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Abstract

Question Answering Systems have become important due to the necessity to retrieve
answers from questions stated in Natural Language, without the need of querying
structured data sources. One of the key steps of these systems is the question clas-
sification process, where a label with the type of the expected answer is assigned to
every question. Even though a lot of research has been conducted for open domain
question answering systems, more specialized models are still needed for certain
fields, such as the field of medicine, that could be shown as one of the most im-
portant. In this project we build a question classification model using biomedical
questions from the BioASQ challenge 2018 and use its predefined classes. Addition-
ally, we introduce other more specific categories that aim to describe the topic of
the question. We use a simple model based on a Convolutional Neural Network and
dense vector representations for the questions to obtain a classifier that has good
overall performance on predicting the type of questions and a better capability on
detecting their topics. We have also added co-supervised labelled questions from an
external source.



1 | Introduction

Question Answering (QA) can be defined as the task of, given a question expressed
in Natural Language (NL), providing to the user the correct answer of the question,
unlike as in the Information Retrieval systems in which a set of documents where the
answer is likely to be found is retrieved. Although the origin of QA can be found
in the eighties of the last century, with the development of NL Interfaces to the
computer applications, especially to the databases (CHAT-80 (Warren and Pereira,
1982) is one of the best-known Natural Language Interface of the early eighties),
the term QA was started to be used in the framework of QA tracks within the Text
Retrieval Conferences, TREC challenges1, starting with TREC-82 in 1999.

Usually, users prefer to be given the answer to their information needs with-
out the necessity of querying structured data sources. For this reason, the role of
Question Answering Systems (QAS) in current technology has become more and
more important due to its ability to satisfy the necessity of providing advanced and
user-friendly search tools.

A lot of improvement has been done in open-domain QAS, however, domain-
specific QA systems are still needed in order to improve their accuracy with spe-
cialized information. One of the things that influence the performance of a QAS
the most is the question classification step (Hovy et al., 2001). Question classifi-
cation consists of assigning a label or a category to a question, i.e. the Question
Type (QT), to determine what type of answer is required, i.e. the Expected Answer
Type (EAT). For that reason, this work is focused on developing a classification
model that can successfully classify biomedical questions with little hyperparameter
tuning.

We used as resource the 2018 BioASQ3 challenge (Cohen et al., 2017). BioASQ is
a platform that organizes challenges on biomedical semantic indexing and question
answering. The tasks include hierarchical text classification, machine learning, infor-
mation retrieval and QA from texts. We will focus on the latter one, doing question
classification using the 4 general categories provided in the challenge, whose de-
scription is shown in the section 4.1. Additionally, we manually created another 9
categories whose aim is to describe the topic or content of the question (see section
4.1).

1http://trec.nist.gov
2http://trec.nist.gov/data/qa/t8_qadata.html).
3http://www.bioasq.org
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Traditional approaches to solve question answering problems are based on match-
ing the question with a set of patterns or rules that reflect its syntactic structure.
Usually, these patterns are built manually, which despite the good results that it
provides, is inconvenient and not agile. Moreover, although there are works that
try to create these patterns automatically ((Biswas P, 2014), (Xu J, 2012), and
(Mourad Sarrouti, 2017)), neural models have shown a superior performance with
little hyperparameter tuning. For this reason, we decided to use Convolutional Neu-
ral Networks (CNN) as classification method. Additionally, in light of the good
results obtained by the use of dense vectors for text representation, we decided to
build our own embedding vectors at word and sentence level using the Word2Vec
model (Mikolov et al., 2013b). We built these vectors using the syntactic structure
of the questions and the underlying relations between words inside a sentence (see
section 4.2). We also used alternative pre-trained embeddings, namely the well rec-
ognized GloVe vectors (Pennington et al., 2014) and Pyysalo biomedical embeddings
(Moen and Ananiadou, 2013).

In our implementation, we performed two types of classifications. The first,
only using the 4 original classes in the challenge, which we called the Multiclass
escenario, and the second, where we predict a label for the general class and a
label for the specific category, which we called the Multiclasss-Multilabel setting.
In a supplementary way, we developed two mechanisms (described in section 4.1)
to increase the number of samples including (initially unlabeled) questions of an
external data set.

Conducting this work, we succeeded on building a model with high predicting
performance using GloVe pre-trained vectors, a simple CNN and dependency rela-
tions between words. However, it is fair to mention that the model does not have
the same prediction capability for all the classes. We also made improvements in
accuracy using the extra questions labeled with one of the mechanisms we developed
to increase the number of samples. Lastly, we discovered that the model is suitable
for topic extraction tasks.

The structure of the document starts with the State Of The Art in Chapter 2,
where we introduce general concepts about question answering and the most relevant
and recent approaches. Then in Chapter 3 (Background) we explain the concepts
that are directly related to our implementation, including Convolutional Neural
Networks and embedding vectors. Chapter 4 is the one that contains the main part
of the work we did, presenting the corpus used (section 4.1), the techniques we
applied to encode the questions (4.2) and the architecture we built to classify them
(4.3). After that, we will explain the experiments and results obtained in chapter 5
and finally, we will present the conclusions and future work in the last chapter (6).

1.1 Objectives of the thesis

As we mentioned before, our approach is to use a CNN and word and sentence
embeddings to build a biomedical question classifier. In summary, the specific ob-
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jectives are:

• Build word and sentence embedding vectors using the Word2Vec model and
the syntactic and lexical structure of the questions.
• Classify questions into the 4 general classes (Multiclass) using a convolutional

neural network.
• Classify questions into the 4 general classes and the 9 specific classes (Multiclass-

Multilabel) using a convolutional neural network.
• Compare the performance of the model using n-hot encoding vectors against

word embedding and sentence embedding vectors.
• Compare the performance of the word embeddings against the GloVe and

Pyysalo pre-trained vectors.
• Compare the model with a simple linear model using n-hot encoded vectors.
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2 | State Of The Art

2.1 A short review of Question Answering

QA in general and its sub-disciplines have evolved along recent years following ba-
sically two divergent lines: i) increasing complexity of questions, and ii) narrowing
of the search space where answers are likely to be found.

QA systems can be seen as a natural extension of Information Retrieval (IR)
systems. In the former IR systems the user information needs are expressed through
a query, usually consisting on a set of keywords. The query is then used for retrieving
information from a data set (a collection of documents in TREC challenges, the
whole Web, a domain restricted collection, a corporate textual database, etc.). The
output of IR consists of a, sometimes ranked, set of documents extracted from the
data set. If the query is well formulated, a good system should retrieve the best
ranked documents that satisfy the user information needs. In QA systems, the query
consists of a NL question and the output of the system is not a set of likely relevant
documents but the exact answer to the query.

Probably the most popular QA system is Watson (Ferrucci et al., 2010). Watson
beated the best human champions at the US TV show Jeopardy. It has being turned
into a tool for medical diagnosis. According to the IBM statements, its ability to
analyze huge amounts of data is better than human doctors’, and its deployment
through the cloud reduces health-care costs.

Conventional QA systems are usually structured in four modules:

• Question Processing
• Information Retrieval of relevant documents
• Information Retrieval of passages or fragments
• Answer Extraction

So, the language technologies involved have to cover these 4 tasks:

• Linguistic analysis of questions using general or specific parsers (and gram-
mars). This includes the definition of an appropriate tagset for classifying the
questions
• Information Retrieval engines (general or specific for the task)
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• Information Extraction techniques for extracting the answer

Initially QA was limited to Factoid Questions (Factoid QA), where the questions
consisted on asking for a fact (a person, a date, a time, etc.). In Table 2.1 we present
some examples of questions from TREC-8.

Example

How much folic acid should an expectant mother get daily?
Who invented the paper clip?
What university was Woodrow Wilson president of?
Where is Rider College located?
Name a film in which Jude Law acted.
Where do lobsters like to live?
Who was Picasso?

Table 2.1: Examples of factual questions from TREC-8

Answer these questions was not specially challenging because an assertive formu-
lation of the answer is likely to be found in the collection. More complex questions
should be answered, including temporal and spacial constraints. Consider the fol-
lowing example: Who was the second USA republican president after the Vietnam
war?. To answer this question a QA system should probably split the complex
question into a set of related simpler questions: When did the Vietnam war ends?,
giving Date_1, Give me the USA presidents after Date_1, giving Person_1, Per-
son_2, Person_3, ..., To which party does Person_1 belong?, and so on. Sometimes
the complexity of the question arises from looking not for a fact but for a list of
facts. Definitional QA systems are those looking for the definition of a person, an
organization or simply a term. In these systems the answer probably has to be
synthesized from partial pieces of information extracted from several documents.

Another important area is the domain-restricted QA, DRQA. Here both ques-
tions and search space are restricted to a given domain. Many domains have been
faced: geography, tourism, economics, etc. Perhaps the domain object of the most
applications is the medical domain.

Usually DRQA are applied to specific tasks and use domain specific lexicons, ter-
minologies, knowledge bases, ontologies and other domain restricted lexico-conceptual
resources. Search spaces are smaller and therefore, approaches based on the redun-
dancy of answers (as voting techniques) are useless. User’s requirements are usually
high and system performance is more precision-oriented than recall -oriented (no
answer is better than a wrong answer). Questions and documents are usually chal-
lenging and frequently contain acronyms, non-textual content (tables, itemized lists,
etc.), domain specific jargon, etc. Two interesting systems in this scenario are QALM
(Hallili et al., 2014), and SynchroBot (Cabrio et al., 2015).

