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Abstract

Distributed ledger technology (DLT) is one of the latest in a long list of digital tech-
nologies, which appear to be heading towards a new industrial revolution. DLT has
become very popular with the publication of the Bitcoin Blockchain in 2008. How-
ever, when we consider its suitability for dynamic networking environments, such as
the Internet of Things, issues like transaction fees, scalability, and offline accessibil-
ity have not been resolved. The IOTA Foundation has designed the IOTA protocol,
which is the data and value transfer layer for the Machine Economy. IOTA pro-
tocol uses an alternative blockless Blockchain which claims to solve the previous
problems: the Tangle.
This thesis first inquires into the theoretical concepts of both technologies Tangle
and Blockchain, to understand them and identify the reasons to be compatible or not
with the Internet of Things networking environments. After the analysis, the thesis
focuses on the proposed implementation as a solution to address the connectivity
issue suffered by the IOTA network. The answer to the problem is the development of
a Neighbor Discovery algorithm, which has been designed to fulfill the requirements
demanded by the IOTA application.
Dealing with IOTA network setup can be very interesting for the community that is
looking for new improvements at each release. Testing the solution in a peer-to-peer
specific protocol (PeerSim), with different networking scenarios, allowed us to get
valuable and more realistic information. Thus, after analyzing the results, we were
able to determine the appropriate IOTA network configuration to build a more reli-
able and long-lasting network.

Keywords: Distributed Ledger Technology (DLT), Bitcoin, IOTA, peer-to-peer,
dynamic networks
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1 Introduction

This bachelor thesis aims to give a broad overview of two different Distributed Ledger
Technologies, Blockchain, and Tangle, in the Internet of Things (IoT 1) networking envi-
ronments. First of all, a literature review was conducted for both technologies to acquaint
with their operation and main features. At the same time, all the essential concepts were
described in this thesis for the subsequent study of both technologies in the IoT environ-
ments. The document makes particular attention to those qualities that are different in
Blockchain and Tangle, and analyze their advantages or disadvantages for IoT environ-
ments. Since Tangle was explicitly designed for IoT scenarios, IOTA 2 and the Tangle
architecture have been emphasized throughout this thesis.

As far as the experimental section is concerned, and on account of the primary stage
in which IOTA protocol currently is, critical connectivity issues can be found. Despite all
features explained in its whitepaper, there is still a significant lack of them in the software
version. In the case of network setup, currently, there is no protocol for automatic neigh-
bor discovering, so the connectivity with other nodes has to be done manually through an
exchange of IP addresses between users. Hence, most of the community members con-
tinuously experience problems with their nodes synchronization because when they lose
connectivity with their neighbors, its node is not able to automatically find another. With
the purpose of preventing this situation, the goal of our research was to encourage an au-
tomated neighbor discovering, which allow nodes to connect more efficiently and which
will prevent the owners from having to ensure that their nodes are still synchronized.

The implementation of the neighbor discovering protocol has been performed in Peer-
Sim, which allowed us to simulate the execution on a peer-to-peer (P2P) network, and
therefore, to obtain more realistic data regarding its behavior in a real scenario. After
obtaining all necessary data, a new program was implemented to employ a previously
defined metric, and measure the success of the solution. Finally, for the visualization and
topology analysis of the network, we have used Gephi 3.

1.1 Background

This thesis aims to give an overview of the topic described in the section above. Since
they are technologies which are continually being updated with new functionalities, there
are some future features, which are not referenced in this thesis. Apart from this, because
IOTA is currently in a very primary stage, several main theoretical characteristics (e.g.,
Automated Neighbor Discovering, Offline Tangle, Automated Snapshotting) are still not
available in its latest software version. Regarding the research references, due to the
constant development and the recent publication of this technology, it has been hard to
find the latest updates in academic papers. Thus, for all proven concepts that are already
implemented, information from academic papers was gathered for the thesis. Neverthe-
less, much of the collected information arise from IOTA’s online communities, e.g., IOTA
Forum, IOTA Blog, IOTA Slack Channel, Reddit, Discord channel, several explanatory
videos and online interviews, where most of the community members, developers, and
co-founders participate actively.

1Internet of Things (IoT) is a global network of devices that have Internet connectivity, as well as, can
acquire information about their surroundings and communicate it among them [1].

2IOTA is the approach that incorporates the Tangle technology as a public distributed ledger, at its core.
This approach is currently being implemented as a cryptocurrency called iota [2].

3Gephi is an open-source visualization and exploration software for all kinds of graphs and networks.
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Ledgers have been present in the commerce since ancient time and are used to record
all sort of information, mostly capital movements and money [3]. However, the first ap-
plication of Distributed Ledger Technology (DLT) introduced with the cryptocurrency
Bitcoin in 2008 [4]. Since then, DLT has become one of the latest digital technologies
appearing in the next industrial revolution. Digital ledgers are a consensus of replicated
digital data that is spread across multiple geographies, sites or institutions and are usually
public. Records are continuously stored one after the other in the ledger, and the partici-
pants from any node of the network can access the recordings shared across that network
and own an identical copy of it [3]. DLTs are a very recent technology that has aroused
frenzy in banks, companies, governments and other institutions, which are continually
working on developing distributed ledgers for different purposes. All this sudden inter-
est is due to the significant advantages concerning data availability, decentralization, and
security, that this technology offers to new applications.

In its purest form, DLT represents a unique technology in two different ways. Firstly,
it is distributed; third party’s validation is replaced in a DLT by a set of cryptographic so-
lutions, which allows a general consensus among the nodes of the network [5]. Secondly,
users can deposit on the digital ledger digital assets (e.g., transactions, records, acts), the
record of them remains immutable, transparent and resistant to manipulation on account
of technology’s cryptography and distributed design.

A critical issue that arose was that a distributed ledger could achieve digital identifica-
tion 4. In a distributed infrastructure, authentication must be ensured to establish trustful
connections between parties on the network. As a ledger, it could store digital identities
of humans, organizations or even Internet of Things (IoT) devices. As far as the Internet
of Things is concerned, a distributed ledger for Machine-to-Machine (M2M) communi-
cation is presented as a worldwide network with millions of devices interconnected. In
order to build and manage such a comprehensive database for the Internet of Things,
IOTA Foundation was created.

The most well-known DLT used to provide digital identification so far is called Blockchain.
However, this solution is not entirely appropriated for huge scenarios, such as IoT net-
works, due to two significant drawbacks:

• Transaction fees

• Limited scalability

IOTA Foundation hereby developed an alternative technology called Tangle, which
solves the previous shortcomings and allows a suitable distributed ledger for IoT devices.
Tangle is a very scalable technology, which does not only allow a large number of devices
but also its performance is based on scalability. The more transactions are issued, the
better the performance [6]. It is mandatory to have a ledger that is scalable since IoT
consists of millions of devices which are interconnected and constantly communicating
between them, generating massive traffic of transaction over the network.

Moreover, another feature of IoT network is the small value transactions (micro-
transactions) that are sent, sometimes with value zero, messages. Hence, if for each
transaction the fee has to be paid and the value transferred is minimal, the IoT scenarios
would be inconceivable because the cost of issuing transactions would be higher than the
quantity sent it.

4Digital identification is achieved with a digital identity used by computer systems to represent an ex-
ternal agent (e.g., person, organization, application). The information contained in a digital entity allows
assessment, authentication, and make it possible for computers to mediate relationships.
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1.2 Related work

As it has been introduced in the previous section, one challenge for this thesis was the
search for IOTA information in published articles. Since Tangle is such a new technology
and is still in its primary stage, the amount of papers is very scarce. Nevertheless, some
articles such as [2], [7] and [8], were used to get a general overview of the Tangle, espe-
cially the last version of The Tangle whitepaper. Thus, to gather more information for the
research section 2, other information sources were also used. The IOTA Blog publishes
articles made by members of the IOTA Foundation, developers and even the founders of
IOTA. Some of these articles [9], [10], [6], [11], and [12], include a general overview of
the features and specifications of the technology, others instead, are focused on explaining
a specific property in detail.

On the other hand, the related work previously done on Bitcoin Blockchain is much
more extensive, and there are published articles in practically all fields related to the
technology. Section 3 of the thesis was based on several articles to obtain the information,
for instance, the Bitcoin whitepaper [13] was used to get the general overview of the
protocol and its technology. Other related works used were the literary review [14] written
by Conoscenti, M., Vetro, A. and De Martin, J. C about the suitability of blockchain for
the IoT, the article [4], written by Decker, C. and Wattenhofer, R which has a complete
overview of the technology and information about the network configuration, that was
contrasted and complemented with the Bitcoin Developers Guide [15].

Regarding the related work to the problem-solving activity suggested in this thesis,
a company called SemkoDev was found, and it is currently dealing with both similar
and other problems of IOTA. Their proposed solution is called CarrIOTA Nelson, and it
is presented as a node which runs a simple API on top of the IOTA Tangle [16]. This
tool was thought to be used with IOTA’s software [17] in order to solve the connectivity
problem formulated in section 1.3.

1.3 Problem formulation

For this thesis, we wanted to attempt to ascertain the behavior between two distinct DTLs
in an IoT networking environment. First of all, we find Bitcoin Blockchain, which despite
its reputation, is poorly suitable for IoT applications [14]. Whereas on the other hand, we
have IOTA Tangle an innovative project, whose design is wholly focused on IoT scenarios.
From the beginning of this project, we wanted to compare and analyze both of them from
an IoT networking point of view, to be able to answer the two research questions specified
in table 1.1.

RQ1 What are the similarities and differences between IOTA Tangle and
Bitcoin Blockchain?

RQ2 What makes IOTA Tangle the appropriate technology for IoT net-
working environments when Bitcoin Blockchain is not?

Table 1.1: List of research questions

However, the problem formulation has changed along the thesis. In the beginning, and
as it was specified in the project plan, the project was more centered on the idea of com-
paring both technologies with the implementation of a prototype of the DLTs protocols
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5 in Peersim simulator. Nevertheless, after a rigorous literature review, we determined
that the comparison between the technologies should be addressed in a more theoretical
way. Thence, regarding the problem formulation, we focused all our efforts on design-
ing, implementing and testing a neighbor discovery protocol for the IOTA network setup.
The lack of a neighbor discovery protocol is a severe drawback present in the latest IOTA
software release that makes the performance of the network worse than the expected by
the users.

Dynamic networks are known for the instability in the connection of their nodes. Thus,
in order to find a solution for the connectivity of the nodes and achieve an appropriate
network performance, the neighbor discovering protocol was necessary. Nowadays, IOTA
implementation does not have this protocol available because as Dominik Schiener [19]
argues, the old neighbor discovering protocol generated several problems to IOTA, one of
the most important was the exponential increase in bandwidth. However, drawing from
the premise that any dynamic network needs a protocol that automatically manages the
connectivity of all the nodes, the thesis focused on this. To face this problem, a new peer
discovering algorithm based on weights was designed. Moreover, different approaches
were implemented with the purpose of finding the best solution and achieve an efficient
IOTA network setup.

1.4 Motivation

Our initial motivation for the thesis was to compare both technologies; IOTA Tangle and
Bitcoin Blockchain, building up a prototype of each technology and test their performance
in several Internet of Things networking environments using Peersim. After the research
analysis about the properties and operation of each technology, and in addition to the setup
process of their respective networks, we realized that because of the IOTA infancy stage,
its network did not fulfill the requirements to operate satisfactorily in an IoT networking
environment, that was for what it had been designed. Then, we thought that it could be
fascinating to work on the neighbor discovery protocol. Because IOTA is an open-source
code, this thesis could be useful for future studies or implementations on IOTA, even for
other similar applications since we have worked on the network layer.

