
Unsupervised Feature Learning for
Writer Identification

A Master’s Thesis
Submitted to the Faculty of the Escola Tècnica
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Abstract

Our work presents a research on unsupervised feature learning methods for writer
identification and retrieval. We want to study the impact of deep learning alter-
natives in this field by proposing methodologies which explore different uses of
autoencoder networks.

Taking a patch extraction algorithm as a starting point, we aim to obtain charac-
teristics from patches of handwritten documents in an unsupervised way, mean-
ing no label information is used for the task. To prove if the extraction of fea-
tures is valid for writer identification, the approaches we propose are evaluated
and compared with state-of-the-art methods on the ICDAR2013 and ICDAR2017
datasets for writer identification.
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Dedication:

This thesis is dedicated to the loved ones waiting at home, to Giulia, and to all those who
have made Vienna an unforgettable experience.

1



Unsupervised Feature Learning for Writer Identification Eduard Pallàs Arranz
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Chapter 1

Introduction

The first chapter of the thesis presents an overall view of the contents of the document.
Sections within the chapter include motivation, context, objectives, organization plan and
document structure.

“You don’t write because you want to say something,
you write because you have something to say.”

- F. Scott Fitzgerald
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1.1 Motivation

Writer identification and writer retrieval are behavioral handwriting-based so-
lutions which address recognition of the authorship of handwritten documents.
The first concept returns the identity of the documents’ writer, in which a graphi-
cal query is used to find the closest match against a labeled database. In contrast,
writer retrieval aims to return a ranking of the documents in the dataset accord-
ing to the similarity of the handwriting. Figure 1.1 shows the difference between
the two concepts.

Figure 1.1: Illustration of the difference between writer identification (left) and
retrieval (right). Image taken from [15].

The tasks of identification and retrieval encounter difficulties, some of which
are depicted in Figure 1.2. Challenges to face include variations in handwrit-
ing styles, languages, character sets, layout or legibility among others. Moreover,
the documents from the same author also present high variability in handwriting,
such as writing characters in different sizes, changing writing utensils or docu-
ment layout, which makes retrieval harder to achieve.

Therefore, we intend to identify specific characteristics from writers which can
be robust against the aforementioned changes. Unsupervised deep learning ap-
proaches have been proven to be able to learn useful representations as for in-
stance in P. Vincent et al. in [43]. Furthermore, Y. Netzer et al. [33] provided
robust features for images in demanding situations using the same algorithms.
Considering these successful approaches, we present an unsupervised learning
approach based on the use of autoencoders, to study new feature extraction meth-
ods for writer identification and retrieval.

10
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Figure 1.2: Binarized images from the ICDAR 2017 dataset [14]. First and second
images from left to right, which present different layouts and character sizes, cor-
respond to the same writer. The image from the right corresponds to a second
writer.

1.2 Context

The Computer Vision Lab (CVL) has hosted the development of the thesis in an
Erasmus+ mobility program. The research group is part of the Institute of Visual
Computing & Human-Centered Technology, Faculty of Informatics, at the TU
Wien, Austria.

Document Analysis is one of the theoretical backbones at CVL, whose contribu-
tions have gone as far as actively participating on Document Analysis competi-
tions, taking part of the European Union Horizon 2020 READ project, among oth-
ers. Researchers from CVL have a large background on the subject, from which
research on writer identification plays an important role and is still a topic being
studied. Within this context, the thesis continues the work of [8], in which CVL
researchers contributed, with new unsupervised learning solutions.

11
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1.3 Objectives

Given the motivation and context in which we find ourselves, we state that the
objectives we want to achieve during the course of the project are:

Learn how to use a deep learning framework. We intend to master the basics of
a deep learning framework to later acquire some more advanced skills.

Study and understand state of the art methods of writer identification and each
of their contributions which provides a helpful overview of the field up to nowa-
days, and lets us see which ways have not been yet explored and what approaches
to avoid.

Develop new ways to extract useful features from handwritten image-based
samples for identification and retrieval, focusing on deep learning approaches
and evaluate them objectively. We aim to compare against state of the art meth-
ods using well-known reference datasets which we will detail in the next chapter.

1.4 Document structure overview

In this section we depict the main structure of the thesis. Starting with motiva-
tion and objectives to know where the project is leading, the next chapters of the
dissertation are organized as follows:

Chapter 2 gives an overview of the state of the art in writer identification. We
showcase articles, competition approaches and recent works on the topic as well
as popular benchmarking datasets.

Chapter 3 explains the procedure we followed to fulfill the objectives. We de-
scribe the main concepts of the approaches we explore, and define the methods
we developed during the thesis.

Chapter 4 defines the metrics used to evaluate our methods, describes the experi-
ments and displays the results obtained from those, later performing an analysis.

Chapter 5 contains the end conclusions and future work proposals for later stud-
ies.

Finally, an estimation of the costs of the development of the project can be found
in Chapter 6.

12
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1.

5
O

rg
an

iz
at

io
n

pl
an

Fi
gu

re
1.

3:
G

an
tt

di
ag

ra
m

of
th

e
or

ga
ni

za
ti

on
pl

an
of

th
e

th
es

is

13



Chapter 2

State of the art

This chapter contains a description of the state of the art in writer identific ation. We
showcase benchmarking datasets and last studies on the field.

“Let us study things that are no more.
It is necessary to understand them,

if only to avoid them.”

- Victor Hugo, Les Misérables

14
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2.1 Document analysis

Earliest works to be considered as the beginning of document analysis span from
studies on OCR (Optical Character Recognition), which is the conversion of im-
ages of typed, handwritten or printed text into machine-encoded text. We can
find initial contributions before the 1990s like [30]. Furthermore, some surveys
[41] from the same dates show a growing interest of academics in this field, which
also takes special interest in handwriting [35]. Creation of formal workshops, con-
ferences and competitions promoted an increase of studies related to the topic,
and provided benchmarking tools such as state of the art datasets (which we ex-
plore in 2.2) and metrics (see 4.1) to have objective and quantitative manners to
evaluate improvement. Some examples of this conferences still active are the In-
ternational Conference on Document Analysis and Recognition (ICDAR), Inter-
national Conference on Frontiers in Handwriting Recognition (ICFHR) and Doc-
ument Analysis Systems (DAS).