Another active variant of QA is Community QA (CQA). In this scenario a mem-
ber of the community formulates an initial query (a NL question) that triggers a

5



thread of interventions of the community members that answer, refine and comment
previous interventions forming a usually complex tangled thread. Members’s inter-
ventions are usually related pairs of questions and answers. CQA have been recently
evaluated in the framework of SEMEVAL-20151 to SEMEVAL-20172 contests. A
review of the later contest can be found in (Rosenthal et al., 2017). The approach
assumes that questions and answers share some common latent topics and are gen-
erated in a "question language" and "answer language", respectively, following the
topics.

Recently, with the development of Linked Open Data, QA over linked data
(QALD) has emerged as a popular discipline. QALD is a discipline placed in the
intersection of QA and the Semantic Web. While more and more structured data is
published on the Web, the question of how typical Web users can access this body
of knowledge becomes of crucial importance. Over the last years, there has been a
growing amount of research on interaction paradigms that allow end users to profit
from the expressive power of Semantic Web standards, while at the same time hiding
their complexity. Keyword queries, like common Web search nowadays, constitute
a highly ambiguous and very impoverished representation of an information need.
In the framework of the Semantic Web there has been recently a huge growth of
available open and closed domain resources. Many of these resources are included
into the LOD initiative. The most known and used resources in LOD are FreeBase3,
YAGO4, YAGO25, and, specially, the DBPedia6 as open domain LOD and BioPor-
tal7 for the medical and genomic domains. The QALD challenges, see (Unger et al.,
2015), has contributed a lot to the development of these systems. (Kalaivani and
Duraiswamy, 2012) survey different types of QA systems based on ontology and
Semantic Web (SW) models with different query formats.

Focusing on the medical domain, (Dina Demner-Fushman, 2009) classify the type
of questions occurring in clinical situations:

• Information on particular patients
• Data on health and sickness within the local population
• Medical knowledge
• Local information on doctors available for referral
• Information on local social influences and expectation
• Information on scientific, political, legal, social, management, and ethical

changes affecting both, how medicine is practiced and how doctors interact
with individual patients

Traditional approaches to question answering problems were based on rule-based
1http://alt.qcri.org/semeval2015/
2http://alt.qcri.org/semeval2017/
3http://freebase.com
4https://www.mpi-inf.mpg.de/departments/databases-and-information-

systems/research/yago-naga/yago/
5http://resources.mpi-inf.mpg.de/d5/yago1yago2/
6http://dbpedia.org
7https://bioportal.bioontology.org/
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models or linear classifiers over hand-engineered features (Ric, 2013),(Chen et al.,
2016), or structured queries and the use of kowledge bases (Berant et al., 2013).
However, the neural models have achieved great success in Natural Language Pro-
cessing (NLP) tasks, usually without too much hyper-parameter tuning. Among the
currents of implementation, three of them stand out, Convolution Neural Networks
(CNN), due to their ability of capturing local correlations; the Recurrent Neural
Networks (RNN), for their ability to capture long-term dependencies, specifically
the Long Short Term Memory networks (LSTM) that avoid the gradient vanishing
problem (Zhou et al., 2015a), and the Co-attention Networks, that allow to capture
the interactions between the question and the document (Xiong et al., 2016). Many
times, combinations of two ore more of these types of networks are used. We will
focus on these approaches on next section.

2.2 Neural Models applied to Question Answering

In this section we are going to focus in neural models and explain some of the most
interesting and recent implementations. First, we will discuss the work of (Kim,
2014), that used CNNs to classify questions, with a similar approach to the work
of (Kalchbrenner et al., 2014). Next, we present (Zhou et al., 2015a) who used a
combined architecture of CNN and LSTM for sentiment classification and question
classification tasks. Then, we will describe attention-based models like the one in
(Chen et al., 2017) and (Xiong et al., 2016), which is based on the work of (Lu
et al., 2016). Finally, we will talk about the work of (Yih et al., 2013) based on
word alignments for answer sentence selection.

Other interesting approaches not discused here are the work of (Bahdanau et al.,
2014) who applied attention mechanism and Recurrent Neural Networks to learn
alignments. Although (Bahdanau et al., 2014) focus on Machine Tranlation, their
model can be applied to whatever mapping-based task as Summarization, Para-
phrase detection, NL Inference, or CQA. (Qiu and Huang, 2015) used convolutional
neural tensor network (CNTN) to retrieve similar questions, encoding the sentences
in a semantic space and modeling their interactions with a tensor layer. (Chen et al.,
2016) proposed a competitive statistical baseline using crafted lexical, syntactic, and
word order features. (Yu et al., 2016) used a neural machine comprehension model
that extracts answer candidates of variable lengths from the document and ranks
them to answer the question.

(Kim, 2014) used a simple CNN architecture of a single layer and filters of
different size (3, 4, 5) shown in Figure 2.1. They made experiments with one and
two channels, both initialized with pre-trained word embeddings, trained with the
Word2Vec model on Google News (Mikolov et al., 2013b), but allowing one of the
channel’s embeddings being trainable with backpropagation.

They showed that this simple architecture produces remarkable results with sim-
ple feature engineering and that the pre-trained word vectors perform good in dif-
ferent benchmarks. However, learning task-specific embeddings through fine-tuning
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Figure 2.1: CNN architecture of (Kim, 2014) model taken from (Kim, 2014).

leads to a even better performance. The words that were not contained in the
pre-trained vectors were initialized randomly.

In the two channels configuration, the filter is applied to both channels and
then added to produce a single feature map, which in essence, behaves like single
channel network. Regarding to the feature maps, the optimal number was set to
100. Additionally, they used a drop-out regularization layer at 50%.

Among their observations they pointed out that the use of two channels had
mixed results for different tasks and therefore, they kept the simpler version of
using a single channel. Another important observation was the comparison with
the results obtained by (Kalchbrenner et al., 2014), who used basically the same
structure but with lower results; the authors attribute this difference to the use of
different size of filters and the right number of feature maps.

(Zhou et al., 2015a) model sentences combining a CNN and a LSTM to benefit
from the ability of the CNNs to learn local and global (using pooling) correlations
and the ability of LSTM of learning sequential correlations.

They built a combined architecture called C-LSTM where the feature maps of a
1-layer CNN are arranged as sequential window features (n-gram) to feed a LSTM.
The input of the CNN are Word2Vec pre-trained word vectors, trained with Google
News Dataset. Those words not present in the pre-trained vectors, were initialized
with a uniform distribution.

The output of the hidden layer at the last time step of the LSTM is the fi-
nal sentence representation over which a softmax layer is put on top to make the
class prediction. They used cross-entropy as the loss function, Stochastic Gradient
Descent (SGD) to learn the parameters and RM-Sprop as optimizer.

This combined architecture outperformed all published neural baseline models
at that time. Is worth to mention that one of their initial assumptions was that
several parallel convolutional layers with different filter sizes would lead to a better
performance, however, they discovered that a single convolutional layer with a filter
of length 3 was the best option.

(Xiong et al., 2016) address the task of finding answers given a set of docu-
ments. In their approach they try to predict the start and end tokens of the span
that contains the answer. They introduced the Dynamic Coattention Networks
(DCN), based on the work of (Lu et al., 2016) for visual question answering. The

8



Figure 2.2: Coattention encoder of (Xiong et al., 2016) model taken from (Xiong
et al., 2016)

Figure 2.3: Dynamic decoder of (Xiong et al., 2016) model taken from (Xiong et al.,
2016).

DCN consists on two principal components: a coattention encoder, shown in Figure
2.2, that captures the interactions between the question and the paragraph, and
a dynamic pointing decoder, shown in Figure 2.3, that iterates over potential an-
swer spans. These networks aim to solve the problem of other deep learning models
regarding to getting stuck in local maxima, corresponding to wrong answers. Addi-
tionally, their results showed that this type of networks is not affected by the length
of the documents.

The representation of the question Q and the paragraph that likely contains the
answer P are obtained using an LSTM on top of word embedding vectors (Embpi),
where {p1, . . . , pm} are the words of the paragraph, producing the encoded vectors
encpi :

encpi = LSTM(encpi−1
, Embpi) (2.1)

The same process is applied for the question embeddings Embqi , where {q1, . . . , qn}
are the words in Q :

encqi = LSTM(encqi−1
, Embqi) (2.2)
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In the coattention encoder MP is defined as the paragraph encoding matrix
[encp1 . . . encpmencp∅] ∈ IRl×(m+1), where l is the length of the vector and every vector
encpi is concatenated column-wise. MQ is defined as the question encoding matrix
[encq1 . . . encqnencq∅]. Both matrices have a sentinel vector (encp∅ and encq∅) to not
attend to any particular word in the input.

The final representation of the question Q (encQ) is obtained adding a non-linear
projection layer (tanh) over of the question encodings (MQ). For more details, see
(Xiong et al., 2016).

