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Abstract. We introduce the probability distribution of work performed on a one-
dimensional quantum system and study the cases of a single particle in a harmonic or
finite well potential and of a Bose-Einstein condensate in a finite well potential. The
irreversible work is generalised for the case of Bose-Einstein condensates, described
in the mean-field theory by the Gross-Pitaevskii equation. The properties of the
ground state are analysed for each case, finding two di↵erent static regimes for the
finite well potential (with a third one for a BEC with attractive interactions) and one
for the harmonic well. Finally, the irreversible work is studied for a linear ramping
protocol where the potential is widened, and a relation between the static regimes and
the dynamics of the system is identified. The evolution of the system is obtained by
numerically solving either the time-dependent Gross-Pitaevskii or Schrödinger equation
through the Crank-Nicolson method.

Keywords: quantum work, time-dependent potential, adiabatic process, instantaneous

quench, Bose-Einstein condensates.

1. Introduction

From the formalisation of the principles of the theory to the development of quantum

technologies, the field of quantum physics has evolved dramatically in the last century.

A common goal of both fundamental and applied research in this field is to refine the

ability to control quantum systems and to tailor their dynamic evolution. Recently, this

has given rise to an interest in the thermodynamics of small systems, in particular, in

defining the concept of work performed on a quantum system, a magnitude that is not

easily translated from classical physics.

Work is not an observable, unlike energy or position, so it cannot be associated to

an operator [1, 2, 3]. A useful alternative is to define work as a random variable, W ,

distributed according to the work probability distribution, P (W ) [4]. In this stochastic

definition of work, two sources of randomness arise: the thermal noise associated

to the preparation of the initial state and the quantum randomness inherent in the
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measurement process. Therefore, work does not characterise an instantaneous state

of a system but its whole evolution process. In this definition of quantum work, a

system described by the Schrödinger equation is let to evolve according to a time-

dependent Hamiltonian that follows a certain protocol. The concept of work and its

fluctuations have been studied in several quantum systems in this framework, such as a

single particle confined in a time-dependent harmonic oscillator [5] or a bosonic gas in

a double well potential [6], and an experimental setup has been proposed for measuring

work in ultracold quantum systems [7]. A concern to minimise the irreversible work

performed during the process has lead to explore a huge variety of protocols from which

shortcuts to adiabaticity stand out for their e�ciency. This kind of protocols has been

studied, for instance, in harmonic [8, 9] and square [10] traps.

The aim of this work is to analyse the irreversible work performed on a quantum

system as we increase the size of the confining potential. We consider first a single

particle trapped in either a harmonic or a finite square well potential, and propose a

generalisation of the quantum work defined in [4] to study systems that evolve under a

non-linear Schrödinger equation such as Bose-Einstein condensates (BECs) confined in a

finite square well. Both the ground state and the evolution of the system are calculated

numerically: the ground state is obtained by diagonalisation of the Hamiltonian (single

particle) or using the imaginary time method (BECs), and the time evolution of the

system is obtained by numerically solving the corresponding equation with the Crank-

Nicolson method.

Section 2 provides general definitions of the work probability distribution and its

derived quantities (average and irreversible work), and the adiabatic and instantaneous

quench limits are introduced. In section 3 we describe the first system that is studied,

which is a single particle trapped in a time-dependent finite well or harmonic potential,

and then we introduce BECs confined in a time-dependent finite well potential, for which

we generalise the concept of work proposed in [4]. In section 4, the static properties of

the ground state of the system for di↵erent cases are analysed, and section 5 is devoted

to the dynamics of the system when the external potential varies with time. Finally,

conclusions and a brief summary are presented in section 6.

2. Work probability distribution of a quantum system

Let us consider a physical system described by a time-dependent Hamiltonian, Ĥ(t),

which evolves with time from Ĥ(ti) = Ĥi to Ĥ(tf ) = Ĥf . The initial state of the system

is the ground state of the initial Hamiltonian, Ĥi, and the probability distribution

function of the work performed upon the system during the evolution is defined by [1, 6]

P (W ) =

X

n

|h n,f | (tf )i|
2 �(W � Ef

n + Ei
0), (1)

where {| 0,ii, Ei
0} are the ground state of Ĥi and its energy, {| n,fi, Ef

n} are the

eigenstates and eigenvalues of Ĥf , and | (tf )i is the final state of the system. The
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Figure 1. Trapping potentials: (a) harmonic well and (b) finite square well.

average work performed during the evolution process, hW i =
R
WP (W ) dW , can be

obtained from (1) as the first moment:

hW i = h (tf )|Ĥf | (tf )i � h 0,i|Ĥi| 0,ii, (2)

with h 0,i|Ĥi| 0,ii = Ei
0. From (2), we can define the irreversible or wasted work as

Wirr = hW i � (Ef
0 � Ei

0). (3)

Regarding the duration of the process, the two limiting scenarios are the adiabatic

limit and the instantaneous quench.

