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ABSTRACT 
 

Seismic pounding between adjoining buildings frequently causes serious damage; although collision can be 

avoided with proper separation, can still occur due to code non-fulfillment, loose requirements of old codes, and 

seismicity underestimation. Inside this context, this work deals with collision between two buildings with aligned 

slabs. The simulation of this phenomenon is not obvious, involving stress traveling waves, high-frequency 

behavior, and local effects. Complex distributed continuum mechanics-based models can be used, but are time-

consuming; conversely, the concentrated Kelvin-Voigt model can be utilized instead, being simple and 

inexpensive, yet accurate. Its behavior is characterized by damping and stiffness parameters; the damping 

influence is particularly important and a number of estimation criteria have been proposed. Among them, the 

Anagnostopoulos formulation is simple, and provides satisfactory results in most situations. That formulation 

consists in estimating the damping parameter after a given target value of the coefficient of restitution; the 

influence, during impact, of the colliding building structures and the seismic excitation is neglected. This paper 

proposes an alternative approach that releases one of the aforementioned assumptions: the influence of the building 

structures and their initial separation is taken into consideration. A simplified parametric study oriented to 

investigate the performance of the proposed strategy is performed; it is found that the accuracy of the 

Anagnostopoulos formulation is improved in a number of situations. Noticeably, this gain is obtained at a low 

computational cost. The proposed formulation is satisfactorily utilized to analyze pounding between two multi-

story multi-bay RC buildings and to simulate a shaking table pounding experiment. 
 

Keywords: Seismic pounding; colliding adjoining buildings; Kelvin-Voigt model; numerical simulation; damping 

parameter estimation 
 

 

 

1. INTRODUCTION 
 

Impact between contiguous buildings under strong seismic events is a relevant issue since the huge forces that are 

generated during the collision significantly affect the dynamic behavior of the pounding buildings. On some 

occasions, the effect of impact might be beneficial, mainly in terms of inter-story drift; conversely, in many other 

situations, pounding is detrimental, particularly in terms of absolute acceleration. Collapses and structural and 

nonstructural damage of buildings due to seismic pounding have been reported [1–9]. Although such collision can 

be avoided by adequately separating the involved buildings, and this gap is routinely required by the design codes, 

impact can anyway occur because of several reasons: sometimes code prescriptions are not fulfilled, some past 

codes did not oblige any such separation, and the seismicity can be underestimated. Therefore, seismic pounding 

of buildings is something to be taken into consideration. 

 

Collision between adjoining buildings can be classified into two categories: slab-to-slab and slab-to-column (or 

slab-to-wall) impact; they correspond to aligned and unaligned slabs, respectively. The second type is by far more 

dangerous, since the impact of a rigid and massive slab on a column (or even on a wall) is most likely to lead to 

collapse. On the other hand, the first type is not free of danger, and is considerably more frequent, since adjoining 

buildings with unaligned slabs are regularly avoided. Moreover, the numerical simulation of slab-to-slab impact is 

highly challenging, as discussed later. Thus, this study is focused on seismic pounding of adjoining buildings with 

aligned slabs. 

 

As outlined in the previous paragraph, collision between two building slabs is a complex phenomenon, because it 
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involves stress traveling waves, high-frequency behavior, and significant local effects [10, 11]. Certainly, 

sophisticated mechanics-based numerical models are available, but they are highly time-consuming. On the other 

hand, the 3-D continuum partial derivative equations of motion (distributed-parameter models) can be solved 

exactly in some geometrically simple cases, but the ensuing closed-form solutions can be useful only when the 

required simplifying assumptions are reasonable. Given these circumstances, the description of the analyzed type 

of impact with concentrated models has been suggested [12]. The most simple and spread one is the linear 

viscoelastic Kelvin-Voigt model [13], consisting in the parallel combination of a spring and a dash-pot, together 

with the consideration of the gap between the colliding slabs, as described later in Figure 1.  

 

The Kelvin-Voigt model is simple, robust and computationally inexpensive, providing reasonable accuracy; 

moreover, it is implemented in the most common software codes (ETABS, SeismoStruct, OpenSees, among 

others). On the other hand, sound criteria for selecting the damping parameter are available [14]; with regard to the 

stiffness parameter, it has proven to be less relevant. Conversely to these positive issues, some studies [15, 16] 

have pointed out that the Kelvin-Voigt model exhibits some degree of inconsistency, since the contact force can 

take negative values, despite this model being compression-only. With the aim of fixing this conflict, the works 

[17-19] depict modifications of the Kelvin-Voigt model; however, the study [16] demonstrates that their results are 

similar to those of the normal Kelvin-Voigt model. In addition, other models such as Hertzdamp [15], nonlinear 

viscoelastic [20], and Hunt-Crossley [21] have been proposed. These models are computationally more expensive 

and less robust, are not implemented in the major software codes, and no comprehensive studies providing criteria 

for selecting the values of the parameters have been reported. Also, the aforementioned inconsistency in the 

Kelvin-Voigt model does not affect its overall performance [22]. Therefore, the Kelvin-Voigt model is a valid and 

practical tool for global studies on seismic pounding between buildings with aligned slabs. 

 

As stated in the previous paragraph, criteria for estimating the damping parameter of Kelvin-Voigt model are well 

established. According to [14], the damping parameter is selected after a simple closed-form expression providing 

the damping in terms of a target value of the coefficient of restitution; this expression is derived by neglecting, 

during the impact duration, the influence of the colliding building structures and of the seismic excitation. This 

approach has proven basically satisfactory [13, 16, 22, 23], but further improvement is still possible. 

 

As discussed previously, less attention has been paid to the stiffness parameter, since it has no intense effect on the 

buildings response. More precisely, the effect on post-impact velocity, drift displacement, and story shear force is 

weak [13]; conversely, impact force and absolute acceleration are more sensitive to the stiffness of the Kelvin-

Voigt model [11]. Given these considerations and the fact that a considerable number of sound criteria to select the 

stiffness parameter have been reported [12, 13, 22, 24, 25], this research is focused on the damping parameter. 

 

This paper presents a new formulation where the damping parameter of the Kelvin-Voigt model is selected, like in 

the previous approach [14], after the target coefficient of restitution. The proposed formulation accounts, during 

the impact duration, for the influence of the stiffness and damping of the colliding buildings; the effect of input is 

disregarded, because such repercussion is random and has proven limited in all the analyzed situations. The 

proposed formulation leads to a simple algorithm. Their required input parameters depend on the building 

structural properties and on the velocities at the beginning of impact; criteria for selecting such velocities are 

provided. A simplified parametrical study on two single-story single-bay frames is carried out; its objective is to 

investigate the performance of the proposed formulation, mainly in comparison with the previous one [14]. 

Numerical examples on pounding between pairs of multi-story multi-bay RC frames under seismic excitation are 

presented; the obtained results highlight the capacity of the proposed approach and, in some cases, their higher 

performance compared to the previous one. These remarks are further emphasized in the numerical simulation of 

shaking table pounding experiments on pairs of RC colliding frames. 

 

Parametrical studies on seismic pounding between pairs of three-to-five story adjoining RC buildings with aligned 

slabs using the new formulation are being performed [11]. The final objective of this long-term research is to 

provide simple and efficient simulation tools and to study the relevance of seismic pounding in the most common 

situations. 
 