The coattention mechanism consists on calculating an affinity matrix L with all
the pairs of question words and paragraph words (L = MP encQ ∈ IR(m+1)×(n+1)).
Then a softmax function is aplied row-wise to produce the attention weights AQ

across the paragraph for each word in the question and column-wise to obtain the
attention weights AP for every word in the paragraph:

AQ = softmax(L) ∈ IR(m+1)×(n+1) AP = softmax(LT ) ∈ IR(n+1)×(m+1) (2.3)

Next, attention contexts (CQ) of the paragraph considering each word in the
question are computed as follows:

CQ = MPAQ ∈ IRl×(n+1) (2.4)

The final coattention context CP is a co-dependent representation of the question
and paragraph. Is calculated using the context of the question considering each
word in the paragraph (MQAP ) computed jointly with the mapping of the question
context over the paragraph encodings space (CQAP ), concatenating MQ and CQ

horizontally:

CP = [MQ;CQ]AP ∈ IR2l×(m+1) (2.5)

The final step is to incorporate temporal information to the coattention contex
through a bidirectional LSTM (Bi− LSTM):

ui = Bi− LSTM(ui−1, ui+1, [encpi;CDi
]) ∈ IR2l (2.6)

The resulting matrix U = [u1, . . . , um] ∈ IR2l×m is the coattention encoding that
helps to determine which span may be the best possible answer.

The other component of the dynamic coattention network is the dynamic point-
ing decoder. This is an iterative mechanism that alternates between predicting the
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Figure 2.4: Architecture of (Chen et al., 2017) model taken from (Chen et al., 2017)
.

start and the end token of the span, so the algorithm does not get stuck in answer
candidates located in different paragraphs when a document is provided as input.

In every iteration i the decoder updates its state using the information from
the coattention encodings (U) of the current candidates of start (si) and end (ei)
tokens. Then, estimates of the new candidates are computed using a multi-layer
LSTM. Denoting with hi the hidden state of the network, the update is defined as:

hi = LSTM(hi−1, [usi−1
;uei−1

]) (2.7)

where usi−1
and uei−1

are the coattention encodings of the start and end can-
didates of the previous iteration. The current start and end tokens would be the
words that maximize the start score (αi) and end score (βi), respectively.

To calculate the start score αi and end score βi the authors proposed a combina-
tion of the Maxout Network of (Goodfellow et al., 2013) and the Highway Network
of (Srivastava et al., 2015) called Highway Maxout Network (HMN), the implemen-
tation details can be found in (Xiong et al., 2016).

Finally, the network is trained minimizing the cummulative softmax cross-entropy
of the start and end candidates in each iteration.

(Chen et al., 2017) also tackle the problem of finding answers inside paragraphs
using attention scores. The overall architecture is presented in Figure 2.4. They
built feature vectors for the questions and paragraphs inside the documents using
Recurrent Neural Networks. These vectors are later used as input of two bilinear
classifiers that independently predict the start and end tokens of the span of tokens
containing the right answer.

They built an Open-Domain question answering system using Wikipedia as only
source of answers. As the first step of the system, they created a document retrieval
system that uses inverted index lookup to narrow the search, followed by a TF-IDF
weighted bag-of-words vector model to obtain the five most relevant articles.

Having narrowed the search, they used what they called the Document Reader
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system to extract answers from a single paragraph or a small collection of para-
graphs. This Document Reader consists on a recurrent neural network model that
encodes feature vectors, that would be later used as input of two bilinear classifiers
to predict the span of tokens that contains the answer.

A single paragraph P consists on a set of m words {p1, . . . , pm} and a question Q
consists on a set of n words {q1, . . . , qn}. The paragraph words are first transformed
into feature vectors featpi composed by four different parts: a GloVe (Pennington
et al., 2014) pre-trained word embedding vector Embpi . Second, a binary disjoint
set that indicates if pi matches a token (qj) of question Q, represented as q(pi ∈ Q).
Third, a triplet formed by syntactic inherent features of the word, specifically, its
part-of-speech (POS) and named entity recognition (NER) tags and its (normalized)
term frequency (TF), resulting in a triplet of the form (POS(pi), NER(pi), TF (pi)).
As last, an aligned question embedding defined as Embaligned(pi) =

∑
j ai,jEmbqj ,

where ai,j is the attention score that captures the similarity between the paragraph
token pi and each token qj of the question Q. ai,j is computed by the dot products
between nonlinear mappings of word embeddings:

ai,j =
exp(α(Emb(pi)) · α(Emb(qj)))∑
j′ exp(α(Emb(pi)) · α(Emb(q′j)))

(2.8)

and α(·) is a single dense layer with ReLU nonlinearity. These aligned question
embeddings provide a soft alignment between similar but not identical words.

These feature vectors featpi are then encoded by a multi-layer bidirectional long
short-term memory network, to extract context information. The process is illus-
trated as:

encpi = Bi− LSTM(encpi−1
, encpi+1

, featpi) (2.9)

where the encpi is the concatenation of each layer’s hidden units.

In a similar way, the question feature vectors featqi are built using the word
embedding vectors of the question tokens (Embqi) as input of another recurrent
neural network, where the resulting hidden units are combined into one single vector
encQ:

encqi = Bi− LSTM(encqi−1
, encqi+1

, featqi) (2.10)

encQ =
∑
j

bj(encqj) (2.11)
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where bj encodes the importance of each question word and w is the weights vector
to learn:

bj =
exp(w · encqj)∑
j′ exp(w · encqj′)

(2.12)

Finally, they used a bilinear term to predict the start and end tokens of the span
of tokens that contains the answer, using the similarity between encpi and encQ and
computing the probability of each token pi being the start (Probstart(pi)) or end
(Probend(pi)) token. The classifier chooses the span from the token pi to token pi′
that maximizes Probstart(pi)× Probend(pi′).

Since some of the training data sets only contained the pairs of question and
answer, without an associated document or paragraph, they could not use them to
train the Document Reader. Therefore, they used Distantly Supervised Data, based
on the work of (Mintz et al., 2009). The method consists on using question-answer
pairs to look for the 5 most relevant Wikipedia articles and filtering the paragraphs
that did not have an exact match with answer, the ones shorter than 25 and larger
than 1500 characters and those that did not contain all the named entities detected
in the question.

In another work, (Yih et al., 2013) built an answer selection system, where
each question is associated to a set of labeled candidate sentence answers. Their
approached was to detect a semantic match between the question and the answer.
To solve this problem, they used word-alignments following the (Chen et al., 2017)
structure. As a constraint, each word in the question needs to be linked to a word in
the sentence and each word in the sentence can be linked to zero or multiple words
in the question.

The idea was to use the underlying relations between the words of the question
and the words of the answer with the aim of finding an association between both
entities. The association strength could be measure in terms of degree of mappings
between the words and the appearance of all question tokens in the answer. To
reveal this underlying relation they used semantic components from lexical semantic
models, including synonymy/antonymy, hypernymy/hyponymy (the Is-A relation)
and general semantic word similarity.

They used two approaches to build a model capable of detecting the semantic
relation between question and answer: bag-of-words and latent structures. In the
first one, every pair (qi, sk), where qi is a word in question Q and sk is a word in a
candidate answer sentence S, is transformed into a d-dimensional real-valued feature
vector by feature functions φ1, . . . , φd. Then, this feature vectors are aggregated
using average and max to obtain the whole question-answer pair feature vector (Φ):

Φavgj =
1

mn

∑
i∈|Q|,k∈|S|

φj(qi, sk)
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Φmaxj
= max

∑
i∈|Q|,k∈|S|

φj(qi, sk)

producing a 2d-dimensional feature vector for every question-answer pair. These
vectors are then fed to two kinds of binary classifiers, a Logistic Regression model
and a boosted decision tree.

On the other hand, to learn the latent structures they used Learning Constrained
Latent Representations (LCLR), whose idea is to replace the decision function of
standard linear models (W Tφ(x)) with:

argmaxhW
Tφ(x, h)

where W represents the weights vector, x is the pair question-sentence (Q,S) and h
is the word-alignment between Q and S. The final objective function is defined as:

min
W

1

2
‖ W ‖2 +C

∑
i

ξ2i

s.t. ξi ≥ 1− yimax
h
W Tφ(x, h)

where where yi = 1 indicates that S is a correct answer to question Qi.

In addition to the previously described features obtained from the properties of
the pairs of words of the question and the answer, the authors added rich lexical
semantic information that they split in 6 different categories: identical word match-
ing (I), lemma matching (L), WordNet (WN), enhanced Lexical Semantics (LS),
Named Entity matching (NE) and Answer type checking (Ans). All the features,
except (Ans), were weighted by the IDF value of the question word. These nre
features helped to improve the model performance.
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3 | Background

3.1 Convolutional Neural Networks (CNN)

Because our architecture is based on convolutional neural networks, we are going to
explain the main characteristics and the overall process of a CNN. The explanation
is done using images as input since it is easier to explain that way.

Convolution Neural Networks or CNNs are hierarchical neural networks whose
convolutional layers are alternated by downsampling layers. Since Alex Krizhevsky
et al. (2012) used them in the ImageNet image classification challenge, obtaining
better results than the state of the art at that time, CNNs have been greatly used
in image classification. The CNNs are capable to distinguish low level features like
curves and edges and build more complex patterns that allow to characterize an
object. The most common architecture for classification is a series of convolutional
layers where nonlinear functions are applied, pooling (downsampling) layers, and
fully connected layers. (Ciresan et al., 2011).

Figure 3.1: The process of convolution1

In image processing, the input of the CNNs are images represented as a grid of
pixels with numeric values that indicate the intensity of the color in that spot. For
color (RGB) images this grid has three layers or channels, where each one of those
contain the intensity values for a different color (Red, Green or Blue).