Adiabatic limit. When the Hamiltonian varies slowly enough so that the system is

always in the ground state of the instantaneous Hamiltonian, Ĥ(t), the final state

is | (tf )i = | 0,fi. Therefore, the average work (2) for this case becomes simply

the di↵erence between the final and initial ground state energies, hW i = Ef
0 � Ei

0,

while the irreversible work is zero.

Instantaneous quench. If Ĥi is instantaneously changed to Ĥf , instead, the system

remains on its initial state after a time tf so that | (tf )i = | 0,ii, and consequently

the average work (2) reduces to hW i = h 0,i|Ĥf | 0,ii�h 0,i|Ĥi| 0,ii, with a non-zero

irreversible work given by (3).

3. Physical systems

3.1. Single particle in a trapping potential

The first system that will be studied is a single particle confined in an external potential,

that can be either a harmonic or a finite well potential, as is schematically shown on

figure 1. The system is let to evolve by varying some parameter of the external potential:

the frequency ! in the case of the harmonic trap,
1
2m!

2
(t)x2

, or the halfwidth a in the

case of the square trap, which is 0 if �a(t) < x < a(t) and V0 otherwise.

The evolution of the system is described by the time-dependent Schrödinger

equation (TDSE) in one dimension,

i~@ (x, t)
@t

=


�

~2
2m

@2

@x2
+ Vext(x, t)

�
 (x, t), (4)

where Vext(x, t) is the external potential, m is the mass of the particle, ~ is the reduced

Planck constant, and  (x, t) is the wavefunction.
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Two length scales of interest can be introduced. For a harmonic oscillator of

frequency !, a scale with units of distance can be defined as ↵ =

p
~/(m!). In the case

of a finite well potential, besides the halfwidth a, a length scale � can be associated to

the height of the well such that V0 = ~2/(m�
2
), and therefore � = ~/

p
mV0.

3.2. Bose-Einstein condensates in a finite square well potential

Now we consider BECs with attractive or repulsive interactions confined in a finite

well potential (figure 1b). As before, the system is let to evolve by varying the width

of the well. This system is governed by the time-dependent Gross-Pitaevskii equation

(TDGPE) in one dimension [11, 12] (see Supplementary Material),

i~@ (x, t)
@t

=


�

~2
2m

@2

@x2
+ Vext(x, t) + gN | (x, t)|2

�
 (x, t), (5)

where N is the number of particles, the wavefunction  (x, t) is normalised to 1, and

the coupling constant g ⌘ g1D = �2~2/(ma1D) [13, 14] is inversely proportional to

the one-dimensional scattering length a1D that characterises the interactions. Repulsive

interactions occur for g > 0, while g < 0 corresponds to attractive interactions; in this

work we will consider both. This equation is reduced to the TDSE (4) in the absence

of interactions (i.e. for g = 0, the system is analogous to the single particle case) [15].

This system can be characterised by the two length scales considered for the single

particle confined in a finite well potential, a and �. In the case of attractive interactions,

besides these two length scales, there is a third relevant scale related to the nonlinear

term known as healing length [16, 17], ⇠ = ~/
p

2m|g|n0, where n0 = N | (x0, ti)|2 is

the central density (i.e. the largest density, where x0 = 0) at time ti. The healing

length accounts for the size of the bright soliton that is solution of the TDGPE with no

external potential, which will be introduced in section 4.

In the case of BECs, instead of using the work probability distribution, P (W ), we

generalise the definition of the average work (2) replacing the expectation value of the

Hamiltonian by the energy functional of the system at time t,

Et =

Z +1

�1
dx  ⇤

(x, t)


�

~2
2m

@2

@x2
+ Vext(x, t) +

1

2
gN | (x, t)|2

�
 (x, t), (6)

so that the average work can be defined as hW i = Etf � Eti , in agreement with the

definition given in [18]. The irreversible work (3) thus becomes Wirr = Etf � Ef
0 .

