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Abstract

Topology Optimization Under Uncertainty (TOUU) of large-scale continuum structures is a
computational challenge due to the combination of large finite element models and uncertainty
propagation methods. The former aims to address the ever-increasing complexity of more and
more realistic models, whereas the latter is required to estimate the statistical metrics of the
TOUU formulation. In this work, the computational burden of the problem is addressed using
a sparse grid stochastic collocation method, to calculate the statistical metrics of the TOUU for-
mulation, and a parallel Adaptive Mesh Refinement (AMR) method, to efficiently solve each of
the stochastic collocation nodes. A two-level parallel processing scheme (TOUU-PS2) is proposed
to profit from parallel computation on distributed memory systems: the stochastic nodes are dis-
tributed through the distributed memory system, and the efficient computation of each stochastic
node is performed partitioning the problem using a domain decomposition strategy and solving
each subdomain using an AMR method. A dynamic load-balancing strategy is used to balance the
workload between subdomains, and thus increasing the parallel performance by reducing processor
idle time. The topology optimization problem is addressed using the topological derivative concept
in combination with a level-set method. The performance and scalability of the proposed method-
ology are evaluated using several numerical benchmarks and real-world applications, showing good
performance and scalability up to thousands of processors.
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1. Introduction

Topology optimization aims to find the optimal layout of material within a design domain
for a given set of boundary conditions such that the resulting material distribution meets a set
of performance targets [1]. Contrary to other disciplines within structural optimization such as
size and shape optimization, in topology optimization the material distribution is obtained with-
out assuming any prior structural configuration. This provides a powerful tool to find the best
conceptual design that fulfills the requirements at the early stages of the structural design pro-
cess [2]. Topology optimization methods have been successfully applied to improve the design
of complex industrial problems assuming deterministic conditions [3]. However, it obviating the
uncertainty in the design process may influence notably the optimal design performance under
real-world engineering conditions. The different sources of uncertainty may affect not only the
safety and reliability of structural designs but also their performance. Such sources of uncertainty
include epistemic uncertainties, typically due to limited data and knowledge, and aleatory uncer-
tainties, which are the natural randomness in a process, including manufacturing imperfections,
unknown loading conditions, variations of the material properties, etc. The introduction of uncer-
tainty to model realistic conditions in the design process has shown to be a key issue for solving
real-world engineering problems in several fields, such as civil [4], automotive [5], aerospace [6],
and mechanical [7] engineering, to name but a few.

The topology optimization methods incorporating uncertainty in their formulation are em-
braced under the term of Topology Optimization Under Uncertainty (TOUU) methods. The
formulation of such methods differs from each other in the design objective as well as in the way
the uncertainty is incorporated into the optimization formulation [8] to deal with the wide concept
of “structural robustness”. By adopting a probabilistic approach, two formulations are commonly
used in the literature: Robust Topology Optimization (RTO) and Reliability-Based Topology Op-
timization (RBTO). RTO incorporates the first two statistical moments of the cost function to
obtain optimal designs which are less sensitive to variations in the input data [9, 10]. On the other
hand, RBTO aims at minimizing a deterministic prescribed criterion while explicitly considering
the effects of uncertainty in terms of the probability of constraint violation (probability of failure)
[11]. In the same vein, Risk-Averse Topology Optimization (RATO) aims at minimizing a risk
function that quantifies the expected loss related to the damages [12]. In this work, we focus on
the RTO problem considering uncertainty in the loading conditions [13, 14].

One of the main challenges in TOUU is the computational burden addressing real-world engi-
neering problems, which is especially exacerbated for large-scale finite element models. This prob-
lem still remains even though significant numerical and theoretical advances have been achieved in
the last years. In fact, the solving of few hundred analyses of expensive finite element models re-
quires the use parallel processing in large-scale deterministic topology optimization problems [15].
Such large-scale models are needed to obtain the details of many problems, such as structural (e.g.
wing aircraft structures [16]) and heat transfer (e.g. heat sinks cooled by natural convection [17])
ones. Multi-core [18, 19] and many-core [20, 21] architectures, or the combination of both [22],
are commonly needed to address such large-scale deterministic problems. However, the number
of simulations required by the deterministic design is far from the required number of samples for
estimating the probabilities required by the formulation of TOUU methods. The TOUU problem,
in general, and the RTO problem addressed in this work, in particular, can become unaffordable
due to the combination of two computationally demanding processes, namely large-scale topology
optimization and uncertainty propagation. The former involves diverse demanding tasks, such
as the solving and assembly of large systems of equations, which may increase meaningfully the
memory consumption and the processing time when dealing with large finite element models. The
latter requires a large number of finite element model runs [23] that can increase the processing
time significantly. This issue has led to many developments using high performance computing
techniques to address uncertainty quantification problems [24, 25]. Besides, the uncertainty prop-
agation problem suffers from the so-called curse of dimensionality [26, 27]: the computational
cost grows exponentially with the number of random variables defining the underlying stochastic
domain.

Several works have made use of adaptive coarsening and refinement of the mesh, namely Adap-
tive Mesh Refinement (AMR), to reduce the computational cost of topology optimization problems.