Due to the technological innovation that IOTA Tangle represents, and because of the
lack of information6, it was thought that this thesis could also be an excellent opportu-
nity to collect the most important information describing how IOTA Tangle works and
what makes its operation suitable for IoT networking environments. Furthermore, since
currently, the most well-known DLT is Bitcoin Blockchain we were fond of the idea of an-
alyzing this technology and looking for reasons to answer the research questions 1.1. The
fact that both technologies were studied is positive since we can compare their behaviors
on IoT scenarios and highlight the advantages and disadvantages of each DLT.

As personal motivation, this project represented a great opportunity considering my
interest in continuing my Master studies in the field of computer networks and distributed
systems. It allowed me to study two current distributed systems and work with specific
software tools, such as the distributed network simulator, which could be used throughout
my professional career.

5Bitcoin and IOTA are the protocols implemented in the Bitcoin Blockchain and IOTA Tangle, respec-
tively [18], [2].

6Information is mostly spread in online communities (such as Discord, Slack and Reddit) instead of in
research papers.
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1.5 Objectives

The objectives to achieve along this project are the following:

O1 Study the features of IOTA Tangle and Bitcoin Blockchain and their
performance in IoT environments.

O2 Design a Neighbor Discovering Protocol prototype for the IOTA net-
work setup.

O3 Run several executions with different network scenarios and measure
its performance.

O4 Analyze the results and make conclusions about the strengths and
weaknesses of the implemented solution for IoT networking environ-
ments.

Table 1.2: List of the objectives for the thesis.

In previous section 1.3 the problem formulation was defined and supported with two
research questions shown in table 1.1. In this section, the prime objective of the literature
review was defined to obtain answers to the research questions. Our expectation for this
thesis was to achieve a report which contains enough information to distinguish the dif-
ferences between both DLTs, and how each of them works. In addition to understanding
the reasons for their appropriateness to be run in an IoT environment.

Furthermore, in section 1.3 also appeared the problem formulation of IOTA connec-
tivity, referring to the fact that there is no neighbor discovery protocol. Thus, the other
three objectives aimed to design different prototypes with alternative approaches, and
study their performance to integrate the best solution in the IOTA network configuration
process. Each version had to include an improvement in its design that should lead to an
upgrade of its performance. The design evolution was progressive and incremental among
the versions; therefore, the performance results of each version should be better than the
previous strategies. Nonetheless, as it is seen in section 7, some approaches aimed at
improving the network design and nodes integration, could negatively impact the overall
performance of the network.

1.6 Scope/Limitation

The first part of the report is focused on the theoretical analysis of the DLTs. Since we
are working on distributed data management in IoT networking environments, the thesis
showed a particular interest for the IOTA Tangle. Therefore, the content of the IOTA
Tangle chapter is more extended, and some processes are explained more in detail. How-
ever, there are limitations to the concepts of security, protection against attacks, and the
encryption process of transactions. On the other hand, the objective of the Bitcoin chapter
is to show to the reader a general idea of how this DLT works, and the main reasons why
it is not possible to be adopted in IoT environments. Regarding the limitations, there are
the same as in the previous case for the DLT security, and as a consequence of not having
deepened so much in the explanation of the processes, a more generalized explanation is
observed.

As far as the implementation is concerned, it includes a functional version of the
neighbor discovering protocol. Nevertheless, the simulation was limited to a cycle-based
model instead of an event-based model. The difference is that cycle-based model makes
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it possible to achieve extreme scalability and performance, at the cost of some loss of
realism [20]. This gap of realism is there due to the lack of the transport layer in the
simulation, and the lack of concurrency.

Regarding the analysis, the current approach is based on a static observation of the
network durability along with a timeline. The limitation of this process is the fact of not
analyzing the implementation in a dynamic way, where new nodes would be added along
the simulation.

1.7 Target group

This thesis encompasses different objectives, which are divided between the literary re-
search and the implementation process. As a consequence, the target group is broader
since we can find people who are just interested in the analysis of the DLTs and their
differences, and others who care about the whole concept. The first target group interest
would be limited to reading the first chapters that refer to the theoretical concepts. How-
ever, the second target group which includes students, software developers, even members
of the IOTA community, could be as much interested in the theoretical concepts as the im-
plementation and analysis process of the neighbor discovery protocol.

IOTA community is very active and interested in the evolution of this technology, for
this reason, projects like this thesis can be a great help and inspiration for all those who
are working in different ways with IOTA.

1.8 Outline

This thesis is structured along the research objectives mentioned above. After the intro-
duction, chapter 2 covers the data structure and the protocol that make up the Tangle.
In chapter 3, the reader gets to know how the Blockchain works differently or similar
to the Tangle. For this, it is essential to have understood most of the previous sections.
Furthermore, these two first chapters also answer the research questions 1.1 previously
defined.

Henceforth, the next chapters cover the implementation process of this thesis. The
fourth chapter, 4, shows which steps the problem-solving activity follows in order to find
a solution to the problem, previously defined in the problem formulation section. The fifth
chapters, 5, explains which tools have been used in the implementation and how each step
defined in the previous chapter has been developed.

After the developing process of the implementation, the report focuses on the results
obtained. The sixth chapter, 6, shows the results, whereas, the seventh chapter, 7, displays
the explanations and conclusions about them.

Finally, the last two chapters refer to the whole process of the thesis. The eighth
chapter, 8, holds a general discussion about the results, and if the problem has been solved.
Furthermore, it focuses on how this thesis relates to previous works. The last chapter, 9,
reveals a conclusion of the findings and suggests a perspective of further work that can be
done in the future.

6



2 IOTA Tangle

2.1 General specifications about Tangle

IOTA Tangle is an unprecedented new open-source distributed ledger that does not use a
blockchain. Instead of a global blockchain, there is a directed acyclic graph (DAG) called
Tangle. The Tangle is a new data structure, which gives rise to unique features such
as zero fees, scalability, fast transactions and secure data transfer [6]. Due to this new
architecture, the behavior in IOTA works differently in comparison to Bitcoin Blockchain.
As such it contains no blocks, no chain and also no miners.

It is important to emphasize that Tangle is made of transactions (tx), which are called
sites. So, every issued tx by nodes that are connected to the IOTA network constitutes the
set of the tangle graph, which is the ledger for storing transactions. Tangle is a consensus
structure which instead of requiring miners to perform the proof-of-work and validating
blocks of transactions, it achieves consensus because every participant node on the net-
work has to perform consensus validating two previous transactions in the Tangle before
they make a transaction [2]. As a result of this consensus, we get the academic vision of
the Tangle reflected in figure 2.1.

Figure 2.1: IOTA Tangle visualization with the genesis represented with the black square
and two tips (A and C) colored in grey.

The timeline of the previous figure goes from left to right, wherein the beginning of
the tangle there is a unique transaction called genesis. The importance of the genesis
is that all IOTA tokens7 were created in this first transaction. No additional iotas will
ever be created. This leads to a fixed supply of IOTA-tokens of exactly (333 − 1)/2 =
2,779,530,283,277,761 [21]. This exact quantity was chosen for ternary computation 8

efficiency and in an attempt to be sufficient quantity of tokens in IoT scenarios.
The starting point of everything in IOTA is the seed, since it is indispensable to create

an account with addresses and its corresponding keys. A seed consists of 81 trytes and
is the unique access to the addresses of an account, besides all its funds [22]. For this
reason, it is essential to keep it always save. In order to generate a seed safely, there are
several seed generators which create a random sequence of 81 characters using only A-Z
and the number 9.

IOTA addresses, unlike Bitcoin Blockchain, cannot be used more than once if they
have been used for outgoing money transfers. This fact means that addresses do not have

7IOTA tokens refer to every "coin" of the iota cryptocurrency.
8Because it is not entirely relevant to this thesis, there is not a special mention about the ternary compu-

tation IOTA uses. The ternary logic is simply a different numerical system that allows a more efficient and
faster calculation instead of the binary one.
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any limit on how many incoming tx receive, but as soon as they are used to transfer any
quantity of tokens, it will no longer be secure to use them again [23]. The reason why they
are not useful anymore is that when the address is used to transfer money, they need to be
signed by the owner and this process uses a signature scheme based on Winternitz-One-
Time-Signature-Scheme [24], which reveals part of the private key. Therefore, there is the
possibility that, due to this vulnerability and through brute-force9, others may acquire the
private key and therefore its funds. Since a considerable quantity of addresses will not be
useful after transferring, it is essential to be able to create new addresses. Every address
in an account is calculated from the combination of seed + index of the address, where
the address index is an integer starting from 0. Address index is unique for each address,
so if there is an address with that index attached to the Tangle, it will be attempted with
the next index.

Before using any new address, it is highly recommended to attach them to the Tangle,
even if iotas can be sent to them. The purpose of attaching an address to Tangle is to
prevent the re-use of the addresses private key. When an address is attached to Tangle,
it indicates that the address is in use or it will be. If users do not attach addresses in
the Tangle, they may be compromised. The next example shows how this could happen:
Alice’s wallet has address 0 with 500 iotas, and Albert and Giannis want to send her 2500
iotas. Then, Alice generates a new address (address 1) and sends it to them, but she does
not attach it to the Tangle. Afterward, she sends 100 to Charles, and because of how
system transaction works on IOTA, section 2.1.1, the change is sent to a new transaction
in Alice’s wallet. As the next address 1 was not attached, which means that is not being
used, it is now attached and used for the unspent 400 iotas. Later, Alice sends 100 more
iotas to Miquel and, as in the previous case, the unspent 300 iotas are sent to address
2, which is automatically attached. However, because Alice made the transaction from
the address 1, its private key is partially revealed, and therefore it becomes unsafe to use
it. Nonetheless, Albert and Giannis previously had received address 1 as a destination
to their transactions. So, when Albert and Giannis issue their transactions the amount of
money will be linked to address 1 which is not safe anymore.

Another remarkable reason to attach addresses is that IOTA’s wallet10 does not create
new addresses before the previous one has been attached. The wallets do not store the
balances of the addresses by itself, but they request them to the Tangle. It is necessary
that they are attached so that the wallet can show the balance of each of them [23]. As a
consequence of how wallet works, if there is an attached address which contains iotas, its
balance would not be reflected on the wallet because the Tangle does not know about the
unattached address.

Attaching an address means publishing the address to the Tangle. When an address
is attached to the Tangle, it creates a zero-value tx referencing that address [26]. When a
zero-value tx is sent, the next steps to successfully attach the address are the same as those
to make a tx, subsection 2.1.1. Thus, after the tx, two tips from the Tangle are chosen and
validated, and then the proof-of-work is performed. Finally, the attached transaction is
ready to be used.

9"A brute-force attack is a cryptanalytic attack that can, in theory, be used to attempt to decrypt any
encrypted data" [25]

10IOTA’s wallet is a software program that stores your private and public keys, enabling you to send and
receive transactions through the Tangle, as well as monitoring your balance.
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2.1.1 How IOTA makes a transaction

From the point of view of IOTA, a tx is the transfer of σ tokens from one address to
another. Making a transaction in IOTA is a process which contains 3 main steps [27]:

1. Bundling & Signing: Whenever a transaction should be added to the Tangle, a node
must first create a bundle. IOTA uses an Unspent Transaction Output (UTXO) scheme,
which means that inputs (addresses) are needed to transfer tokens from them to the
outputs (addresses). Furthermore, bundles are atomic, which means that either all
tx are accepted by the network, or none [28]. As a consequence of using UTXO,
most of the times, to make a transaction of x tokens it is necessary to include several
transactions in the bundle.

Figure 2.2: In the left part of the picture, it is indicated the state of the wallets after and
before the transaction. Meanwhile, in the right part, it is shown the appearance of the

resulting bundle.