2. KELVIN-VOIGT MODEL OF POUNDING  

 

2.1. Model description 
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The Kelvin-Voigt model is a zero-length link element consisting of a linear spring and a linear dash-pot in parallel, 

as displayed in Figure 1.b. In Figure 1.b, ml and mr are the equivalent masses of the left and right colliding slabs, d 

is the gap size, and k and c are the stiffness and damping parameters of the Kelvin-Voigt model, respectively. 

Noticeably, the masses ml and mr are not actually a part of the model; they have been included herein for further 

clarity. In Figure 1.b, vl and vr are the colliding sections velocities of the left and right buildings, respectively; xl 

and xr are the corresponding coordinates (𝑣l = 𝑥̇l and 𝑣r = 𝑥̇r). Figure 1.c represents a strained state of the Kelvin-

Voigt model; noticeably, if xl  xr > d, there is relative deformation between both slabs. Figure 1.a displays the 

distribution of the Kelvin-Voigt models in a pair of adjoining pounding buildings. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Unstrained Kelvin-Voigt model 

 

(a) Distribution of Kelvin-Voigt models (c) Strained Kelvin-Voigt model during impact 

Figure 1. Lumped Kelvin-Voigt models for simulation of pounding between adjoining buildings with aligned slabs 

 

The constitutive law of the Kelvin-Voigt model is given by 
 

𝐹 = 𝑘 (𝑥l − 𝑥r − 𝑑) + 𝑐 (𝑥̇l − 𝑥̇r)   if 𝑥l − 𝑥r > 𝑑  𝐹 = 0   if 𝑥l − 𝑥r ≤ 𝑑 (1) 

 

2.2. Previously proposed criteria for estimating the stiffness parameter 

 

As discussed in the Introduction, in past studies [12, 13, 17, 22, 24, 26, 27], the Kelvin-Voigt model stiffness has 

been considered to have little influence on the displacement response, and be strongly dependent on many highly 

and randomly varying parameters [13]. Therefore, only loose criteria for selecting such parameter have been 

provided. The conclusions of studies [13, 22] suggest using significantly higher values than the lateral stiffness of 

the colliding buildings, [26] recommends that the local periods of the mass-impact springs keep below the lowest 

translational periods of the pounding buildings, [24] proposes considering the axial stiffness of the floor slabs, [12] 

also refers to the axial stiffness of the slabs but checks as well higher and lower values, and finally, [25] proposes 

an expression depending on the Hertz stiffness for spherical contact, and on the maximum penetration. In any case, 

the stiffness of the Kelvin-Voigt model is considerably higher than the lateral stiffness of the buildings. 

 

Noticeably, in the allegedly more accurate distributed parameter formulation [11], the impact force is constant 

during the collision duration, while in the concentrated Kelvin-Voigt model such force is given by equation (1). 

Therefore, it is not possible to obtain any exact equivalence between both formulations. This fact had been already 

pointed out in [10]. 

 

2.3. Previously proposed criterion for estimating the damping parameter 

 

Conversely to stiffness, damping is universally recognized as a more relevant parameter, significantly affecting 

virtually all the relevant response parameters (drift displacement, story shear force, absolute acceleration, impact 

force, absorbed energy, etc.); therefore, more attention has been paid to this issue. The study [14] derives a closed-

form expression of damping in terms of the coefficient of restitution r. Such coefficient is defined as the ratio 

between the post-impact and initial relative velocities between the colliding masses:  

d 

Kelvin-Voigt 

models 

xl xr 

k 

mr ml 

c 
xl xr d 

vl vr 
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𝑟 =
𝑣′r − 𝑣′l

 𝑣l −  𝑣r

 (2) 

Equation (2) shows that r ranges between 0 (plastic impact) and 1 (elastic impact). The coefficient of restitution 

has a more recognizable physical meaning than the damping parameter; therefore, commonly it is preferred to start 

the process by selecting a target value rT. 

The work [14] neglects, during the impact, the influences of the colliding building structures and the seismic 

excitation. These assumptions are based on the higher stiffness and damping values used in the Kelvin-Voigt 

model compared to the buildings, and on the high input randomness, given the highly short impact duration. After 

these simplifications, Anagnostopoulos [14] performed a modal analysis of the ensuing two-degree of freedom 

system (Figure 1.b) and derived closed-form solutions of the uncoupled scalar equations of motion in modal 

coordinates. The first mode involves only rigid-body motion and has no stiffness and no damping; regarding the 

second mode, its natural frequency () and damping ratio () are given by  

 = √𝑘 
𝑚l +  𝑚r

𝑚l 𝑚r

  =
𝑐

2
 √ 

𝑚l +  𝑚r

𝑘 𝑚l 𝑚r

 (3) 

The aforementioned closed-form solution of the second mode is determined after their parameters in equation (3). 

Then, the impact duration (timp) is obtained as 𝑡imp =
π

 (1−2)
1/2, and later the target coefficient of restitution is 

determined as: 

𝑟T = 𝑒

−A π

(1−A
2 )

1/2

 
(4) 

In this equation, the subindex A accounts for Anagnostopoulos. This expression can be inverted to provide the 

damping ratio in terms of the coefficient of restitution: A =  ln rT / (
2
 + ln

2
 rT)

1/2
. Equation (4) shows that, if rT = 

0, A = 1 and if rT = 1,  A = 0. Noticeably, in intermediate cases corresponding to realistic situations,  A tend to be 

significantly smaller than 1; for instance, if rT = 0.7,  A = 0.1128 and if rT = 0.5,  A = 0.2155. 

To summarize, this approach consists in estimating initially a target value rT of the coefficient of restitution, 

obtaining then the damping ratio A with equation (4), and finally determining the damping parameter cA with the 

second equation (3) (𝑐A = 2 
A√ 

𝑘 𝑚l 𝑚r

 𝑚l +𝑚r
). The accuracy of this strategy can be evaluated by calculating the value 

of (rA) after the dynamic analysis of the collision problem using equation (2), and comparing it with the target one 

(rT); obviously, the closer, the higher the accuracy. This very simple and widely used model has been compared 

with more complicated solutions and has proven to provide comparable or even better accuracy [28-30]. 
 

3. PROPOSED FORMULATION FOR ESTIMATING DAMPING 
 

3.1. General remarks 

 

The proposed formulation follows basically the strategy in [14], although releasing some of their assumptions, 

namely, considering the influence of the equivalent stiffness of each building and the gap size (d) but still 

neglecting the influence of the input. Regarding this last consideration, the influence of the input severity is taken 

into consideration through the relative impact velocity. At first, the modal analysis of the colliding buildings 

during their impact is performed and the second mode damping ratio is determined in terms of the damping 

parameters of the Kelvin-Voigt model and of the colliding buildings, analogously to the right equation (3). Then, 

the uncoupled scalar modal equations of motion are solved; the ensuing closed-form solutions allow deriving a 

numerical algorithm providing a relation between the damping ratio of the second mode and the coefficient of 

restitution. This process corresponds to equation (4) in the previous formulation. 

 

3.2. Modal analysis of two buildings during impact 

 

This subsection presents an analytical study on the behavior of two colliding slabs during the duration of the 

impact (contact) between them; a deeper description can be found in [11]. As discussed in the previous subsection, 

this study follows the one in [14], although incorporating the gap and considering, in a simplified way, the 

influence of the stiffness of the buildings. Figure 2 describes the analyzed mechanical model.  
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Figure 2. Considered mechanical model of the impact between two aligned slabs 

 

Figure 2 employs the same notation than Figure 1; regarding the new symbols, cl and cr, and kl and kr represent the 

equivalent damping, and stiffness of the left and right buildings, respectively. These equivalent values are not the 

actual parameters of the buildings, but those that better characterize, exclusively during the impact duration, the 

dynamic evolution of the colliding slabs. The corresponding equivalent undamped natural frequencies are given by 

l = √
𝑘l

𝑚l
 and r = √

𝑘r

𝑚r
, respectively; analogously, the damping ratios are 

l
=

𝑐l

2 √𝑘l 𝑚l
 and 

r
=

𝑐r

2 √𝑘r 𝑚r
. 