Having the image grid, the convolutional layer works as a flashlight that focuses
in a portion of the grid at a time and moves (convolutes) through the whole space
(Deshpande, 2016). This flashlight is called the filter or kernel, can have a squared
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Figure 3.2: Features Map from 2 dimensional CNN for image classification
(Krizhevsky et al., 2012).

or rectangular shape, e.g 5× 5 pixels, and must have the same depth as the input,
i.e if it is a RGB image the depth is 3 (5× 5× 3). This window will move through
the whole image in the x and y axes by a specific number of steps. This steps are
called strides, so if the the strides are equal to (2, 2), the window will move two
pixels horizontally and two pixels in the vertical direction. Figure 3.1 depicts the
action of convolution in a 2 dimensional setting.

The filter also contains numbers that represent the weights or parameters that
have to be estimated by the model using backpropagation. This weights are element-
wise multiplied with the original values in the pixels, producing several multiplica-
tions that are then summed up, producing a single number. This process is repeated
over the whole grid, obtaining a single number for every time the filter moves over
the grid. All this resulting numbers will end up forming a lower dimensional matrix
called feature map see Figure 3.1, and it is called that way because it extracts the
features or low-level characteristic of the image, like textures, edges or straight lines
(Deshpande, 2016). Figure 3.2 presents graphically the resulting feature maps for a
task of image classification. The figure shows that lines with different orientations
have been recognized. The dimensions of the output feature map (M ) are:

Mn
x =

⌊
Mn−1

x − F n
x

Sn
x

⌋
+ 1;Mn

y =

⌊
Mn−1

y − F n
y

Sn
y

⌋
+ 1

Where Mn
i is the feature map of the layer n on the i axis, F n

x and F n
y are

the dimensions of the filter in x and y axes and Sn
x and Sn

y are the strides in the
horizontal and vertical directions (Ciresan et al., 2011).

The idea is to have several filters that detect different features, which produces
an stack of feature maps of the same size. The feature maps will contain higher
values (activate) in the positions corresponding to the regions of the image where
the filter have detected the feature. For example, a cell in a map produced by a
filter that identifies diagonal lines will have a high value if in its corresponding image
region there was a diagonal line.

In Natural Language Processing, numeric representations of the words and sen-
tences are used instead of pixels, and other considerations must be taken, for instance
the frequent use of 1 dimension CNN instead of the usual 2 dimension CNN, as we
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Figure 3.3: Example of a 5× 5 filter producing an entry in the feature map (Desh-
pande, 2016)

described in the State of the Art chapter, but the overall process remains basically
the same.

3.1.1 Pooling layer

When using CNNs is common the use of pooling layers that aggregate the joint effect
of a neighborhood of features with the aim of producing invariance to small changes
in the input. This produces robustness in terms of generalization and helps the con-
vergence, preserving the relevant information and discarding non important details
(Boureau et al., 2010). The most common aggregation function is the maximum
(Max Pooling layer). Also summation, average, and k-max pooling are used.

3.2 Gradient Descent

Because the backpropagation training process of the CNN consists on determining
iteratively the optimal weights or parameters in the filter, an optimization algo-
rithm is required. Gradient descent is one the most popular algorithms to perform
optimization and is widely used to optimize neural networks. There are different
variants of gradient descent, including powerful methods like Newton’s method, but
that end up being impractical because of the computational cost of calculating the
inverse of Hessian matrix of second derivatives. On the other hand, the most popular
approaches only need first order information, calculating the gradient of the objec-
tive function with respect to the parameters. Among these simpler variants is the
classical Stochastic Gradient Descent, that have a fast convergence rate. Adagrad is
also one of these algorithms that only require first order information and it adapts
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the learning rate performing larger updates for infrequent parameters and smaller
updates for frequent ones. Adadelta and RMSprop, are extensions of Adagrad and
try to reduce the aggressive reducing learning rate, adapting it over each iteration
and slowing down when approaching a local minima. Adaptive Moment Estimation
(Adam) method is similar to RMSprop but adds bias-correction and momentum
(Ruder, 2016).

3.3 Word2Vec Embeddings

Most of the neural models used for NLP use embeddings as word and sentence
representations due to the great performance shown in several NLP tasks (Baroni
et al., 2014). Neural models incorporate these vectors adding an embedding layer,
sometimes static and sometimes dynamic.

Embeddings are dense vector representation of words or sentences in a lower di-
mensional space that contain many linguistic regularities and patterns. (Turian Joseph,
2010).

The most popular domain free embeddings are Word2Vec and GloVe. Recently
Sampo Pyysalo has delivered a embedding data set for the medical domain learned
from the whole collection of Medline articles. Details on these embeddings are
presented in Section 4.2.

Several efforts have been made recently for combining embeddings of different
characteristics and mapping embeddings between different languages. For instance,
for medical texts Pyysalo’s and Word2Vec or GloVe are somehow complementary
and a combination seems to be beneficial. The task is not easy because the vector
spaces are different. (Mikolov et al., 2013b) signaled that continuous word em-
bedding spaces exhibit similar structures across languages and performed mappings
between embeddings. (Mikel Artetxe and Agirre, 2016) and (Samuel L Smith and
Hammerl, 2017) improved these cross-lingual word embeddings using all of them
bilingual word vocabularies. A notable achievement is the system MUSE devel-
oped by Facebook group (Conneau et al., 2017) that using FastText obtained a high
number of embeddings that cover more than one hundred languages.

Although embeddings of words has gotten excellent results in many NLP tasks
this is not the case for embeddings of more complex entities such as phrases, sen-
tences, rdf triples, and others. Initial attempts for embedding such entities usually
consisted on using BOW for representing these entities and use summation, average,
or dot product of the vectors for representing the embeddings. Recently, however,
more semantically-based approaches have been followed for facing the task.

(Conneau and Kiela, 2018) have made public SentEval, an evaluation toolkit for
evaluating sentence embeddings against several NLP task.
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3.3.1 Word2Vec

Word2Vec is an algorithm created by (Mikolov et al., 2013a) that receives a corpus
as input, builds the vocabulary and returns the vector representation of every word.
Word2Vec has a simple architecture and a low complexity, which make it ideal to
train high-dimensional vectors from big data sets. The algorithm provides support
for two representations, bag of words and skip-grams. The bag of words architec-
ture predicts the current word based on the context, and the skip-gram predicts
surrounding words given the current word. (Mikolov et al., 2013a) tested both ar-
chitectures and found out that the skip-gram model performs slightly worse than
BOW in syntactic task, but much better the semantic part. Because of this, we
chose to use Word2Vec with skip-grams.

3.3.2 Skip gram model

The skip-gram model is an efficient method for learning high quality vector repre-
sentations of words where, given a word w, it predicts the surrounding words inside
an specific perimeter or window using a log-linear classifier. While increasing the
window, the quality of the resulting word vectors increases, as it does the complexity.
Because more distant words have less impact, they are given less weight (Mikolov
et al., 2013a). The resulting vectors are able to express similiarities between words
using simple algebra operations. For example, vec("Madrid") - vec("Spain") +
vec("France") is closer to vec("Paris") than any other word, vec(w) being the vec-
tor representation of the word w.
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4 | Thesis Statement and Implemen-
tation

In this chapter we are going to describe the work done in this thesis, the methodolo-
gies used and the contributions. First, in the Corpus section (4.1) we will introduce
the corpus we worked with, the alternative sources we added and the two mecha-
nisms that we implemented to increase the number of samples. Then in the Question
Representation section (4.2), we will talk about the two encoding techniques to trans-
form the questions into structured input for the models, including the Bag-of-words
and embedding vectors. In the last section (4.3) about the Architecture, we will de-
scribe the classification models, including three different convolution neural network
implementations and the use of a simple Logistic Regression. To classify the ques-
tions, we performed a Multiclass and a Multiclass-Multilabel classifications, taking
into account four (general) and thirteen (general + specific) classes, respectively.

4.1 Corpus

In this section we will describe the corpus we used to train the classifier, including
the two levels of labels we have. The first group of labels corresponds to the classes
that describe the type of expected answer. The second group describes the topic of
the questions. We are also going to explain the techniques we used to increase the
number of available questions.

The corpus consists on 2,750 questions obtained from BioASQ1 question answer-
ing challenge, with a vocabulary size of 5,440 words. All the questions are from the
biology and medical domains and are grouped into four categories: 780 are factoid,
746 yesno, 669 summary and 556 list, with sentences of maximum of 33 words.
These classes were manually annotated by PubMed curators and constitute a fairly
balanced data set. The description of each category is in the Table 4.1.

Additionally, because we wanted to provide more information about the ques-
tions, we built our own categories based on their topic. This specific labels were
added manually and are describe in the Table 4.1. While the general type of ques-
tions refer to the type of expected answer, these specific categories refer to the
topic of the question. The percentages in the table indicate the proportion of each

1http://www.bioasq.org
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Type of
Question

Description

Yes/no These are questions that, strictly speaking, require "yes" or
"no" answers, though of course in practice longer answers will
often be desirable. For example, "Do CpG islands colocalise
with transcription start sites?" is a yes/no question.

Factoid These are questions that, strictly speaking, require a particu-
lar entity name (e.g., of a disease, drug, or gene), a number, or
a similar short expression as an answer, though again a longer
answer may be desirable in practice. For example, "Which
virus is best known as the cause of infectious mononucleo-
sis?" is a factoid question.