This technique is especially useful when relatively small volume fractions are required since after
a few iterations the domain of computation is largely void [28]. The computation in void regions
contributes significantly to the overall computational cost but little to the accuracy of computation
and design. The underline idea of AMR is to save computational cost by reducing the total number
of elements and having fine elements only where and when necessary with the aim of obtaining
an equivalent design to the one that would be obtained on a uniformly fine mesh, but at a much
cheaper computational cost. Besides, AMR offers the possibility to increase the resolution of the
material distribution and to reduce the error in the estimated behavior providing more accurate
results in the region of interest [29]. The early work of Kikuchi et al. [30] introduced adaptive
grid design combining numerical grid-generation methods and adaptive finite element methods,
including r-, h-, and p-methods, to address the shape optimal design problem. Ramm et al. [31]
proposed an adaptive density-based topology optimization method for optimizing structures with
an elastoplastic material. The Solid Isotropic Material Penalization (SIMP) method with AMR
techniques is also proposed in recent works [29, 32]. Adaptive mesh refinement schemes have also
been used with genetic algorithms to address the topology optimization problem [33]. Ramm et al.
[31] proposed an adaptive density-based topology optimization method for optimizing structures
with an elastoplastic material. The Solid Isotropic Material Penalization (SIMP) method with
AMR techniques is also proposed in recent works [29, 32]. Adaptive mesh refinement schemes have
also been used with genetic algorithms to address the topology optimization problem [33].

This work aims to overcome the prohibitive computational cost of large-scale TOUU prob-
lems in general and the RTO problem in particular by using an adaptive two-level parallelization
scheme (TOUU-PS2). This is done by selecting and developing suitable techniques for estimating
the system response under uncertainties in modern computing infrastructures. The response of the
stochastic system is calculated on distributed memory systems using sparse grid stochastic colloca-
tion methods. These methods are embarrassingly parallel requiring the solving of the model in the
collocation points. The stochastic collocation points are split into smaller problems using domain
decomposition methods, which are solved using AMR and coarsening to focus the computational
effort on the spatial regions of interest; in particular, the solid-void interface. A key point to
increase the parallel performance is the use of a dynamical parallel repartitioning strategy during
the optimization to balance the workload between computational processes [34]. The solid-void
interface is located using the topological sensitivity [35, 36], and the h-method for AMR is used for
improving the objective function minimization and reducing the computational burden. Another
key point of the proposed methodology is the communication between subdomains and stochastic
nodes. The adjacent subdomains communicate between them to calculate the system response at
the stochastic nodes, and then the solution at each subdomain is used to compute the statistical
moments required by RTO formulation. The proposed parallelization scheme permits to minimize
the communication at the two levels of the computation: the adjacent subdomains communicate
between them in the first level, where the system response is calculated for each stochastic node,
and only the response the corresponding subdomain of all the stochastic points is required to cal-
culate the statistical moments in the second level. The numerical experiments evaluate the strong
and weak scalability of the proposed parallelization scheme.

The paper is organized as follows. The basis and theoretical background of TOUU problems and
the RTO formulation are briefly reviewed in section 2. Section 3 presents the numerical resolution
of the RT'O problem using the topological derivative. The parallel implementation of the proposal
is described in section 4. Section 5 is devoted to the numerical experiments used for validating the
proposed method. Finally, section 6 presents the conclusion of the proposed method for addressing
RTO problems efficiently using modern computing infrastructures.



2. Topology optimization of structures under uncertainty (TOUU)

2.1. Setting of the problem

Let (Q, F, P) be a complete probability space, and let D C R? (d = 2 or d = 3) be a bounded
Lipschitz domain whose boundary is decomposed into three disjoint parts 0D = I'p UT'y U I'.
Consider the linearized elasticity system under random input data

—v o(u(z,w)) = blz,w) inDxN
u(z,w) = @ inTpxQ )
olu(r,w)) - n= tr,w) inlyxQ’
o(u(z,w)) -n= 0 inTyxQ

where u is the stochastic displacement field, ¢ is the Cauchy stress tensor, b and t are the body
and surface forces, @ is the prescribed displacement field, and n is the unit outward normal vector
to 0D. The stress tensor o and the symmetric gradient of the displacement field € are related by
means of the following constitutive equation:

o(z,w) = C(z,w) : e(z,w), (2)

where C represents the fourth order constitutive tensor. Notice that compared to its deterministic
counterpart, the body and surface forces and the constitutive tensor depend on a spatial variable
2 and on a random event w € ).

In the topology optimization problem, the structural boundary splits the domain D into two
different subdomains DT, corresponding to a stiff material, and D~, corresponding to a soft
material, such that DT U D~ = D and DT N D~ = (). This subdivision into subdomains can be
represented by means of a characteristic function x such that

_ 1 xzeDT 5
x@=q. 3

This allows us to rewrite the constitutive tensor equation defined in all the domain as:

C(x,w) = x C(z,w) + (1 — x) C (z,w), (4)

where CT and C™ are the fouth order constitutive tensors of the stiff and the soft material respec-
tively.
Let us now define the following Hilbert spaces, required for appropriately dealing with problem

(1):
V={ve HY(D)?: v|r, = 0 in the sense of traces}
equipped with the H'(D)%norm, and:
L% (V) = {f :Q =V, fis F-measurable and ||fH%%(Q;V) = [ If ()3 dP(w) < oo} .

The following assumptions on the uncertain input parameters of the system (1) are made:

(A1) Lamé parameters: A(z,w), u(z,w) € LY (Q; L>°(D)) and there exist positive constants fimin,
Hmaz Amina )‘mam such that

0 < pmin < (2, w) < ez <00 ae. x €D, as weQ,

and

0 < Amin < 2p(z,w) + dA (2, w) < Az <00 ae. z €D, as weQ,



(A2) b=b(z,w) € L} (4 L*(D)?),

(A3) t=t(z,w) € L% (Q; L*(Tn)),

(A4) Finite dimensional noise: the random input data of (1), i.e. Lamé coefficients and loads,
depends on a finite number N of real-valued random variables {Yn}gzl.