Noticeably, l and r do not correspond to the fundamental frequencies of the colliding buildings, but merely to 

the equivalent frequencies of the colliding slabs during impact.  

 

The ratio between the colliding masses is defined as  = ml / mr; provided that both buildings belong to the same 

structural type, it can be reasonably assumed that the equivalent stiffness hold the same proportion than the mass: 

 = ml / mr = kl / kr; therefore, l = r. As well, it can be rationally supposed that both buildings have the same 

damping ratio; then, it follows immediately that  = cl / cr (noticeably, these considerations are the same that lead 

to the simplified expressions for the fundamental period of a given building that are contained in the major design 

codes). Then, for convenience, dimensionless coefficients  and  are introduced:  = cr / c and  = kr / k. Finally, 

the damped free motion of the 2-DOF system depicted at Figure 2 is governed by the linear equation 𝐌 𝐱̈ + 𝐂 𝐱̇ +
𝐊 𝐱 + 𝐛 = 𝟎, where the displacement vector x, the constant vector 𝐛, and the mass (M), damping (C) and stiffness 

(K) matrices are given by 

 

𝐱 = (
𝑥l

𝑥r
) 𝐛 = (

−𝑘 𝑑
𝑘 𝑑

) 𝐌 = (
𝑚l 0
0 𝑚r

) 𝐂 = (
𝑐 + 𝑐l −𝑐

−𝑐 𝑐 + 𝑐r
) 𝐊 = (

𝑘 + 𝑘l −𝑘
−𝑘 𝑘 + 𝑘r

) (5) 

 

The modal analysis of this system provides the two undamped natural frequencies of the first and second modes: 

1 = l = r 2 = l√
1 +  +   

 
= √𝑘 

1 +  +   

 𝑚𝑟

 (6) 

The modal matrix is  = (
1 1
1 −

). By using this matrix, the modal coordinates are introduced as x =  : 

𝑥l = 1 + 2 and 𝑥r = 1 −  2; the inverse relations are given by 1 =
1

1+
( 𝑥l + 𝑥r) and 2 =

1

1+
(𝑥l − 𝑥r). 

These equations show that the first mode corresponds to rigid-body motion, in the sense that does not generate any 

strain in the Kelvin-Voigt model (2 = 0, implies that xl = xr); this is consistent with the left equation (6). On the 

contrary, in the second mode both slabs move in opposite directions, thus causing strains in the Kelvin-Voigt 

model. Comparison between the left equation (3) and the right equation (6) highlights the similarity between this 

formulation and the previous one [14]; noticeably, if  = 0, 2 is equal to the value () from Anagnostopulos and if 

  0, 2 is higher. 

 

After some algebra, the uncoupled scalar damped equations of motion in modal coordinates become: 

 

𝑚l ̈1 + 𝑐l ̇1 + 𝑘   
1

= 0   𝑚r  ̈2 + [𝑐 (1 + ) + 𝑐r ] ̇2 + 𝑘 (1 +  +  ) 2 = 𝑘 𝑑 (7) 

 

The first equation in (7) confirms that the first mode damping is only contributed by the buildings damping; this is 

coherent with the aforementioned absence of strains in the Kelvin-Voigt model. The damping ratios of the first and 

second modes are given by 

cr cl 

k 

mr ml 

c 
xl xr d 

kl kr 
vr vl 
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
1

= 
l

= 
r
 

2
= 

l

 1 +  +   

 √(1 +  +  )  

√ 


= 

r

 1 +  +   

 √(1 +  +  )  

√ 


=

𝑐 (1 + ) +  𝑐r 

2√𝑘 (1 +  +  )  𝑚r

 (8) 

The last relation in equation (8) plays the same role as the second equation (3) in the study by Anagnastopulos; 

more precisely, if  =  = 0, both expressions are alike. 

 

3.3. Closed-form solution of the equations of motion 

 

The closed-form solution for the system depicted in Figure 2 can be obtained by solving the scalar equations (7) 

and changing from modal (with subindexes 1 and 2) to physical (with subindexes l and r) coordinates. At the onset 

of impact, the initial conditions are 𝑥l(0) = 𝑥0, 𝑥r(0) = 𝑥0 − 𝑑, 𝑥̇l(0) = 𝑣l and 𝑥̇r(0) = 𝑣r. In modal coordinates, 

these relations become 1
(0) = 𝑥0 −

𝑑

1+
, 2

(0) =
𝑑

1+
, ̇1

(0) =
 𝑣l+𝑣r

1+
 and ̇2

(0) =
𝑣l− 𝑣r

1+
; noticeably, since vl  

vr, then ̇2
(0) ≥ 0. The closed-form solutions of the equations (7) that fulfill these conditions are  

  

 1
(𝑡) = 𝑒−1 ω1 𝑡 [

̇1
(0)+ 1 ω1 1

(0)

ω1(1−1
2)

1/2 sin ω1(1 − 1
2)

1/2
𝑡 + 1

(0) cos ω1(1 − 1
2)

1/2
𝑡]  

(9) 
 2

(𝑡) = 𝑒−2 ω2 𝑡 [
̇2

(0)+ 2 ω2 2
(0)

ω2(1−2
2)

1/2 sin ω2(1 − 2
2)

1/2
𝑡 + 2

(0) cos ω2(1 − 2
2)

1/2
𝑡] +  

𝑘 𝑑

ω2
2 𝑚l 

  

 

Then, the closed-form solutions in physical coordinates can be easily obtained after the relations 𝑥l = 1 + 2 and 

𝑥r = 1 −  2. 

 

3.4. Impact duration 

 

The impact initiates when xl  xr = d (t = 0) and finishes next time this condition is fulfilled again (t = timp); the 

coefficient of restitution can be determined after equation (2), where the final and initial velocities correspond to 

instants t = 0 and t = timp, respectively. Since 𝑥l − 𝑥r = (1 + ) 2, this analysis can be conducted regardless of 

1; the conditions of 2 for the start and end of impact become, respectively 


2

(0) =
𝑑

1 + 
 


2

(𝑡imp) =
𝑑

1 + 
 (10) 

 

The right equation (10) can be solved for timp by any standard iterative procedure, e.g. Newton-Raphson. Equations 

(7) and (9) show that, since 2
(0) and ̇2

(0) are positive, equation (10) corresponds to a segment of a half wave 

of the free response of a damped SDOF system; therefore, the initial value of timp in the aforementioned iterative 

procedure can be selected as 
π

2 (1−2
2)

1/2, given that such instant corresponds to the right end of that wave. Then, 

the time derivative can be taken from equation (13) (subsection  3.5). These considerations show that, although 

equation (10) has infinite solutions, the desired one can be obtained after only a few iterations.  

 

When cl = cr = 0, the right equation (10) can be solved without iterating since, in that case, this relation has a 

closed-form solution for 2 = 0. Then, it is solved using a power series expansion: 𝑡imp(
2

) = 𝑡imp(0) +
𝑡imp

′ (0)

1!


