The extreme floods in the Ebro River basin since 1600 AD

Josep Carles BALASCHa*, David PINOb,c, Josep Lluis RUIZ-BELLETa, Jordi TUSETd, Mariano BARRIENDOSe, Xavier CASTELL TORTa, Juan Carlos PEÑAf

aDepartment of Environment and Soil Sciences, University of Lleida, Rovira Roure 191, 25198 Lleida, Spain.

bDepartment of Physics, Universitat Politècnica de Catalunya-BarcelonaTech. Esteve Terrades 5, 08860 Castelldefels, Spain.

cInstitut d’Estudis Espacials de Catalunya (IEEC-UPC). Gran Capità 2-4, 08034 Barcelona, Spain.

dRIUS Fluvial Dynamics Research Group, University of Lleida. Rovira Roure 191, 25198 Lleida, Spain.

eDepartment of History and Archaeology, University of Barcelona. Montealegre 6, 08001 Barcelona, Spain.

fServei Meteorològic de Catalunya. Berlín 38-48 4a, 08029 Barcelona, Spain.

*Corresponding author: cbalasch@macs.udl.cat Tel: +34973003736
Abstract

Reliable and complete knowledge of the historical floods is necessary for understanding the extreme hydrological dynamics of the rivers, their natural variability and anthropic changes. In this work we reconstruct the most important floods of the Ebro basin during the last 400 years in different areas of the basin. The analysis is based on four different areas: the Ebro River at Zaragoza, the Cinca River at Fraga, the Segre River at Lleida, and the Ebro River near its mouth at Tortosa.

Based on a documentary research, we have first obtained relevant information about the initial conditions (rainfall duration and distribution, snow cover influence) and the maximum flood heights that allow to reconstruct the maximum peak flows by using hydraulic models and to calculate the subbasins contributions.

The results show four main types of extreme floods: a) those affecting simultaneously all the subbasins with the highest peak discharges (Ebro at Tortosa in 1787: 0.15 m3s$^{-1}$km$^{-2}$); b) those originated at the western basin, upstream from Zaragoza, with an Atlantic origin, presenting moderate maximum peak flows, caused by persistent winter rainfall and where snowmelt significantly contributes to the flood; c) those originating at the central Pyrenean subbasins, with Mediterranean origin, occurring, with high peak discharges. These mainly occur during autumn as a consequence of rainfalls of different duration (between 3 days and 1 month), and without significant snow thawing and d) finally, less frequent but very intense flash floods events centered in the Lower Ebro area with low peak flows.

In terms of frequency, two different periods can be distinguished: from 1600 until 1850, the frequency of events is low; since 1850 the frequency of events is clearly higher, due to an increase of the climatic variability during last stages of the Little Ice Age. From the 1960’s reservoirs construction modifies discharges regime.

Key words: Ebro River, historical floods, peak discharge reconstruction, subbasin contributions, spatio-temporal variability
1. INTRODUCTION

The European Union regulatory framework for planning flood risk (EU Directive 2007/60/EC) uses information from previous floods obtained from hydrometric series of maximum peak flows and from documentary sources of historical floods. Sometimes information about the largest peak flows during a flood is scarce for several reasons: they seldom occur; it could be difficult to measure hydraulical variables such as water height and flow speed; and due to the destruction of the instrumentation during the flood. However, determining this type of data with robustness and reliability is most needed for estimating the expected discharge for different return periods.

While the current requirements for the secure design of civil infrastructures must include return periods of 500 years or more, the available series do not cover even 50 years for many rivers and it is very unusual to have continuous series that are longer than 100 years for any river (Macdonald and Sangster, 2017). This clearly reflects the important lack of representativeness of the data.

On the other hand, IPCC (2013) projects an increase in extreme climatic events, including the occurrence of floods. In order to reduce the uncertainty of these projections, it is advisable to collect instrumental and documentary data covering long periods in order to explain the variability of the hydrological systems and to be able to relate flood occurrence to natural or anthropogenic causes: a) climate change, b) land use modifications at the basin scale, and c) changes in the riverbeds and reservoirs (Merz et al., 2014; Kundzewicz et al., 2014). Having broad and centuries-old knowledge of the hydrological data allows us to investigate the long-term temporal variability and the lack of stationarity in the fluvial systems (Milly et al., 2008; Machado et al., 2015).