Partly thanks to the research dissemination efforts in these conferences, several
fields of interest developed, each focusing on obtaining different types of infor-
mation from documents. Some examples of research competitions are: text recog-
nition [13][40], keyword spotting [38], image binarization [37][36], document lay-
out recognition [11], text reading (image to text) [46], and writer identification
[26][14], which is the field in which we focus.

2.2 Benchmarking datasets

Common metrics and datasets allow objective comparison of methods. In this
section we review three datasets we used to evaluate our approaches. Evaluation
metrics are explained in section 4.1 of chapter 4.

2.2.1 MNIST dataset

The MNIST dataset [24] is a widely known database of handwritten digits, being
a subset of a larger set available from NIST. It is composed of a training set of
60,000 examples, and a test set of 10,000 examples. The dataset is composed of
28x28 images containing handwritten digits from 0 to 9, which have been size-
normalized and centered in a fixed-size image like seen in Figure 2.1.

15
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Figure 2.1: Sample from MNIST dataset

The database is a common starting point for beginners to try machine learning
techniques and pattern recognition methods on real-world data while spending
minimal efforts on preprocessing and formatting. The use of MNIST has been
required to develop basic PyTorch skills and to understand the new software en-
vironment. No results or further investigation have been done once the proper
skills had been acquired. Furthermore, images of the digits resemble the patches
we process for writer identification in following experiments, which makes it suit-
able for trying new algorithms.

2.2.2 ICDAR 2013 dataset for writer identification

The 12th edition of the International Conference on Document Analysis and Recog-
nition (ICDAR) hosted the “ICDAR2013 Competition on Writer Identification” [26]
providing a specific dataset for such competition. Composed of images of hand-
written samples, the database contains texts in English and Greek from 250 au-
thors. Each one of them contributes with 4 fragments of text (2 in English and 2
in Greek), which make a total of 1000 images. Figure 2.2 showcases 4 pages from
the dataset.

Despite the existence of larger and more complex databases we can also find arti-
facts which can make algorithm comparison unclear. Dirty or darker paper, spots,
erased ink and many other problems avoid a fair evaluation of new methods, in
contrast with the simplicity and cleanness of ICDAR2013.

16
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Figure 2.2: Four pages of the same writer from ICDAR2013 dataset. Left 2 in
English, right 2 in Greek.

2.2.3 ICDAR 2017 dataset for writer identification

Similarly to the previous competition, the ”ICDAR2017 Competition on Histori-
cal Document Writer Identification (Historical-WI)” presented another dataset for
authorship recognition for handwritten documents.

The dataset is composed by 4782 handwritten pages from 1114 different writers.
Documents originating from 13th to 20th century from the digital archive of the
Universitatsbibliothek Basel are divided into test and train. The test set consists
of five document images per individual writer and three document images are
available for training, resulting in 3600 and 1182 pages for test and train respec-
tively. Note that no writer of the training set has any page in the test set.

Figure 2.3: Three sample pages of the Historical-WI dataset

17
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Dataset Number of writers Pages per writer Total pages

ICDAR 2013 [26] 250 4 1000
50 train/200 test 200/800

ICDAR 2017 [14] 1114 3 train/5 test 4782
394 train/750 test 1182/3600

Table 2.1: Datasets comparison

We consider this to be a more challenging dataset than ICDAR 2013. The cur-
rent dataset consists of historical documents which do not have a uniform back-
ground, the text lines often overlap and words differ among pages. In contrast,
ICDAR 2013 was generated in a restricted environment providing characteristics
such as uniform background and non-overlapping text lines. Table 2.1 delivers a
comparison of the ICDAR datasets we will later use as benchmarks.

2.2.4 Other datasets

There are more datasets which we have not used that offer interesting character-
istics for future purposes. Some of those are:

• ICDAR 2011 Writer Identification Contest dataset [27] consists of 208 docu-
ments from 26 writers, previous to ICDAR 2013.

• International Conference on Frontiers in Handwriting Recognition ICFHR
2012 [28], which created a dataset with the help of 100 writers that were
asked to copy four parts of text in two languages (English and Greek), like
seen in ICDAR 2013.

• DIVA-HisDB Historical Document Image Database [39], published in ICFHR
2016, the dataset is a precisely annotated large dataset of challenging me-
dieval manuscripts. It consists of three medieval manuscripts, 50 pages
each, resulting of in total 150 pages.

• CVL-DataBase [21] includes 7 different handwritten texts (1 German and 6
English texts) and 311 different writers.

• HACDB Handwritten Arabic Characters Database [22], used for automatic
character recognition, contains 6.600 shapes of handwritten characters writ-
ten by 50 people.

18
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2.3 State of the art in writer identification

A wide variety of writer identification techniques have been reported in the lit-
erature. In this section we present an overview in state-of-the-art methods that
we have seen during our research, which we consider relevant for the subsequent
analysis of the methods we develop. The section is divided in three parts, which
refer to methods from state of the art competitions, other approaches using com-
petition datasets, and studies of unsupervised learning methods. For a deeper
insight into the state of the art of the topic we recommend reading Margner’s et
al.“Document analysis and text recognition” [31].

2.3.1 Methods on ICDAR2017 Competition on Historical Docu-
ment Writer Identification (Historical-WI)

Conferences intend to bring together international experts to share their experi-
ences and to promote research and development. For this reason, we take a look
at the best and worst performing methods of the last competition on writer identi-
fication [14], as well as some others we consider to be of interest. Note that we de-
scribed the dataset it uses in the precious section. The best performing contestant,
Tébessa II (Larbi Tebessi University, Department of Mathematics and Computer
Science, Algeria) scores 76.4% TOP-1 55.6% mAP on the ICDAR2017 dataset. In
this method, the different configurations of oriented Basic Image Features (oBIFs)
columns histograms extracted from smoothed binary historical document sam-
ples with low-pass filters are concatenated for generating a feature vector and the
City block distance measures is used for classifying each historical document.