2
+

𝑡imp
′′ (0)

2!


2
2 + O(

2
3) [11].  

 

In the particular case when d = 0, the condition (10) becomes 2(𝑡imp) = 0; this equation has a closed-form 

solution:  

𝑡imp = π √
  𝑚r

𝑘 (1−2
2) (1++ )

=
π

ω2(1−2
2)

1/2 = 𝑡max 
 

(if d = 0) (11) 

Comparison with the value from [14] (π /  (1 − 
2)

1/2
) shows that, when d = 0, the impact duration according to 

the proposed formulation is shorter. 

 

3.5. Determination of the damping parameter  
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The coefficient of restitution is obtained by replacing 𝑣l = 𝑥̇l(0), 𝑣r = 𝑥̇r(0), 𝑣l
′ = 𝑥̇l(𝑡imp) and 𝑣r

′ = 𝑥̇r(𝑡imp) in 

equation (2):  

𝑟 =
𝑣′r − 𝑣′l

 𝑣l − 𝑣r

=
𝑥̇r(𝑡imp)  − 𝑥̇l(𝑡imp)

𝑥̇l(0) −  𝑥̇r(0)
=
̇

2
(𝑡imp)

−̇
2

(0)
 (12) 

 

Velocities ̇2(𝑡imp) and ̇2
(0) are calculated after the time derivative of the second equation (9):  

  

 ̇2
(𝑡) = 𝑒−2 ω2 𝑡 [−

2̇2
(0)+2

(0) ω2

(1−2
2)

1/2 sin ω2(1 − 2
2)

1/2
𝑡 + ̇2

(0) cos ω2(1 − 2
2)

1/2
𝑡]  (13) 

 

Equation (12) provides r in terms of 2. Given that the objective of the proposed approach is obtaining 2 after rT, 

the solution might be obtained iteratively by the Newton-Raphson method. In this iteration, the solution by 

Anagnostopoulos (equation (4)) [14] can be used for the initial estimation of 2. Regarding the derivatives, since 

the actual derivative of 2 with respect to r is not available, the derivative of equation (4) can be used instead. 

Noticeably, given that the dependence of r with respect to 2 is monotonic and descendent (e.g. negative 

derivative), this equation has a single solution and the Newton-Raphson method shall perform satisfactorily. 

 

In the previous formulation, equation (4) shows that the relation between r and  is independent on the stiffness of 

the model (k) and on the masses of the colliding bodies (ml and mr); in the proposed formulation, the relation 

between r and 2 is dependent on the ratios between the damping and stiffness of the structure and the model ( 

and ) and on the ratio between the masses of the colliding bodies ().  

 

In the particular case when d = 0, the coefficient of restitution can be determined without any iteration; the 

obtained result is 𝑟T = 𝑒
− 2

 π

(1−2
2)

1/2

. Since this relation matches equation (4) (although replacing 2 with A), it can 

be concluded that the proposed algorithm coincides with the previous one when d = 0. Noticeably, the 

aforementioned difference in the impact duration has no effect in the relation between 2 and rT. 

 

3.6. Proposed algorithm for selecting the damping parameter  

 

As stated previously, the proposed algorithm consists in stating initially rT and then obtaining 2 and cp, similarly 

to equations (3) and (4) in the formulation by Anagnostopoulos [14]. Apart from rT, the required input variables 

are the structural parameters ml, cl, kl, , , and the initial conditions vl and vr; regarding x0, since the stiffness of 

the buildings is assumed to be constant during the impact (linear behavior), it has no influence. The algorithm 

consists basically in the two nested iteration loops described in Figure 3. The iterations are performed with the 

aforementioned Newton-Raphson algorithms. Once rT is stated, an initial value of 2 is set. Then timp is obtained by 

solving iteratively equation (10), where 2 is given in equation (9); after timp, a new value of r is determined from 

equation (12), where  ̇2
(𝑡) is provided by equation (13). Once convergence is reached, cp can be determined after 

the last equation (8). 

 
 

 

 

 

 

Figure 3. Flow chart of the proposed algorithm 

 

Since the inner loop aims to solve the right equation (10), their tolerance is set as  = 0 |2
(𝑡max) −

𝑑

1+
|, where 

tmax is defined in equation (11) and 0 is a dimensionless tolerance ratio to be chosen significantly smaller than 1. 

Regarding the outer loop, the iterations are performed with respect to the coefficient of restitution; given that is 

dimensionless and ranges between 0 and 1, the tolerance (r) shall be also considerably lower than 1. 

 

4. COMPARISON WITH THE PREVIOUS FORMULATION  

 

p = 2 
(8) 

cp timp 2 
(9), (10), (13) 

(12), (13) 

ml, cl, kl, , , vl, vr, rT 
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4.1. Description of the comparing parametric study 
 
This section presents a simplified parametric study on the collision between two single-story single-bay 2-D RC 

frames connected with a Kelvin-Voigt model. The main objective of this study is to assess the influence of the 

input parameters of the proposed algorithm (Figure 3), and thus to investigate its efficiency, mainly compared with 

the previous formulation.  

 

Figure 4.a represents the colliding frames. No seismic excitation is considered, the collision is generated by 

separating initially each frame and then releasing them, as shown by Figure 4.b. Distances al and ar represent such 

initial outward displacements. Noticeably, in the general formulation described in section  3, any set of values of x0, 

vl and vr can actually occur; conversely, in the cases analyzed in this section, the absence of excitation and the 

assumption that the velocities of both frames are simultaneously zero (Figure 4.b), makes that x0 can be calculated 

after al and ar. In other words, not any collection of values of x0, al and ar is viable. It is considered that this 

limitation does not reduce significantly the scope of this study. 
 

 

 

 

 

 

 

 

 

 

(a) Analyzed frames (b) Initial situation 

Figure 4. Colliding frames considered in the comparison parametric study 

 

The Kelvin-Voigt model damping is chosen according to both the previous and proposed formulations. The 

behavior of the frames is assumed to be linear, and, by using ordinary static and kinematic condensation, such 

frames are modeled as SDOF systems. Under these assumptions, the free (unforced) equations of motion for both 

contact and separation conditions have closed-form solutions. 

 

The parameters of the study are: gap size d, initial separations al and ar, damping ratios l and r (l = r), mass 

ratio , stiffness ratio , and target coefficient of restitution rT. The comparison between the previous and the 

proposed approaches is established in terms of the obtained coefficients of restitution rA and rp, respectively. Such 

coefficients are determined after the dynamic analyses (equation (2)) by using the values of  provided by the 

Anagnostopoulos (A) and the proposed formulations (p), respectively; the closer to the target value, the better the 

performance of the corresponding formulation.  

 

4.2. Colliding frames considered in the parametric study 
 
The geometrical and mechanical parameters of the left frame are described next; those of the right one are 

determined after the ratio . The height and span-length are 3.2 and 5 m, respectively. The beam section is 40 × 50 

cm
2
 and the slabs are 15 cm deep; since each frame is assumed to be a part of a building RC structure, the beams 

are modeled as T-section members with effective width 140 cm [31]. All the columns are 60 × 60 cm
2
; they are 

assumed to be clamped to the foundation. After this information, it follows that the mass and stiffness parameters 

of the left frame are ml = 25136 kg and kl = 87.96 kN/mm. The moduli of deformation of concrete and steel are 

25.743 GPa and 200 GPa, respectively; the concrete cracking is taken into consideration by reducing the moments 

of inertia of beams and columns by factors 0.5 and 0.7, respectively [32]. Then, the undamped natural frequency of 

each frame is l = r = √
𝑘r

𝑚r
= √

87960×1000

25136
= 59.15 

rad

s
; thus their natural period, is 2  / 59.15  = 0.1062 s. 