List These are questions that, strictly speaking, require a list of
entity names (e.g., a list of gene names), numbers, or similar
short expressions as an answer; again, in practice additional
information may be desirable. For example, "Which are the
Raf kinase inhibitors?" is a list question.

Summary These are questions that do not belong in any of the previ-
ous categories and can only be answered by producing a short
text summarizing the most prominent relevant information.
For example, "What is the treatment of infectious mononu-
cleosis?" is a summary question.

Table 4.1: General question categories

question type that is found in the data set; as we can see, the classes are pretty
unbalanced.

4.1.1 Increasing the number of samples

Because the classification algorithms and specially NNs perform better with a high
number of samples, we decided to use an alternative source of questions. The eli-
gible data sets we considered to use are presented in Table 4.1.1. From them, we
decided to choose Quora data set because it has a high number of questions and
they are grouped by pairs, which would help us with the classification. Quora2 is
a question-and-answer site for asking and answering questions, that are organized
by its community of users in the form of opinions. This data set contains 404,302
unlabeled pairs of questions that are potential duplicates and have the same answer.
An example of the type of pairs of questions found in the data set are How can I
increase the speed of my internet connection while using a VPN? and How can In-
ternet speed be increased by hacking through DNS?. To take profit of these unlabeled
questions we implemented two different approaches described below.

2https://www.quora.com/
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Type of
Question

Description

Condition
(7%)

These are questions that refer to general concepts about medi-
cal conditions, diseases or syndromes (a condition is not neces-
sarily a disease). For example, "What is the risk of developing
acute myelogenous leukemia in Fanconi anemia?"

Condition
detection
(2.4%)

These are questions that talk about the methods and tech-
niques to detect or identify a condition or disease. For ex-
ample, "How can the fetal Rhesus be determined with non-
invasive testing?"

Condition
prevention
(1.7%)

These are questions that talk about the methods to prevent
a condition or disease. For example, "List clinical trials for
prevention of sarcopenia".

Condition
symptoms
(4.5%)

These are questions that talk about the symptoms or charac-
teristics of a condition or disease. For example, "List symp-
toms of Hakim Triad".

Condition
treatment
(11.7%)

These are questions that talk about the treatment of a condi-
tion or disease. For example, "Is Bladder training an effective
method to treat urge incontinence?".

Condition
cause (17.6%)

These are questions that talk about the at least one of the
causes, natural or not, of a condition or disease. For example,
"Which fusion protein is involved in the development of Ewing
sarcoma?" (Li et al., 2010).

Drug (5.4%) These are questions that talk about the general characteristics
of a drug. For example, "What are the main indications of
lacosamide?".

Biology
(42.3%)

These are questions that talk about general concepts in bi-
ology. For example, "What is the structural fold of bromod-
omain proteins?".

Medicine
(7.4%)

These are questions that talk about methods, studies of tech-
niques related to medicine. For example, "How many clinical
trials for off-label drugs in neonates are cited in the litera-
ture".

Table 4.2: Specific question categories

Co-training approach

Taking inspiration from (Chen et al., 2017) about using distantly supervised data,
to label the extra questions we used our already trained and tuned CNN model. If
the same class was predicted for both questions of the pair, they were assigned to
that class. On the contrary, if the questions were assigned different labels, they were
discarded.
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Data set N. of ques-
tions

Description

quasarT 43000 Open-domain trivia questions.
quasarS 37000 Fill-in-the-gap queries constructed from definitions

of software entity tags on Stack Overflow.
SQuAD1.1 98169 Stanford Question Answering Dataset (SQuAD) is a

reading comprehension data set, consisting of ques-
tions posed by crowdworkers on a set of Wikipedia
articles, where the answer to every question is a seg-
ment of text, or span, from the corresponding reading
passage, or the question might be unanswerable.

SQuAD2.0 142192 Combines the 100,000 questions in SQuAD1.1 with
over 50,000 new, unanswerable questions written ad-
versarially by crowdworkers to look similar to an-
swerable ones. To do well on SQuAD2.0, systems
must not only answer questions when possible, but
also determine when no answer is supported by the
paragraph and abstain from answering.

TREC
(Curated)

2180 TREC questions with answers added.

WikiMovies 181679 This includes only the QA part of the Movie Dialog
data set, but using three different settings of knowl-
edge: using a traditional knowledge base (KB), us-
ing Wikipedia as the source of knowledge, or using
IE (information extraction) over Wikipedia. This al-
lows to test the ability of models to directly read
documents to answer questions, and to compare this
to traditional KBs in the same setting.

TriviaQA 109767 reading comprehension data set containing over
650K question-answer-evidence triples. TriviaQA in-
cludes 95K question-answer pairs authored by trivia
enthusiasts and independently gathered evidence
documents, six per question on average, that pro-
vide high quality distant supervision for answering
the questions.

Quora 404302 Allows to train and test models of semantic equiv-
alence, based on actual Quora data. The dataset
consists of over 400,000 lines of potential question
duplicate pairs. Each line contains IDs for each ques-
tion in the pair, the full text for each question, and
a binary value that indicates whether the line truly
contains a duplicate pair.

WikiQA 29261 Set of question and sentence pairs, collected and an-
notated for research on open-domain question an-
swering. In addition, the WikiQA data set also in-
cludes questions for which there are no correct sen-
tences, enabling researchers to work on answer trig-
gering, a critical component in any QA system.

Table 4.3: QA data sets description
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Question Patterns

Another method we applied to increase the number of samples was to try to find
significant patterns based the structure of the questions using their Part Of Speech
(POS) tags, for later, classify the Quora questions based on these patterns. In the
Table 4.1.1 we describe the four versions of the POS tag patterns built, including
an example for the question What is a Caveolae?.

Type of Patterns
Extended Part of speech tags of the words in the question. Exam-

ple: (WP,VBZ,DT,NNP,.)
Reduced Part of speech tags of the words in the question, but

only keeping the first tag letter. Example: (W,V,D,N,.)
Reduced +
stop words

Part of speech tags of the words in the question, but
keeping only the first tag letter and the stop words. Ex-
ample: (W,is,a,N,.)

Reduced +
stop words +
punctuation

signs

Part of speech tags of the words in the question, but
keeping only the first tag letter, the stop words and
punctuation signs. Example: (W,is,a,N,?)

Table 4.4: POS tag patterns

To find the significant patterns we first clustered the BioASQ questions based
on the euclidean distance of their respective embedding vectors, hoping that the
occurrence of two questions in the same cluster meant they were similar. Luckily
there will be a predominant class in the cluster. To perform the clustering we used
K-means algorithm, setting the number of clusters to 8 using a visual representation
of the hierarchical clustering.

An ideal pattern would be the one that occurs with a high frequency in only one
cluster and whose associated questions had the same class. In this way, we would
have a set of patterns highly correlated with a certain type of questions that latter
would help us to classify unlabeled ones. In the Table 4.1.1 we present an example
of the clusters obtained for the extended version.

Finally, when a new question is given, it would be classified to the class associated
with the pattern that matches the question’s pattern, if any. In this way we could
add more samples to the corpus.

4.2 Question Representation

In order to extract information from unstructured data like text or images, a change
of representation must be applied to transform it into structured data that can be
consumed by the algorithms. We will call the input to the models the input matrix.

In this section we are going to present the methods we used to encode the ques-
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Pattern Cluster Frequency Class Questions
VBZ,NNP,VBN,IN,NN,NN,NN,. 7 2 ’yesno’

Is Rac1 involved in cancer cell inva-
sion?

Is CHEK2 involved in cell cycle con-
trol?

MD,VB,VB,JJ,JJ,NN,. 6 2 ’yesno’
Can acupuncture cause spinal epidural
hematoma?

Can canagliflozin cause euglycemic di-
abetic ketoacidosis?

WP,NN,VBZ,VBN,IN,NNP,. 4 2 ’factoid’
What enzyme is inhibied by Opi-
capone?

What molecule is targeted by
Avelumab?

NNP,VB,NN,JJ,NN,NN,. 4 2 ’yesno’
Does thyroid hormone affect cardiac
remodeling?

Does thyroid hormone affect cardiac
remodeling ?

WP,VBP,DT,JJ,NNS,IN,NNP,. 0 2 ’list’
What are the side effects of Nalme-
fene?

What are the generic versions of Via-
gra?

WP,VBZ,DT,JJ,NN,IN,DT,NNP,NN,. 4 2 ’factoid’
What is the molecular function of the
Chd1 protein?

What is the characteristic feature of
the Dyke-Davidoff-Masson syndrome.

VBZ,NNP,VBN,IN,JJ,NN,. 6 2 ’yesno’
Is Propofol used for short-term seda-
tion?

Is ABCE1 involved in ribosomal recy-
cling?

NNP,EX,DT,JJ,NNS,IN,NN,. 1 2 ’yesno’
Are there any specific antidotes for ri-
varoxaban?

Are there any specific antidotes for
dabigatran?

NN,NNS,JJ,IN,NN,NN 4 2 ’list’
List programs suitable for pharma-
cophore modelling

List programs suitable for protein
docking

NNP,VBZ,DT,NN,IN,WDT,NN,. 1 2 ’factoid’
Treprostinil is an analogue for which
prostaglandin?

Idarucizumab is an antidote of which
drug?

WDT,VBP,DT,JJ,NNS,IN,NN,NN,. 3 2 ’list’
Which are the main methods for phar-
macophore modelling?

Which are the cellular targets of ima-
tinib mesylate?