The figure 2.2 shows the process of issuing a transaction, following UTXO scheme
rules. Besides, it has been used as a reference for the next explanation. Typically,
in a wallet, there are several addresses, and because the amount of funds in a single
address may not be sufficient for a transaction, more than one can be used as inputs.
Regarding the outputs, there could also be more than one although in the previous
example all tokens were transferred to the same address. In IOTA the only way a node
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can issue txs is within a bundle. Thus, when a node makes a transaction has to choose
which of its addresses are used to transfer and include them in the bundle. Because
these txs are included in the bundle as inputs, their values are negative.

After every input there is a tx with a value equal to zero, we call this tx meta transac-
tion, and it contains part of the previous transaction signature11. IOTA uses asymmet-
rical cryptography when it sends transactions, and as any other asymmetrical two keys
are used: a public key and a private key. Thereby, the authentication of the sender is
accomplished by the receiver of the transaction, who checks with the public key if the
holder of the paired private key was who issued the transaction.

On the other hand, recipient addresses also have to be included in the bundle as the
outputs, even so, because they are receiving tokens their value is positive. Finally,
because the amount of money transferred does not correspond to the amount agreed
upon in the transfer, all remaining tokens are transferred back to the sender in a last
positive transaction to a new address called remainder, and which is controlled by the
sender. In order to build an accepted bundle, it must satisfy the condition in which the
sum of all included transactions must be 0 [24]. This complicated scheme is applied
because addresses may be used as inputs only once since the signature is generated
with a signature scheme based on Winternitz-One-Time-Signature-Scheme.

2. Tip Selection: Once the bundle has been built, it is time to attach a transaction to
the Tangle. However, before a transaction can be included in the Tangle, every new
transaction must approve two previous non-confirmed transactions (tips), this process
is called validation, and it can be seen more in detail in subsection 2.6. In order to
find them, the node performs an algorithm called Tip Selection Strategy, which is also
cautiously explained in subsection 2.5.

After the two previous processes and if everything was successful, the new tx can be
included in the Tangle. Since we know that a tx represents a bundle of txs inside it, we
can assume that every tx in the Tangle is a bundle of txs. Every tx inside the bundle is
connected with each other, but besides, they are also linked with the tips of the tangle.
Therefore, every bundle in the Tangle is also connected to the tips to approve, selected
by the Tip Selection Strategy.

11Depending on the security level used to sign a transaction, it is necessary to issue 0, 1 or 2 meta
transaction with the signature [29]. In the previous case, it was used the security of level 2, so 1 meta
transactions was sent for each input

10



Figure 2.3: On the left, there is a zoom-in snapshot of the bundle with its transactions
connections. Meanwhile, on the right part a zoom-out of the bundle connections to the

Tangle.

Previous figure 2.3 introduces two new concepts, which are represented in the trunk-
Transaction and branchTransaction fields. The objective of these fields is, what in
computer science is known as a pointer. The branchTransactions is in charge of attach-
ing the bundle txs to a tip, in this case, tip 0, but except for the last tx (head transaction)
which its branchTransaction field points to the tip 1. However, trunkTransaction which
also acts as a pointer, it is responsible for connecting every tx with the tx below. Again,
except for the head tx, which its field points to the tip 0. All these unions between txs
are made by referencing the unique hash12 of each tx. Moreover, the strategy used for
linking bundles is similar, but in this case, all references to tips are done to the hash of
the first tx in the bundle, as it can be observed in the dashed arrow of the image.

With all these connections, IOTA achieves its compromise of having all txs intercon-
nected between them along the Tangle. This feature is crucial for the validation pro-
cess, which requires to check several linked txs through the Tangle.

3. Proof of Work: The last step before a node issues a tx, is the performing of a Proof
of Work (PoW). Once the bundle is constructed, signed and the tips are added to the
bundle, the PoW has to be done for each transaction in the bundle. Every transaction
in a bundle requires a nonce to be accepted by the tangle network.

The proof of work is based on the execution of an algorithm to solve a computationally
hard puzzle, but which is easy to verify it later. IOTA’s PoW is directly comparable
with Hashcash13 due to the fact that they share the same goal of preventing spam,
although IOTA’s PoW is also used for preventing Sybil attacks14.

The IOTA team designed their cryptographic hash function called Curl, which is used
to perform the PoW [24]. To perform a PoW, we need to define the Minimum Weight
Magnitude (MWM) which is the minimum number of trailing zeros in the output of

12A hash is the unique fixed-length output that a hash function generates from an arbitrary length input.
[30]

13"Hashcash was originally proposed as a mechanism to throttle systematic abuse of un-metered internet
resources such as email, and anonymous remailers in May 1997" [31]

14"Sybil attack is an attack in which the identities of the node are subverted, and a large number of
pseudonymous identities is produced to gain the access of the network" [32]. Moreover, it is considered
one of the most damaging attacks in P2P overlay network.
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the hash function Curl, or more informally known as the difficulty of the PoW. Cur-
rently, in IOTA main network, it is set to 14 and each increment of the MWM, on
average, triple the PoW difficulty [33]. The PoW is a complex mathematical process,
but because it is not the main point of this thesis its explanation is delimited to the
fundamental performance. The Pow seeks to find a particular value for a counter that,
in combination with the transaction data, achieves a nonce from the Curl hash algo-
rithm with an MWM of trailing zeros. The nonce is the result of the Curl hash and the
counter increases in each execution until at some point the nonce matches the MWM,
and the PoW is completed.

Figure 2.4: This figure illustrates the PoW process with the input of the PoW, and how
after the process the nonce is achieved with an MWM = 4.

After the successful performance of the PoW, the nonce found has to be included in
each transaction of the bundle. Finally, after updating all new data, the transaction is
ready to be broadcasted through the network and wait for it to be approved by someone
else.

2.2 Network Setup

A node starting up for the first time has its database empty. It needs to get all trans-
actions in the Tangle, and this process can take some days. The method to accomplish
this task consists of constantly listening for broadcast, and when the node receives new
transactions from its neighbors, it adds them to the Tangle. The IRI 15 process listens
on udp_receiver_port and tcp_receiver_port to accept transactions from its peers. Each
transaction passes through a validation process, subsection 2.6, before being added to the
ledger. The validation process consists of several steps in which it is ensured that the
transaction is valid by checking fields such as [35]:

• An acceptable timestamp

• An acceptable value field

• A valid signature

• A valid nonce

Every node is directly connected to other peers which are continually broadcasting txs
from others. Hence, every node is receiving and broadcasting txs at all times. However,
when one node receives a tx that it did not have in its ledger, it will validate the tx and
increment the counter numberOfNewTransactions. Since the tx is considered new, it will
also be placed in the broadcastQueue to be later sent to the node neighbors. Thereby, the
node is solidifying a view of the tangle with all txs received.

15 IOTA Reference Implementation (IRI) is the only core client available and has implemented all nec-
essary core functionality for participating as a full node in the network. It exposes an API that makes it
possible to access all required functionality and utilizes IRI for making transactions. [34]
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IOTA txs are always referencing two others: tx1 and tx2 (trunk and branch fields). So,
when one node receives a tx, it also checks if either tx1 or tx2 is or is not in the Tangle
of our node. If it is not, then the transaction hash of tx1 or tx2 is added to the set of
transactions to request, transactionsToRequest queue. At some point, the node will take a
look at the queue and requests to get more details about the tx from its neighbors. When
any peer receives a request from another node, it looks through its copy of the Tangle and
checks if it has been previously validated. If it was the case, the peer answers the request
by sending the transaction data back to the node.

During the synchronization process, the transactionsToRequest queue increases and
only decrease as the ledger of the node approach consensus with the ledger of the other
peers. Finally, once the database of the node is completely restored, it has to be verified
that the node is synchronized. Currently, the consensus is achieved if the last Coordinator
transaction, called latestMilestone is approving all the transactions in the Tangle, which
means that all of them become confirmed [36], it can be seen in section 2.3.

However, there is a faster alternative to achieve an updated database, which consists of
downloading a copy of the previous Tangle status and replace it with the empty database
that the node had at the beginning. After the replacement, the node still needs to update the
last transactions, even though it is faster than updating all of them. However, the approach
for getting the missing transactions is the same as before, listen for new transactions
and request trunk and branch transactions to keep fulfilling the Tangle until it becomes
synchronized. It has to be stressed that the time to get all missing transactions and become
a synchronized node also depends on the performance of the neighbors. Thus, even if a
node does not issue a transaction, so it does not need to share any tx to approve its txs, it
still has incentives to participate if it wants to keep being a node of the network [2].

It is essential that nodes have reliable neighbors to get as many transactions as possible
to stay synchronized. In order to keep beneficial neighbors, every node collect data about
its neighbors performance. For example, they notice when any of their neighbors do not
have proper behavior, or they detect if a neighbor has not been broadcasting transactions
for several hours. Since the connections are bidirectional, nodes should ask about its
neighbors poor performance and advise them before removing them from the iota.ini
configuration file.

The iota.ini file is used for the startup of a node [37]. All neighbors and other parame-
ters have to be specified there, and because this process is done manually, there may also
be some notes indicating the availability of each neighbor and trust level. It is essential to
be as much available as possible, and if at any time the node is turned off, previously all
neighbors should be warned of it.

2.3 IOTA Network Consensus

Since IOTA Tange is a DLT, public consensus is one of the most important qualities that
must be ensured, in order to be useful as a payment method. In IOTA, the consensus is
reached when a tx is considered to be confirmed. A confirmed transaction is accepted into
the public consensus and is very unlikely to be removed from it. There are two strategies
to achieve consensus in the Tangle [38]; the Coordinador which is the one currently im-
plemented, and the distributed approach which is the suggested in the whitepaper but still
not available.

The Coordinator (Coo) is an entity controlled by the IOTA Foundation, which issues
special txs without any value every two minutes, called milestones. Currently, milestones
set the general direction for the Tangle growth, and also do some checkpointing. Trans-
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actions (in)directly referenced by milestones are considered confirmed. The Coo is a
temporary measure to help bootstrap the network and protect it against attacks during its
infancy stage, and until there are sufficient nodes in the network that it becomes unneces-
sary. Although there is the figure of the Coo, as the Founder of IOTA, David Sønstebø,
says [10], it does not mean that IOTA ledger is centralized at any point. IOTA ledger is
entirely decentralized since every node has to validate every transaction issued to check
that consensus rules are not being ignored. The IOTA Foundation has not yet specified a
deadline to remove the Coo from the system. However, what they said is that is not going
to disappear suddenly, it will be a gradual process [39].

On the other hand, the future alternative for the Coo approach is the distributed solu-
tion, which gives a probabilistic answer. Along the consensus process, we get an academic
vision of the Tangle like the one reflected in the figure 2.5.

Figure 2.5: Represents the incoming transaction flow where green squares are confirmed
transactions, red block are still uncertain of their fully acceptance, and grey blocks are

unconfirmed.

Transactions in the Tangle have different states according to the number of subsequent
txs that reference it. Every tx can be referenced directly or indirectly. Direct references
mean that between two txs there is an edge, which joins them, whereas an indirect ref-
erence implies that there is a path of edges, which goes from one transaction to another,
crossing other txs along the way. If we observe the figure 2.5, it can be seen that there
are three different sorts of transactions status. A transaction is confirmed (green square)
when it is indirectly referenced by all tips, this means that there is a path leading to it
from each tip of the Tangle. Red colored squares indicate that they have been approved
directly or indirectly16 by at least two other transactions, and the grey ones have not yet
been approved by anyone. As a transaction receive additional approvals, it is accepted by
the system with more confidence.

The goal of any transaction in the system is to become green and be confirmed and
accepted by the whole network. However, IOTA allows the nodes to establish with which
probability of confirmation the txs become confirmed. The method to determine the con-
firmation level of a tx is based on the execution of Markov Chain Monte Carlo (MCMC)
algorithm N times, MCMC is explained in the subsection 2.5. Therefore, the probability
of being confirmed is M of N, M being the number of times the MCMC selectes a tip
that has a direct path to the tx [6]. It is considered to stress that very high levels of con-
firmation such as 100% or 99% are hard to achieve because there could always be some
malicious tips which are not following the protocol.