4. Ground state properties

For the finite well case, we can take as units of length and time � and m�
2/~, so that

the dimensionless variables x̃ = x/� and t̃ = t/(m�
2/~) can be defined. Using these

variables, the dimensionless TDGPE (5) can be written as

i
@ ̃(x̃, t̃)

@ t̃
=


�
1

2

@2

@x̃2
+ Ṽ0 + g̃N | ̃(x̃, t̃)|2

�
 ̃(x̃, t̃), (7)
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where the units of energy are ~2/(m�
2
) = V0 so that Ẽ = E/V0. The dimensionless

coupling constant and probability density become g̃ = g/(V0�) and | ̃(x̃, t̃)|2 =

| (x, t)|2�, respectively, and the dimensionless external potential, Ṽ0, is 0 if �ã < x̃ < ã

and 1 otherwise, where ã = a/�. In the case of the harmonic potential, we take as units

of length and time the ones corresponding to the final harmonic oscillator, ↵f and !�1
f ,

so that the corresponding energy unit is ~!f .

We consider four di↵erent cases: a single particle confined in a harmonic or square

trap, and BECs with attractive or repulsive interactions confined in a square trap.

Although the ground state of a single particle in the case of the harmonic oscillator

can be found analytically [19] and for the finite well there is a semi-analytical solution

[19], we will obtain it numerically in all cases for simplicity, since in the case of BECs

there is no analytical stationary solution of the GPE. The homogeneous case (i.e. with

no external potential) for attractive interactions is one exception, since the GPE has a

solution with solitonic properties known as a bright soliton [11]. The stationary solution

of a BEC with attractive interactions confined in a finite square well potential tends to

this analytical solution as the interaction strength grows (see Supplementary Material).

For the cases described by the Schrödinger equation (single particle), all

the eigenstates and eigenenergies are obtained by numerically diagonalising the

Hamiltonian. In the presence of interactions, the ground state is found with

the imaginary time method [20] (see Supplementary Material). All the numerical

calculations have been done considering a grid of length 2L discretised with step �x.

4.1. Central density for the finite well potential

We will now consider how the central density of the ground state, ñ0 = N | ̃(x̃0)|
2
,

changes with the halfwidth of the well, ã, and with the healing length, ⇠̃ (in the presence

of attractive interactions). In figure 2, ñ0 is plotted as function of ã for three values of the

interaction. It can be seen that increasing |g̃N | (i.e. ⇠̃ decreases) shifts the maximum

in ñ0 towards lower ã for attractive interactions, since the wavefunction is narrower.

For repulsive interactions the opposite occurs: the maximum goes to higher values of ã

because the wavefunction is wider. This shift of the maximum is more noticeable for

the case with attractive interactions. Three regimes can be defined:

Regime I. ñ0 increases with increasing ã,

Regime II. ñ0 decreases with increasing ã, and

Regime III. ñ0 remains constant as ã increases.

Thus the value of ã at which ñ0 is maximum determines the boundary between regimes

I and II. Regime III is only observed in the case of attractive interactions, and occurs

when the healing length ⇠̃ is much smaller than the width of the well. Then, the well is

big enough for the condensate to be una↵ected by changes in the width of the well.

For the case of a single particle in a harmonic oscillator, there is only one length

scale, ↵, and n0 always decreases as the well is widened (i.e. the frequency, !, decreases),
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Figure 2. Central density as function of ã for: (g̃N = 0) single particle, (g̃N < 0)
attractive interactions with g̃N = �1 and ⇠̃m = 0.84, and (g̃N > 0) repulsive
interactions with g̃N = 1, where ⇠̃m is the healing length for the maximum in ñ0. In all
cases, L̃ = 8 and �x̃ = 0.01, the potential is a finite well with halfwidth ã 2 [0.07, 3.5],
and ñ0 is normalised to ñ0(0.07), the value of ñ0 when ã = 0.07.

which is equivalent to regime II. If instead the particle is confined in a finite well

potential, that is characterised by two lengths, � and a, a second regime (I) appears.

Taking the limit case of the infinite well, when � ! 0, regime I disappears.

5. Irreversible work with linear ramping

In order to study the dynamics of the system, we consider the halfwidth of the finite

well to vary linearly over time from ai to af as a(t) = ai + (af � ai)t/tf , where t  tf .

In the case of the harmonic oscillator, the frequency !(t) is varied from !i to !f in an

analogous fashion, as it is done in [6].

The evolution of the initial state is obtained by solving the TDSE (single particle)

or TDGPE (BECs) with the Crank-Nicolson method (see Supplementary Material).

The irreversible work at the end of the process is calculated numerically according to

(3) and the corresponding definition of the average work. For all the results we consider

a time step �t̃ = 0.001 and perform 20000 time steps.

