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Abstract

In this abstract, we construct explicitly, for every k, pairs of non-isomorphic trees
with the same restricted U -polynomial; by this we mean that the polynomials agree
on terms with degree at most k. The construction is done purely in algebraic
terms, after introducing and studying a generalization of the U -polynomial to rooted
graphs.
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1 Introduction

The chromatic symmetric function (c.s.f.) [Sta95] and the U -polynomial
[NW99] are powerful graph invariants as they generalize other interesting
invariants like, for instance, the chromatic polynomial, the matching poly-
nomial and the Tutte polynomial. It is well known that the c.s.f. and the
U -polynomial are equivalent when restricted to trees, and there are examples
of graphs with cycles having the same U -polynomial (resp. the same c.s.f.).
However, it is an open question to know whether there exist non-isomorphic
trees with the same c.s.f (or, equivalently, the same U -polynomial). The neg-
ative answer to the latter question, that is, the assertion that two trees that
have the same c.s.f must be isomorphic, is sometimes referred to in the lit-
erature as Stanley’s (tree isomorphism) conjecture. This conjecture has been
so far verified for trees up to 29 vertices [HJ18] and also for some classes of
trees, most notably caterpillars [APZ14,LS14] and spiders [MMW08]. A nat-
ural simplification for Stanley’s conjecture is to truncate the U -polynomial,
construct non-isomorphic trees with the same truncated U -polynomial and
study these examples to better understand the picture for the non-truncated
U -polynomial. In a previous work [APdMZ17], the authors studied the trun-
cation of U -polynomial by simply restricting to terms with degree lower than
a certain fixed k, and showed the existence of the examples in this setting.
This result was based on a remarkable connection between such examples and
solutions to the Prouhet-Tarry-Escott problem in number theory.

The drawback of the above construction is that it is very difficult to give
explicit solutions to the Prouhet-Tarry-Escott problem. In this paper, we
give an explicit and simple construction of examples of non-isomorphic trees
with the same truncated U -polynomial for every k. These examples coincide
with the examples already found by Smith, Smith and Tian [SST15] for k =
2, 3, 4, 5, which leads us to conjecture that for every k our construction yields
the smallest non-isomorphic trees with the same truncated U -polynomial.

The main tool for proving our result is the introduction and study of the
generalization of the U -polynomial to rooted graphs. It turns out that the
rooted U -polynomial distinguishes rooted trees, and it is equivalent to the
rooted polychromate introduced by Bollobás and Riordan [BR00]. It is also
very close to a recently introduced rooted version of the c.s.f. [Paw18]. The
key fact for us is that the rooted U -polynomial exhibits nice formulas when
applied to products of rooted graphs. These formulas together with some
non-commutativity is what allows our constructions to work.



2 The rooted U-polynomial

First, we recall the definition of the U -polynomial introduced by Noble and
Welsh [NW99]. We consider graphs where we allow loops and multiple edges.

Let G = (V,E) be a graph. Given A ⊆ E, the restriction G|A of G to A
is the subgraph of G obtained from G after deleting every edge that is not
contained in A (but keeping all the vertices). The rank of A is defined as
r(A) = |V | − k(G|A), where k(G|A) is the number of connected components
of G|A. The partition induced by A, denoted by λ(A), is the partition of |V |
whose components are the sizes of the connected components of G|A.

Let y be an indeterminate and x = x1, x2, . . . be an infinite set of conmuting
indeterminates that commute with y. Given any partition λ, define xλ :=
xλ1 · · ·xλl . The U-polynomial of a graph G is defined as

UG(x, y) =
∑
A⊆E

xλ(A)(y − 1)|A|−r(A). (1)

Given an integer k, the Uk-polynomial of G is defined the same way as in (1)
but with the summation ranging over all A ⊆ E with less than k elements. We
note that the U -polynomial is the specialization of the W -polynomial which is
defined for weighted graphs. The key fact about the W -polynomial is that it
satisfies a deletion-contraction formula, for details see [NW99]. A rooted graph
is a pair (G, v0), where G is a graph and v0 is a vertex of G that we call the
root of G. Given A ⊆ E, define λr(A) to be the size of the component of G|A
that contains the root v0, and λ−(A) to be the partition induced by the sizes
of all the other components. The rooted U-polynomial is

U r
(G,v0)

(x, y, z) =
∑
A⊆E

xλ−(A)z
λr(A)(y − 1)|A|−r(A). (2)

We often write G instead of (G, v0) when v is clear, so we will write U r(G)
and U(G) for convenience. If we compare U r(G) with U(G), then we see that
for each term of the form xλy

nzm appearing in U r(G) there is a corresponding
term of the form xλy

nxm in U(G). If we use the notation (P )∗, where P is a
polynomial in z, to denote the result of substituting zn by xn for all n ∈ N,
we can conclude that for every rooted graph (G, v) we have

(U r(G))∗ = U(G). (3)

We now ask whether the U r-polynomial distinguishes rooted trees up to
isomorphism. To see this, we first recall that the polychromate is an invariant



introduced in [Bry81] and later found to be equivalent to the U -polynomial in
[Sar00]. In [BR00] the authors proved that a rooted version of the polychro-
mate distinguishes rooted trees up to isomorphism. We show:

Theorem 2.1 The U r-polynomial is equivalent to the rooted polychromate.
In particular, it distinguishes rooted trees up to isomorphism.