Table 4.5: Pattern Clusters
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tions, starting with the classical sparse representation of Bag Of Words, followed
but a dense representation using word and sentence embeddings. We built our own
embedding vectors using the Word2Vec model (Mikolov et al., 2013b) and used
alternative pre-trained vectors from GloVe (Pennington et al., 2014) and Pyysalo
(Moen and Ananiadou, 2013).

4.2.1 Bag Of Words (BOW)

The first method we used for question representation was the classical Bag Of Words
at sentence level, where every sentence behaves as a bag of its own words without
taking into account the grammar or the order. This bags are n-hot encoding one-
dimensional vectors of the size of the vocabulary, i.e. 5,540 in our experiments. In
this approach every row (vector) of the input matrix represents a question, filling
with 1’s the positions of the words present in the question, and leaving the rest as
0’s. This produces a sparse matrix of number of questions rows and vocabulary size
columns.

Below there is an example of the vocabulary and the n-hot encoded vectors
built for the the following set of two questions: {Does BNP increase after intensive
exercise in athletes?, What is the aim of the Human Chromosome-centric Proteome
Project (C-HPP)?}.

Vocabulary

Does of in what is the after increase intensive exercise athlete ? aim
BNP Human Chromosome-centric Proteome ( C-HPP ) Project

Does BNP increase after intensive exercise in athletes?

1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

What is the aim of the Human Chromosome-centric Proteome Project (C-HPP)?

0 1 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1

An example of a randomly generated n-hot encoded vectors matrix of seven
questions and seven maximum number of tokens is presented in the Figure 4.1.
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Figure 4.1: Example of n-hot encoded vectors matrix, where each qi corresponds to
a question and each fj corresponds the jth word in the vocabulary.

The drawbacks of this approach is that the order of the words in the sentence is
lost and it suffers from data sparsity, which produces for uncommon words poorly
estimated parameters. Additionally, it could happen that some of the words in new
data sets are not contained in the training vocabulary and the model could not
process them. Because of this, we opted to use Embeddings at word and sentence
level.

4.2.2 Embeddings

The aim of using embeddings is to detect linguistic regularities and patterns, so
every embedding dimension would correspond to a feature that ideally contains a
grammatical or semantic interpretation (Turian Joseph, 2010). We used two different
kinds of embeddings: word-level and sentence-level, trained with the Word2Vec and
Doc2Vec models, respectively (Mikolov et al., 2013b). We also used two additional
sets of pre-trained vectors: the first ones trained with the GloVe (Global Vectors)
model (Pennington et al., 2014), choosing the version that contains 8,40B tokens and
300-dimensional vectors. GloVe embeddings are trained on the non-zero entries of
a global word-word co-occurrence matrix, which tabulates how frequently words
co-occur with one another in a given corpus (Pennington et al., 2014).

Oher pre-trained embeddings used were the Pyysalo’s (Moen and Ananiadou,
2013), which are medical domain 400-dimensional word vectors, containing 5.5B
tokens induced from PubMed and PMC. Pyysalo embeddings are also trained with
Word2Vec using the skip-gram model with a window size of 5.

Is worth mentioning that we did a pre-filtering of the words in the pre-trained
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embeddings vectors, keeping only the words present in our vocabulary. However,
there were cases when a word in the vocabulary was not found among the pre-
trained vectors. For this reason, we used variations of the original words in the
vocabulary to try to find a match. This word variations included lower and upper
cases, plural and singular forms, lemmas and regular expressions that only matched
letters and took out any symbol. With these variations we could increase the number
of embeddings vectors associated to each word. However, if after comparing with the
word variations there was not a match, the missing word was assigned to a 0-filled
empty vector.

The process of building our own-trained embeddings consisted on identifying
the syntactic structure of the sentences and build the feature vectors using infor-
mation available of the words. We first tokenized the questions using the Stanford
Core NLP library and extracted two main features: the lemmas and the Part Of
Speech (POS) tags. The lemmas constitute the base form of the words, removing
any inflectional ending or alteration (Manning and Schütze, 2008). The part of
speech corresponds to the disambiguated category of the word that is assigned in
accordance to its syntactic function or its role in the sentence, like noun, pronoun,
verb, adjective, etc. Among the POS tags, there is one that corresponds to the
named entities (NNP), which is defined as a real-world object, like people, locations
or organizations, that can be denoted with a proper name. In our data set there
are many biology and medical named entities. Is worth mentioning that we did not
remove stop words since they were useful to identify the type of the question.

For the lemma extraction we used the NLTK WordNetLemmatizer (Bird et al.,
2009), which is based in WordNet, a large lexical database of English. For the part
of speech tags we used the Standford NLP POS tagger (Kristina Toutanova and
Singer, 2003).

To try to provide more context to the biomedical named entities we added a de-
scriptive categorization using the BioPortal API3, which is a repository of biomedical
ontologies, that allows to retrieve information about biomedical terms. From all the
information available, we focused on the semantic type of the named entities. For
example, the search of the term ’RNAs’ returns ’Nucleic Acid, Nucleoside, or Nu-
cleotide’.

Because not all of the sentences had the same number of words, we decided to
truncate the ones that overpass the 18 tokens, since the higher frequency of sentences
length was 15. On the contrary, if they were shorter, we padded them with an empty
word.

Here we present an example of the feature extraction process of the question
Does BNP increase after intensive exercise in athletes? :

Tokens

Does BNP increase after intensive exercise in athletes ?

3http://data.bioontology.org/documentation
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Lemmas

Does BNP increase after intensive exercise in athlete ?

POS tags

VBZ NNP VB IN SS NN IN NNS ’.’

After extracting the word features we built the feature vector of each question,
which basically consists on the string concatenation of every word’s lemma, part
of speech tag and, if the latter corresponds to a named entity, its semantic type,
all separated by slashes (/). Bellow we present the feature vector of the previous
example.

’Does/VBZ’ ’BNP/NNP/Amino Acid, Peptide or Protein’ ’increase/VB’ ’after/IN’

’intensive/JJ’ ’exercise/NN’ ’?/.’

Finally, we built the embeddings ingesting the feature vectors into theWord2Vec
model implemented in the Gensim Python library (Řehůřek and Sojka, 2010) using
skip-gram and a window of 5 words. An example of a randomly generated word-level
embedding vectors matrix is presented in the Figure 4.2.

Figure 4.2: Example of word-level embedding vectors matrix, where each qi cor-
responds to a question, each Emb wj corresponds to the embedding vector of the
jth word of the question and every fk corresponds to kth dimension or feature of the
embedding vectors.

In addition to the word-level embedding vectors, we also built sentence-level
embedding vectors using the Doc2Vec model from Gensim Library (Řehůřek and
Sojka, 2010), whose only difference with Word2Vec model is that it takes into ac-
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count not only the word vectors but also other sentence embeddings, finally averag-
ing the individual word vectors. An example of a sentence-level embedding vectors
matrix is in the Figure 4.3.

Figure 4.3: Example of sentence-level embedding vectors matrix, where each Emb
qi corresponds to the embedding vector of the ith question and every fj corresponds
to jth dimension or feature of the embedding vectors.

4.2.3 Alternative feature vectors

Following our intuition that adding more information about the syntactic structure
of the question would lead to a better classification performance, we built another
version of the feature vectors.

Constituency tree

In this version we used the Constituents tree of the question, which contains
phrase structure grammar representations of the words. For example, the question
Is Hirschsprung disease a mendelian or a multifactorial disorder? produces the
constituents tree shown in the Figure 4.4.
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Figure 4.4: Example of constituents tree of the question Is Hirschsprung disease a
mendelian or a multifactorial disorder?.

From the tree, we extracted the constituents paths concatenating the phrase
constituents from the root to each leaf of the tree, which correspond to the words
in the sentence. From the Figure 4.4 the following paths are produced:

’SQ/VBZ/Is’,
’SQ/NP/NNP/Hirschsprung’,
’SQ/NP/NN/disease’,
’SQ/NP/NP/DT/a’,
’SQ/NP/NP/JJ/mendelian’,
’SQ/NP/CC/or’,
’SQ/NP/NP/DT/a’,
’SQ/NP/NP/JJ/multifactorial’,
’SQ/NP/NP/NN/disorder’,
’SQ/./?’

Finally, these paths are used as features to create the word embeddings vectors.

4.2.4 Dimensionality reduction of the embeddings

Because we had so many parameters to train in relation to the number of questions
we had, we made experiments reducing the dimensionality of the pre-trained word
vectors. We used Principal Component Analysis (PCA), to reduce the GloVe
and Pyysalo embeddings. Originally of dimension 300 (GloVe) and 400 (Pyysalo),
we reduced them to a 150-dimensional embeddings taking the first 150 principal
components and preserving around 80% of the variance explained.
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4.3 Architecture

This section is aimed to describe the different architectures we used to build the
classifier. We are going to explain the two kinds of convolutional neural networks,
that vary depending on the dimensions of the input matrices. The first version of the
classifier is a 1-dimensional CNN with two types of inputs: n-hot encoding vectors
and sentence-level embeddings. We also used a 2-dimensional CNN model over
word-level embeddings, including our own-trained vectors and the pre-trained ones
(GloVe, Pyysalo). Additionally, we used a linear model to measure the performance
using n-hot encoding vectors.