We also considered interesting to remark the presence of the method Barcelona
(Computer Vision Centre, Universitat Autònoma de Barcelona) which got a per-
formance of 67.0% TOP-1 and 45.9% mAP. The method is totally learning free
and uses grayscale images as input. Sparse Radial Sampling Local Binary Pat-
terns (SRS-LBP) histograms at radii up to 12 are extracted for the full images and
pooled globally to form an embedding of 3072. The features are then normalized
and projected to 200 dimensions with a PCA transform.

Lastly, Fribourg (University of Fribourg, Switzerland and TU Kaiserslautern, Ger-
many) gets the lower scores, of 47.8% TOP-1 and 30.7% mAP. The method uses a
ResNet deep convolutional neural network (CNN), trained using the triplet mar-
gin loss metric to transform a given input into a space where inputs belonging
to the same class (writer) are close to each other. The individual samples for the
triplet consist of cropped (256×256) sub-images from the input images.At testing

19



Unsupervised Feature Learning for Writer Identification Eduard Pallàs Arranz

time, we generate a vector for each input image by averaging the embeddings
produced by multiple random crops on the same input. Finally, the pairwise co-
sine distance between all input images are computed and the images are ordered
in decreasing similarity to a given query image.

Method TOP-1 mAP
Tébessa II 76.4 55.6
Barcelona 67.0 45.9
Fribourg 47.8 30.7

Table 2.2: Results from the ICDAR 2017 competition

2.3.2 Further state-of-the-art of methods

Recently published methods also use some of the benchmarking datasets which
had been initially created for the competitions. This gives a fair comparison on the
new approaches against other existing academic work. Here we describe some of
those approaches.

The method YJ. Xiong et al. [45] propose is evaluated on te ICFHR2012-Latin
and the ICDAR2013 datasets. For this approach, they present a method for text-
independent writer identification using SIFT descriptor and contour-directional
feature (CDF). The proposed method contains two stages. In the first stage, a
codebook of local texture patterns is constructed by clustering a set of SIFT de-
scriptors extracted from images. Using this codebook, the occurrence histograms
are calculated to determine the similarities between different images. A candi-
date list of reference images is obtained for each image. The next stage is to refine
the candidate list using the contour-directional feature and SIFT descriptor.

S. Fiel and R. Sablatnig present a method [16] evaluated on ICDAR2013 Competi-
tion on Writer Identification, and also ICDAR 2011 Writer Identification Contest,
and the CVL-Database as the previous method. A feature vector is generated for
each writer using Convolutional Neural Networks (CNN) and comparing them
with previous known vectors. For the generation of those vectors, they cut off the
output of the second last fully connected layer of a CNN trained on a database
with known writers.

The last work of this kind we review is also trained on the ICDAR 2013 bench-
mark database. V. Christlein et al. The method [9] proposes the use of Zernike
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moments evaluated at the contours of the script as local descriptor. Then a global
descriptor is formed by encoding the extracted Zernike moments into Vectors of
locally Aggregated Descriptors (VLAD). We will see how this approach obtains a
great performance in Chapter 4

2.3.3 Unsupervised learning approaches

The previous examples have been concerned with supervised techniques, where
label information of the authors are considered for training. Nevertheless, litera-
ture also shows an increasing interest on studying newer unsupervised methods
resembling the purpose of our thesis.

Only one approach using autoencoders was found in the writer identification
field. M. Elleuch et al. [12] highlight the effectiveness of Deep Learning tech-
niques for recognizing Arabic handwritten script over the HACDB database [],
and investigate two deep architectures: Deep Belief Network (DBN) and Convo-
lutional Neural Networks (CNN). The experimental study has proved promising
results which are comparable or even superior to the standard classifiers with an
efficiency of DBN over CNN architecture. Nevertheless, the study focuses on an
approach of writer identification in a character, instead of identifying complete
handwritten documents, which is the goal of our methods.

On the same topic, V. Christlein, S. Fiel et al. [8] explore deep residual networks
using surrogate classes, which as in [16] and [10] extract features from patches
from activation layers of the network. We define this as our baseline, to be com-
pared with the new approaches we propose. Further details are given in Chap-
ter 3.
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Chapter 3

Methodology

Chapter 3 contains an explanation of the methodology used for developing the project.
Here we detail the entire process of writer identification from the very beginning to the
end retrieval. The focus of the chapter mainly resides on the unsupervised feature extrac-
tion methods we propose.

”You can make anything by writing.”

- C.S. Lewis
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3.1 Introduction

As we discussed in Chapters 1 and 2, the methodology we present continues the
work of V. Christlein et al. [8] mentioned previously, which we define as our
baseline. That said, our methods propose new unsupervised learning alterna-
tives to this approach based on the use of autoencoders. Figure 3.1 explains the
main modules of the architecture of the methods we present. Algorithm work-
flow consists on: “Patch extraction”, “Unsupervised feature learning” from the
patches and “Encoding”. The first module describes methods to obtain several
small representations of the images we process. After that, characteristics of these
patches are extracted by means of different algorithms, which are later encoded
into an image descriptor in the last module, for proper writer recognition. The
schematic will be used in section 3.5 to describe which submodules we consider
to analyze by each method.

Figure 3.1: Modular schematic for our writer identification methods

The work of the thesis focuses on the first two modules, being “Encoding” beyond
the scope of the project. The same encoding process is applied to both the original
method and new approaches described in section 3.4. In addition, we consider
preprocessing of the documents also out of the scope of the project. For this rea-
son, provided pages are already binarized to ease the focus on the two modules
“Patch extraction” and “Unsupervised feature learning”. From those, we define
three methods which aim to study and compare different unsupervised manners
of extracting relevant information from the pages.

In the next sections we provide a detailed description of the concepts used on
each of the modules, followed by an explanation of the new methodologies we
studied for the thesis.
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3.2 Patch extraction

A single handwritten page contains an amount of information which can be costly
to process. For this reason, instead of processing an entire image, we take out
small pieces of text as seen in Figure 3.2, and process them independently. This
mechanism has been proven to be feasible for writer identification by S. Fiel and
R. Sablatnig in [16], where patches are extracted from SIFT keypoint [29] loca-
tions. The description of the process is as follows.