16Transaction A is indirectly approved by transaction B when there is a directed path of at least length
two from A to B.
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As more and more transactions are issued, the depth17 of the transactions in the Tan-
gle increases, as well as their probability of confirmation. Therefore, since nodes confirm
their txs when they achieve a particular level of confirmation and this is directly related
with the size of the Tangle, it is observed that the faster the Tangle grows, the quicker the
transactions will be confirmed. Furthermore, since consensus in IOTA is parallelized, un-
like Bitcoin where it is sequential, the network is able to grow and scale with the number
of transactions [6]. The consensus is reached at some point when a certain percentage of
the nodes in the network has the transaction confirmed.

2.4 Nodes

IOTA considering the different capabilities and requirements of nodes provides software
for three types of nodes: full-node, light-node, permanode.

2.4.1 Full Nodes

When a new IOTA node wants to join the network, IOTA documents suggest that it has
to be connected with 7-9 neighbors, joining more than 9 neighbors could get the node
into trouble due to a high network load. Although the suggestions, IOTA protocol has
a condition where the health of the node is verified, checking that the node at least has
between 4-9 neighbors [40]. To obtain a successful connection between two nodes, both
of them must exchange their IPs and ports, and add the other node address to the iota.ini
file [11]. Moreover, both peers have to set up the connection with the same protocol TCP
or UDP (e.g., tcp://ip-address:15600 or udp://ip-address:14600).

However, before the node tries to connect with other peers, it is important to note
that it is required a static IP address to use IOTA [11]. If a node is using a dynamic
address, it might be changing around every 8h, and it would be necessary to relay it to
every neighbor. Since the process of peers connectivity is manually done, broadcasting
new addresses would not be adequate for the users, nor for the network performance.

In comparison with Bitcoin, IOTA does not use an automated neighbor discovery
method, so users who want to join the network can find partners in places such as; Reddit
forums, the nodesharing channel on the official IOTA slack and in the forum HelloIOTA.
In the beginnings, IOTA had a neighbor discovery protocol to face the dynamism of the
network. Nevertheless, after gathering some performance data, developers determined
that the automatic discovery was causing more problems than benefits [19]. Some of these
problems were the exponential increase of the bandwidth, the synchronization decrease
or the increased vulnerability of the network against attacks.

2.4.2 Lightweight Nodes

Light node is the second node option, and the main difference regarding full nodes is that
they are directly connected to a public node18. Hence, clients are not interacting with
their node, but because they have to set up a connection with a public server, it will be
requested when a transaction is issued.

Regular users who want better performance and support the IOTA network set up a
full node. However, a significant number of users use the light wallet and become light
nodes. As it was referred above, currently running full nodes is a bit more of a hassle,

17Depth is the length of the longest reverse-oriented path to some tip.
18They are 24/7 full nodes which are hosted by volunteers from the IOTA community, and there are some

web pages with a list of available nodes and their current status.
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since it is required to manually find 7-9 reliable full nodes and be permanently monitoring
the synchronization of the nodes.

On the other hand, if a light node is being used it is necessary to interact with a third
party, often referred to as light wallet provider, in order to be able to issue and receive
transactions. However, all sensitive functions such as hashing and signing happen on the
client side. Thereby, it is ensured that even if the light node interacts with a provider, its
seed and the private key never leave the wallet[41], so there is no chance that someone
can steal token from the wallet.

The process of issuing a transaction from a light wallet is utterly different from what
it would be done in a full node. In light node case, the wallet sends an API request
(getTransactionsToApprove) to the public node to get the two tips that needs to validate –
since it is required to attach its new transaction to the Tangle. Then, some proof-of-work
needs to be done; the API has a command attachToTangle to perform the PoW in the
node provider side. However, most of the public nodes have this API command disabled
because it is a fairly compute-intensive task. Full nodes are in charge of keeping up the
tangle handling their transactions and light nodes transactions, but if they also have to
do the PoW of each light node connected to them, there could be severe backlogs in the
Tangle.

Finally, since one of the primary purposes of PoW is spam preventing [33]. If public
nodes were responsible for running it, light nodes would be able to spam their public
nodes with loads of transactions to process. Therefore, when clients use the IOTA wallet
app in light node mode, their nodes will do the PoW locally, and when the tx is ready,
they will request the public node to broadcast it to the other peers of the network.

2.4.3 Permanodes

Since snapshots19 exist, full nodes do not have a complete copy of the Tangle. They
store the snapshot and all subsequent transactions in order to be able to validate new
transactions [12]. Because there may be some applications that need access to the full
raw data of the ledger, Permanodes were created to store permanently and securely the
whole Tangle history, from the beginning. As regards the other features, they have the
same than full nodes.

As it can be seen in the next comparative table 2.3, permanodes fulfill all the possible
characteristics of a node, whereas the others meet some of them.

19A snapshot is a method to reduce the size of the Tangle database by removing all transactions from the
Tangle, leaving only a record of addresses with corresponding balances.
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Full
Nodes

Light
Nodes

Permanodes

Stores the whole Tangle 7 7 3

Stores the Tangle since the last snapshot 3 7 3

Finds neighbors & communicates with them 3 7 3

Bundling & Signing 3 3 3

Tip selection 3 7 3

Validation 3 7 3

PoW 3 3 3

Attaching the address to the Tangle 3 7 3

Table 2.3: Comparison of the most remarkable characteristics among the
three types of nodes

2.5 Tip Selection Strategy

As it was introduced in the subsection 2.1, each incoming transaction needs to approve
two previous tips20. At this point, it is essential to present the concept of transaction
rate (λ). This new property shows the flow load of the Tangle that can vary depending
on the node workload, the number of issued transaction, or the network delay. Since
some periods are busier than others concerning the number of txs, IOTA Foundation used
a Poisson point process to model how the flow of transactions arrives [7]. In order to
simplify the Tangle analysis, we only need to know is that on average the Poisson point
process is constant and this value is set by (λ). The next figures can help us to understand
the concept and compare the tip selection in two tangles with a high and low flow.

Figure 2.6: Illustrates a low flow tangle simulation with 20 transactions and a λ=0.1.

Figure 2.7: Illustrates a high flow tangle simulation with 20 transactions and a λ=2.1.

The figures 2.6 and 2.7 show two different scenarios, in the first case due to the fact
that the flow of transactions is so small the typical number of tips become 1. Therefore,

20In the Tangle there is always at least one tip.
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the tip selection is quite easy because of the fact that the new tx only has one previous
tip to approve or two as a maximum. However, in the second case, the transfer rate is
higher, and because λ is almost 2, we can see on average that 20 transactions were issued
in 10-time units.

The strategy for choosing the next two tips to approve is crucial and is the key of
the Tangle. However, before the explanation goes further, two new concepts need to be
clarified. Firstly, we have to introduce the delay of a transaction (h), which represents
the time a transaction requires to be prepared (PoW) and propagated through the nodes of
the network. Secondly, a reference is made to the term cumulative weight, which is used
to denote how important a transaction is. For the following scenarios, two simplifying
assumptions were made, about the delay of the txs we assume that h=1, as well as the
weight of each transaction which is also equal to 1.

The algorithm of the unweighted random walk execution consists of placing a "walker"
on the genesis transaction and starting a process of choice. For each transaction, the
walker has to decide randomly one of the transactions that reference it to keep walking.
In the end, the walker ends its path in the next tip to reference by the new transaction.
Since the process of election among the transactions is random, all transactions have the
same probability. However, due to this feature, tangle could suffer from "lazy" tips. Lazy
tips are those transactions which do not want to update the latest state of the Tangle, and
as a result, they confirm their txs based on old data, instead of the most recent one. Con-
sidering that this is not the expected behavior for tangle performance, IOTA Foundation
developed another version called: the weighted random walk. In the next figure 2.8, it can
be appreciated the lazy tips problem.

Figure 2.8: The transaction with ID 13 is a lazy tip because it is approving old
transactions (1, 2) instead of any of the current tips (9, 11, 8, 10 or 12).

The weighted random walk is a better version of the algorithm that deals with lazy
tips. Its approach uses the previously introduced concept of cumulative weight, which
is the own weight of a transaction plus the sum of the weight of all txs that approve it,
directly or indirectly. With this new attribute, not all txs have the same probability to be
chosen, therefore because lazy tips have a meager cumulative weight, their odds of being
selected as the next referenced tip plummeted. Nevertheless, the value of the probabilities
varies depending on the importance of the cumulative weight (α). If α is a high number,
the cumulative weight would be significant, and therefore, the odds would apply to the
transaction with highest cumulative weight as the next step on the walk. Consequently,
this model leaves a considerable number of txs unapproved along the Tangle. Nonetheless,
a low alpha means that the cumulative weight is not relevant and the resulting scenario
would be the same as in the unweighted random walk with the lazy tips. The ideal value
for α is still a research topic in IOTA.
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Figure 2.9: It is shown how the MCMC, based on the weight of txs, assigns a probability
to the txs that can be chosen as the next tx in the path of the tip selection process.

As it can be observed in figure 2.9, the method that decides which is the probability of
the transactions at each step in a random walk is the Markov Chain Monte Carlo (MCMC)
algorithm. Besides, it is also used for determining if a tx is confirmed in the consensus
process.

2.6 Transactions Validation

In order to add new transactions to the Tangle, two previous transactions need to be vali-
dated. The validation process is done after the new transaction (ntx) is selected by the tip
selection algorithm. To validate the still tip transaction it has to be ensured that it did the
PoW. Moreover, it also has to be checked that the selected tips only references previous
valid transactions, so that there are no anomalies with the balances of the accounts, as it
could be a negative value. To be sure of this, ntx has to list and check all the transactions
approved directly and indirectly by the selected tip, all the way back to the genesis21.
Validation is a high time-consuming process and computing resources but indispensable
for transactions to be confirmed. Since IOTA network is asynchronous, the nodes of the
network do not have to see the same transactions in their copies of the Tangle [2]. This
feature gives us a scenario where transactions arrive at the nodes in different order, imag-
ine a simple example with three different accounts A, B, C and two transactions Tx1 and
Tx2, where:

· Tx1: A→ (5)→ B

· Tx2: B→ (5)→ C

However, the order of the transactions arrival in a particular node is first the Tx2 and
then Tx1. Because the balance of B before Tx1 was 0, Tx2 would not be validated by other
transactions in the Tangle because B account would have a negative value. Nonetheless,
the next example describes the consequences of a lousy validation process. Eventually,
someone issues another transaction (Tx3) so when the selection tip algorithm is executed,
Tx2 is the selected tip to be approved. If Tx3 does not follow IOTA protocol and approve
it, even if it is not valid, Tx3 will never be approved by others because it also became
invalid when it validated Tx2. Therefore, although now Tx2 would appear attached to the
Tangle, there is still uncertain about their full acceptance by a relevant amount of tips,
because as Tx2 and Tx3 are not valid, they will never become confirmed.

One of the most well-known reasons to find conflicting transactions in the Tangle is
because of a double-spend. This problem appears when there are two approved transac-
tions in the Tangle which transfer tokens from the same account but there are not enough

21Actually it not until the genesis, there is a variable maxDepth in IOTA software which establishes the
limit.
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funds to supply both operations. Considering that there is enough to keep one of them,
what tx reminds in the Tangle?

Figure 2.10: Transaction X and Y are conflicting transactions (e.g., double-spend) and
the orange and red area show which transactions approve directly or indirectly each of

them.

