
A Linux Kernel Scheduler Extension for Multi-Core
Systems

Aleix Roca∗, Vicenç Beltran∗, Kevin Marquet†
∗Barcelona Supercomputing Center

†Univ Lyon, INSA Lyon
E-mail: {arocanon, vbeltran}@bsc.es Kevin.Marquet@insa-lyon.fr

Abstract—Current runtime systems take care of getting the
most of each system core by distributing work among the multiple
CPUs of a machine but they are not aware of when one of their
threads (workers) perform blocking calls (e.g. I/O operations).
When such a blocking call happens, the processing core is stalled,
leading to performance loss. In this project, we present two
new and independent methods to minimize the effect of I/O
operations: The first one is a Linux kernel extension denoted
User-Monitored Threads (UMT) and the second one is a user-
space library named libsio2aio. Our Linux kernel extension
allows a user-space application to be notified of the blocking
and unblocking of its threads, making it possible for a core
to execute another worker thread while the other is blocked.
The libsio2aio library intercepts the family of read/write system
calls, interchanges them by its asynchronous version, and returns
control back to the runtime while the I/O operation is being
resolved. In both cases we use the Nanos6 runtime to test the
new methods.

Keywords—Linux Kernel, Process Scheduler, I/O, High-
performance computing.

I. INTRODUCTION

High performance computing applications usually execute
in worker threads that are handled by a userland runtime
system, itself executing on top of a general purpose operating
system (OS). The main objective of the runtime system is to
provide maximum performance by getting the most out of
available hardware resources. On a multicore machine, this
translates to distributing the work of applications among the
machine’s available cores and balance each core workload.

Runtime’s balancing capabilities are subject to the under-
lying OS scheduler. When a thread performs a blocking I/O
operation against the OS kernel, the core where the thread was
running becomes idle until the operation finishes. This problem
can lead to huge performance loss as some HPC or high-end
server applications perform lots of I/O operations because they
heavily deal with file and network requests.

One approach to address this issue is to make the runtime
system aware of when blocking and unblocking events happen.
In this way, it can chose to execute another worker thread
while the first one is blocked. A general approach to detect
any blocking operations (such as page faults) requires special
kernel support, however, if we narrow the scope of blocking
operations to the standard syscalls, a user-space library will
suffice. There has been related work on the kernel side [1], [2]
but is has been rejected due to its complexity. Instead, both
our kernel and user space solutions main advantages are its
simplicity.

Fig. 1. UMT model overview example

II. UMT OVERVIEW

In UMT, the Linux kernel uses a communication channel
to notify a user-space application of blocking and unblocking
events among their threads. An overview of this functioning
is given in Figure 1. The Wi are user-space runtime’s worker
and L denotes the user-space runtime’s Leader Thread whose
role is to monitor the communication channel. Basically:

• At time T1, four workers W1, W2, W3 and W4 are
bound to CPU’s C0, C1, C2 and C3 respectively.
The Leader Thread is not bound to any CPU and
is waiting for UMT events. A pool of idle workers
remain blocked until they are needed.

• At time T2, the worker W1 blocks because of an I/O
operation and the Leader Thread is notified of the
event.

• At time T3, the Leader Thread wakes an idle worker
from the pool and waits again for more events. (When
W5 wakes, it would also generate an unblock event
which is omitted for simplicity). Worker W5 is now
running on a CPU; without the proposed mechanism,
it would have been idle.

• At time T4, W1 is unblocked after the I/O operation
finishes. An unblocking event is generated and the

5th BSC Severo Ochoa Doctoral Symposium

54



Leader Thread wakes up. Because there is not any free
CPU at the moment, the Leader Thread waits until it
momentously preempts another worker. Once it does
so, it reads the UMT events and registers that multiple
workers (W1 and W5) are running on the same CPU
(C0).

• At time T5, after the W5 worker finishes executing
tasks, it checks the Leader Thread registers and real-
izes that there is an oversubscription problem affecting
its current CPU. To fix the problem, the worker self
surrenders and returns to the pool of idle workers.
This generates another event that wakes up the Leader
Thread and updates the register of events.

• At time T6, the oversubscription problem has ended
and the four workers are running normally.

A. UMT design: Linux kernel-side

Our proposal for the UMT kernel support includes two new
system calls to initiate and manage UMT and the infrastructure
for the notification channel between kernel- and user-space
based on the standard eventfd1 (EFD) file descriptors.