Noticeably, this value confirms the practical feasibility of the chosen parameter values.  

 
4.3. Selection of the parameters values  

 

The stiffness parameter of the Kelvin-Voigt model (k) is selected, according to the aforementioned previous 

studies, referred to the axial stiffness E A / L of the left colliding slab; E, A and L represent their modulus of 

deformation, cross section and length, respectively. Three values of k are considered: 10 E A / L, E A / L and 0.1 E 

A / L [12, 13]. In this frame, E A / L = 2111 kN/mm; hence, the corresponding three values of k are 21109, 2111 

and 211 kN/mm. They correspond to  = 0.00417, 0.0417 and 0.417, respectively. Three values of gap are taken: d 

al ar 

d 
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= 10/20/30 mm. Two levels of damping of the frames are selected: l = r = 0/0.05. Regarding , both symmetric 

( = 1) and asymmetric ( = 2) situations are contemplated. Finally, three initial displacements are considered: al = 

ar = 20/30/40 mm. These values intend to represent most of the situations actually occurring in real cases; it is not 

believed necessary to select different values for al and ar, since the differences of masses (if  = 2) sufficiently 

represent unbalanced impacts (i.e. with different momenta). By combining these values of , , d and al (al = ar), 

108 cases are analyzed. Regarding the coefficient of restitution, the full range (0  1) is considered. As for the 

nested iteration loops (Figure 3), the tolerances for the inner and outer loops are 0 = 0.01 and r = 0.001, 

respectively. 

 

4.4. Numerical results of the parametric study 

 

This subsection summarizes the results of the analyses that have been described in the previous subsection. Figure 

5 displays an example of the left frame displacement history. This plot corresponds to initial displacement 40 mm, 

gap size 10 mm, and target coefficient of restitution 0.7. The horizontal dashed line corresponds to the threshold 

for contact (xl = d / 2); the values of xl above this bound correspond to impact. 

 

 
Figure 5. Time history of xl for  al = ar = 40 mm, d = 10 mm,  = 1,  = 0.0417, and rT = 0.7 

 

Figure 5 shows that, in the consecutive impacts, the maximum penetration decrease significantly; as well, each free 

vibration segment (below the dashed line) reveals the reduction caused by the energy absorbed in the previous 

impact. This is coherent with the physical behavior of the system. 

 

The results of the simplified parametric study are presented in terms of plots of ratios rp / rT and rA / rT vs. rT; the 

closer to 1, the better the performance of the corresponding formulation. Figure 6 displays representative results; 

the reference [11] contains a wider collection of plots. The values of rp and rA are determined accounting only for 

the first impact, being the strongest one. 

 

  
(a) d = 30 mm, al = ar = 20 mm (b) d = 10 mm, al = ar = 40 mm 

Figure 6. Ratios rp / rT and rA / rT between the proposed and the previous formulations, for l = r = 

0.05 and µ = 1 

 

4.5. Concluding remarks 

 

Figure 6 and [11] show that, rp  rT; in other words, in the conducted parametric study, the proposed formulation is 

virtually exact. This circumstance is expected, because, given that the behavior of the frames is linear and there is 

no continuous excitation, in this case the proposed approach does not contain any simplification other than the 

approximate determination of timp. It is also apparent that the former formulation [14] exhibits rather good 

performance, except for high values of  and small values of rT. The separate influences of the parameters of the 

study are discussed next. 
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 Target coefficient of restitution (rT). The plots exhibit two clear trends: (i) the previous formulation provides 

values of r that are greater than foreseen (rA ≥ rT), and (ii) when rT approaches 0/1 the ratio rA / rT comes close 

to 0/1. The first trend means that [14] overestimates the coefficient of restitution and, hence, underestimates 

the actual damping during the collision. In other words, the former approach would predict that damage is 

more spread in the full body of the colliding buildings; conversely, the proposed algorithm envisages that the 

damage will be more concentrated in the vicinities of the impact areas. Finally, the second trend indicates that 

the proposed approach takes more advantage (compared to the previous one) in plastic impacts.  

 Ratio between the stiffness of frame and of Kelvin-Voigt model (). All the plots show that, the higher , 

the bigger the difference. The explanation for this trend is obvious, given that the previous study assumed  = 0 

[14]. The work [22] had announced that the influence of the stiffness of the main structure could be relevant; 

this statement is corroborated in this research. 

 Gap size (d). In all the plots, the difference increases with d. This is coherent with the previous observation 

that the proposed formulation and the previous one [14] are coincident for d = 0. 

 Initial separation (al = ar). In all the cases, the difference decreases as the initial separation increases. This 

can be read as less discrepancy between both formulations for stronger collisions. This is logical, since, for 

more violent impacts, the neglected parameters play comparatively less important roles. Noticeably, these 

remarks refer indirectly to the relative velocity at the onset of pounding (vl  vr), given that larger initial 

separation leads to higher impact velocity.  

 Ratio between the left and right frame mass (). The plots show rather little sensitivity to . This is 

consistent, since this parameter has been accounted for in similar ways in both approaches. 

 Frame damping (l = r). All the plots show that, the higher the frame damping, the bigger the difference. 

The justification for this tendency is apparent, since in the previous study [14] the frame damping was not 

taken into consideration. 

 

5. CRITERIA FOR SELECTING vl AND vr 

 

As described in Figure 3, the input parameters for the proposed algorithm can be classified into those dealing with 

the structural properties (mass ml, damping cl, stiffness kl, ratios  and , and target coefficient of restitution rT) 

and those referring to the conditions at the onset of collision (impact velocities vl and vr). The parameters in the 

first group can be chosen directly; conversely, the selection of vl and vr is less obvious, given that such velocities 

are not known in advance, like the input severity. Therefore, this section offers criteria for choosing vl and vr by 

analyzing their influence on cp. The obtained results are summarized in Figure 7 and Figure 8; Figure 7 analyzes 

the case when vl =  vr and Figure 8 studies the influence of vl + vr. Provided that  = 1, the first case corresponds 

to symmetric impact (i.e. opposite momenta, ml vl =  mr vr), and the second case represents asymmetric impact. 

Figure 7 and Figure 8 display plots of cp vs. vl and vl + vr, respectively. The influence of , ,  and d is analyzed; 

regarding ml and kl, are not specifically addressed because their influence is rather obvious since, by assuming 

constant , they behave basically as scale factors. 
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(a) d = 10 mm, l = r = 0,  = 0.042 (b) d = 10 mm, µ = 1,  = 0.042 

  
(c) d = 10 mm, µ = 1, l = r = 0 (d) µ = 1, l = r = 0,  = 0.042 

Figure 7. Kelvin-Voigt model damping variation with respect to vl (vl + vr = 0) according to the proposed formulation (rT = 

0.53) 

 

Figure 7 shows that cp is little sensitive to vl, in the sense that tends to stabilize when vl grows. Figure 7.d points 

out that this stabilization depends mainly on d; higher values of d generate latter stabilization (i.e. for greater 

velocity). This trend corroborates the observations after Figure 6, in terms of the influence of the initial separation. 

Therefore, it is recommended to select vl in between 1.5 and 10.5 m/s; inside this range, smaller values are 

suggested if d is small and no violent impact is expected, and greater values are advised in the opposite situation.  