In order to answer the previous question, figure 2.10 is used as a reference for the
explanation. If we observer the Tangle, when txs a, b, c, and d were tips, X and Y where
confirmed with a ratio of 50%, so both of them had the same probabilities to become
confirmed. However, in the next wave of tips g’ tried to become attached approving b
and c but then the conflict was detected. Therefore, new tips were selected randomly and
this time g was attached correctly. Because the previous attachment g confirmed Y, as the
Tangle progresses there will be more probabilities that new transactions become attached
to the orange area. In the end, because any future transaction cannot approve j and k due
to the fact that they are conflicting, the red part of the tangle + j will become orphan.
Regarding the transactions in the red area, it will be necessary to reattach them to the
Tangle.
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3 Bitcoin

3.1 Network Setup

This section deals with the Bitcoin network configuration, how new nodes discover other
peers and how the connection between nodes is made. First of all, Bitcoin network is a
P2P network which runs over TCP protocol and has a random topology, where each node
peers with other random nodes. The network changes over time and is quite dynamic due
to nodes are constantly entering and leaving. New nodes can join at any time, and there
is not an explicit way to leave the network. Hence, if a node has not been heard in three
hours, which is the duration hardcoded in the protocol [42], other nodes start to forget it.
A bitcoin client has several ways to discover new IP addresses for the network setup:

1. Nodes broadcast their addresses to other nodes.

2. Nodes query DNS seeds to find new IP addresses.

3. Addresses are provided to the nodes as command line arguments.

4. Nodes read a text file provided on the startup to know new addresses

5. Nodes use addresses hardcoded into the software.

6. Nodes read the database where their store addresses for the startup.

7. Nodes receive the callback addresses from other nodes.

3.1.1 Peer Discovering

When a new bitcoin client starts for the first time, the node does not know the IP address
of any other active full node. In order to discover IP addresses, the node query one or more
DNS seeds 22 that are stored in the chainparams.cpp file of the Bitcoin implementation.
Typically, the response of the DNS seed to the request would be one or more resource
record with IP addresses of full nodes which may accept new connections. Nevertheless,
if the request does not succeed a failure event is triggered. It contains seed nodes, which
are several dozens of hardcoded IP addresses that were available at the time of the last
software release [43]. These nodes are only contacted if no other discovery mechanism
works.

Once the node has been connected to the bitcoin network, it can update its database
sending getaddr23 to its neighbors and receiving addr24 messages with new addresses.
However, nodes can also receive addr without previously having asked for them. Bitcoin
nodes advertise addresses to a certain number of peers when they relay addresses with an
addr, when they broadcast their address to all their neighbors, and when a connection is
made [44]. Meanwhile, nodes with all this exchange of messages are continually updating
their database with the most recent addresses for future startups.

Peers often leave the network or change its IP address, and the databases become
outdated. Frequently when an old node wants to reconnect to the network, it checks its

22A DNS seed is a server that returns the IP addresses of the full nodes to the requests that are received
during the peer discovery.

23When a node receive a getaddr, it selects a maximum of 2500 addresses with a timestamp in the last 3
hours.

24Each addr contains 10 addresses or less.
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database trying to find reliable known addresses, but sometimes this process takes time
due to their availability. Hence, after a reasonable time, if there are no results in the
search, the program starts looking up for new addresses using DNS seeds [43]. In case of
not having results using this method, the seed nodes are used.

Bitcoin Core25 also offers a manual alternative with several command-line connection
options, including the possibility of getting a list of peers from the IP address of a specific
node. As soon as the node knows new IP addresses, it specifies with what addresses
it wants to establish a new connection, using the –connect command. This command
automatically executes a function called OpenNetworkConnection(), which processes the
connection establishment [45].

3.1.2 Connecting to Peers

Once the peer discovering process has been accomplished successfully and the node has
reliable addresses, the connection to a peer is made by sending a version26 message to
the address of the node with which it wants to establish a connection [18]. Version mes-
sages contain some parameters of the sender such as the version number, block and the
current time. Afterward, when the remote node receives the version message, it replies
with the same message with its information. At that moment, both nodes are already
connected, and the sender can send to the remote node getaddr and addr messages to get
more addresses of other peers.

In order to check the status of the connections, nodes send a message after some
time of inactivity. If the node does not receive any reply message after some time, the
connection between them will be closed.

3.2 General Overview Bitcoin Blockchain

The blockchain is a decentralized, distributed, immutable public ledger in a heterogeneous
P2P network. In blockchain, multiple transactions are stored in blocks, and every block is
sequentially connected to each other "chained". Every block has a variable amount of txs
although the maximum capacity of the block is 10MB. A newly issued tx is broadcasted
from its source node to all the other peers, therefore when a node hears about a new tx
it has to validate it. Since blockchain also uses the Unspent Transaction Output (UTXO)
scheme, the validation of transactions is similar to IOTA’s process; it consists of using the
copy of the blockchain that every node has, and executing some cryptographic functions
implemented in the protocol. These functions validate that the transactions are formatted
correctly and the balances are available to be spent. If the node proves that the transaction
is valid, it is added to the Mempool27 of the node, and it is relayed to all its neighbors that
do the whole shebang again. Otherwise, if it is invalid, the transaction is discarded, and
the node does not broadcast anything.

Theoretically, any full node can add valid tx to a new block and mine it. Mining is the
process of getting tx from the Mempool, adding them into a new block and doing a PoW.
Bitcoin uses the hashcash proof-of-work function, which its primary purpose is to avoid
tx spam, in addition to saving the history of transactions in a way which is computation-
ally impractical to be modified by another entity. Moreover, the proof-of-work has been
intentionally designed to be resource-intensive and challenging so that the time between

25It is the name of the software used for the implementation of bitcoin.
26The version message provides information about the sender to the receiver, and until this message is

not sent, any other message will be accepted.
27The Mempool is a list of txs that have been validated and are pending to be added in a block.
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new blocks remains steady, around 10 min. Nevertheless, technology has been improved
since 2008, and every year new computers are more powerful. Consequently, Bitcoin
has to increase the difficulty of the PoW to keep the interval of time between them. The
difficulty is encoded as a target, which is essentially a 256-bit number determined via
consensus by all nodes of the network [4]. Since block hashes are produced by SHA-256,
they are also a string of 256 bits, so if the hash of a block is numerically smaller than
the target, the block candidate is a valid block. Unlike IOTA, nodes do not have to do
PoW to send a tx. Thus, since PoW is a resource-intensive activity and it is not manda-
tory for nodes, there has to be a reward for those who do it. Currently, the participants in
the bitcoin network are divided into two roles: the full nodes and the miners. The only
difference between them is that while the nodes are limited to validate and broadcast the
transactions, the miners also add txs into a block and perform the PoW. In exchange for
their computational work, miners receive a reward plus the fees of the transactions added
in the block. The current reward is 12.5 BTC, but because the protocol is halving them
periodically, the amount is diminishing until 2140 where it will reach the value 0 [46]. At
that moment, it is still uncertain what could happen, but as David Sønstebø - founder of
IOTA said [47], "Fees will grow in accordance with a decrease of mining rewards", which
is not very convenient for IoT networking environment.

Once a block is mined, the miner has to broadcast it all over the network to be validated
by the all the other nodes. Hence, whenever a node receives the last block, it has to
validate it by checking the Bitcoin consensus rules28. Here there are several examples of
consensus rules, although there are many more:

· Blocks may only create a certain number of bitcoins.

· Transactions must have correct signatures for the bitcoins being spent.

· Transactions/blocks must be in the correct data format.

· Within a single block chain, a transaction output cannot be double-spent.

At some point, every node will have validated the last block published in the network.
When this happens, it is said that the block has been mined at a depth of 1. The vali-
dation of subsequent blocks will increase the depth of the block. As in IOTA’s case, to
avoid conflicting transactions, such as double spending, txs are not confirmed until a cer-
tain number of blocks depth. Nevertheless, when the block is deep enough, it becomes
confirmed keeping the consensus of the system.

The miners are all time mining, trying to be the first to complete the mining of a
block and obtain the corresponding reward. However, due to the difficulty of mining has
increased to the point where slow miners could take centuries to generate a block, the
mining pools appeared. Mining pools is an approach for pooling the resources of miners
and have more computational power to create the block. The reward in a mining pool is
split among all the participant according to the computational work they contributed to
finding the block.

When a miner receives one block, it checks if it is valid and the acceptance is shown
when blocks start working on generating the next block. A reference between two blocks,
as it can be seen in figure 3.1, is established by including the hash of the previous block
in the current block [13]. Therefore, when the current block is finally mined, it becomes

28The consensus rules are a set of rules that every full node has to consider for the validation of a block
and its transactions.
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sealed to the previous one. Any change in the previous block would alter its hash, and
likewise the subsequent block would notice that it is different from what it has, because it
has been modified.

Figure 3.1: Every block is chained to the previous one by including a reference to the
proof-of-work resulting hash.

Due to the latency of the network, the blockchain can be split into two or more chains,
it is known as blockchain fork. A fork occurs when more than one miner, at the same time,
find different versions of the next block. Since each of them broadcasts its version, some
nodes receive one before the other. During a blockchain fork nodes in the network do not
agree on which block is the blockchain head. Hence the system is no longer consistent [4].
A blockchain fork may be prolonged by adding new blocks on their respective blockchain
heads. In the end, one branch will be longer than the others, and then the nodes that
were not following that branch will switch to the longest one. Every node when receives
different block versions saves all of them until the fork is solved, in case it has to change
its branch. At the moment that one chain is longer than the others, the fork is resolved,
and the ledger replicas are consistent about the blockchain head. The blocks discarded
after the fork resolution are called orphan blocks. The transactions included in the orphan
blocks are returned to the mempools unless they have already been included in a block of
the new chain.
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4 Method

The method implemented in this thesis deals with the still present problem in the last
IOTA Reference Implementation release, the neighbor discovery algorithm for the auto-
matic connectivity of nodes in the network. IOTA Foundation presents its IOTA network
as "an independent peer-to-peer network with a first-user, friend-to-friend, network struc-
ture" [37]. However, the idea behind IOTA Tangle was built thinking of IoT scenarios,
where hundreds of thousands of nodes are interconnected, and the network is highly dy-
namic. Therefore, due to the qualities that IoT scenarios include, the current limitations
of network connectivity, and besides the complaints that the IOTA community and users
show to find reliable nodes to be connected. We decided to work on the next problem-
solving activity to study a possible neighbor discovery implementation for the IOTA net-
work, and help the IOTA Foundation in the adaptability process of the IOTA network with
the purpose of IOTA Tangle.

4.1 Neighbor Discovery Algorithm

The method used for this research project is a controlled experiment using a peer-to-peer
network simulator, called Peersim. It has allowed us to obtain more realistic results,
with the purpose of performing an analysis that is as similar as possible to the real IOTA
network.

Implementing an efficient algorithm is essential to obtain better results. Because this
algorithm has been designed to improve IOTA network connectivity, a wrong solution
would imply an inappropriate performance to the IOTA application layer. Therefore, we
designed four versions to compare them and corroborate which approach has better results
and is more suitable for the network performance. The most relevant implementations
are the Weighted, the Greedy and the e-Greedy neighbor discovery, since they base the
selection process on the weight of each node, whereas the other version consists of a
completely random solution where there is not any rule for the selecting neighbor process.

An IoT network is made up of different types of devices (nodes), and each of them
offers different qualities 29 to the network. The goal of every node is to reach the best
performance, which regarding the IOTA application would mean the best capacity for
processing transactions and distributing them over the network. In order to achieve it,
nodes need to be connected to other peers which also have high performance to be con-
tinually receiving new transactions, otherwise, the node will have nothing to approve and
broadcast. Furthermore, IOTA is in charge of keeping the nodes active in a way that if a
node becomes “too lazy” and it does not propagate transactions, it will be dropped by its
neighbors [2]. Thus, when it comes to selecting a neighbor, it is essential to enhance the
quality of the node to choose, as the three main neighbor discovery versions do. It is also
important to take into account the interest in having long-term neighbors that constantly
provide new transactions to keep the local Tangle updated.