The TOUU problem is then formulated as the minimization of the structural compliance under
random input data subjected to the maximum material allowed, as follows:

min J(x,w) z/ b(z,w)u dx—i—/ t(z,w)u ds
D I'n

XEDL
s. t.: a(x,u,v,w) =l(v,w) YVveVVweN
Dy = {x e L*(D.{0, 1}),/ xdz = L|D|} (5)
D

where Dy, is the feasible domain restricted to a volume constraint denoted as a fraction 0 < L < 1
of the domain D, and a(y, -,,w) and I(-,w) are the bilinear and linear forms which are given by:

2
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<
=
E
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= /Da(u(:mw)) ce(v(z,w)) do (6)
l(v,w) = /Db(a:,w)v dw—i—/ t(z,w)v ds . (7)

I'n

The general formulation of the TOUU problem (5) provides a different solution for each real-
ization of the random event. The random functional should be transformed into a deterministic
one to address the optimization problem using conventional optimization algorithms. Different
formulations have been proposed in the literature depending on how the uncertainty is incorpo-
rated in the formulation. In this work, the formulation is focused on the RTO problem, which
aims to find designs less sensitive to variations in the design variables and the input parameters.
This is normally done by formulating the RTO problem as a two-objective optimization problem
where the expected value and standard deviation of the compliance are considered as a measure of
structural robustness. A weighted approach can be used to scalarize the multi-objective problem
into a single-objective one. The RTO problem can be formulated as follows

min  Jr(x) = E[J(x,w)] + ay/Var[J(x,w)]

XEDL
s. t.: /Qa(x,u,v,w)dP(w) = /Ql(v,w)dP(w) (8)
VoueLh(Q,V),

Di={x e L=(D.{0.1}), [ xdo=L|DI}

where E[-] denotes the expectation operator, Var|-] denotes the variance operator, and a > 0 is a
weighting parameter which balances the mean and the variance of the performance function. In
this probabilistic setting, the mean and the variance of the performance function are obtained as
follows

EJ(Gw)] = /Q J(x.w)dP(w),

Varli(uw) = /Q 2 (. 0)dP(w) (9)

- ( / J(x,w>dP<w>)2.



2.2. RTO using the topological derivative concept

In order to solve problem (8), several approaches exist. In this work we favor the use of the
topological derivative concept [37] together with a level-set approach in order to advance to the
optimal topology.

The topological derivative studies the sensitivity of a given functional with respect to the
apparition of an infinitesimal inclusion of a different material in a given point of the domain of
interest. In the problem studied in this work, the objective is to obtain the sensitivity of the robust
functional Jr(x) with respect to the inclusion of soft material in the stiff D+ subdomain, or with
respect to the inclusion of stiff material in the soft D~ subdomain.

Using the topological-shape sensitivity analysis proposed in [35], a formal computation of the
topological derivative of the cost functional DrJr(x) leads to:

T — aJ(x,w) _ aE[J(x,w)]
DrTr(z,x) /52(1+\/VGT[J<X7W)] VVar[J(x,w)]

)a(x,w) Pz, w) : e(x,w)dP(w)

where P stands for the fourth order Pélya-Szego polarization tensor, whose expression can be found
in [38]. In the isotropic case, it basically depends on the Young’s modulus and Poisson ratio in
DT (E*,v") and D~ (E~,v™). In this work, the isotropic 2D polarization tensor has been used as
an approximation for the appropriate 3D polarization tensor.
The properties of the polarization tensor ensure that:
o(z,w): P(r,w) : e(z,w) >0 Vre D"
o(z,w): Plz,w) : e(z,w) <0 Ve e D.

We can now define a signed topological derivative such that:

= [ +DrJgr(z,x) in ze€ DT
DrIr(e:x) { —DrJr(z,x) in z€D” '

Let us now introduce the following interpretation of the signed topological derivative, which will
be used in the subsequent sections of this work. For a given topology, computing the topological
derivative allows one to know, for each given spatial point, how would the robust cost functional
change if the material was switched. As a consequence, once the optimal value for the characteristic
function x, solution to (8), has been reached, the following condition holds:

DrJr(x,x) = DrJr(y,x),Yo € DY ¥y € D™. (10)

This allows one to construct a level set function v, which will implicitly characterize D™ and D~.
This level set function is defined as:

Y(x,x) = DrIr(z, x) + A,

where A € R is a scalar responsible for ensuring that the volume restriction in (8) is fulfilled and
which can be computed by enforcing:

/ H((x, X)) = LD,
D

where H is the Heaviside step function:

1ty >0
H(w)_{o if ¢ < 0

From (10), it can be observed that for the solution of (8) it holds:

x = H().



3. Numerical resolution of RTO problem using the topological derivative

In this section we describe the methodology used for the solution of the topology optimization
problem using a finite element method, which will be coupled with an adaptive mesh refinement
technique in the following sections.

3.1. Stochastic collocation Finite Element Method

Following the infite dimensional noise assumption (A4), the uncertainty in the input data of the
PDE is represented by a finite set of random variables Y = (Y7,---,Yx) which are mapped from
the sample space §2 to R following the joint probability density function p = p(y). The variational
formulation of (1) can be rewritten as:

a(x,u,v,y) =l(v,y) Yo eV, yinA. (11)

where A = Y (Q) € RY. Thus, the stochastic boundary-value problem (1) has been transformed
into a deterministic PDE system with an N-dimensional parameter. For the solution of (11) we
use a finite element method, with the particularity that an accurate integration scheme capable
of exactly integrating the variational form in elements cut by the material interface is used. The
variational form of the finite element problem is: find u, € V}, such that:

a(x,un,vn,y) =l(vp,y) Yo, € Vi, yin A. (12)

where V}, denotes a finite element space approximating the Sobolev space V. Since the domain is
described by a level-set function and in order to exactly integrate (12), the quadrature points at
the elements cut by the material interface need to be integrated carefully, because the constitutive
tensor C has a discontinuity in these elements. For this, the quadrature rule in the cut elements is
modified, selecting new quadrature points in such a way that integrals are computed exactly. In
this sense the method proposed in this work can be understood as a Cut-Mesh method.