 

  
(a) d = 10 mm, l = r = 0,  = 0.042 (b) d = 10 mm, µ = 1,  = 0.042 

  
(c) d = 10 mm, µ = 1, l = r = 0 (d) µ = 1, l = r = 0,  = 0.042 

Figure 8. Kelvin-Voigt model damping variation with respect to vl + vr according to the proposed formulation (rT = 0.53) 

 

Plots from Figure 8 are basically flat. This shows that the influence of vl + vr can be neglected; in other words, it 

can be assumed that vl + vr = 0. 

 

This section shows that the nested iteration loops described in Figure 3 need to be carried out only one time for 

each impact analysis; in other words, this operation can be performed during the pre-process stage. The reason is 

that, although the proposed algorithm requires the estimation of the relative impact velocities, Figure 7 and Figure 

8 show that their sensitivity to these parameters is low and can be neglected. Therefore, the upgrade provided by 

the proposed algorithm is obtained at a small computational cost. 
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6. NUMERICAL EXAMPLES ON TWO MULTI-STORY MULTI-BAY FRAMES 

 

6.1. Colliding frames 

 

This section presents two examples on the impact between two pairs of 2-D RC frames undergoing seismic 

excitation. These examples are aimed to highlight the capacity of the proposed formulation to reproduce 

adequately the impact effect, in the sense of obtaining a coefficient of restitution close to its target value. 

 

The dynamic behavior of the frames is assumed to be linear and is described with the SeismoStruct code [33]. 

Figure 9 depicts the main characteristics of the colliding frames.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 3-story 5-bay and 3-story 2-bay frames (b) 5-story 2-bay and 3-story 2-bay frames 

Figure 9. Pairs of colliding frames 

 
Figure 9 shows that in the first pair of frames, the left one has three stories and five bays and the right one has 

three stories and two bays; in the second pair, both frames have two bays and the left and right ones have five and 

three stories, respectively. The impact is described with single Kelvin-Voigt models located at the top colliding 

slabs; no impacts at other levels have been detected. 

 

In all the cases, the span-length is 5 m and the story height is 3.2 m. Each frame is assumed to be a part of a RC 

building that is composed of columns, slabs, and beams in two directions; the separation among the frames is 5 m. 

These buildings have been designed for a high seismicity region [11]. The beams section is 40 cm × 50 cm and the 

slabs are 15 cm deep; the beams are modeled as T-section members with effective width 105 cm [31]. Columns are 

assumed to be clamped to the foundation and have rectangular cross-section; Table 1 displays the corresponding 

transverse dimensions. 

 
Table 1. Cross section of the columns of the analyzed frames in the example simulation 

Building 
1

st
 floor 

columns (cm) 

2
nd

 floor 

columns (cm) 

3
rd

 floor 

columns (cm) 

4
th

 floor 

columns (cm) 

5
th

 floor 

columns (cm) 

3-story 5-bay 60  60 55 × 55 50 × 50 - - 

3-story 2-bay 60  60 55 × 55 50 × 50 - - 

5-story 2-bay 60  60 55 × 55 50 × 50 45  45 40  40 

 

The characteristic value of concrete compressive strength is fck = 30 MPa and the modulus of deformation is 25.74 

GPa. The seismic weight of each frame corresponds to the load combination D + 0.2 L, where D and L account for 

dead and live load, respectively; a deeper description can be found in [11]. Table 2 displays the natural periods and 

the modal mass ratios of the analyzed frames; noticeably, these quantities would also correspond to the buildings 

the frames belong to. The stiffness of columns and beams refer to gross sectional parameters reduced due to 

concrete cracking [32]. Data from Table 2 show a regular and expected behavior; comparison among the 

fundamental periods of the two 3-story buildings confirms that they are little sensitive to the number of bays. 

Kelvin-Voigt 

model 
Kelvin-Voigt 

model 

d d 
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Table 2. Natural periods (s) and modal mass ratios of the individual buildings in the example simulation 

Mode No. 

Frame 

3-story 5-bay 3-story 2-bay 5-story 2-bay 

Ti mi* / m Ti mi* / m Ti mi* / m 

1 0.3744 0.8277 0.3587 0.8222 0.6415 0.7664 

2 0.1283 0.1207 0.1201 0.1243 0.2349 0.1262 

3 0.0750 0.0516 0.069 0.0535 0.1398 0.0490 

4 - - - - 0.0917 0.0479 

5 - - - - 0.0794 0.0000 

 

6.2. Seismic inputs 

 

Two ground motions are considered. Both accelerograms correspond to the Northridge earthquake ( January 17, 

1994); the first one was registered in Saticoy St. station, component USC90003, and the second one belongs to W 

Pico Canyon station, component USC90056. In these inputs, the PGA is 0.48 g and 0.455 g, respectively. Deeper 

considerations can be found in [11]. Figure 10 displays both accelerograms. Figure 10 shows that the left 

accelerogram is not pulse-like, but the right one actually is [11]. These choices aim to obtain sound conclusions, 

since the presence of velocity pulses is relevant. 

 

 

 

(a) Northridge Saticoy input for 3-story 5-bay and 3-

story 2-bay frames 
(b) Northridge W Pico Canyon input for 5-story 2-bay 

and 3-story 2-bay frames 

Figure 10. Time histories of the seismic inputs  

 

6.3. Application of the proposed formulation 

 

For the implementation of the proposed algorithm, the equivalent mass (ml and mr) and the stiffness (kl and kr) of 

the colliding slabs are to be obtained. The mass is determined as in ordinary lumped-masses models; regarding the 

stiffness, the situation is less obvious, because the proposed formulation represents the colliding structures as 

SDOF systems (Figure 2). To clarify this issue, Figure 11 displays time zoom views of floor displacement time 

histories during the strongest collision; Figure 11.a and Figure 11.b refer to the left 3-story 5-bay and 5-story 2-bay 

frames, respectively (Figure 9). Figure 11 shows that the dynamic behavior during the impact duration follows 

basically the first mode, being little affected by the local effect of the impact force on the colliding level. 

Therefore, the equivalent stiffness of each frame is obtained as the ratio between a single static horizontal force 

acting on the impact level and its lateral displacement. This consideration shows that, although the estimation of kl 

and kr requires carrying out static analyses, such analyses are simple and can be performed with the structural 

model of the colliding buildings that must be built anyway. 
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(a) 3-story 5-bay frame under Northridge Saticoy input  
(b) 5-story 2-bay frame under Northridge W Pico 

Canyon input 

Figure 11. Time histories of relative displacements of frame stories during the impact 

 

In the 3-story 5-bay frame, the mass of the third floor slab is 117598 kg and the stiffness is 49.47 kN/mm, in the 3-

story 2-bay frame such quantities are 47632 kg and 21.86 kN/mm, and in the 5-story 2-bay frame the slab mass is 

50029 kg and the equivalent stiffness is 22.00 kN/mm. In all the cases, d = 20 mm. In the case shown in Figure 

9.a, the ratio  is determined by dividing the left and right mass and stiffness; the obtained results are 2.469 and 

2.263, respectively. Given that both results are close, the aforementioned assumption (ml / mr = kl / kr) holds 

approximately; hence, the average value of  is considered in the analysis:  = 2.366. In the case shown in Figure 

9.b, the situation is similar; the corresponding values of  are 1.05 and 1.00, respectively and the average value 

that is adopted in the analysis is  = 1.03. Regarding the frames damping, two options are contemplated: no 

damping (l = r = 0) and 5% of critical (l = r = 0.05). Concerning the impact velocities, vl + vr = 0 is assumed, as 

suggested in section  5; then vl is selected iteratively by aiming to obtain a satisfactory agreement between rT and 

the coefficient of restitution calculated from the results of the dynamic analyses. The selected values of such 

velocities are 2 m/s (Figure 9.a, l = r = 0), 9 m/s (Figure 9.a, l = r = 0.05), 10 m/s (Figure 9.b, l = r = 0), and 9 

m/s (Figure 9.b, l = r = 0.05). For each of these four cases, the stiffness of the Kelvin-Voigt model is taken as k = 

211.1, 2111, 6558 and 6558 kN/mm, respectively. Like in section  4, the tolerances for the inner and outer loops are 

0 = 0.01 and r = 0.001, respectively. The target value of the coefficient of restitution is rT = 0.53. To sum up, 

Table 3 displays the parameters of the proposed algorithm. 
 