Nevertheless, although it is vital to be connected with high-quality nodes, the appli-
cation level restricts the amount of neighbor that a node should have. As specified by the
IOTA documentation, they recommend to the users to have their node connected to 7-9
neighbors to keep the node synchronized. Because we are designing this protocol for the
IOTA application, we took into consideration this requirement in the Weighted version,
and we have implemented the algorithm limiting the output number of connections of the

29The quality of a node could be measured by attributes such as its computational capacity or battery
level.
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nodes with the amount specified by IOTA. However, in the Greedy and e-Greedy versions,
this limitation was dismissed to focus on obtaining a connected network with the highest
durability30.

4.1.1 Protocols of the Neighbor Discovery Algorithm

The execution of the neighbor discovery protocol includes several other steps to get the
IOTA network with all its nodes indirectly interconnected. The process for the neighbor
discovery is based on three main steps, which in the Peersim language are divided into
two sub-protocols, as it can be seen in image 5.1. Each of this steps has a primary task
in the process. As far as the simulation is concerned, the first step is to build a network
with a certain number of nodes. Every peer has the same protocols as the rest, they and
their protocols are entirely identical, that is why their instances are created by cloning.
Once all nodes are created, all protocols used in the simulation are also declared, and they
are ready to be initialized. In our simulation case, the only protocol initialized is the one
which performs the wiring of the static overlay network. In the beginning, the simulation
starts with a set of nodes which are randomly connected with k number of nodes. The first
step of the algorithm itself consists of executing the linkable sub-protocol: the Newscast.
After its execution, every peer in the system knows about a set of nodes (neighbors) and
has a list of their addresses and the last connection time-stamp. In order to distribute the
content and build a new topology, every node selects randomly one of its neighbors to
exchange their neighbor lists. Then, after exchanging the list, nodes merge both lists and
build a new one with all the latest connections. Thus, at each cycle, the nodes expand the
vision of their overlay network, until reaching the maximum number of connections per
node, and at the same time update the network with the most recent connections.

After expanding the overlay network for every node, the second sub-protocol is the
Neighbor Selection. It is executed for every node to choose a subset of relevant neigh-
bors. The selection sub-protocol is the core of the neighbor discovery protocol since is at
this point that the process is divided into the four versions:

– Random Neighbor Discovery Algorithm

– Weighted Neighbor Discovery Algorithm

– Greedy Neighbor Discovery Algorithm

– e-Greedy Neighbor Discovery Algorithm

The random version of the protocol selects a certain number of neighbors randomly.
However, in the other versions, because every node was initialized with a quality param-
eter, the selection process is based on this quality, selecting the number of neighbors in a
descending order of priority.

If at this point the network is drawn, it would be observed that the requisites estab-
lished by the IOTA application are not fulfilled in the network. The selecting protocol
does not guarantee the requirements of an indirect graph nor a balance between the in-
degree and out-degree of the nodes. However, with the purpose of solving this problem,
there was a filter included in the same sub-protocol that was designed to achieve the pre-
vious requisites. The difference between quality-based versions is in the strategy they

30The durability of the network in this study is understood as the number of simulation cycles that the
network remains a connected graph and therefore is functional for IOTA.
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follow to perform the filtering. The weighted version was designed thinking about satis-
fying all the features of IOTA network. Hence, after the weighted filtering, the network
was undirected, and the maximum number of neighbors was limited, as in the real net-
work, to a maximum of 9 neighbors. Nevertheless, this version had a drawback about the
minimum number of neighbors; there was no control in the case that a node did not have
any node available in the list of selected to set a connection. This situation is more likely
to happen when the filtering is executed in the last nodes of the network because a con-
siderable amount of the network already have the connections established and the variety
of available nodes is lower. If a node can not find any neighbor that accepts connections,
it will not be part of the network.

The fact of not limiting the maximum number of connections in the weighted version
could cause that the network becomes a complete graph. Thus, in order to cope with
the weighted version issue and at the same time keep a limit on the maxim amount of
connections, Greedy and e-Greedy versions were created. Their main goal and difference
regarding the previous version is to include all nodes in the setup of the network. How-
ever, to be able to do this, the maximum number of connections that a node can reach
is more flexible than the previous limitations of IOTA. Theoretically, since all nodes se-
lect their neighbors based on their quality, those with the highest quality will be more
requested than the others. In the real world, this hypothetical case would make sense for
big companies that have sufficient resources to manage computers with large computa-
tional capacity. These companies could offer a service that in exchange for accepting a
huge amount of transactions they would be rewarded somehow.

Therefore, in these two new versions, preference is given to those nodes with higher
quality, whereas those with less quality are forced to establish a minimum of connections
to eradicate the loss of nodes during the configuration of the network. In the previous case,
where in-degree could be equal to zero, not only IOTA would not accept that network for
its application, but also there would be synchronization problems since they would not
receive any income transaction to add to their Tangle.

The difference between Greedy and e-Greedy was the attempt to decrease the requests
to the most quality nodes and diversify the connections among the selected nodes that have
a lower quality than the top 9. Greedy is the version that potentially benefits the quality
nodes, while e-Greedy seeks the balance between the selected nodes.

The selection algorithms choose a subset of neighbors from its overlay network. The
number of selected neighbors is defined at the beginning of the simulation, and depend-
ing on its value, the resulting network could be different because the amount of quality
nodes increases correlatively to the number of the selected. A high quantity of selected
neighbors makes the nodes have a wide variety of possibilities to choose those neighbors
that have more quality. On the other hand, if the selection is rigorous, in versions such as
the Random and the e-Greedy where the design is beneficial for those with less quality,
their probabilities would be zero because the rigidity in the selection process would not
allow them to participate as candidates for neighbors.

Designing a network discovery algorithm for the IOTA network was one of our ob-
jectives for this thesis, however finding a single solution for all cases is a very compli-
cated task. In order to get some conclusions about the performance of the four different
versions, once the neighbor discovering and the IOTA network configuration were com-
pleted, it was needed to check which one had designed a better IOTA network. Each IOTA
network was the results of an experiment in one of the neighbor discovery versions. For
the experiments on the simulation we fixed some values for every execution of the proto-
cols, those which were fixed are: the number of simulations (50), the number of cycles
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(40), the number of neighbors for the filter (9) and the number of initial connections per
node (2). Moreover, the solutions were tested by modifying the value of the network size,
the maximum number of neighbors per node and the number of nodes selected.

The number of simulations for each experiment had to be a considerable value to ob-
tain a wide variety of samples and make the average of all of them. The number of cycles
was the duration of every simulation, and allowed the overlay network of the nodes to
become larger and to be updated throughout the cycles. The number of neighbor connec-
tions was set to 9 to satisfy the requirement of the IOTA application. However, this value
for the Random and Weighted versions represent the highest degree of a node, whereas
for the Greedy and e-Greedy is the minimum amount of connection required for a node.
Finally, the last parameter represents the number of initial connections for each node in
the network, which was not relevant since during the simulation every node discover new
neighbors.

4.2 Analytic Program

In order to prove the quality of each network, an analytic program was built to test which
networks offered better results. The approach used for the analysis was based on the
durability of the network, so the quality of the nodes was used as a property that decreases
proportionally to the number of transactions validated and broadcasted over the network.
However, because all nodes receive all transactions, the number of validated transactions
is the same for all nodes, so its value was not significant for the equation. Hence, the
resulting simplified equation for the quality of the overall network was determined by the
following equation:
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In the equation, m represents the number of nodes in the network, q is their quality, σ
is the cost of each edge, and p refers to the number of neighbors of a given node.

If we observe the state of the network in a temporary line, we see that its value is
reduced as the quality of the nodes is diminished by the cost of the edges. During an
execution, nodes are disappearing when they do not have quality and until the moment
where the network is no longer useful because it has become incomplete. At this point,
the execution is over, and the program reveals the durability of a particular scenario exe-
cuted in a specific neighbor discovery algorithm. Therefore, the most important values to
determine which algorithm has the best performance in the analysis are; the Ov from the
beginning until the end of the execution and the number of rounds that the network was
able to run the IOTA application.

4.3 Reliability and Validity

As far as the reliability is concerned, the methodology that has been used in the thesis for
data collection was performed in the same way for each scenario. For each experiment,
a random seed was used to modify the behavior of the simulation, so the results were
different for each of them. However, since Peersim is a pseudorandom program as long
as the executions are made with the same seed and same parameters, the results will be
identical in all the simulations. Furthermore, the analytic program was also the same for
all versions, and because the results did not depend on the execution time, the efficiency
of the algorithm did not affect the results. Thence, because all methods used for data
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collecting has been automated there are no chances to introduce an error only in some
executions, the methodology correctness is atomic.

On the other hand, the importance of including valid conclusions and results in the the-
sis was taken into consideration along all the steps and sections of the report. In order to
construct validity in the interpretation of the results, the analysis and conclusion sections
were limited to build their affirmations and explanations from the results that had been
previously achieved. For instance, the performance comparison among the algorithms
was based on the final results and not on the expected results before the analysis.

The validity of the results is a crucial factor to obtain adequate results from the real
algorithm behavior, and thereby be able to perform a successful analysis and conclusions.
In this thesis, because each execution has a random factor in its behavior, the results of
a simulation could not correspond to the actual behavior of the algorithm. Thus, to grant
validity to the results obtained during the experimentation phase, 50 samples of results
were obtained for each scenario, and the average of the result was calculated to observe
the performance of the algorithm in a general way.

Finally, about the external validity, it should be considered that the proposed solutions
were designed following the requirements, specified in the method section 4. For this
reason, the validity of the network performance with the real IOTA application would be
compromised by other external factors not mentioned in this project or not considered
during the implementation.
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5 Implementation

For this thesis, as it has been introduced in the previous section, the core of the implemen-
tation was a java program to simulate the neighbor discovery protocol in a P2P network
in Peersim. Furthermore, an analytic program was also designed to test the fours versions
of P2P networks previously built in the simulator.

5.1 Tools

1. Eclipse: It is the software used as a development environment to program the simula-
tion and the analytic program, both of them were programmed in Java language. The
integration of Peersim to Eclipse was done by downloading the PeerSim package from
Sourceforge and adding the three main libraries to the eclipse project.

2. Peersim: It is an open source P2P systems simulator that was used to build the neigh-
bor discovering algorithm. Peersim consists of a set of libraries with useful classes
and protocols that helped us to build the networks. PeerSim is a simulation engine in
which we can write simulations, collect results and analyze them. The engine takes
care of the experiment, while the programmer takes care of the logic of the interactions
among the elements of the scenario. The simulation is specified in a configuration file
that is crucial because it contains the characteristics of the network; declaration of all
protocols used in the simulation, protocols initialization and their parameters, and even
sometimes observers that get results from the simulation.

3. External Libraries: The analytic program uses a java graph library called JGraphT
that provides mathematical graph-theory objects and algorithms. Furthermore, it sup-
ports a great variety of graphs including the undirected, such as the IOTA network. In
our program, we used this library to check until when the graph remains connected,
with the function isGraphConnected().

4. Gephi: It is an open-source network analysis and visualization software package writ-
ten in java. It provides lots of options for adequate visualization of the network, distri-
butions and network statistics (e.g., average degree, network diameter, in-degree and
out-degree for each node). This software has been used in this thesis to get a precise
visualization of the IOTA network with all nodes labeled, a list with all the neighbors
of each node, and the in-degree and out-degree of every node.