Figure 3.2: Extraction of random patches from a handwritten page

Keypoints on same or close locations are removed to avoid redundant character-
istics, finally providing patches like the ones in Figure 3.3. From these elements,
we intend to extract features for writer identification in section 3.3, and to encode
information from pages for retrieval in section 3.4.

Figure 3.3: Patches from pages in the ICDAR 2017 dataset
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3.3 Unsupervised feature learning

Machine learning methods can be classified into two different categories depend-
ing on whether we have access to label information or not. In supervised learn-
ing approaches we aim to predict the values of one or more output given a set of
queries. Predictions are possible because of the training of these methods, which
are based on cases solved for previous entries. These solutions for the inputs is
what we call labels.

The methods we study and develop in this thesis, instead, address learning with-
out target information in what we called an unsupervised way. What we aim is
not to predict outputs anymore, but to estimate the probability distribution of the
samples we have. Assuming our data lies on a low-dimensional manifold em-
bedded in a higher-dimensional space, we expect to find ways to compress the
information we have with low error. We recommend “Unsupervised Learning”
by T. Hastie et al. [17] for deeper insights on the topic.

Regarding unsupervised learning methods, an autoencoder is a neural network
that is trained to attempt to copy its input to its output. The structure of an au-
toencoder, seen in Figure 3.4, is composed of an encoder and a decoder, separated
by a hidden layer in between. This layer is what later describes the code used to
represent the input. Autoencoders have been successfully applied for dimension-
ality reduction and information retrieval tasks in the use of neural networks for
unsupervised learning in P. Vincent et al. works [43] or [42], for instance. These
facts, as well as the existence of successful examples on the MNIST dataset [23]
(with data similar to ours), encourages the proposal of using these techniques for
the problem we are addressing of unsupervised feature learning for writer iden-
tification, which has only been reported once in literature in M. Elleuch’s [12] in
a successful approach.

Figure 3.4: Autoencoder network basic structure. Image from [2]

We develop three different types of common autoencoders to better study the
influence of each. To begin with, we construct a stacked autoencoder, consisting
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of multiple layers in which the outputs of each layer is wired to the inputs of
the successive layer like depicted in Figure 3.5. The layout structure presents
variations from [6] inspired on the previous approach on autoencoders by M.
Elleuch [12]. It is composed of and encoder and a decoder of three layers of size
1024 each (one more than in the Figure 3.5), using the ReLU (Rectified Lineau
Unit) activation function, and a code size which is defined in the next chapter.

Figure 3.5: Stacked autoencoder network schematic. Image taken from [7]

The second architecture we propose is a convolutional autoencoder based on [4].
Convolutional autoencoders are a type of CNNs used for image dimensionality
reduction, the structure of which resemble what we see in Figure 3.6. As we can
observe, the built is based in an array of convolutional layers instead of fully-
connected layers of the previous network. These networks have been used effec-
tively in many machine learning tasks, achieving particular success in the domain
of image processing in J. Jonathan Masci’s et al. [32].

Figure 3.6: Convolutional autoencoder network schematic. Image taken from [1]
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The last network we explore is a variational autoencoder. Following the example
in Figure 3.7, P. Kingma et al. [20] consider a neural network with a probabilistic
encoder, which does not output an encoding vector of size n, but rather outputs
two vectors of size n: a vector of means, µ, and another vector of standard de-
viations, σ. Variational autoencoders have been used as generative models for
instance in J. Walker et al. [44] defining their latent spaces, by design, continuous,
allowing easy random sampling and interpolation. For this approach, we take
the design from [5].

Figure 3.7: Variational autoencoder network schematic. Image taken from [3]

3.4 Encoding and retrieval

In this section we find a description of the last and common module depicted in
the scheme from Figure 3.1. The aim of the encoding module is to aggregate all
local patch descriptors into a single vector representation of the pages we ana-
lyze. This representations allow the use of metrics that define similarity between
documents, prior to final identification and retrieval.

Following the method from the baseline, we encode by means of VLAD (Vector
of Locally Aggregated Descriptors). For this solution, Jegou et al. [19] propose a
descriptor derived from both BOF and Fisher kernel [34], which aggregates the
set of local feature descriptors into a fixed-size vector that produces a compact
representation of an image. The same as the BoVW (Bag of Visual Words) concept,
a dictionary is the indispensable part in VLAD encoding. The idea of the VLAD
coding is to generate a dictionary, which maps the local feature descriptors to the
nearest codebook using K-means, with later normalization of the output. Figure
3.8 illustrates the methods of VLAD and a later approach of multi-Vlad encoding
[25], both of which have proven successful in the baseline [8]. As a result, the use
and comparison of both encoding methods are applied in our approaches.
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Figure 3.8: VLAD and m-VLAD encoding block diagrams. Image taken from [25]

3.5 Approaches for writer identification

In this section we illustrate the different approaches we have developed for the
thesis. Starting with a replication of the original baseline, we describe the new
methods we propose in feature extraction for writer identification. Results and
analysis of the methods are displayed in Chapter 4.

3.5.1 Baseline

The baseline method describes the approach of V. Christlein et al. [8], the study
and the replication of which were key to propose new methodologies to develop.
Accordingly to Figure 3.9, the algorithm proposes a 32x32 patch extraction as
explained in section 3.2.

Figure 3.9: Baseline method [8] block scheme

Concerning the unsupervised feature learning module, the algorithm follows the
structure shown in Figure 3.10. First of all, SIFT descriptors are computed as well
at each keypoint location. Note that SIFT descriptors are invariant to both scale
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Figure 3.10: Schematics of the baseline feature extraction process. Image taken
from [8]

and rotation changes, which explains the variance of the elements seen in Figure
3.11. The dimensionality of these descriptors is then reduced using principal com-
ponent analysis (PCA) to lower the computational cost of the clustering process
that is performed afterwards. From this information, we train a deep residual net-
work (ResNet) [18] using patches as an input and cluster memberships as targets.
Previous works also extract feature descriptors of patches from the penultimate
layer of the networks [16][10]. Proper encoding and retrieval follows then, pro-
viding the method detailed previously in section 3.4.

Figure 3.11: Example of patches from four different clusters extracted from the
ICDAR 2013 dataset. Note that the SIFT descriptors are invariant to image scale
and rotation and robustly match across distortion.
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3.5.2 Vanilla approach using autoencoders

The first vanilla approach using autoencoders intends to analyze new unsuper-
vised methods based on deep learning architectures. In contrast with the baseline,
this method explores a pure deep learning-based solution.