When calling um mode enable the Linux Kernel initializes
an EFD for each CPU on the system and stores them in the
context of the calling process. This process’ threads start being
monitored as soon as each of them allows it by calling the
ctlschedumfd syscall. The main idea is that each of these EFD
keeps a per-CPU count of how many monitored threads are in
the ready state. The actual Linux kernel instrumentation of the
EFD writing points has been placed into a wrapper around the
main context switch entry point called __schedule().
B. UMT design: User-space runtime design

In order to validate the proposal, we have adapted the
Nanos6 runtime[3] of the OmpSs-2[4] task-based programming
model to work with our kernel extension.

Nanos6 consists of a set of workers threads whose objective
is to run tasks and a special management thread called Leader
thread. The Leader thread first calls um mode enable to ini-
tialize the UMT kernel structures and then monitors all the per-
CPU EFDs using a standard epoll system call. Each worker
thread first calls ctlschedumfd once to enable monitoring and
then start executing tasks. When one of the monitored threads
produces an event (it block or unlocks), the Leader Thread
wakes up from the epoll sleep and reads the EFD. If the count
of ready threads on the CPU that has triggered the event is zero
and there are still tasks to execute, the Leader Thread retrieves
an idle thread from a pool and gives it a task to execute on
the idle CPU.

If the previously blocked worker wakes up while the new
worker is running, both threads will have to compete for the
CPU. However, this oversubscription problem only prevails
for a limited amount of time. Workers have been provided
with a oversubscription protection mechanism that consists on
checking the counter of ready threads of its CPU after finising
executing a task. If the count is greater than one, workers self
surrender to allow other workers to run freely on the CPU.

1An eventfd is a simplified pipe that was designed as a lightweight inter-
process synchronization mechanism. Internally, an eventfd holds a 64 bit
counter that can be written to increment its internal value or read to clear
and return it.

III. LIBSIO2AIO OVERVIEW

The libsio2aio user-space library defines wrappers for
the pread(), pwrite(), preadv() and pwritev()
syscalls (all Linux Kernel native AIO supported syscalls)
which call the asynchronous version of the intercepted syscall.
After submitting the request, it checks whether it has imme-
diately completed or not. If it is the case, the wrapper returns
immediately as well. Otherwise, it pauses the execution of
the current tasks (not the thread) and transfers control to the
runtime. The runtime is then able to execute other tasks in
the current CPU while the I/O operation is being resolved.
The runtime periodically checks whether any AIO request has
completed and if it is the case, the task that submitted the
AIO request is unblocked. Unblocked tasks execution are later
resumed by Workers.

IV. EXPERIMENTATION

We have tested UMT using a synthetic benchmark. The
benchmark simply maps a region of memory using mmap and
creates a set of independent tasks whose purpose is to write
and sync random mapped data. As a result we have achieved
a speedup of x10. We are currently testing libsio2aio and we
have not yet been able to find an appropiate benchmark that
benefits from its advantages.

V. CONCLUSION

Finally, we conclude that both UMT and libsio2aio have
two main effects: on the one hand, they provide a mech-
anism to queue more I/O operations which approaches the
real I/O rate to the one specified by the manufacturer of
the storage device. On the other hand, blocked processes no
longer obstruct the core and useful computations can be done
while I/O petitions are being served. In the case of UMT,
the oversubscription problem limits performance but as results
show, it is not always a problem. Future work will focus on
finding more I/O intensive applications to test both presented
approaches.

REFERENCES

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy, “Sched-
uler activations: Effective kernel support for the user-level manage-
ment of parallelism,” ACM Transactions on Computer Systems (TOCS),
vol. 10, no. 1, pp. 53–79, 1992.

[2] V. Danjean, R. Namyst, and R. D. Russell, “Linux kernel activations
to support multithreading,” in In Proc. 18th IASTED International
Conference on Applied Informatics (AI 2000. Citeseer, 2000.

[3] BSC, “Nanos6 runtime,” https://github.com/bsc-pm/nanos6, 2018.
[4] J. M. Perez, V. Beltran, J. Labarta, and E. Ayguadé, “Improving the

integration of task nesting and dependencies in openmp,” in Parallel and
Distributed Processing Symposium (IPDPS), 2017 IEEE International.
IEEE, 2017, pp. 809–818.

Aleix Roca is a Linux Kernel passionate. He admires
the leading Linux developers technical skills and
their tremendous effort to manage the world’s biggest
open source community. Aleix studied computer en-
gineering at UPC-FIB. After obtaining his degree he
enrolled the Master in Innovations and Research in
Informatics specialized on High Performance Com-
puting at UPC-FIB, where he obtained the Severo-
Ochoa MSc scholarship. During his master studies he
joined the Barcelona Supercomputing Center where
he developed his final master thesis on the Linux

kernel and programming models. Currently he has started a PhD at BSC where
he continues his research on the Linux Kernel and HPC.

5th BSC Severo Ochoa Doctoral Symposium

55