4.4 1-dimensional CNN

The 1-dimensional neural networks are the ones that receive as input 1-dimensional
vectors, like the n-hot encoded vectors and the sentence-level embeddings. We used
Keras framework (Chollet et al., 2015) to build a 1-dimensional CNN composed by
several convolutional layers interleaved by max-pooling layers, a drop out layer to
reduce the number of trainable parameters and a final dense (fully connected) layer.

As we mentioned in the Question Representation section (4.2), when using the
BOW approach, the input matrix consists on rows of n-hot encoding feature vectors
representing the questions, forming a matrix with number of questions rows and
vocabulary size columns (Figure 4.1).

When using embeddings, a non-trainable embedding layer is added at the top
of the model. In this case, the input matrix is an array with number of questions
embedding vectors of size of embedding dimension.

For the Convolutional layers, the filter matrix was initialized using the Glorot
uniform initializer, that draws samples from a uniform distribution within [-limit,
limit] where limit is

√
6

(fan_in+fan_out)
and where fan_in is the number of input

units in the weight tensor and fan_out is the number of output units in the weight
tensor (Chollet et al., 2015). The chosen activation function was the commonly used
Rectified Linear Unit (ReLU).

In the 1D-CNNs a filter of dimension n×m applied to this kind of input matrices,
takes n adjacent features from the same question in the horizontal axis and take
features from m different sentences in the other dimension, see Figure 4.5. We fixed
the number of steps (strides) in which the filter is shifted to 1 unit.

At the last step, we performed two types of classifications. The first, a Multi-
class classification, where only the 4 general classes are predicted, and aMulticlass-
Multilabel classification, where both, general and specific categories, are taken into
account. In the Multiclass-Multilabel problem, every question is assigned to one of
the four general categories and to one of the thirteen specific categories using the sig-
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(a) (3× 3) filter for n-hot encoded matrix. (b) (3× 3) filter for sentence-level embeddings.

Figure 4.5: Example of (3× 3) filters over n-hot encoded vectors matrix and
sentence-level embedding vectors matrix.

moid activation function. In the Multiclass setting, a softmax is used as activation
function over the neurons of the Dense layer. Figure 4.6 shows a single convolutional
layer CNN architecture.

Figure 4.6: Example of a single layer CNN

To train the model we used the Categorical Cross entropy loss function for the
Multiclass scenario and Binary Cross entropy when doing Multiclass-Multilabel clas-
sification. Using binary cross entropy we treat each output label as an independent
Bernoulli distribution. Additionally, we tried different optimizers, starting with
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Stochastic Gradient Descent, and other adaptative learning rate algorithms like
Adadelta, RMSprop and Adam.

4.5 2-dimensional CNN

The 2-dimensional CNNs receive 2-dimensional inputs, like word embeddings, which
produce an input matrix of dimensions number of questions × maximum sequence
length × embedding dimension, see Figure 4.2. With the exception of the input
matrix, the architecture remains the same as in the 1-dimensional CNN.

In this case, a filter of size (n×m) corresponds to pick n adjacent word em-
bedding vectors from the same question in the x -axis and m features in the y-
axis. When moving the filter in the vertical dimension it could happen that the
window contains features from more than one question, see Figure 4.7 (a). When
m = embedding_dimension, the filter occupies all the embedding vector, see Figure
4.7(b).

(a) (3× 3) filter for word-level embedding vectors
matrix.

(b) (3× 4) filter (4 being the embedding vectors
dimension) for word-level embedding vectors ma-
trix.

Figure 4.7: Example of filters over word-level embedding vectors matrix.

4.5.1 Dependency matrix CNN

This model consists on creating a parallel set of features from the Dependency
tree , which contains the lexical dependencies between the words in the sentence,
also known as grammatical relations. The idea is to retrieve the parent (in terms of
dependency) for every word in the question. The following figure shows the depen-
dency tree of the question Is Hirschsprung disease a mendelian or a multifactorial
disorder? :
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Is Hirschsprung disease a mendelian or a multifactorial disorder ?

cop

compound

nsubj

ccdet

conj

det

amod

Figure 4.8: Example of the dependency tree of the question Is Hirschsprung disease
a mendelian or a multifactorial disorder?

Having the dependencies, we built a dependency matrix with the same di-
mension of the input matrix, but instead of containing n-hot encoded vectors or
embeddings of the words in the sentence, contains n-hot encoded vectors or embed-
dings of the parent words. In Figure 4.9 we present a non-encoded input matrix
and its corresponding dependency matrix. Both matrices are then transformed into
word vectors representations and are passed simultaneously as input to the model.

In this case, the model is a 2D-CNN that receives two input matrices: the original
one containing the words in the questions and the Dependency matrix that contains
the parent words from the dependency tree. Additionally, each input matrix has a
corresponding GloVe embedding matrix, that is also passed as input to build the
respective embedding layers.

The output of each embedding layer is fed to an independent convolutional model
that later will be combined using a Merge layer to take advantage of the dependency
relations between the words. This merge is done using sum, multiplication or av-
erage. Finally, this Merge layer is used as input to the fully connected layer for
classification (Multiclass and Multiclass-Multilabel). In the Figure 4.10 there is a
representation of the dependency tree network.
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Figure 4.9: Example of the (non-encoded) input and dependency matrices of the
question Is Hirschsprung disease a mendelian or a multifactorial disorder?

Figure 4.10: Example of the dependency tree CNN model
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5 | Experiments and Results

In this chapter we are going to present the experiments we did and the results
obtained using different models, different embeddings, multiple number of layers
and varying sizes of filters. Additionally, we present the output using different
optimizers and adding extra samples from Quora data set.

5.1 Experiments

In this section we are going to present the experiments we carried out and some
of the configurations that we used. To begin with, we used a Multinomial Logistic
Regression model with n-hot encoded vectors, that allows to perform mulitclass
classifications. After that, we built 1D and 2D convolutional models and tuned the
hyperparameters.

We built a 1D-CNN using n-hot encoding vectors and sentence-level embeddings.
Then, we built a 2D-CNN using word-level embeddings as input. The number of the
filters or the features to extract was set to 32 for both of the models after comparing
the accuracy with higher and lower values. We used only one channel with squared
filters of different sizes (n× n), with n = {2, 3, 5, 7}. In addition, we used non-
squared filters that kept the aforementioned dimensions in the horizontal axis, but
extended up to the embedding vectors dimension in the vertical axis. This translates
to windows of size (n× 300) for GloVe, (n× 400) for Pyysalo and (n× 300) for our
own-trained embeddings. For the Dependency Tree Model, which is also a 2D-CNN,
we used three different kind of merge functions: sum, max and multiplication.

With respect to the number of layers, we started with a single convolutional layer
and increased the number up to five layers looking for a change in the performance.
We also added the interleaved max pooling layers and one drop-out layer.

As we mentioned in the 4.2 section, we built and used different kinds of embed-
dings: the GloVe and Pyysalo pre-trained embeddings and our own-trained ones. In
the latter, we tried different representations. Initially we used the original version
that includes the lemmas, POS tags and the description of the named entities, then,
we used the ones which are obtained from the constituents tree paths.

Regarding to the optimization algorithm, we used Stochastic Gradient Descent
and the adaptations RMSprop, Adam and Adadelta.
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5.2 Results

In this section we present the results of the most relevant experiments. Even though
the real order in which we carried out the experiments is not exactly the one pre-
sented below, we are going to discuss the results in a way that allow us to make the
comparisons.

As a disclaimer, because the performance of a model changes based on the parallel
choice of all the parameters, the results displayed in each table present the best
performance obtained after the tuning. The comparisons are done changing one
specific parameter and letting the rest fixed.

We used the accuracy as evaluation metric, which measures the overall perfor-
mance of the classifier. However, because the accuracy does not allow us to measure
the goodness of the model in predicting each single class, we used the Matthews
Correlation Coefficient (MCC), that allows us to accomplish that. The MCC takes
into account the true and false positives and true and false negatives, that makes
it suitable for unbalanced classes, which is the case with our specific categories.
We present the values of both metrics for the two problem settings: Multiclass and
Multiclass-Multilabel.

We started comparing the different models with the different kind of embeddings
and fixing all the rest of the parameters. In Table 5.1 we present the results for all
of the configurations that we used. We can see that the Dependency model +
GloVe and the 2D-CNN + GloVe had the best results in the Multiclass setting in
terms of accuracy. Both also had the same moderately-good performance in terms
of MCC. This means that adding information about the dependencies does not help
to determine the type of the answer. The next models in the performance ranking,
are the 2D-CNN + Word2Vec and 1D-CNN + Doc2Vec models, that had a low
performance. Surprisingly, the Pyssalo model provided poor accuracy and MCC,
which was comparable to a simple linear model with BOW.

In the Multiclass-Multilabel setting, we observed that the difference in accu-
racy among all the models was not big. Almost all of them, except for Pyysalo’s,
performed similarly good. Although, the Dependency model had a slightly better
performance than the rest. On the contrary, all of the models presented bad results
regarding the MCC. This lower performance was expected, because the combined
number of classes sum up to thirteen, and apart from that, there was a high imbal-
ance between the specific categories. On the other hand, since Pyysalo vectors had
been trained with biomedical information, it was quite surprising that they provided
such a bad performance.