Figure 3.12: Experiment 2 block scheme

From Figure 3.12 we can see that the method uses the same patch extraction than
3.5.1. Regarding unsupervised learning, no clustering membership information
is provided, as we do not compute SIFT descriptor. Instead, we train an autoen-
coder to learn characteristics from the data by encoding them into a lower sized
layer, which is then decoded to try to replicate the input. The feature vectors are
obtained by forwarding the patches through the trained encoder, taking informa-
tion from the intermediate layer of an autoencoder. Results and comparison of
architectures described in 3.3 are shown in section 4.3 of Chapter 4.

Figure 3.13: Experiment 2 graphic description
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3.5.3 Increase of patch size

For the second methodology applied we modify the patch extraction block. Fig-
ure 3.14 indicates the decision in which we process 64x64 patches instead of the
previous 32x32 ones, in order to evaluate the impact of the patch extraction mod-
ule. The unsupervised learning block continues to use autoencoders, which main-
tain the same architecture introducing modifications only to adjust new input and
output sizes.

Figure 3.14: Experiment 3 block scheme

The increase of the patches’ size can be appreciated in Figure 3.15. New images
to encode are 4 times larger, which can contain several characters and even entire
words (see Figure 3.16) where SIFT keypoints locations are. By having access to
that information, we expect an increase of performance in writer identification,
at least on identifying pages on the same language than the query. On the other
hand, a change on the alphabet could also penalize the identification, as patch
handwriting can be interpreted from different writers because of that. Results
and analysis are shown in section 4.4.

Figure 3.15: Experiment 3 graphic description
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Figure 3.16: Difference between 32x32px and 64x64px patches

3.5.4 Using SIFT descriptor information for autoencoders

As seen in Figure 3.17, the last method we propose explores a new approach for
the unsupervised feature learning block. Unlike in the previous cases 3.5.2 and
3.5.3, we exploit the information of cluster membership of the SIFT descriptors
like in the baseline method 3.5.1. Therefore, this experiment tries to integrate au-
toencoder methods as well as the original one. From this approach we expect
the autoencoders to learn specific treats from writers which could not have been
acquired by simply reconstructing the same image.

Figure 3.17: Experiment 4 block scheme

The algorithm considers the scheme seen in Figure 3.18. First, we compute the
SIFT descriptors from each patch and apply clustering as in the baseline. Af-
ter that, patches which share cluster and page membership are grouped prior to
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Figure 3.18: Experiment 4 graphic description

training of the autoencoder. The main distinction of the method is that the au-
toencoder does not try to reconstruct the patches, but a random patch from the
same group, examples of which are shown in Figure 3.19. The discussion and the
results of this method are found in section 4.5, where we will see if this strategy
provides improvements in extraction of specific features from writers as intended.

Figure 3.19: Examples of groups of patches which share page and cluster mem-
bership
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3.6 Computer Vision Lab environment

In this section we comment briefly implementation details of the realization of
the project. The code for the experiments can be found in 1 which was forked
from the original 2. Table 3.1 below shows the available hardware and software
resources for the development of the thesis.

Hardware
CPU Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz
Memory 16 GB
GPU Nvidia GeForce(R) GTX 980

Software
OS Ubuntu 16.0.4
Python version Python 3.6.4 :: Anaconda, Inc.
Deep Learning Framework PyTorch 0.3.1

Table 3.1: Remote hardware and software resources

1https://smithers.cvl.tuwien.ac.at/pallas/tf-compare
2https://smithers.cvl.tuwien.ac.at/tensorflow/cvl-pytorch
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Chapter 4

Results and analysis

In this chapter we show the results obtained from the methods described in the previous
chapter, evaluated using the ICDAR2013 and ICDAR2017 datasets. First in the chapter,
we detail the evaluation metrics we use for comparison. Next sections explain the experi-
ments we performed and provide a detailed analysis. The last section of the chapter makes
a summary of the best methods, and compares it with the baseline and state of the art.

“If you tell the truth,
you don’t have to remember anything.”

- Mark Twain
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4.1 Evaluation metrics

The main objective of the thesis is to evaluate and compare the algorithms we ex-
plored for the task of writer identification and retrieval. For this reason, excluding
“Precision from patch”, we define common metrics in writer identification com-
petitions [26] [14] following:

Precision from patch: It is the simplest evaluation we perform on writer identi-
fication, only mentioned in the first experiments for network training pur-
poses. Given a random sample of patches from pages of the test dataset,
we compute the probability of successful identification provided one single
patch.

Hard and soft TOP-N, and TOP-1 : In order to measure the accuracy of a writer
identification method, we use the soft TOP-N and hard TOP-N criteria used
in [26] and [14]. For all documents in the dataset we calculate the dis-
tance to all other documents and sort them by similarity (distance score)
to the query using leave-one-out methodology. For all document images
of a benchmarking dataset, we count the correct hits. The ratio of the total
number of correct hits to the total number of the document images in the
benchmarking dataset corresponds to the TOP-N accuracy.

For the soft TOP-N criterion, we consider a correct hit when at least one
document image of the same writer is included in the N most similar doc-
ument images. Concerning the hard TOP-N criterion, we consider a cor-
rect hit when all N most similar document images are written by the same
writer. Note that the maximum value of N for the hard criterion is related to
the total number of documents that were written by a writer, as we cannot
retrieve more documents from one writer than there are in the dataset

Note that the measure is equivalent for both hard-1 and soft-1, defining
TOP-1. This particular metric describes the probability that the document
ranked first on retrieval corresponds to the same author than the query im-
age. We use this metric as the evaluation of the accuracy of writer identifi-
cation.