3.2. Numerical approrimation of the integrals in the random domain using sparse grids

The stochastic collocation method leads to a set of uncoupled deterministic sub-problems col-
located at some stochastic nodes y* € A. As a consequence, the statistical quantities of interest
can be obtained by solving the multidimensional integrals:

Eu(oy) = /A Ju 06 v)p () dy, (13)

Var[Jn(x,y)] = /AJﬁ(x,y)p(y)dy— </{\Jh(x7y)p(y) dy) : (14)

In practice, these multi-dimensional integrals cannot be evaluated analytically, and their nu-
merical computation becomes computationally intractable as the dimension of the random domain
increases. This issue has motivated the development of efficient methods to address this issue, such
as dimension reduction methods and sparse grid collocation methods. In this work, due to the
smoothness of the solution of the elasticity system, the numerical approximation in the random
domain is performed using anisotropic sparse grid collocation method described in [39, 40]. For
an integer ¢ € N, called the level, and a vector of weights for the different stochastic directions
g= (91, ,9n), consider the multi-index set:

N
X, (¢, N) = {i: (i, in) ENY, i>1: > (in—1)g, geg}, (15)
n=1
where g = min;<,,<n g,. Similarly to the isotropic Smolyak quadrature rule [41], the anisotropic
Smolyak quadrature formula applied to Jy(x,y) is given by:

Ag(LN) Tn(xy) = Y. (A" @ @ A™) Ju(x,y)
i€Xy(L,N) (16)
Ril R; 71 T T T
=2t e I (myrts Sy ) wil e wil



where A'» = Q'» — Q»~ 1 with Q° = 0, is a quadrature rule in which the coordinates yrn
of the nodes are those for the 1D quadrature formula Q' and its associated weights w are the
difference between those for the 7,, and i,, — 1 levels. The number of collocation points 1n the nth
direction is denoted by R; . By using (16) the statistical moments of Jj, (), y) can be approximated
as:

ElJn(Oow)] =~ Ay (4
VO/I"[Jh(X7 y)]

) In(X,y) (17)
—Ag (6,N) Ju(x,9)* (18)

&
p
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8.8.  Description of the iterative topology optimization algorithm

The last required ingredient is an algorithm to arrive to the solution of problem (8). For this,
an iterative process will be defined: initially, a level set function ¥, € V}, is defined with unit initial
value:

Y9(x) =1 in D,

where the superscript indicates iteration number. From this level set value, a characteristic function
can be built:

X' (x) = H(y,  (2),

which allows one to solve the solid mechanics problem (12) and compute the topological derivative
DrJ L(z,x"). For convergence aspects, the algorithm also requires of an intermediate function
@ (z,x"). This function is initially defined as the projection onto the finite element space of the
normalized topological derivative DrJ}(z,x") in order to bound the level-set function with a
relaxation scheme introduced as the iterative process advances, i.e.:

o -
i Py, (D1 J}(x, x")) Py (?Tj;; (z,x'1))
[Pn (DrTg(w,x)) | |Pu (DrTg (2, x|
where £ is a relaxation parameter, and Pj indicates a projection onto the finite element space.
In the numerical examples, P, is computed by using a lumped mass matrix approach for com-

putational efficiency. This approach plays the role of standard filtering in topology optimization.
Finally, the level set function at the current iteration is defined as:

(19)

¢Z(3«"’Xi) = 1_"€i)’

Vi (x) = ¢ (2, x") + A,

where )\’ is computed by using the secant method to solve the following equation:

[ #wi @) = Lip.
D

There exist several possible strategies to compute x in (19), in this work we use a heuristic
approach which turns out in a good performance in the numerical examples. Firstly, a spatial
oscillation indicator is computed:

i i i—1 i—1
&' (z,x") = sign f’f(x’x.z ! if”;”’x z :
L, 1) — ¢im2(z, xi72)
Note that £ (z,x?) = 1 if the iterative algorithm for computing the topological derivative is ad-
vancing monotonically in the preceding iterations, and &‘(z,x?) = —1 otherwise. This indicator
allows one to detect if there are oscillations in the iterative process. If there are oscillations the
value for k needs to be decreased, otherwise, it can be increased (up to a maximum of kK = 1).
Since £i(x, x?) is a spatial function, the information on the oscillations needs to be averaged so
that a scalar value for x can be obtained, which is done as follows:




_ cast (2 x) =1
ek Th i & xT) = —1

; . o (i (@)= \
1 mml( To(riex) A

where c1 > 1, cko < 1 and cx3 < 1 are algorithmic parameters. In the numerical examples
cr1=1.1, cx2=0.5 and cx3=0.1 are used. As a stopping criteria, we consider the evolution of the
objective functional to minimize, the algorithm stops when after several iterations the functional
has not decreased a certain percentage of its value. Also, a limit in the number of iterations to be
performed is set.

=
I



4. Parallel implementation on distributed memory systems

At the practical level, the strategy described in the previous sections is implemented in a
parallel finite element code capable of doing adaptive mesh refinement and coarsening in distributed
memory machines. For this, a domain decomposition strategy is used for the finite element problem
together with the Message Passing Interface library (MPI) which handles the communications
between processors and subdomains. A second level of parallelism is introduced in order to be able
to integrate data referred to stochastic analysis, as it will be explained in the following .

Let us just summarize here how the parallel domain decomposition of the finite element problem
is handled: firstly a partition of the nodes of the mesh is performed, which assigns each node to
a processor. This is followed by a distribution of elements, with the particularity that interface
elements with nodes belonging to multiple subdomains are replicated in each of the subdomains.
This means that the information of nodes adjacent to the interface between subdomains is also
replicated in each of the subdomains, which results in the so-called ghost nodes. Ghost nodes
are nodes which do not belong to a given subdomain, but which are replicated in the subdomain
because they belong to interface elements.