Table 3. Input parameters of the proposed algorithm in the example simulation 

Case ml (kg) cl (kg/s) kl (kN/mm) µ  d (mm) vl (m/s) vr (m/s) rT 

Figure 9.a, l = r = 0 117598 0 49.47 2.366 0.1036 20 2  2 0.53 

Figure 9.a, l = r = 0.05 117598 1.535 × 10
5
 49.47 2.366 0.0104 20 9  9 0.53 

Figure 9.b, l = r = 0 50029 0 22.00 1.030 0.0033 20 10  10 0.53 

Figure 9.b, l = r = 0.05 50029 1.020 × 10
5
 22.00 1.030 0.0033 20 9  9 0.53 

 

The proposed algorithm (Figure 3) provides, for Figure 9.a, cp = 1.157 × 10
6
 kg/s and cp = 3.281 × 10

6 
kg/s for l = 

r = 0 and l = r = 0.05, respectively; for Figure 9.b these quantities are cp = 5.084 × 10
6
 and 4.964 × 10

6
 kg/s, 

respectively. The previous formulation [14] indicates that A = 0.1981 (equation (4)) should be taken in the 

Kelvin-Voigt model. In the case shown in Figure 9.a, cA = 1.060 × 10
6
 kg/s and cA = 3.350 × 10

6
 kg/s, for l = r = 

0 and l = r = 0.05, respectively; in the case shown in Figure 9.b, cA = 5.011 × 10
6
 kg/s (equation (3)). Therefore, 

there are significant differences among the damping parameter given by the existing and proposed formulations.  

 

6.4. Numerical results 

 

As discussed previously, the dynamic behavior of the colliding frames is simulated with the software SeismoStruct 

[33]. For comparison purposes, two types of analysis are carried out: in the first type the damping parameter of the 

Kelvin-Voigt model is determined according to the proposed formulation and in the second one it is set after the 

previous approach [14]. The time step is t = 0.0005 s; this value has been selected mainly based on the highly 

short impact duration (Figure 12.b and Figure 12.d) [11]. The frames damping is described with a mass and 

stiffness-proportional Rayleigh formulation; 5% is chosen for the first and third modes. Given the rather moderate 

height of the colliding frames, the P- effects are not taken into consideration. 
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Figure 12 displays time histories of the impact force corresponding to dynamic analyses using the proposed 

formulation. Figure 12.a and Figure 12.c refer, for l = r = 0, to Figure 9.a and Figure 9.b, respectively. Figure 

12.b and Figure 12.d contain zoom views of the strongest impacts of Figure 12.a and Figure 12.c, respectively.  

 

 
  

(a) Impact force time-history for 3-story 5-bay and 3-

story 2-bay frames  

(b) Strongest impact time-history for 3-story 5-bay and 

3-story 2-bay frames  

 
 

 
 

(c) Impact force for 5-story 2-bay and 3-story 2-bay 

frames 

(d) Strongest impact time-history for 5-story 2-bay and 

3-story 2-bay frames  

Figure 12. Impact force time history for l = r = 0 

 

Figure 12.a and Figure 12.c show that, as expected, the collisions are rather scarce and highly short. In Figure 12.b, 

the impact duration is 0.035 s (between instants 10.5045 s and 10.5395 s) and in Figure 12.d, is 0.0065 s (7.3425  

7.3360 s). The predicted impact durations according to the previous formulation [14] (equation (4)) for Figure 12.b 

and Figure 12.d are 0.0406 s and 0.00618 s, respectively. The impact durations foreseen by the proposed 

formulation are timp = 0.0378 s (Figure 12.b) and timp = 0.00610 s (Figure 12.d). Figure 12.b and Figure 12.d show 

that the time histories of the impact forces are basically shaped as segments of damped sinusoidal waves; this is 

coherent with equations (1), (9) and (13).  

 

After the conducted dynamic analyses, the values of the coefficients of restitution corresponding to the strongest 

impacts are determined using equation (2). Table 4 displays the obtained results.  

Table 4. Ratios rA / rT and rp / rT in the example simulation 

Formulation 
3-story 5-bay and 3-story 2-bay frames 5-story 2-bay and 3-story 2-bay frames 

l = r = 0 l = r = 0.05 l = r = 0 l = r = 0.05 

rA / rT 1.053 0.990 1.047 0.901 

rp / rT 1.018 1.001 1.029 1.028 

 

Table 4 shows that the coefficient of restitution determined after the dynamic analyses using the proposed 

approach (rp) are closer to the target factor (rT) than those using the previous formulation (rA) [14]; the gains range 

between 0.9% and 7.1%. As discussed previously after Figure 6, this circumstance can be read as a more 

satisfactory performance of the offered algorithm.  

 

7. NUMERICAL SIMULATION OF TESTING ON COLLIDING BUILDINGS 

 

7.1. Experiment 

 

This section presents the numerical simulation of a shaking-table test on seismic pounding between two reduced-

scale laboratory models of RC equal-height 2-story single-bay building frames [34]. Figure 13 displays a sketch of 

the test mockup (Figure 13.a), and the numerical model that is employed in the simulation (Figure 13.b). 
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(a) Front view of the pounding frames [34] (b) Model of the pounding frames 

Figure 13. Shaking table simulated experiments  

 

The left frame was designed to be stiffer and lighter than the right one; thus, their fundamental periods were 0.139 

s and 0.243 s, respectively. There was no initial separation between both frames. The experiments consisted in 

exciting the pair of frames in two situations: without and with pounding. In both cases, the input was a harmonic 

wave but whose amplitude was modulated by a half-sinus wave with 12 s period [34]; hence, the input duration 

was 6 s. The maximum amplitude was 0.08 g and the period of the aforementioned harmonic wave was 0.244 s; 

this value was selected to generate resonance in the right (flexible) frame. 

 

7.2. Numerical simulation 

 

The experiment is simulated with SeismoStruct [33] by considering a pair of 2-D frames. The structural behavior 

is assumed to be linear, and the structure is discretized with elastic 2-node frame elements. The damping ratio for 

each frame is 0.05.  

 

The pounding is described with two zero-gap (d = 0) Kelvin-Voigt models (Figure 13.b). Their stiffness is selected 

equal to the axial one of the left colliding beam. The damping parameter of the Kelvin-Voigt models is selected 

after the Anagnostopoulos [14] and the proposed formulations. The target coefficient of restitution is rT = 0.527; 

then, A = 0.2 (equation (4)) and p = 0.2 (Figure 3). Noticeably, the coincidence between A and p arises from the 

absence of seismic gap (section  3). The damping parameters cA and cp are obtained after equation (3) and equation 

(8), respectively. In the top Kelvin-Voigt model, cA = 5385 kg/s and cp = 5796 kg/s; in the bottom model, cA = 

3440 kg/s and cp = 10129 kg/s. Table 5 displays the parameters of the proposed algorithm. 
 