Mean Average Precision (mAP) is defined over the Precision at N (p@n) crite-
rion, which calculates the percentage of hits within the first N ranked doc-
uments. Mean Average Precision computes the average of p@N calculated
over all N values. The purpose of this metric is to evaluate if the ranking of
retrieval of the pages. Using the definition from the ICDAR2017 Competi-
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tion on Historical Document Writer Identification (Historical-WI) [14], mAP
is calculated as follows:

mAP =
∑q∈Q AveP(q)

Q

where Q is the set of all documents and q the current query document image,
and AveP the corresponding average precision. The average precision is
the area under the precision-recall curve and also takes the position of the
positive samples in the ranking into account. We define it as:

AveP =
∑k∈n P(k)× rel(k)

numbero f relevantdocuments

where P is the precision, rel(k) is an indicator function equaling 1 if the item
at rank k is a relevant document, zero otherwise, and n is the number of all
documents in the dataset. We showcase some examples of mAP in Figure
4.1 to facilitate the understanding of the metric.

Figure 4.1: Example of calculations of mAP for writer retrieval. The example
shows a scenario where there are 4 other pages of same authorship than query (in
green) over a dataset of 33 pages. Ranking of the documents is organized from
left to right following the numeration on top. The Figure illustrates the effects of
different ranking scenarios to better understand the metric
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4.2 Feature vector size evaluation

In this first experiment we aim to empirically evaluate which feature size works
best for the autoencoders we described in section 3.3. The optimal sizes will be
later used for the writer identification and retrieval methods in all of the experi-
ments following. For this reason, we define a quantitative (Table 4.1) and quali-
tative (Figure 4.5) analysis of the results to determine the influence of using 8, 16,
32, 64 and 128 numbers of features per patch.

The reconstruction loss of the autoencoders we propose is the well-known Mean
Squared Error (MSE), which is defined as: MSE = 1

N ∑( fi − f̂i)
2 where N is the

number of samples and f̂i is our estimation of fi. Both qualitative and quantitative
results are collected after 20 epochs over the ICDAR 2013 dataset.

Architecture 8 16 32 64 128
Stacked autoencoder (SAE) 0.062 0.040 0.029 0.027 0.025
Convolutional autoencoder (CAE) 0.096 0.082 0.049 0.041 0.038
Variational autoencoder (VAE) 0.105 0.082 0.056 0.042 0.041

Table 4.1: MSE in reconstructions after 20 epochs
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Figure 4.2: MSE in reconstruction comparison
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Influence of size of feature vector

As we could have expected, an increase of the central layer size results into a
better reconstruction loss of the patches because the least we compress the data,
the better the reconstruction is, as Figure 4.2 shows. Nevertheless, we do not see
significant improvement from feature sizes of 64 and 128 for any of the autoen-
coders. Considering the trade off between feature size and reconstruction loss,
we consider a smaller feature size could also generalize better. Consequently, 64
looks like the adequate feature number for next experiments in all architectures.

Concerning to each architecture we can state that:

1. SAE achieves a remarkably low reconstruction loss even with a very low
number of features, but does not improve as much for higher values.

2. CAE gets a higher loss than the SAE both qualitative and quantitatively for
the same number of features.

3. VAE obtains similar quantitative results than CAE, but resulting into a slightly
better qualitative reconstruction, still not comparable with SAE.
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(a) 8 features (b) 16 features (c) 32 features (d) 64 features (e) 128 features

Figure 4.5: From top to bottom, patch reconstructions of stacked, convolutional
and variational autoencoders by feature vector size for qualitative analysis
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4.3 Vanilla approach with autoencoders

This section evaluates the method described in section 3.5.2 and compares the
performance of the different architectures of autoencoders from 3.3. Precision,
TOP-1 and mAP results from Table 4.2 are collected from the ICDAR 2013 and
ICDAR 2017 test datasets, after 30 epochs of training in both train datasets respec-
tively. We apply the two encoding methods we described in section 3.4 to test if
we can see any improvements using multi VLAD encoding (m-VLAD) against
single VLAD, with a codebook size of 30000. For the m-VLAD approach we use
VLAD sizes of 51, 25, 12, 6 and 3.

Because of non-convergent oscillations in training, we estimated error measures
of ±1%. In order to reduce spurious values, we select the median of the three last
epochs which reduce error uncertainty to ±0.5%

Architecture ICDAR 2013 ICDAR 2017
Prec TOP-1 mAP Prec TOP-1 mAP

SAE VLAD 5.89 85.9 59.1 1.94 61.3 42.3
CAE VLAD 4.98 83.8 59.0 1.72 58.6 39.8
VAE VLAD 5.21 83.6 59.1 2.01 60.1 41.6

SAE m-VLAD - 87.1 63.0 - 61.9 40.9
CAE m-VLAD - 86.0 61.1 - 59.8 39.1
VAE m-VLAD - 86.3 60.0 - 61.8 41.1

Table 4.2: Results for the Experiments 1 and 2

Influence of unsupervised learning architecture

Although we do not see relevant differences among the results in both TOP-1 and
mAP, we observe a slightly better performance for SAE, observing a very similar
behavior for CAE and VAE in both datasets and encoding methods. Nevertheless,
differences do not seem clear enough to define the best architecture.

Regarding Precision from patch (Prec), identifying a writer from a single patch
shows very poor results. Nevertheless, values surpassing random guesses are
sufficient (1.5% for ICDAR 2013 and 0.53% for ICDAR 2017), which helps us know
the algorithms are actually learning.
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Influence of encoding

Multi VLAD encoding had already been proven to boost encoding and retrieval
performance in [8] and [19]. In the case of our architectures we observe perfor-
mances of up to a 2.2% in TOP-1 and 4% in mAP in the ICDAR 2013, with slight
improvements on the ICDAR 2017 dataset too. For this reason, we will use m-
VLAD encoding for next experiments to exploit the best possible performance.

Influence of dataset

A clear difference can be observed for the dataset performance results compared.
Main reasons are: size of the dataset (number of writers, and pages as well), and
simplicity of the samples. As we can see in Figure 4.6, ICDAR 2017 pages turn out
to be more challenging to process, as we an observe annotations of other writers,
or more difficult layouts than for ICDAR 2013.

Figure 4.6: Comparison of pages from ICDAR 2013 (top) and ICDAR 2017 (bot-
tom)
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4.4 Increase of patch size

After the implementation of the second method we propose, we want to conclude
whether an increase on the patch size provides more significant characteristics,
resulting on an increase in recognition or retrieval performance. The following
section evaluates the influence of the extraction of 64x64 patches instead of 32x32,
proposed in section 3.5.3.