Let (G, v) and (H, v′) be two rooted graphs. Define G �H as the rooted
graph obtained from the disjoint union of G and H after identifying v and v′.
Clearly G�H = H �G. Define G ·H as the rooted graph obtained from the
disjoint union of G and H then adding the edge vv′. The root of G ·H is v.
In this case, G ·H 6= H ·G as rooted graphs.

Lemma 2.2 Let G and H be two rooted graphs. We have

U r(G�H) =
1

z
U r(G)U r(H), and (4)

U r(G ·H) = U r(G)(U r(H) + U(H)). (5)

3 Non-isomorphic trees with the same truncated U-
polynomial

We start by defining two sequences of rooted trees. Let us denote the path
on three vertices, rooted at the central vertex, by A0 and the path on three
vertices, rooted at one of the leaves, by B0. The trees Ak and Bk for k ∈ N
are defined inductively as follows:

Ak := Ak−1 ·Bk−1 and Bk := Bk−1 · Ak−1.

We first observe that A0 and B0 are isomorphic as unrooted trees but not
isomorphic as rooted trees, which means that they have different U r. In fact,
a direct calculation shows that ∆0 := U r(A0) − U r(B0) = x1z

2 − x2z. By
applying Lemma 2.2 we deduce:

Proposition 3.1 For all k ∈ N, the trees Ak and Bk are isomorphic but
not rooted-isomorphic. Moreover, U r(Ak) − U r(Bk) = ∆0Pk, where Pk :=
U(A0)U(A1) · · ·U(Ak−1).

Observe that all the terms of Pk have degree at least k. Now we can state
our main result.

Theorem 3.2 Given k, l ∈ N, let

Yk,l = (Ak � Al) · (Bk �Bl) and Zk,l = (Al �Bk) · (Bl � Ak). (6)



Then, Yk,l and Zk,l are not isomorphic and Uk+l+2(Yk,l) = Uk+l+2(Zk,l).

Proof. The proof is based in the repeated application of the following lemma,
which is a corollary of Lemma 2.2 and Proposition 3.1.

Lemma 3.3 Let T be a rooted tree and i an integer. Then

U(Ai � T )− U(Bi � T ) = PiD(T ), (7)

where
D(T ) = x1(zUr(T ))∗ − x2U(T ). (8)

In particular all the terms in D(T ) have degree at least 2.

We start by applying the deletion-contraction formula to the edge corre-
sponding to the concatenation operation in Yk,l and Zk,l; it is easy to see that

U(Yk,l)− U(Zk,l) = U(Ak � Al)U(Bk �Bl)− U(Al �Bk)U(Bl � Ak), (9)

since after contracting the respective edges we get isomorphic weighted trees.

By applying Lemma 3.3 three times 5 and then plugging the results into
(9), after some appropriate algebraic manipulations, we get

U(Yk,l)−U(Zk,l) = Pl

((
D(Ak)−D(Bk)

)
U(Bl�Ak) +D(Ak)D(Bk)Pk

)
(10)

Using (8) we compute D(Ak)−D(Bk) = x1Pk(z∆0)
∗ = x1(x1x3 − x22)Pk, and

substituting this into (10) yields

U(Yk,l)− U(Zk,l) = PlPk

(
(x21x3 − x1x22)U(Bl � Ak) +D(Ak)D(Bk)

)
(11)

This implies that all the terms that appear in the difference have degree at
least l + k + 4. The conclusion now follows. 2

In the cases (k, l) ∈ {(0, 0), (1, 0), (1, 1)} we reobtain the examples of Smith
Smith and Tian of non-Um-unique trees with m ∈ {2, 3, 4}[SST15]. In these
cases, they computationally showed that the examples were minimal. Hence
we propose the following conjecture:

Conjecture 3.4 For each (k, l), the trees Yk,l, Zk,l are a smallest pair of
graphs with the property that Uk+l+2(Yk,l) = Uk+l+2(Zk,l).

5 With T = Ak and i = l first, then T = Bk and i = l and finally with T = Bl and i = k



Since the size of the trees Yk,l and Zk,l increases exponentially in k+ l, then
Conjecture 3.4 implies Stanley’s tree-isomorphism conjecture.
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