•-

construction of A. Note that in the case of a stable ∞-category, in contrast to the
abelian case, every map can arise as either horizontal or vertical arrow in a gap complex.
Hence the role of monomorphisms (cofibrations) is played by all maps, and the role of
epimorphisms is also played by all maps.

Lemma 10.13. Suppose A is a stable ∞-category. For each k ∈ N, the two projection
functors Sk+1A→ Map(∆[k],A) are equivalences.

From the description of the face and degeneracy maps, the following more precise result
follows readily, comparing with the fat nerves in the sense of 2.15:

Proposition 10.14. For A a stable ∞-category, we have natural (levelwise) simplicial
equivalences

Dec⊥(S•A) ≃ NA

Dec⊤(S•A) ≃ NA.

Theorem 10.15. Waldhausen’s S•-construction of a stable ∞-category A is a decompo-
sition space.

Proof. The proof is exactly the same as in the abelian case, relying on the following three
facts:

(1) The Decs are Segal spaces.
(2) s0 : S0 → S1 is a monomorphism of ∞-groupoids.
(3) A map (playing the role of monomorphisms) is an equivalence if and only if its

cofibre is the zero object, and a map (playing the role of epimorphism) is an
equivalence if and only if its fibre is the zero object.

�

10.16. Remark. This theorem was proved independently (and first) by Dyckerhoff and
Kapranov [17], Theorem 7.3.3. They prove it more generally for exact ∞-categories,
a notion they introduce. Their proof that Waldhausen’s S•-construction of an exact
∞-category is a decomposition space is somewhat more complicated than ours above. In
particular their proof of unitality (the pullback condition on degeneracy maps) is technical
and involves Quillen model structures on certain marked simplicial sets à la Lurie [55].
We do not wish to go into exact ∞-categories here, and refer instead the reader to [17],
but we wish to point out that our simple proof above works as well for exact∞-categories.
This follows since the three points in the proof hold also for exact ∞-categories, which
in turn is a consequence of the definitions and basic results provided in [17, Sections 7.2
and 7.3].
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10.17. Hall algebras. The finite-support incidence algebra of a decomposition space X
is defined in [23, 7.15]; see also [17]. In order for it to admit a cardinality, the required
assumptions are, in addition to X1 being locally finite, that X0 be finite and that X2 →
X1×X1 be a finite map. In the case of X = S•A for an abelian category A, this translates
into the condition that Ext0 and Ext1 be finite (which in practice means ‘finite dimension
over a finite field’). The finite-support incidence algebra in this case is the Hall algebra
of A (cf. Ringel [62]; see also [64], although these sources twist the multiplication by the
so-called Euler form).
For a stable ∞-category A, with mapping spaces assumed to be locally finite ([22,

3.1]), the finite-support incidence algebra of S•A is the derived Hall algebra. These were
introduced by Toën [70] in the setting of dg-categories.
Hall algebras were one of the main motivations for Dyckerhoff and Kapranov [17] to

introduce 2-Segal spaces. We refer to their work for development of this important topic,
recommending as entry point the lecture notes of Dyckerhoff [15].
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[29] Luc Illusie. Complexe cotangent et déformations. II. No. 283 in Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1972.

[30] Peter Johnstone. A note on discrete Conduché fibrations. Theory Appl. Categ. 5 (1999), 1–11.
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