Autoencoders are trained on the ICDAR 2013 train dataset and evaluated on its
test one. Fine tuning learning parameters is done to achieve the best performance,
although the core architectures remain intact introducing small modifications to
fit the new input and output sizes. Furthermore, we extract the same number of
patches per page (1000) so that we make sure more information than in Experi-
ment 3.5.2 is provided. Like in the previous section, results are collected after 30
epochs using the same methodology. In Table 4.3 we see the results obtained for
TOP-1 and mAP against the ICDAR 2013 dataset, with the addition of hard and
soft top-N metrics.

Architecture TOP-1 Hard Soft mAPtop-2 top-3 top-2 top-5

SAE 32x32 m-VLAD 87.1 40.8 20.9 91.7 96.4 63.0
SAE 64x64 m-VLAD 85.6 33.5 17.7 89.8 94.6 57.7

CAE 32x32 m-VLAD 86.0 37.8 18.1 92.2 95.3 61.1
CAE 64x64 m-VLAD 83.1 31.6 15.2 87.5 92.9 55.4

VAE 32x32 m-VLAD 86.3 35.2 18.7 91.0 96.0 60.0
VAE 64x64 m-VLAD 90.2 42.1 22.2 94.7 96.9 64.2

Table 4.3: Results for 64x64 patches on ICDAR 2013 with m-VLAD encoding

Influence of architectures and patch size

VAE is the only method which performs better with increased size performing the
best in all metrics. The network seems to better estimate the probability density
function when gathering more input information, which leads to better results.
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The decrease of performance could be explained in CAE, as larger patches are
downsampled for this network, using average pooling in other to modify the net-
work the least. However, from this result we can extract interesting conclusions.
We could think that the increase of information per patches is be given because of
an increase of characters per image as seen in Figure 4.7. Nevertheless, in the case
of CAE we prove that more characters per patch do not provide more information
about the writer.

We can also confirm that SAE and CAE perform clearly worse, specially in the
retrieval task. We observe a great decrease in mAP, hard top-3 and specially hard
top-2. However, differences are not big enough for identification in TOP-1. A rea-
son which could explain that is that the algorithm may be alphabet dependent.
Given a query image, it finds the other one in the same language (high TOP-1),
but fails to identify the same writer ones in another language (low hard top-2).
This statement could be valid considering that 32x32 patches use to get parts from
characters, whereas in 64x64 we can clearly differentiate the alphabet of the pages
as we can observe in Figure 4.7.

Figure 4.7: Difference between 32x32px and 64x64px patches in two alphabets.
Note in the small patches it is very difficult or almost impossible to tell the differ-
ence of alphabets in most cases, in contrast to larger patches.
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4.5 Using SIFT descriptor information for autoencoders

The last experiment we conduct is based on the method from section 3.5.4. In this
case we want to evaluate the viability of the method in which the algorithm does
not rely on just to reconstruct images anymore, but random patches sharing page
and cluster membership. This is done to extract specific characteristics from writ-
ers we believe could not have identified any other way. Once again, we evaluate
the method over ICDAR 2013 using the same methodology than in sections 4.3
and 4.4. Table 4.4 displays previous results too for easier comparison.

Architecture TOP-1 Hard Soft mAPtop-2 top-3 top-2 top-5

SAE m-VLAD 87.1 40.8 20.9 91.7 96.4 63.0
SAE 64x64 m-VLAD 85.6 33.5 17.7 89.8 94.6 57.7
SAE Cl m-VLAD 89.0 40.6 20.6 92.8 96.2 63.0

CAE m-VLAD 86.0 37.8 18.1 92.2 95.3 61.1
CAE 64x64 m-VLAD 83.1 31.6 15.2 87.5 92.9 55.4
CAE Cl m-VLAD 80.8 36.4 18.2 86.7 93.4 58.5

VAE m-VLAD 86.3 35.2 18.7 91.0 96.0 60.0
VAE 64x64 m-VLAD 90.2 42.1 22.2 94.7 96.9 64.2
VAE Cl m-VLAD 88.3 40.5 22.8 92.4 95.8 63.0

Table 4.4: Results for patches using clustering information (Cl) on ICDAR 2013

Influence of SIFT clustering membership information

Providing this new approach SAE experiences a small boost performance in iden-
tification, increasing TOP-1 by a not so relevant 2%. In the case of CAE, however,
we achieve the worst TOP-1 from all methods, including a decrease in all other
metrics respect the vanilla method (except hard top-3, remaining the same). As
for VAE, an interesting increase of performance is achieved in all metrics from the
vanilla approach. VAEs are generative networks, applied to generate a random,
new output, that looks similar to the training data. This reason could explain the
boost when used to generate new data. Nevertheless, performance is still worse
than VAE 64x64 m-VLAD, which we consider to be the best approach of all we
tried.
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4.6 Results summary

In the last section of the chapter we evaluate our methods with state-of-the-art
solutions over ICDAR 2013 and ICDAR 2017 datasets. The analysis are first made
with the baseline method [8] to determine the improvement or worsening of the
new proposals. After that, we compare with a wider range of algorithms that
we consider interesting to have a larger overview of performance. In Table 4.5
we contrast the best result we obtained over the ICDAR 2013 dataset with the
baseline we replicated. As it can be seen, our method performs worse than the
baseline in all metrics, seeing a bigger difference in hard top-2.

Architecture TOP-1 Hard Soft mAPtop-2 top-3 top-2 top-5

Baseline 93.1 51.2 27.4 96.6 98.4 69.7

VAE 64x64 m-VLAD 90.2 42.1 22.2 94.7 96.9 64.2

Table 4.5: Best results from all experiments on ICDAR 2013

The experiment is also replicated, only for the vanilla approaches, in the ICDAR
2017 dataset, where the baseline proved to achieve outstanding performance in
[8]. As we can see in Table 4.6, this time, our methods performance is extremely
lower in all cases. A possible hypothesis is that the new dataset is much larger,
meaning networks may be too small for it.