5.1. Definition of the dynamical regimes

Two regimes can be distinguished in the dynamics of the system: the adiabatic regime,

for slow processes, which tends to the adiabatic limit as tf ! 1; and the instantaneous

regime, for fast processes, that tends to the instantaneous quench if tf ! 0. These

regimes and the transition between them can be defined in terms of the velocities that

characterise the process: the velocity associated to the mean kinetic energy at time ti
(initial velocity), and the velocity of variation of the potential (process velocity).

Initial velocity. We define it as vi =
p
2Ekin,i/m, where the expectation value of the

initial kinetic energy, Ekin,i, is calculated numerically as �~2h 0,i|@2x| 0,ii/(2m).

This initial velocity shows a similar behaviour with respect to ã as ñ0 (figure 2).
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Figure 3. Irreversible work as function of the ratio of velocities, rv. (a) Single particle
in a harmonic oscillator with L̃ = 4, where !̃ is varied from !̃i = 3.0 to !̃f = 1.0 and
the process occurs in the static regime II. (b) Finite well with L̃ = 8, where the initial
and final ã are: (regime I) ãi = 0.07 and ãf = 0.5, (regime I-II) ãi = 0.5 and ãf = 1.1,
and (regime II) ãi = 1.1 and ãf = 3.2. In all cases �x̃ = 0.02 and rv 2 [0.001, 100].

Process velocity. The velocity at which the walls separate is vp = (af � ai)/tf , and is

analogously defined for the harmonic oscillator using the length scale ↵.

The ratio of these two velocities, rv = vp/vi, determines the dynamic regimes. When

the process velocity is much larger than the initial velocity (rv � 1) we are in the

instantaneous regime, whereas for small ratios (rv ⌧ 1) the process corresponds to the

adiabatic regime. The transition between the two regimes takes place when vp ⇠ vi.

In the following subsections we will consider a system that undergoes a certain

process —for particular values of ai and af (!i and !f ) of the square (harmonic) trap—,

and study the dynamics for di↵erent velocities of the process (i.e. di↵erent final times).

5.2. Single particle confined in an external potential

The irreversible work, W̃irr, for the case of a single particle trapped in a harmonic

oscillator (figure 3a, with W̃irr = Wirr/~!f ) for di↵erent processes is first considered.

For the finite well potential (figure 3b, with W̃irr = Wirr/V0), three cases which belong

to di↵erent static regimes are studied: a case that occurs entirely in regime I, a second

case that starts in regime I and ends in II, and a last case that takes place in regime II.

In figure 3a we can clearly see the adiabatic regime when rv ⌧ 1, for which the

irreversible work tends to zero. When rv < 1, the irreversible work increases rapidly for

larger ratios, rv, until it reaches a constant value, which corresponds to the instantaneous

regime. In order to study the dynamic regimes observed in figure 3b with more detail,

we discuss the dynamics of four di↵erent ratios, rv. Figure 4 shows, for these di↵erent

cases, the evolution of the kinetic energy, Ẽkin, the variance of x̃, �x̃2
= hx̃2

i � hx̃i2,

and the probability density that falls inside the walls,
R
|x̃|>ã | ̃(x̃, t̃)|

2
dx̃.

From the definition of work (2), it can be seen that the kinetic term is crucial to the

calculation of the average and irreversible work, while the potential term has a minor

contribution due to the fact that only the tails of the wavefunction enter the walls, where
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Figure 4. Evolution of the (a) kinetic energy, (b) variance of x̃ and (c)
probability density inside the walls considering four di↵erent final times with rv =
{0.001, 0.9, 3.0, 100} for a single particle in a finite well potential with walls moving
from ãi = 1.1 to ãf = 3.2 (static regime II, figure 3b) and numerical parameters L̃ = 8
and �x̃ = 0.02. Note that case rv = 0.001 tends to the adiabatic limit (rv ! 0),
plotted in (b) and (c) with a black solid line.

the potential is not zero. Therefore, an increase in the kinetic energy is translated to

an increase of the work performed during the process.

In general terms, we can see in figure 4 that, as the walls of the wells separate,

the wavefunction broadens (i.e. �x̃2
, which informs of the width, increases) and the

probability density inside the walls (for |x̃| > ã) decreases. Consequently, the kinetic

energy decreases except in some particular situations that will be discussed below.