In the rest of this section, the merging of the finite element strategy with an adaptive mesh
refinement library and its application to topology optimization problems, together with a two-level
parallelism approach for stochastic analysis are described.

4.1. Adaptive refinement analysis of the topology optimization problem

As it has been remarked previously, the main objective for using an adaptive mesh refinement
and coarsening technique is to be able to concentrate the elements of the finite element mesh in the
regions close to the interface between the stiff and the void materials. Thanks to this, we expect
that the topology of the optimized solution can be captured with a high resolution at a relatively
low computation cost.

4.2. Adaptive algorithm for parallel computing: RefficientLib

The adaptive mesh refinement strategy that we use is specifically targeted for distributed mem-
ory machines, and has been implemented in the adaptive mesh refinement Fortran 2003 library
RefficientLib. The algorithmic details can be found in [34], but the main capabilities and how
they have been used in this work are described next.

RefficientLib allows any parallel distributed memory finite element code to efficiently modify
the mesh in a hierarchical manner (allowing to both refine and coarsen the finite element mesh) and
in this way it allows to have a fine mesh only on the areas of the computational domain where it is
required, thus alleviating the total computational cost by using coarse elements in non-important
areas. Most importantly, it features good scalability up to thousands of processors, it is capable of
doing load rebalancing when a processor gets too loaded, and it has an easy to use interface with
a given finite element code (see [34]).

The adaptive refinement and coarsening algorithm is based on a nodal parallel partition. This
means that each node of the mesh belongs to a processor, whereas an element can belong to
multiple processors if it owns nodes from more than one subdomain. This feature introduces some
particularities which need to be taken into account when designing the adaptive parallel algorithms.

Additionally, the fact that the algorithm results in meshes with hanging nodes needs to be
taken into account in the finite element solver. Hanging nodes are nodes which appear in the faces
of adjacent elements with different refinement levels (see Figure 1). If nothing is done, this results
in non-conforming finite element spaces. Although this is an issue which can be easily dealt with
by using selective discontinuous finite element spaces (see for instance [42]), in this work we favor
the option of eliminating the nodal unknowns associated to hanging nodes by restricting their value
to an interpolation of the nodal values of the finite element unknown in its parent nodes. As a
consequence, hanging node values are not an unknown of the finite element problem, but they are
postprocessed from nodal values in the parent nodes.

Another important issue, specially in topology optimization, is how the spatial fields are trans-
fered between successively refined meshes. For this, the strategy used in [43] is adopted for the
transmission of spatial fields. Particularly, two types of fields need to be transfered: the first type
are fields which are stored in the nodes of the finite element mesh, in the solid mechanics problem a
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Figure 1: Hanging nodes in a finite element mesh.

typical example are the nodal displacements. In this case, the process for transferring the informa-
tion between successive meshes is straightforward, since for nodes which are in both the old and the
new mesh the field values do not change, and for new nodes they can be interpolated from values
in the parent nodes. The second type of fields are fields which are stored in the quadrature points
of each element. For solid mechanics, these fields typically correspond to stresses and strains. In
topology optimization problems it also includes the characteristic function x associated to each
quadrature point. The transmission of data between successive meshes for this type of fields is a
bit more complex to implement, because quadrature points of parent and children elements do not
coincide in general. In our approach, we have solved this issue by means of an L? nodal projection
process. Although this approach introduces some dissipation due to the several interpolation steps,
it turns out in good results for the iterative topology optimization process.

4.2.1. Refinement criteria

In topology optimization, the part of the domain where one requires the largest resolution is the
area surrounding the interface between the stiff and the void material. Thus, a simple refinement
criteria can be set, where a number of layers of elements adjacent to the interface, represented
by the level set function, are strongly refined. From the parallel execution point of view, this
refinement criteria is implemented as follows (see [44] for a similar approach in free surface flows):
a first step consists in identifying the elements which are cut by the level set interface, this is
easily done by selecting elements with both positive and negative nodal level set values. Secondly,
a number of layers of surrounding elements need to be selected for refinement. This requires some
parallel communications because these layers might propagate from one parallel subdomain to
another as illustrated in Figure 2. In order to address this issue, a nodal array is used to mark
the nodes belonging to the layers of elements surrounding the level set interface. Successive layers
of nodes are then marked one layer at a time, and the nodal array ghost values are communicated
between neighbor processors before advancing to the next layer. This ensures that the result in a
parallel execution coincides with the serial one.

Also, a progressive refinement approach is adopted, which means that the first few iterations of
the topology optimization process are done with the original coarse mesh. Once the general shape
of the solution has been obtained, the adaptive refinement process starts. This allows one to save a
lot of computational effort, because the initial iterations which are far away from the final solution
are performed in the coarse, cheap mesh. Thus, during first iterations large changes in topology
are performed whereas accurate changes in the shape are obtained in the last iterations.
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Figure 2: Propagation of the adaptive refinement criteria between parallel subdomains. 3 adjacent layers of elements
are selected to be refined. A boundary node communication from subdomain 2 to subdomain 1 is required so that
elements in subdomain 1 are also refined.

4.8. Two-level parallelism approach for stochastic analysis in distributed memory machines

In the previous sections the parallel implementation of the adaptive analysis of a deterministic
topology optimization problem has been explained. This section deals with the parallel implemen-
tation when the adaptive topology optimization analysis is to be applied in a stochastic setting.

As explained previously, computing the topological derivative in stochastic analysis for a given
topology requires to solve multiple problems, each of them corresponding to a stochastic collocation
point of the sparse grid, and adding some function of the deterministic topological derivatives of
each of the stochastic collocation points together. From the implementation point of view, several
approaches are possible, but not all of them are suitable for large scale computing. Moreover, the
fact that adaptive mesh refinement is used poses additional restrictions for the parallel strategy.