Architecture TOP-1 Hard Soft mAPtop-2 top-3 top-2 top-5

Baseline 93.1 51.2 27.4 96.6 98.4 69.7

SAE m-VLAD 61.9 38.0 21.6 66.6 73.1 40.9
CAE m-VLAD 59.9 36.0 19.8 65.8 72.2 39.1
VAE m-VLAD 61.8 37.2 21.4 67.2 73.8 41.1

Table 4.6: Best results from all experiments on ICDAR 2017

In the ICDAR 2013 dataset we proved an increase of performance of the non-
vanilla autoencoder methods which could also be implemented on the current
dataset. However, we do not expect an improvement significant enough to be
compared with the baseline. Still, results need to be collected to prove it.
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On a larger scale, we compare baseline and our methods in Table 4.7. Our method
performs slightly better than S. Fiel and R. Sablatnig’s [16], but it is clearly out-
performed by the rest.

Architecture TOP-1 Hard Soft mAPtop-2 top-3 top-2 top-5

Baseline 93.1 51.2 27.4 96.6 98.4 69.7

VAE 64x64 m-VLAD 90.2 42.1 22.2 94.7 96.9 64.2

Xiong et al. [45] 96.2 63.5 35.0 - 98.6 -
Fiel and Sablatnig [16] 88.5 40.5 23.8 92.2 96.0 -
Christlein et al. [9] 99.4 81.0 61.8 - - -

Table 4.7: Best results from all experiments on ICDAR 2013

Even more comparisons were performed over the ICDAR 2017 dataset, compar-
ing to contestants for the Competition on Historical Document Writer Identifica-
tion (Historical-WI) [14] in Table 4.8.

Architecture TOP-1 Hard Soft mAPtop-2 top-3 top-2 top-5

Baseline 88.6 77.1 64.7 - 92.2 74.4

SAE m-VLAD 61.9 38.0 21.6 66.6 73.1 40.9
CAE m-VLAD 59.9 36.0 19.8 65.8 72.2 39.1
VAE m-VLAD 61.8 37.2 21.4 67.2 73.8 41.1

Tébessa II 76.4 56.6 37.8 - 86.6 55.6
Barcelona 67.0 45.1 27.4 - 76.9 45.9
Fribourg 47.8 24.7 12.6 - 62.1 30.7

Table 4.8: Best results from all experiments on ICDAR 2017

Comparing to all competing methods (we add Hamburg, Groningen and Tébessa
I, which were not mentioned before), Figure 4.8 shows how we position ourselves
in a low rank position for writer identification (TOP-1), only outperforming Fri-
bourg proposal and close to the Barcelona approach. On the other hand, the base-
line obtains the best results, remarkably better than the second best approach.
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Figure 4.8: TOP-1 comparison graph with results from ICDAR 2017

Concerning writer retrieval (mAP) in Figure 4.9, results remain similar than be-
fore. We can say then, that we prove to still be far from the baseline approach and
best state-of-the-art methodologies. As a result, we believe the use our autoencoder-
based methods do not provide an improvement in writer identification and re-
trieval feature extraction solutions for handwritten documents.

30.7Fribourg

41.1VAE m-VLAD

45.9Barcelona

46.9Hamburg

52.5Tébessa I

54.2Groningen

55.6Tébessa II

74.4Baseline

0 10 20 30 40 50 60 70 80 90 100

Figure 4.9: mAP comparison graph with results from ICDAR 2017
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Chapter 5

Conclusions

The last chapter of the document is divided in two sections. In the first one we include the
achievements of the thesis, regarding the objectives proposed at the beginning. Following,
we propose recommendations for future work.

“Don’t adventures ever have an end?
I suppose not.

Someone else always has to carry on the story.”

- J.R.R. Tolkien, The Fellowship of the Ring
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5.1 Achievements

In accordance with the objectives we defined at the beginning of the thesis, I be-
lieve I have been able to learn and develop skills on deep learning programming.
After the development of the thesis, I was capable to build up deep learning algo-
rithms and understand the concepts behind the implementation. Furthermore, I
have learned about state of the art methods in writer identification and retrieval,
with which the replication of the state of the art baseline contributed to achieve
deeper insights on the topic.

Concerning the main objective of the thesis, we successfully developed unsuper-
vised methods of feature extraction for writer identification based on neural net-
works. In the experimental section 4.6 we showed that we were able to compare
our approaches based on autoencoders with state of the art methods in bench-
marking datasets. With our best method, we managed to achieve a 90.2% TOP-1
and 64.1% mAP against the ICDAR 13 dataset, and 61.8% TOP-1 and 41.1% mAP
against ICDAR 2017. Comparing with the baseline method however, we observe
a decrease in performance, specially on the second dataset. The exploration of
these methods conclude that, up to date, our use of autoencoders in writer iden-
tification is not able to improve state of the art methods of feature extraction yet.
Taking into consideration the topic is still not common in literature, we believe
that our thesis opens a new field to explore.

5.2 Future work

Future research should consider the potential effects of the increase of patch size
and clustering membership information more carefully. For example, we con-
sider interesting to see the effects a method which performed a merging of the
two approaches. In addition, these approaches could be replicated on the ICDAR
2017 dataset to observe the differences compared to the vanilla autoencoder re-
sults.

Other new lines of research would lead to develop more deep and complex net-
works. As a procedure to explore, it could be implemented an autoencoder whose
encoder was based on the baseline network, building a mirrored symmetric ar-
chitecture for decoder.
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Chapter 6

Budget

For the cost of the student budget it has been taking into account a salary of 10
e/hr. Considering 1 ECTS is equal to 25 study hours, for the 30 ECTS Master’s
Thesis we estimate a workload of 750e.

Average supervisor assessment cost is set to 30 e/week, with 22 weeks for the
duration of the stay.

The software uses open source licenses for its development. While hardware has
been provided by the TU Wien at not additional charge.

Total cost adds a 21 % additional budget overhead because the project has been
developed within the Universitat Politècnica de Catalunya (UPC) study plan.

Student cost 10 e/hr x 750 hr 7,500 e
Supervisors cost 30 e/week x 22 weeks 660 e
Hardware and software resources 0 e
Subtotal 8,160 e
UPC overhead 21% of the Subtotal 1,713 e

TOTAL 9,873 e

Table 6.1: Budget of the Master’s Thesis
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