For instantaneous processes (rv � 1), the system stays in the initial state: the

width remains constant (and so does the kinetic energy) and the probability density

inside the walls drops to zero as the walls separate. For adiabatic processes (rv ⌧ 1), on

the other hand, the wavefunction broadens as the walls separate so that the probability

density inside the walls decreases more slowly; therefore, the kinetic energy decreases

more than in faster processes.

There is a singular behaviour that appears for the finite well but not for the

harmonic trap: if the process velocity is not much larger than the initial velocity, the

walls separate at such a rate that the tails of the wavefunction bounce o↵ of the walls

instead of entering the walls, which increases the kinetic energy. This leads to an extra

increase in the irreversible work that gives rise to the peak in the instantaneous regime

that can be observed in figure 3b (case rv = 3.0 in figure 4). Furthermore, we can see

in figure 3b that the peak appears clearly for the regime II case, more faintly in regime

I-II case, and is not present in the regime I case. Therefore, we finish this discussion by

noting how the dynamics of the system can be characterised by the static regimes.

5.3. E↵ect of the non-linearity: BEC confined in a finite square well potential

Let us now consider the irreversible work, W̃irr = Wirr/V0, performed on a BEC for

attractive (figure 5a) and repulsive (figure 5b) interactions where the confining potential

is a finite well of varying width. As before, three cases that belong to the di↵erent static

regimes are considered: one for regime I, one that starts in regime I and ends in II, and
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Figure 5. Irreversible work as function of the ratio of velocities, rv, for a BEC in
a finite well with (a) attractive and (b) repulsive interactions. (a) g̃N = �2.3 with
L̃ = 4, �x̃ = 0.01 and rv 2 [0.001, 100], where ãi and ãf are: (regime I) ãi = 0.07 and
ãf = 0.22, (regime I-II) ãi = 0.22 and ãf = 0.71, (regime II) ãi = 0.71 and ãf = 2.5,
and (regime III) ãi = 2.5 and ãf = 3.2. (b) g̃N = 0.2 with L̃ = 8, �x̃ = 0.02 and
rv 2 [0.1, 100], where ãi and ãf are: (regime I) ãi = 0.07 and ãf = 0.42, (regime I-II)
ãi = 0.42 and ãf = 1.0, and (regime II) ãi = 1.0 and ãf = 3.0.

one for regime II. In the case of attractive interactions, a fourth case that takes place

in regime III is considered.

The results for attractive (figure 5a) and repulsive (figure 5b) interactions show a

similar behaviour to that of the single particle case (figure 3): two di↵erentiated regimes

with a transition in between, with a peak, surpassing the instantaneous quench, which is

sharper in regime II than in the transition I-II. The new case that appears for attractive

interactions (regime III) resembles that of regime I but with a much smaller variation

between the two limits because the system is practically una↵ected by the variation of

the potential. It can be seen that the irreversible work becomes zero in the adiabatic

limit (rv ⌧ 1), as expected, except in the case of repulsive interactions for regime I.

6. Summary and conclusions

In this work, we have studied the irreversible work performed on a one-dimensional

quantum system governed by the time-dependent Schrödinger equation and generalised

it for systems which evolution is described by the time-dependent Gross-Pitaevskii

equation. We have concentrated on the cases of a single particle in either a harmonic

or a finite well potential and a BEC in a finite well in order to analyse the e↵ects of the

interactions. For the four cases, both the static and dynamic properties were studied.

Concerning the static properties, we have described how under certain conditions,

in a somehow counterintuitive way, the condensate density increases at the centre when

the finite well is opened. This allowed us to define two di↵erent regimes according to

whether the central density increased or decreased with the halfwidth of the well. For

a single particle in a harmonic potential, characterised by a single length scale, only

one regime is observed, while a second one appears for a finite well potential, described
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by two length scales. In the case of a BEC with attractive interactions in a finite

well potential, where three length scales characterise the system, a third regime —with

constant central density— is observed.

Then, we have studied the evolution of the system when the width of the confining

potential is increased linearly with time at di↵erent speeds. We have identified two

velocities, the initial and process velocity, that allow us to characterise the main

dynamical regimes that appear in the problem. The irreversible work performed during

the process for di↵erent final times has been calculated in order to study the adiabatic

limit and the instantaneous quench, and explore all the cases in between. We have seen

that, for the finite well potential and not for the harmonic oscillator, a peak above the

instantaneous quench appears on the irreversible work for some cases. Furthermore, we

have been able to relate the behaviour of the irreversible work for di↵erent processes

with the static regime in which the process takes place.

Possible future research could be to consider quantum engines with Bose-Einstein

condensates, where the process studied here could be a part of a thermodynamic cycle.
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