The approach we propose for dealing with the stochastic topology optimization problem consists
in a two-level parallelism strategy which can be easily implemented in distributed memory machines
using the MPI library. The proposed algorithm exploits both the domain decomposition and the
stochastic parallelism levels and it overcomes the performance loss associated to disk access by
completely avoiding it. Moreover, it allows to easily communicate information between simulations
at different stochastic collocation points when using adaptive simulations.

The parallel approach is illustrated in Figure 3, and can be summarized as follows: instead
of running an independent execution for each stochastic collocation point (and maybe in each
execution exploiting the parallelism at the domain decomposition level), we propose to run a single
execution in which stochastic and domain decomposition parallelism are exploited at the same time.
For this, once the execution starts, the total number of available processors is distributed, firstly
by assigning an equal number of processors to each stochastic collocation point, and secondly, in
each stochastic collocation point, a domain decomposition algorithm is used to partition the finite
element mesh into several parallel subdomains, each of them assigned to one processor.

At this point, the finite element problem is replicated in each stochastic collocation point, where
in turn a subdomain partition of the finite element problem has been done. If a deterministic
partitioning algorithm is used (in the sense that for a given finite element problem and number
of processors it always returns the same distribution into subdomains), the subdomains are the
same at each stochastic collocation point. This is very convenient, because it means that when
the stochastic topological derivative is composed, communications need to be done only between
processors associated to the same subdomain in different stochastic collocation points. In fact,
composing the stochastic topological derivative requires of an all-reduce communication of the
topological derivative field between the processors associated to the same subdomain. Although
this operation can pose a bottleneck if a very large number of stochastic collocation points is used,
it is still much more efficient than the alternative, which would consist in storing this information
to disk for each stochastic collocation point and reading it afterwards.
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Figure 3: Two-level parallel approach. Several executions run at different stochastic collocation points are shown.
Each of the executions is run in parallel using a domain decomposition approach. Additional communications are
required for the stochastic analysis. The general communication pattern is shown in the lower part of the figure.

Moreover, this approach suits very well the adaptive refinement and coarsening strategy de-
scribed in Subsection 4.2.1. Note that the refinement criteria depends exclusively on the values
of the level set function (particularly on the position of the interface between the two types of
material). In turn, the position of this interface depends on the stochastic topological derivative,
which is shared and equal in every stochastic collocation point. Due to this, the refinement criteria
will coincide in every stochastic collocation point. This means that the pattern of communications
of the topological derivative between processors in different stochastic collocation points will not
change in successive iterations of the topology optimization process. Even if load rebalancing is
required at the domain decomposition parallelism level, this communication pattern will remain
unchanged.
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Figure 4: Design domain and boundary conditions for the beam-to-cantilever problem. The figure shows the
deterministic and robust designs with different values of a with ¢ ~ N(0,7/12) (upper) and values for a constant
value of o = 10 and different levels of uncertainty in the bearing of the unit load oy with a = 4 (lower).

5. Numerical experiments

In this section several numerical examples are presented, which illustrate the performance of
the proposed strategy. Firstly, some benchmark examples are used to validate the numerical
implementation. Secondly, large scale examples are used in order to test the capabilities of the
proposed strategy to solve engineering problems.

5.1. Beam-to-cantilever problem

The beam-to-cantilever problem consists in the shape optimization of a two-dimensional can-
tilever under uncertain loading conditions. Such a benchmark is widely used [45, 14] to show the
effects of uncertain loading in robust optimal design. The left edge of the cantilever is anchored
and a unit force with uncertainty in direction, centered in the horizontal line, is applied at the
middle of the right edge. The design domain is a 1x2 rectangle which is tessellated using P; trian-
gular elements. Uncertain loading, boundary conditions and tessellation of the design domain are
depicted in Figure 4. The material parameters are Et =1, E- =106 and vT =v~ = 0.3.

The configuration and the numerical resolution of the robust shape optimization problem is as
follows. The target volume is set to 15% of the initial design domain. The direction ¢ of the unit-
load follows a probabilistic distribution centered at the horizontal line, ¢ = 0, with the deterministic
loading state as the mean value p14 = 0. The influence of the level of uncertainty on the robust
shape design is shown in Figure 4 by the consideration of o4 = {n/6,7/12,7/24,7/32,7/48} as
standard deviation values. For this, a level 3 quadrature, giving raise to 3 different collocation
stochastic points is used. As expected, it can be observed that as the influence of the level of
uncertainty increases, the angle of separation between both branches of the topology increases.
When the influence of uncertainty becomes very large (o = 50 in the first row, o4 = 7/6 in the
second row), the algorithm converges to locally optimal solutions which minimize the standard
deviation, but which are far from optimality with respect to the mean compliance value.

5.2. Michell-type structure design

This numerical example presents the results for the robust topology optimization of the well
known michell-type structure problem. The boundary conditions and the domain discretization
are shown in Figure 5. The design domain has a roller support in the bottom right-hand corner
and a fixed support in the bottom left-hand corner. The structure is subjected to three uncertain
concentrated loads applied at its bottom. The magnitude of the loads are characterized by three
independent random variables. These random variables are assumed to follow normal distributions
with mean values pg, = ptg, = pig, = 1 and standard deviations o4, = 0.5, 04, = 0.1 and o4, = 0.2.
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Figure 6: The Michell-type structure design problem: (a) DTO design and (b) Robust design. The adaptive meshes
allow to capture details of the topology in specific regions.

Regarding the stochastic discretization, a level 3 stochastic quadrature rule is used, giving raise to
25 different collocation stochastic points. The material parameters are E* = 1, E~ = 1075 and
vt =v" =0.3.