5.2 PeerSim Implementation

The goal of the PeerSim implementation was to build an appropriate distributed P2P net-
work to run the IOTA application on top of it. Peersim was used in this thesis due to
the significant advantages offered by its libraries for the design of the network. The im-
plementation of our solution includes two of its classes which helped to build the initial
phase of the network, they are the WireKOut which takes the Linkable protocol and adds
random connections to the nodes, and the Newscast which is the linkable protocol, and
it was used as a topology manager. The Linkable protocol class, in this case Newscast,
represents the information about the link layer stored by a node. Hence, whenever it is
necessary to consult the degree of a node (int degree()), obtain a certain neighbor (Node
getNeighbor(int i)) or add a new one (boolean addNeighbor(Node node), it is necessary
to instantiate the class calling the corresponding function.

30



In order to achieve the main objective of this implementation, several protocols where
used through the whole process. The subsequent figure 5.1 shows the layered architecture
that each node follows and the corresponding protocol in each of them.

Figure 5.1: Layered protocol architecture of the nodes.

The bottom layer is the linkable layer which is responsible for the network connec-
tions, it is probably the most used protocol since any query or modification to other peers
implies instantiating it to execute the query. On top of the linkable layer, there is the
connection layer which is focused on the logic of the connection to guarantee the require-
ments demanded by the last layer of the architecture. The top layer is the application that
runs on top of each node, in this case, the IOTA application contains the tangle and the
whole system involved in the exchange of transactions.

The design of this implementation was thought to offer a high level of adaptabil-
ity. Since a layered architecture was used, it allowed us to choose between the Random,
Weighted, Greedy or e-Greedy neighbor selection, indistinctly, without affecting the other
layers or requiring significant changes in their implementations.

5.2.1 Configuration File

The configuration file is a plain ASCII text file composed of key-value pairs. The first
thing to note are the key names, some of them refer to global properties, while some
others refer to single component instances. For instance, simulation.cycles is global, but
protocol.lnk.xxx defines parameter xxx of protocol lnk.

Each component in the config file has a name, such as lnk. In our implementation,
there are three types of components: protocols, initializers, and observers. In the example,
lnk denote the name of the linkable protocol, whereas xxx define a parameter and assign
a value. This instruction protocol.lnk.cache 50 has been extracted from the source code,
and we can observe how the value 50 is assigned to the cache parameter of the linkable
protocol.

The structure of the configure file used in our implementation is formed by:

– simulation.cycles X

– network.size 100

– network.node example.gerard.IOTANode

– protocol.lnk example.newscast.SimpleNewscast

– protocol.exn example.gerard.NeighborsSelection (Random or Weighted)

– init.rnd WireKOut
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– control.nl example.gerard.NodesQualityList

– control.tp example.gerard.TopologyIOTAObserver

The order of execution is from top to bottom, so the first instructions we find are global
properties about the cycle-driven simulations and the network. The third instruction in the
list indicates that the network is using a customized class (IOTANode) for the nodes of the
network since it was necessary for our implementation. Afterward, there is an initializer
of the components previously declared, in this case, is the linkable protocol with the
initial state of the network. It is important to clarify that initializers are executed only at
the beginning of the execution.

Finally, after finishing the simulation, the edges were printed in the .csv files for the
network topology visualization in the Gephi software. Furthermore, the quality of the
nodes was also saved to be later imported into the analytic program. These tasks were
done in the simulation by the observers control.tp example.gerard.TopologyIOTAObserver
and control.nl example.gerard.NodesQualityList, respectively.

5.2.2 Newscast

Newscast is the linkable protocol used to deal with the connections of every node of the
IOTA network. Every node from the beginning of the simulation has a view of a set of
nodes which build an overlay network. The first set of nodes is randomly chosen by the
WireKOut initilizer after the linkable protocol is declared. Afterwards, when the Newscast
protocol is executed in the first cycle, since Newscast is an epidemic content distribution,
every node starts increasing its set of nodes and likewise its overlay network.

Regarding the epidemic distribution, Newscast was implemented in a way where ev-
ery node selects a random neighbor and executes the void merge(Node thisNode, Simple-
Newscast peer, Node peerNode ) function. Nodes have a list of descriptors that contains
the address of each neighbor, and a time-stamp with the time of the connection. When
the previous function is called, thisNode and peerNode merge their list of descriptors. If
both nodes have the same neighbor, the node with the highest time-stamp (the newest) is
saved in the list, whereas the other is dropped. As a result, both nodes have expanded their
overlay network and increase their odds to find better neighbors for the selection process.

The maximum number of nodes (k) that are exchanged can be modified in the con-
figuration file, depending on the size of the global network. This number represents the
maximum amount of neighbors at this stage of the network. However, if k has a high
value and the network is in the initial phase, the number of merged neighbors would be
lower than k.

5.2.3 Neighbor Selection

Neighbor Selection is the connection protocol and the core of the whole Neighbor Selec-
tion protocol for IOTA. Thereon, every node has run the Newscast protocol and expanded
their list of neighbors. The protocol declaration in the configuration file includes two
parameters: maxneighbors and maxiota. Both of them set the limit of the selected neigh-
bors, but each of them is used for different use cases. This protocol is divided into two
steps; first, every version selects, in different ways, several neighbors which are added
to the selected neighbors list (selectedNeighbors). Then, after the selection process, the
random version will have a different list than the others versions. However, the difference
between the other three version is in the way how the selectedNeighbors are filtered into
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the final set of neighbors, which will be saved in the IOTAneighbors list. In order to prove
if the suggested strategies had a good performance, and get some results to compare them,
it was necessary to implement four classes, one for each version:

· Random Neighbor Selection: The first class was not based on any specific strat-
egy for the selection process. It is performed by each node and consists in running a
loop until the maxneighbors iteration is reached, adding at each iteration a random
neighbor in the selectedNeighbors list, which in the end contains all selected neigh-
bors. After the selection process, because the connections were set up randomly, the
resulting network would not be undirected, which is mandatory for the application.
Hence, it was necessary to filter the results and save them in IOTAneighbors, which
contained the final IOTA network connections. The filter is a loop through the se-
lectedNeighbors while the IOTAneighbors size is lower than the maxiota, which
was initialized in the config file with a value of 9. Then, at each iteration the node
query one of its selected neighbors to check two conditions: if the node is on its
neighbor IOTAneighbors list and if the list has not reached the maximum capac-
ity (maxiota). If the node is in the list, means that both were already connected,
otherwise if it is not and the size of IOTAneighbors is less than maxiota, the node
has to add its selected neighbor to the IOTAneighbors and call the function void se-
tIOTAneighbors(int IOTAnodeID) to advise the neighbor to do the same on its list.
Since both peers are added to each other, the algorithm ensures that the established
connections are bidirectional.

· Weighted Neighbor Selection: On the other hand, there is the weighted version
and one of the reasons why the IOTANode class was needed for the implementation.
All nodes have a quality parameter assigned when they are created, and its value is
a random number between 1-10. This attribute is the key to the selection process
because it is based on the quality of the node. A node which runs this selection,
as in the previous case, runs a loop through the selectedNeighbors checking all its
selected neighbors and sorting them according to their quality. Then the filter is
applied, the procedure is the same as before with the difference that now they were
sorted by quality before being added to the IOTAneighbors.

· Greedy Neighbor Selection: The fourth version is based on the selection approach
of the Weighted version but with a different filter to improve it and get better re-
sults. Since this version is more flexible, the difference with the previous case, is
the omission of the IOTAneighbors list size verification. Thus, the problem on the
minimum amount of connections per node was solved because without the previous
condition every node establishes its connections with all IOTAneighbors. Nonethe-
less, the number of connections of the highest quality nodes increased considerably.

· e-Greedy Neighbor Selection: Finally, the last version goal is to spread the con-
nections among the network instead of just focusing on the most quality nodes,
while at the same time it keeps including all nodes in the network. In order to
achieve that behavior, the previous Greedy filter was modified introducing a prob-
abilistic factor. The idea behind this approach was that with a 70% of probabilities
nodes would select one of the first maxiota nodes in the selectedNeighbors. How-
ever, the other 30% of the time, the selection would be made to any of the nodes
after the top 9. Hence, with a 0.7 factor the algorithm is ensuring the preferential se-
lection to the nodes with more quality, and with the other 0.3 it gives an opportunity
to those less important.

33



5.3 Analytic Program

The last part of the implementation has been designed to analyze the resulting IOTA
networks of each of the previous algorithm versions. In order to measure the quality of
the overall network, we defined the Ov of the network as a metric, and it was calculated
with the previous equation 1. Furthermore, the number of cycles in which the network was
active, was also calculated as a metric to measure the durability of the network. Therefore,
as it can be seen in section 7, the analysis of the results has been done comparing the Ov

and the network durability among all versions.
Since the analytic program is independent of the simulation program, all data previ-

ously calculated was needed to perform the analysis of the networks. All the essential data
of the simulation was exported by the observers in two .csv files for each version. The
IOTAgraphTopologyVersion file contained the source and target of the edges to generate
the graph. On the other hand, NodesQualityListVersion file included a list of all nodes in
the IOTA network with their corresponding quality. The observers in the config file were
declared to export this data at the end of each simulation. However, every simulation was
run 50 times to get the average of the results. Thus, every time that the analytic problem
was executed it had to import 50*2 .cvs files and calculate the two metric average of the
50 samples.

The analysis of the networks was performed in a static way where at each iteration the
quality of the nodes decreased proportionally to the number of edges multiplied by the
cost of each of them.

Figure 5.2: Code of the analytic procedure to calculate Ov and IOTA network durability.

As it can be observed in figure 5.2, the program has been implemented using an exter-
nal java library called JGraphT to check whether the graph was connected or not, using the
function boolean isConnected(Graph<V,E> graph). At the time that the graph became
incomplete, it returned the number of cycles in which it was complete.
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6 Results

This section shows the results of the experiments performed on the different versions of
the neighbor discovery algorithms. In order to get enough information for the analysis,
three scenarios were designed to force the behavior of the algorithms and observe their
performance concerning the durability. Each scenario reveals essential information for the
analysis, the cycles of durability can be seen in figures 6.1, 6.3 and 6.5, whereas figures
6.2 and 6.4 indicate the Ov of the network before the execution.

The first experiment was thought to observe the changes of the behavior of the algo-
rithms if the size of the network (1.000 nodes) remained static, while the size of selected
nodes increased in each simulation. For this scenario, the maximum size of the overlay
network that could be reached was fixed to 70 peers; therefore, the maximum amount of
selected neighbors is 70.

Figure 6.1: Durability cycles of each algorithm according to the number of selected
neighbors in a network of 1.000 nodes.

Figure 6.2: Ov of the networks designed by each algorithm and based on the parameters
of the first scenario.
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The second scenario was designed to see how the algorithms would face the growth of
the network and verify its durability through several simulations, each of them includes
500 additional nodes to the network. This scenario fixed the overlay network size to 50
nodes while the number of selected neighbors was limited to 20 nodes.

Figure 6.3: Durability cycles of each algorithm according to the size of the network and
a maximum of 20 selected neighbors.

Figure 6.4: Ov of the networks designed by each algorithm and based on the parameters
of the second scenario.

Finally, the last scenario was designed mainly to compare the three proposed algo-
rithms for the neighbor discovery protocol. In this case, the values which are changing
through the simulations are the size of the network as well as the number of selected
neighbors. The reasons for setting the values of the parameters can be seen in detail in
the next section 7. Furthermore, as an exception, the maxiota value, seen in section 5.2.3,
had to be changed to be able to simulate a scenario with these characteristics. Regarding
the size of the network, it was fixed to 1.500 nodes.
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Figure 6.5: Durability cycles of each algorithm according to the size of the overlay
network and the number of selected neighbors in a network of 1.500 nodes.
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7 Analysis

This section deals with the analysis of the results to verify if the algorithms provide a
solution to the problem formulated, and understand the reasons for the performance of
the algorithms in the three different scenarios. The following argumentations are mainly
based on the results data, but also include information about the implementation of the
algorithms. Thence, before starting this section, it is highly recommendable to understand
how they work. The analysis is done in the same order in which the scenarios have been
presented in the previous section 6. Nonetheless, references are constantly made among
the scenarios to coherently compare and analyze all of them.