Another interesting result is that all the algorithms performed better in the
multiclass-multilabel case, even though it was a more challenging task. Since both
groups of classes were manually created and the general classes were assigned by
experienced PubMed curators, the quality of the annotations is not the differential
factor. This means that the classifier is better at predicting specific categories, which
addresses, not the type of the answer but the type of the content.
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Model Type of representation Acc. (%) Multi-
class/MCC

Acc. (%)
Multiclass-
Multilabel/MCC

Log. Regression n-hot encoding 24 / 0.0 -
1D-CNN n-hot encoding 30 / 0.0 86 / 0.04
1D-CNN Doc2Vec embeddings 30 / 0.0 86 / 0.0
2D-CNN Word2Vec embeddings 37 / 0.15 86 / 0.0

2D-CNN GloVe embeddings 76 / 0.68 86 / 0.22

2D-CNN Pyysalo embeddings 25 / 0.0 60 / 0.04

Dependency
model

GloVe embeddings 76 / 0.68 91 / 0.27

Table 5.1: Comparison between models

Optimizer Acc.(%) Multiclass/MCC Acc.(%) Multiclass-
Multilabel/MCC

SGD 71 / 0.68 86 / 0.09
Adadelta 76 / 0.68 87
Adam 72 / 0.63 89 / 0.28
RM-sprop 57 / 0.48 88 / 0.42

Table 5.2: Comparison among optimizers

Because of the reason that the Dependency Model had the best performance, we
are going to present the rest of the results with this model.

After comparing the models, we measured the difference in performance using
several optimizers. In the Table 5.2 we can see that the optimizers performed dif-
ferently in each setting. The one that performed the best in the Multiclass setting
was Adadelta and the one that performed the best in the Multiclass-Multilabel was
Adam.

No study has been presented in the literature so far, that proves the superiority
of a single optimizer over the others. Consequently, they are usually used as black
boxes. Different optimizers perform differently depending on the scenario, so the
fact that we obtained the best results with two different optimizers is not surprising.

In terms of the number of convolutional layers, we tried stacking from 1 to 5
layers to see whether there was an improvement or not. As the Table 5.3 shows,
we did not find any increase in performance and therefore, we used the simplest (1
layer) architecture. This was also the case in other published works like Kim et al.
(2014) and Kalchbrenner et al. (2014).

Regarding the dimensions of the filter, we experimented with sizes of 2, 3, 5 and
7. We first used squared windows of (n× n) and then windows of (n× emb_dim),
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N. of Layers Acc.(%) Multiclass/MCC Acc.(%) Multiclass-
Multilabel/MCC

1 76 / 0.68 86 / 0.22
2 73 / 0.67 86 / 0.16
3 74 / 0.65 86 / 0.0
4 75 / 0,67 86 / 0.0
5 60 / 0.44 86 / 0.0

Table 5.3: Comparison using different number of convolutional layers

Filter size Acc.(%) Multiclass/MCC Acc.(%) Multiclass-
Multilabel/MCC

1× 1 76 / 0.68 91 / 0.25
2× 2 76 / 0.68 91 /0.27
5× 5 76 / 0.68 91 / 0.27
7× 5 76 / 0.68 90 / 0.29
2× 300 77 / 0.69 87 / 0.25
3× 300 73 / 0.67 88 / 0.29
5× 300 74 / 0.69 88 / 0.29
7× 300 75 / 0.66 88 / 0.27

Table 5.4: Comparison between dimensions of filters

where emb_dim is the dimension of the embeddings (300). We thought that tak-
ing more information into account (using n× emb_dim filters), the accuracy would
increase. However, from the Table 5.4 we can see that, contrary to what we have
expected, using squared filters in the both settings provided a slightly better per-
formance. Therefore, for the final model, we used squared (5× 5) filters.

We did not notice any improvement in the performance of the network employing
max-pooling and drop-out layers.

On a different matter, regarding to our attempt to incorporate new samples using
POS tag patterns, we could not obtain good quality patterns that would be general
enough to match unseen questions. We discovered that the maximum frequency in
patterns that matched the conditions were of only two. Although we relaxed the
conditions allowing to have patterns in more than one cluster, when we compared
with unlabeled questions, the number of matches was still really low. This indicates
that utilizing the POS tags solely cannot provide information about the structure
of the question that we are dealing with.

On the contrary, we were successful incorporating new samples using the Quora
data set. We compared the change in the performance with these extra samples and
as we expected, adding a big amount of semi-supervised labeled questions increased
the accuracy around 7%. This seems to indicate that our approach to label the
Quora pair of questions worked well.

In terms of the dimensionality reduction using PCA, we did not see any improve-
ment. However, on the contrary, we saw a slight downgrade in the performance of
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the classifier. Therefore we ended up using the original size of the vectors.

5.3 Analysis of the errors.

In this section we will describe a manual analysis of the errors in order to get insights
for further improvement.

To perform the analysis we selected a set of 199 randomly extracted questions
assigned to the four general classes.

The first step was to build the confusion matrix of our predictions, presented in
Table 5.5. However, no interesting conclusions can be deduced from the confusion
matrix. As expected, most of the cases (the positive ones) occur in the main diagonal
and the the errors are distributed regularly. This means that the errors are probably
due to multiple factors with no clear bias towards one of them. From the 199
questions of our set there are 58 errors, i.e. 29.14%.

True
Class

factoid summary yesno list Total

Predicted
Class
factoid 33 9 5 2 49
summary 13 26 1 8 48
yesno 5 2 52 0 59
list 8 3 2 30 43
Total 59 40 60 40 199

Table 5.5: Confusion matrix

Next, we will discuss the main sources of errors presenting some examples.

• First, we noticed that in some cases the score of the true class is the sec-
ond highest among our predictions and is close to the score of the predicted
class. In 12 out of 58 cases, the difference between the two scores is less
than 20%. Consider for instance the question Is recommended the use of
perioperative treatment with thyroid hormone therapy in patients undergoing
coronary artery bypass grafting?. The true class is yesno while the predicted
class is summary. The predicted scores of the four classes are 0.0628961548,
0.4625069499, 0.454161793, 0.0204350203, corresponding to factoid, summary,
yesno, and list, respectively. The distance between the true and the predicted
class is just 0.0083451569. Even though the classifier failed, it did it by a very
low margin. Maybe with more training data or more epochs these cases could
be solved.
• Another issue detected is the length of the questions. As shown in Figure 5.3,

there is a severe drop in accuracy (blue line) for short (less than 7 tokens) and
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long (more than 16 tokens) questions. This drop is highly correlated with the
number of examples to learn (gray line in the figure). This could be inter-
preted as an under-representation of these cases in the training set. Consider,
for instance the 4-tokens question Describe July Effect., a summary question
incorrectly classified as factoid. This question contains only two significant
words (no other case occurs in our sample set).
• Stanford Core NLP library is an excellent NL processor, but it has been built

for processing general texts, no domain specific ones. In the case of extremely
specific domains, as the medical/genetic one, the accuracy of the Stanford Core
NLP library drops heavily. Several issues have been detected:

– The case of multiword terms is specially challenging. Consider the case of
Fanconi anemia pathogenesis. The tokenizer has produced [Fanconi/JJ,
anemia/NN, pathogenesis/NN ]. The correct split is [[Fanconi anemia],
pathogenesis] but, besides the incorrect classification of Fanconi as an
adjective (JJ), the three words were tokenized as different tokens and
no multiword has been recognized. This issue results on a severe over-
generation of cases that imply a drop on the learning accuracy.

– The presence of acronyms and their long forms, sometimes with parenthe-
sis, in other cases as appositions, also produces over-generation of cases.
For instance, What does polyadenylate-binding protein 4 (PABP4) bind
to? presents both issues.

– Most of the named entities that occur in the questions (usually medical or
genetic terms) are in the best case tagged as NNP (proper noun) because
they are not found in the dictionaries, however, they are frequently erro-
neously tagged. The confusion of incorrectly assign the tags NN (singular
noun) and NNS (plural noun), useful to distinguish a factoid from a list,
is notably frequent and harmful. Why sarcopenia/NNS and progeria/NN
are tagged differently in similar contexts is not clear at all.
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Figure 5.1: Histograms of length (in tokens) of questions
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6 | Conclusions, contributions and fu-
ture work

In this project we built a model using the dependencies tree, obtaining an overall
good classification performance using a CNN with a simple architecture. How-
ever, the Matthew correlation coefficient was specially low for Multiclass-Multilabel
setting, which indicates that the performance of the classifier for less represented
classes is inconsistent. In this regard, we noticed that the accuracy in the Multiclass-
Multilabel problem was a lot higher compared to the classification in the four original
classes. This could be due to the fact that the specific categories represent the theme
of the questions and for that reason this problem involved topicalization of sentences.
This seems to indicate that the model is better at detecting the topic of questions
than predicting the expected type of an answer. In spite of that, we must mention
that the design choice which improved the performance of the model more was the
optimizer and the tuning of the learning rate.

Due to the fact that we found potential in incorporating information about the
dependency relations between the words, for future works, we recommend the explo-
ration of other configurations or extensions of the Dependency model. Apart from
that, conducting experiments with different filter sizes simultaneously could also be
promising.

On the other hand, due to the lack of domain specific question data sets, an
automatic mechanism for detecting specific classes could be implemented using NLP
techniques, e.g. Topic Models. This way, the manual tagging could be avoided. In
the same spirit, using mechanisms to overcome the unbalance inside the classes
would definitely improve the performance of the classifier.

We mentioned in section 5.1 that the method to increase the number of samples
using the POS tags patterns did not provide good results. Perhaps, applying the
patterns to other data sets could deliver better results. Apart from that, the use of
wildcards in place of some POS tags could make it more general.
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