The solutions obtained with a deterministic design and a robust design (o = 5) are shown
in Figure 6. The deterministic approach should provide a symmetric design, although lack of
symmetry in the topology details is observed due to the lack of symmetry of the initial mesh. On
the contrary, the robust design is non-symmetric due to the larger uncertainty in the left-most load.
Figure 7 shows the adaptive meshes used for the topology optimization problem. The adaptive
refinement and coarsening strategy allows to heavily refine the mesh in the area where topological
details occur, and the computational cost is kept low because a coarse mesh can be used in the rest
of the domain. Note that different adaptive meshes are used for the deterministic and the robust
design cases. Figure 8 shows the convergence of the compliance mean and compliance standard
deviation. The proposed iterative algorithm rapidly converges to a close to optimal topology.
Every 50 iterations, a new refinement level is introduced (departing from the original coarse mesh
at the initial iteration), which causes the small oscillations in the objective function observed in
the figure.

5.3. Performance evaluation

5.8.1. Non-Adaptive vs. Adaptive performance
In this section we compare the performance of the adaptive vs. the non-adaptive version of
the topology optimization algorithm. For this, we use the deterministic Michell-type structure

NN INANNN

VAV, N/
VAVAVAVAVAVAVA: |
VAVAVAVAVAVAVAVAVAVAVAVAY
AVAVAVAVAVAVAVAVAVAVAVAV:
VAVAVAVAVAVAVAVAVAVAV
+VAVAVAVAVAVAVAVAVAVAY
INININININININININT

AVAVAVAVAVAVAVAVAVAY
VAVAVAVAVAVAVAVAVAY
'X AVAVAVAVAVAViA

(a) DTO (b) Robust design

Figure 7: Adaptive meshes used for the michell type structure. The mesh is heavily refined in the area close to the
interface.
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Figure 9: Non-adaptive versus adaptive computational time comparison for two equivalent precision solutions.

problem. For the non-adaptive simulation, we use a mesh of 36000 elements which provides an
accurate enough resolution for the problem of interest, and we perform the topology optimization
process. The simulation runs for approximately 31 seconds (141 topology optimization iterations)
until the compliance value converges and the simulation stops.

The adaptive simulation departs from a mesh of 2276 elements. The refinement criteria is the
following: for the first 50 iterations, the coarse mesh is used. In iterations between 50 and 100,
at most one level of refinement is allowed in the region surrounding the material interface. From
the 100th iteration on, a maximum of two levels of mesh refinement are allowed in the region
surrounding the material interface. The final level of accuracy of the refined mesh is equivalent
to the one of the non-adaptive mesh (same element size at the interface). The simulation runs
for approximately 11 seconds (128 topology optimization iterations) until the compliance value
converges and the simulation stops. The final topology optimized designs are qualitatively very
similar in the adaptive and non-adaptive cases. A graphical computation time comparison is shown
in Figure 9. For the same level of accuracy of the final solution, the adaptive mesh refinement
strategy can provide huge savings in computational cost when provided with a suitable refinement
criteria.

5.83.2. Parallel Scalability tests

In this section we present the scalability tests for the proposed algorithm. The scalability tests
are done on the Michell-type geometry, for which several steps of the adaptive topology optimization
process are performed and both weak and strong scalability are measured. For the linear system
solver, the HYPRE preconditioner (see [46]) together with a conjugate gradient method are used,
both of them accessed through the PETSc library (see [47]).

The first set of scalability tests are run on the LaPalma Supercomputer, located at the Instituto
de AstroFisica de Canarias. The LaPalma supercomputer is composed of 252 IBM dx360 M4
compute nodes. Each node has sixteen E5-2670 cores at 2.6GHz with 32 GB of RAM memory.
Available RAM per core (discounting the operative system) is approximately 1.4 Gbytes. The
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maximum number of tasks per job is 2400.

The first scalability test is a deterministic case with adaptive mesh refinement, where several
refinement plus topology optimization steps are performed. The simulation is performed by using
from 8 to 256 CPUs and the speed up is measured. The results are shown in Figure 10-a). The
speed up is very good up to 128 processors and starts to degrade at 256 processors (speed up of
210). The reason for this is that, for the test case run, the number of finite element nodes per
processor when using 256 processors very low, approximately 20000, which results in subdomain
border communications becoming a bottleneck both for the linear system solution and for the
adaptive refinement process communications. Also, load rebalancing becomes more frequently
necessary when the number of processors increases, which also affects performance. Cases with a
larger number of nodes per processor could not be run for this strong scalability test because they
did not fit in the 1.4 Gbyte RAM per processor memory limitation when using only 8 processors.
Although performance is good, it clearly limits the scalability for a larger number of processors
in this system. However, this result can be improved by combining domain decomposition and
stochastic parallelism as it is shown in the next test.

The second scalability test consists in solving the same case but in a stochastic setting, partic-
ularly by considering stochastic values for the forces modulus. The used stochastic integration rule
requires 25 stochastic integration points. The domain discretization is the same as in the previous
example, so a minimum of 8 processors per stochastic integration point are required. As done
previously, we increase the number of processors per stochastic integration point and we measure
the speed up. The results are shown in Figure 10-b). It can be observed that good performance is
obtained up to 2345 processors (with a speed up of approximately 1800).

The third scalability test consists in solving again the Michell-type problem with the following
particularities: a coarser spatial discretization is used, so that the problem can fit into a single
processor’s RAM memory. In this case, we do not increase the number of domain decomposition
partitions, but we consider a case in which we are interested in increasing the accuracy of the
stochastic integration rule. For this, we progressively increase the number of stochastic integration
points (together with the number of processors), and we measure the weak scalability. The results
are shown in Figure 10-c). The weak scalability plot shows an expected jump when switching from
1 (deterministic analysis, no communications required) to 25 stochastic points, but then shows an
optimal behavior and remains almost flat up to 1233 stochastic integration points. However, the
computational time starts to increase when the next stage of the integration rule is used (2097
stochastic integration points). Although the LaPalma Supercomputer can be fully exploited in
this case, for larger processor count the stochastic communications will start to penalize efficiency.
This bottleneck can be overcome by combining stochastic and domain decomposition parallelism,
as we do in the next example.