7.1 Analysis of the First Scenario

The first scenario, as it can be seen in figure 6.1, shows a considerable difference between
the performance of the random version and the others. In the first executions, the weighted
algorithm had a terrible performance, but suddenly it started to increase until reaching
better values than Greedy and e-Greedy versions. These results are due to the weighted
version starts to build connected graphs as the number of selected neighbors increments,
and it discovers most of the nodes in its overlay network. After the performance have been
raising, the number of selected neighbors is 70 or higher. However, since the size of the
overlay network is limited to 70, there could not be other selected nodes, and therefore, the
performance experiments a constant level of durability. The reason for the growth of the
performance in the weighted version is that as the number of selected neighbors increases,
the selection algorithm has a broader offer and more probabilities to find a neighbor that
still accepts connections. Nevertheless, when the amount of selected neighbors is low, the
probabilities are reduced for those nodes that are the last to execute the selection process.

On the other hand, Greedy and e-Greedy versions show a stabilized evolution through-
out the simulation. The reason for this continuous trend is because they are affected by
the maxiota value, seen in section 5.2.3, while the selected neighbor is depreciated. The
fact of increasing the number of selected neighbors do not cause any effect on the selec-
tion process of the algorithms since the amount of selected neighbors (maxiota) is based
on the most quality nodes of the set. Because maxiota is always lower than the amount of
selected neighbors, the top maxiota priority nodes of the overlay network are the same in
each simulation. These arguments can be corroborated observing the image 6.2, wherein
each simulation can be seen that both algorithms have precisely the same Ov because the
networks were built with the same neighbors connections in all simulations.

As it has been introduced, surprisingly the random version reached high-performance
values. The reasons for this results are hard to define since the behavior is completely
random in the selection process. Therefore, the third scenario was designed, among other
reasons, to inquire more about the random behavior and make an appropriate analysis.
However, due to the connections are randomly established, during the data analysis, poor
stability on the results has been observed in the random implementation. The cycles
durability in each simulation was very varied, even in some cases, the network was not
connected from the beginning.

7.2 Analysis of the Second Scenario

The second scenario studies the algorithms according to an increment of the network
size. As it can be seen in figure 6.3, the performance of the weighted version is terrible,
although the reasons for these results have been explained in the previous case. In this
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case, the overlay network was formed by 50 nodes, whereas the number of selected neigh-
bor was 20. However, this difference was too big so the algorithm could not obtain, on
average, any complete network throughout the executions with different network sizes.
With the purpose of analyzing better the performance of this algorithm, next scenario
includes much more relevant results for it.

As far as Greedy and e-Gredy are concerned, their results are very similar since the
number of rounds is expressed as an integer which is not entirely accurate, and the vari-
ability between simulation makes their results coincide several times. Regarding their
performance, it is favorable that they kept the same amount of cycles, specially if the
size of the network has increased. The random version instead, despite having better per-
formance than the other versions, its performance experienced a decline. As it can be
appreciated in figure 6.4, the Ov enhance as the network size rises. Although at the begin-
ning all versions built networks with similar quality, but in the end, it can be observed a
slight division between the random and weighted versions, and the Greedy and e-Greedy.
The reason is that Greedy and e-Greedy, as a consequence of including all nodes in the
network, their nodes have far more connections, whereas the other versions have a max-
imum of maxiota per node. Thus, since the performance is calculated with the equation
1 that decreases the quality according to the number of edges, the difference between
algorithms is reasonable in big networks.

7.3 Analysis of the Third Scenario

Finally, the third scenario was designed after observing the results in the two previous
cases, and the idea was to compare the behavior of the four versions at the same time. In
order to get the weighted version working on connected networks, the difference between
the selected neighbors and the overlay network size should be as small as possible, as we
have seen in 6.1. Furthermore, because Greedy and e-Greedy have had similar results, it
was thought to compare them from the beginning, where there is no difference between
them, and check their evolution. The initial stage for both versions happens when the
maxiota has the same value as the selected neighbors. On the other hand, there was the
random version which has had outstanding performance. Thus, since the selection of
nodes is random, we thought about minimizing the options of nodes to choose. There-
fore, the overlay network size and the selected neighbors would have the same value, so
even if the random version chooses the nodes randomly, all of them would be selected.
Moreover, with this equality between parameters, at the same time, the weighted version
was endowed with its maximum potential.

At this point, as it can be observed in figure 6.5, the first simulation was performed
with the size of the network, selected neighbors and maxiota with the same value. Log-
ically the results for the Greedys were the same because there was no difference in their
behaviors. However, the random and weighted version due to their selection algorithm
chooses the same neighbors, and their performance results were better than Greedys. The
reasons for the better results could be affected by several factors, from the number of
nodes that have participated in the network, to the number of edges per node. Is then
reasonable that there were two groups of initial results, the random and weighted group
which contain networks with fewer edges because their networks do not guarantee the
integration of all the nodes, neither a minimum amount of connections. Whereas on the
other group, the Greedys set up networks with all nodes interconnected and maxiota as
the minimum amount of connections per node. Regarding the results of these two groups,
as the metrics have been established to measure the durability performance, the networks
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which do not guarantee all nodes participation present more cycles of durability than the
other versions.

The following simulations with an increase in the size of the overlay network and the
selected neighbors reveal a dispersion of the results among versions. The random version
maintains its performance throughout the simulations of the scenario. Nevertheless, the
other algorithms experiment a decline on their durability as the parameters increase. The
performance reduction among versions is understandable since in each iteration there are
more nodes to select and the behavior of each version acts differently. At this point,
when the maxiota has no longer the same value as the other parameters, the Greedys
show different results between them. The analysis extracted from the second simulation
of this scenario indicates that those versions based on a quality selection present lower
performance. It is even lower if the algorithms force the integrity of all nodes with a
minimum amount of connections, and as the worst case when the selection is forced
with nodes which have curtailed levels of quality. Nevertheless, in the last simulations
Greedy’s performance values tend to unite, this tendency can also be observed in figure
6.1 and 6.3. The reason is that, unlike the second iteration of this scenario, the network
is bigger and there are more nodes with the highest values of priority. Thus, even though
the e-Greedy bases its selection 30% of the times on the selected neighbors, they will be
nodes with the same priority as the top maxiota nodes.

7.4 General Analysis and Conclusions

To sum up, although the performance results obtained have not been as we had expected,
the information extracted from the analysis and the new hypothesis is favorable for a
future continuity of the project. Regarding this study, it should be noted that along the
thesis several solutions were obtained to answer the problem formulated. Nevertheless,
the objective of this thesis was not only to implement a solution, but also to find the
solution with the best performance. Thus, the answer to the quality requirement of the
problem formulated are all the relevant qualities of each implementation, extracted from
the performance analysis of the executions in the scenarios.

One of the most remarkable conclusions of the analysis is the difference between the
networks. The first group is created by the random and weighted algorithms, and it is
characterized by not establishing a minimum number of connections for the nodes, and
therefore, by not including all nodes in the network designs. On the other hand, the
networks built by the Greedys algorithms guarantee a minimum number of connections
per node, so all of them are included in the resulting network. Nonetheless, the fact of
including all nodes in the network notably increases the number of edges in the most
priority nodes. Such is the value of the number of edges that the performance of the most
priority nodes is reduced faster than the performance of those nodes with less quality and
fewer connections. Thence, even though a more in-depth investigation is needed to make
reliable affirmations, the analysis has revealed that a connection overflow to the nodes
with the highest priority is counterproductive to the durability of the network.
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8 Discussion

The proposed problem for this thesis arises after the IOTA research, where it is discov-
ered the connectivity problem that IOTA network is facing. Then, we have worked on
the implementation of several algorithms to design an appropriate neighbor discovering
protocol for the IOTA application. The primary goals of the algorithms are to create an
undirected network where all nodes have a decent amount of connections to keep nodes
synchronized.

The Greedy and e-Greedy neighbor discovery algorithms comply with the objectives
defined for them. Although comparing the durability data among the other versions do
not show that these versions provide the best results. Nonetheless, as it is argued in the
analysis, after analyzing the results, it is observed that the comparison is made between
two groups of algorithms with different properties in their networks. Thus, to be able to
compare their performance, it should be studied in detail in further research taking into
account the analysis that has been done observing the results of the algorithms perfor-
mance.

In general, this thesis has been a very satisfactory project since it has found a prob-
lem in a booming technology for DLTs, and which is still in a development phase. After
finding the problem, there was a long process of learning about the work environment for
the development, design and implementation of the proposed solutions, running experi-
ments to gather data about their performances, analyzing those and drawing conclusions
about the results of the algorithms. During this process, the problem has been studied
and faced with several solutions. Even though due to the temporary limitation to work on
this project, and despite the motivation to keep improving the design of the solution, the
implementation phase has been limited to what is shown in this report. However, since
the project deals with very recent technologies the information provided and solutions
implemented in this project could be beneficial for future research.
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9 Conclusion and Future Work

This thesis consists mainly of two parts; the first one deals with literary research about
IOTA Tangle features and how it works. This section includes a general overview of the
technology as well as more detailed descriptions of some essential concepts. Along the
explanation, there are several comparison and references to Bitcoin Blockchain, which is
the other DLT explained after IOTA. The findings from the research are based on answer-
ing the research questions of this project, and they can be seen in table 1.1.

The second part of the project focuses on solving the problem formulated about IOTA
network connectivity. The proposed solution is the implementation of a neighbor discov-
ery protocol for the IOTA application. In order to find the best solution for the require-
ments of the application, the proposed solution consists of three algorithms with different
neighbor selection processes. The findings are based on the analysis performed on the
data collected from the executions of each version in various scenarios. Regarding the
performance obtained from the experiments, it is different from what we have expected.
However, since the algorithms were executed in specific scenarios, the previous analysis
has allowed us to study the causes of their performance, as it has been seen in section 7.

The thesis has focused on improving the connectivity of the IOTA network because it
is a problem that currently has direct repercussions on the users. In addition, due to the
properties of dynamic networks, this is a problem that affects the correct functioning of
the system, and in the long run, it is essential to find a solution for the system to work
correctly. In order to formulate a possible solution, and besides being efficient, several
proposals have been implemented to automatically establish interconnections between the
nodes of the network.

Through this project, we have managed to implement four fully functional network
configuration designs in a distributed system. Subsequently, a differentiation between
two groups of algorithms has been observed through the analysis of performance results.
The results show that the algorithms that do not integrate all the nodes in the network
offer better results than those that guarantee integrity, probably because the number of
nodes and connections between them is considerably lower. Furthermore, it is observed
that focusing radically on the most priority nodes reduces the network durability instead
of increasing it.

If we had continued working on this project, we would have kept studying the maxi-
mum number of connections to ensure optimum performance of the network, depending
on the quality of the nodes. In addition, a comparison strategy should be defined for
the two types of scenarios we have found. Currently, the comparison between them is
conditioned by the difference in the number of nodes and interconnections.

Moreover, we could improve the implementation of the project by developing a more
realistic simulation with an event-based model on Peersim. The level of realism in the
simulation is what gives more reliable results and therefore more accurate conclusions.
After achieving a new implementation, we could face the process of getting the results
more in detail. Currently, the metric used to measure the network performance is obtained
from static observations of the networks. A fascinating idea would be to analyze better
the performance and update this process into a dynamic scenario where new nodes would
join and leave the network throughout the simulation.

Finally, after improving these previous steps would be the time to run several execu-
tions, get new results, analyze them and make conclusions such as how many neighbors
should be chosen, which networks size has better results or how the dynamism affects to
the network.
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