Table 5. Input parameters of the proposed algorithm in the experiment simulation 

Floor No. ml (kg) cl (kg/s) kl (kN/mm) µ  d  (mm) vl (m/s) vr (m/s) rT 

1 2867 9730 3.301 2.093 0.0132 0 * * 0.527 

2 2669 5633 1.188 2.542 0.004 0 * * 0.527 

(*) Since d = 0, these values are not utilized 

 

The time integration is performed with the Newmark algorithm using constant acceleration interpolation ( = 0.25 

and  = 0.5). Progressively reduced values of the time step are selected until obtaining similar results [11]; t = 

0.01, 0.001 and 0.0005 s are considered (Table 6). 

 

7.3. Numerical results 

 

This subsection discusses the most meaningful results of the numerical simulation, namely the calculated values of 

the coefficient of restitution, and the top floor relative displacement, according to the Anagnostopoulos and the 

proposed formulations. Table 6 displays these quantities for each value of t. 

  

d = 0 

Kelvin-Voigt 

model 

d = 0 
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Table 6. Maximum top story displacement (mm) and coefficients of restitution 

t (s) 

Without pounding With pounding 

Left 

Frame 

Exp./Num. 

Right Frame 

Exp./Numerical 

Left Frame 

Exp./Numerical 

proposed/Num. 

Anagnostopoulos 

Right Frame 

Exp./Numerical 

proposed/Num. 

Anagnostopoulos 

rp rA 

0.01 2.60/3.00 25.50/27.24 5.80/6.08/6.11 12.40/13.90/16.41 0.5460 0.4574 

0.001 2.60/2.97 25.50/27.11 5.80/5.99/6.16 12.40/13.77/16.43 0.5435 0.4642 

0.0005 2.60/2.97 25.50/27.09 5.80/5.99/6.16 12.40/13.76/16.42 0.5433 0.4616 

 

Table 6 provides the following observations: 

 

 As previously announced, as the time step is being progressively reduced, the numerical results of the 

maximum top story displacements and the coefficients of restitution tend to stabilize. This remark holds for 

both the Anagnostopoulos and the proposed formulations. 

 Comparison between the numerical and experimental results shows a satisfactory agreement. 

 In the simulations with pounding, the top story displacements obtained after the proposed algorithm are closer 

to the experimental ones than those from the Anagnostopoulos approach. 

 The coefficient of restitution calculated according to the proposed algorithm (rp) is closer to the target value 

than rA.  

 
The second observation gives some insight into the effectiveness of the proposed algorithm, but cannot be 

considered as a full validation procedure; regarding this issue, additional experimental research is currently in 

progress. The last two observations stress, in this case, the higher performance of the proposed approach.  

 

8. CONCLUSIONS 
 

The Kelvin-Voigt model is commonly used for describing seismic pounding between adjoining buildings with 

aligned slabs; this work proposes a new approach for estimating the damping parameter of such model. The 

proposed approach is based on the well-known formulation by Anagnostopoulos, although taking into 

consideration, during the impact duration, the effect of the stiffness and damping of the colliding buildings, and 

their separation. Thus, the outcome of this study is an algorithm providing the damping parameter after the 

estimated target coefficient of restitution. This algorithm involves two simple nested iteration loops; criteria for 

selecting their input parameters are provided. The accuracy of the proposed algorithm is assessed by comparing the 

obtained value of the coefficient of restitution with the target one; obviously, the closer, the more accurate. 

 

The obtained results corroborate that the Anagnostopoulos approach, despite its simplicity, is efficient. Beyond 

such confirmation, this study also shows that the proposed algorithm is able to provide more accurate 

approximations of the coefficient of restitution; noticeably, in some cases, the differences between both 

formulations are significant. As expected, this occurs when the influence of the parameters that are not accounted 

in the Anagnostopoulos approach is more intense: low stiffness of the Kelvin-Voigt model, big separation among 

the colliding buildings, non-highly violent impact, and highly damped buildings. As well, the lower the target 

coefficient of restitution (i.e. plastic impact), the more important the improvement provided by the proposed 

formulation. Importantly, this upgrading is obtained at a small computational cost, given that the proposed 

algorithm needs to be calculated only one time for each analysis. 
 

The proposed algorithm is utilized in this paper in numerical analyses of collisions between pairs of RC frames, 

and in simulation of shaking table pounding experiments between RC frames. In both types of situations, its 

performance is satisfactory and fairly superior to the one of the Anagnostopoulos approach. 
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LIST OF SYMBOLS 

 

al/ar: Initial displacement of the left/right colliding frames (Figure 4) 

A: Cross-section area 

b: Constant vector given by b = (k d, k d)
T
 (equation (5)) 

c: Damping. Damping of Kelvin-Voigt model according to the reference [14] 

cA/cp: Damping of the Kelvin-Voigt model according to the Anagnostopulos/proposed formulation 

cl/cr: Equivalent damping, during the impact, of the left/right models of the buildings (Figure 2) 

d: Gap between two adjoining colliding buildings 

E: Equivalent concrete elastic deformation modulus 

k: Stiffness of the Kelvin-Voigt model 

kl/kr: Equivalent stiffness, during the impact, of the left/right models of the buildings (Figure 2) 

l/r: Subindexes of the left/right buildings 

L: Length of the colliding slabs 

M/C/K: Mass/damping/stiffness matrices (equation (5)) 

m: mass of a building or frame 

ml/mr: Equivalent mass of the colliding of slabs of the left/right buildings (Figure 2) 

r, rT: Coefficient of restitution, target coefficient of restitution  

rA/rp: Coefficient of restitution obtained after the Anagnostopoulos/proposed formulations 

t/timp/tmax: Time/impact duration/maximum impact duration 

Ti: natural period of the i-th mode 

mi*: equivalent modal mass of the i-th mode 

vl/vr: Traveling (absolute) velocities of left/right slabs in the beginning of the collision 

v’l/v’r: Traveling (absolute) velocities of left/right slabs in the end of the collision 

x: Displacement vector given by x = (xl, xr)
T
 (equation (5)) 

xl/xr: Coordinates of the colliding of slabs of the left/right buildings 

x0: Initial coordinate of both colliding slabs at the onset of impact 

: Parameter of the Newmark algorithm  

0/r/: Tolerance ratio/Tolerances for the outer/inner loops 

: Modal matrix  

: Ratio kr / k; parameter of the Newmark algorithm  

1/2: Modal coordinates of the first/second modes.  = (1, 2)
T
 

: Ratio cr / c 

: Ratio ml / mr  

/1/2: Natural frequency according to [14]/Natural frequency of the first/second modes according to the proposed 

formulation 

l/r: Equivalent natural frequency, during the impact, of the left/right models of the buildings (Figure 2) 

ζ/ζ1/ζ2: Damping ratio according to [14]/damping ratio of the first/second modes according to the proposed formulation 

ζl/ζr: Equivalent damping ratio, during the impact, of the left/right models of the buildings (Figure 2) 

ζA/ζp: Damping ratio of the Kelvin-Voigt model according to the Anagnostopulos/proposed formulation 