The fourth scalability test is run in the Curie Supercomputer. The Curie system is composed
of 5040 Bullx B510 nodes, each equiped with 16 Intel E5-2680 Sandy-Bridge processors working at
2.7 GHz, and 32 GB of NUMA RAM memory. The total processor count is 80640, although the job
submission is limited to approximately 25000 processors. The objective of this test is to show the
capability of the proposed algorithm to properly scale up to the order of the tenths of thousands
of processors. In this test the Michell case is solved by using a partition into 128 subdomains, and
then the accuracy of the stochastic integration rule is progressively increased, ranging from 1 to
165 stochastic collocation points. Weak scalability is measured with processor count which ranges
from 128, corresponding to 1 stochastic node, to 21120 processors, corresponding to 165 stochastic
nodes. Results are shown in Figure 10-d). The attained performance is almost optimal for this
case, and the Curie Supercomputer can be fully exploited without performance losses.

5.4. A large scale case. Airplane bearing bracket under random loading

The bearing bracket is a common dynamic component that interfaces with moving parts, and
has to conform to a certain geometrical envelope as well as being able to sustain large loading
forces in various directions. The optimization of this design can provide weight savings and reduce
fuel consumption of airplanes.

Figure 11-a) shows the geometry and the boundary conditions of the Airplane Bearing Bracket
(ABB) benchmark. The Elastic Modulus (E) is 200 GPa, the Poisson Ratio is 0.27 and the material
is assumed to be isotropic linear elastic. The boundary conditions consist in a rigid plate which is
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Figure 11: Design domain and boundary conditions for the Airplane Bearing Bracket (ABB) problem (a) and loading
conditions (b).

attached to the bracket by means of four high strength bolts. Regarding the loading conditions, a
load with a 7/4 inclination with respect to the horizontal axis is considered, with an orientation
standard deviation of o4 = 7/12. Uncertainty in the load direction is considered only in the z
or spanwise direction. The loading conditions are depicted in Figure 11-b). A level 3 quadrature,
giving raise to 3 different collocation stochastic points, is used.

Three cases are evaluated: in the first case an objective volume fraction of 0.5 is set, in the
second one the objective volume fraction is 0.2, while in the third one the objective volume fraction
is 0.1. Since both the geometry and the loads are symmetric, only one half of the bracket is
simulated, with symmetry boundary conditions in the symmetry plane. The numerical simulations
are performed departing from a finite element mesh of 1.2 million elements, and are progressively
refined until a mesh of between 50 million elements (for the 0.5 volume fraction case) and 120
million elements (for the 0.1 volume fraction case) is obtained. The simulations run for between
75 and 100 iterations until the final solution is obtained. The cases were run in the LaPalma
Supercomputer by using 1536 processors and took roughly 20 minutes to complete.

The 0.5 volume fraction solution is shown in Figure 12. The stiff material is mostly positioned
around the high strength bolts, and the region surrounding the head of the bracket. The obtained
geometry is quite simple without complex patterns. The 0.2 volume fraction case is represented in
Figure 13. The final result presents a more complex pattern with few material in the high strength
bolts area. Finally, Figure 14 shows the results for the 0.1 volume fraction. The result is similar to
the previous one, but several additional holes appear in the intermediate area due to the scarcity
of stiff material. Details of the obtained geometry are shown in Figure 15.
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Figure 12: Results for the airplane bearing bracket, 0.5 objective volume fraction. Top: lateral view. Bottom: top
and bottom views.

Figure 13: Results for the airplane bearing bracket, 0.2 objective volume fraction. Top: lateral view. Bottom: top
and bottom views.
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Figure 14: Results for the airplane bearing bracket, 0.1 objective volume fraction. Top: lateral view. Bottom: top
and bottom views.

Figure 15: Results for the airplane bearing bracket, 0.1 objective volume fraction. Details of the obtained geometry.
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6. Conclusion

In this work we have presented the strategy for stochastic topology optimization in high per-
formance computing distributed memory clusters. The main idea is to use adaptive computational
meshes and to exploit parallelism both at the domain decomposition level and at the stochastic
collocation points level.

The topology optimization process consists in the iterative computation of the topological
derivative coupled with a level set strategy for the definition of the stiff and soft materials, which
allows to keep a sharp tracking of the interface.

For the adaptive mesh refinement strategy, a finite element method coupled with an adap-
tive refinement library has been used. The main advantage of this approach is that it allows to
dynamically concentrate the refined elements in the area close to the material interface, thus sav-
ing computational effort. A domain decomposition strategy for the distribution of load amongst
processors is also used for parallelism, which is coupled with a load rebalancing step when the
adaptive mesh refinement starts. At the stochastic level, parallelism is exploited by evaluating
separately each of the stochastic collocation points, with communications being done only for the
computation of the topological derivative mean and standard deviations.

Several numerical examples illustrate the capability of the proposed methodology to save com-
putational effort, and the computational scalability of the method is assessed in examples run in
high performance computing clusters. The proposed algorithm is capable of efficiently exploiting
these parallel distributed memory systems, with scalability being assessed in the LaPalma Super-
computer for up to 2,300 processors, and in the Curie Supercomputer for up to 21,000 processors.
It is also capable of managing finite element meshes of the order of hundreds of millions of elements,
with savings in wall-clock time of up to four orders of magnitude with respect to a naive serial,
non-adaptive approach .
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