This new necessity is clearly reflected by some early 21st century reviews of flood series at different rivers being published in journals specializing in historical hydrology and paleohydrology (Benito et al., 2005, 2015b; Gregory et al., 2006; Brázdil and Kundzewicz, 2006). There is currently an extended chronology in Europe (Glaser et al., 2010; Brázdil et al., 2006, 2012; Luterbacher et al., 2012) that allows detecting spatial and temporal
changes in the flood regimes (Blöschl and Montanari, 2010; Hall et al., 2014; Kjeldsen et al., 2014; Kundzewicz et al., 2014)

For the Iberian Peninsula (IP), there are historical chronologies that cover most of the basins (Barriendos and Rodrigo, 2006; Benito and Machado, 2012), the Mediterranean coast (Barriendos and Martín-Vide, 1998), Catalonia (Barriendos et al., 2003; Llasat et al., 2005; Barrera-Escoda and Llasat, 2015), SE of IP (Machado et al., 2011), the Atlantic rivers (Benito et al., 2003), and some specific areas of the Pyrenees mountain range (Corella et al., 2014, 2016).

Despite the quality of those previous works, we still have a reduced knowledge of the magnitude (maximum peak flow) of some of the floods and this information is very difficult to obtain (Herget et al., 2014, Benito et al., 2015a). During the last decade, several studies have reconstructed the maximum peak flow at a particular location in a particular basin (Thorndycraft et al., 2006; Balasch et al., 2007; Calenda et al., 2009; Elleder, 2010). Considering the whole basin of a river, some historical analysis that cover several centuries have been published (Benito et al., 2003; Naulet et al., 2005; Herget and Meurs, 2010; Balasch et al., 2011; Elleder et al., 2013; Roggenkamp and Herget, 2014), although they do not analyze the role and contribution of the different tributaries, which is fundamental to understanding the different hydrological responses of the subbasins during the floods.

For the particular case of the Ebro River, the analysis of the hydrology regarding the magnitude of the extreme floods before the instrumental period has been quite limited (López-Bustos, 1972, 1981; Ruiz-Bellet et al., 2015b). The main goals of this work are to reconstruct the maximum peak flow of the large floods at the mouth of the Ebro basin (Tortosa) and to study and evaluate the contributions of the main subbasins (Upper Ebro in the west, and Cinca and Segre rivers in the central Pyrenees), specifically at the hydraulic, and hydrological levels. In addition, we seek to qualitatively study the previous soil moisture conditions. This analysis will be performed on the magnitude, temporal evolution (frequency), seasonality, and complementarity of the discharge contributions. With this information we would like to increase our knowledge about the
temporal variability of the extreme floods in one of the most important Mediterranean rivers and to improve some aspects of planning flood risk management.

2. STUDY AREA: THE EBRO RIVER BASIN

The Ebro is one of the great rivers of the Mediterranean basin, similar in size and mean discharge to the (France and Switzerland) and Po (Italy), but smaller than the Nile and Danube. Within the IP, it is the second longest (930 km), the second in mean discharge (428 m3s$^{-1}$), and the most regular in annual discharge volume.

The Ebro River drains the north-eastern part of the IP, which includes most of the southern side of the Pyrenees Range, into the Mediterranean Sea (Figure 1). It has a NW-SE orientation and a triangular-shaped basin of 85362 km2, which approximately matches the Cenozoic foreland basin caused by the Alpine rising of the Pyrenees Range. This range delimits the basin to the N, whereas the Cantabrian Massif delimits it to the NW, the Iberian System Range to the S and SW and the Catalan Pre-Coastal Range to the E.

Regarding its morphology, the main course is divided into three parts: The Upper Ebro, from Peña Labra (Cantabria) up to Miranda de Ebro (250 km, mean slope 7.6 mkm$^{-1}$); the Middle-Ebro, from Haro up to Mequinenza (565 km, 480 km of them with meanders, and a mean slope 0.66 mkm$^{-1}$) and the Lower Ebro, between the confluence with the Segre-Cinca system up to the Mediterranean Sea (115 km, mean slope 0.46 mkm$^{-1}$) (Ollero et al., 2004; Del Valle et al., 2007).

Mean annual rainfall in the whole basin is 622 mm during the period 1920-2000. However, rainfall is very unevenly distributed across the basin: there is a high altitudinal gradient as well as a W-E gradient: 1000-1500 mm in the Cantabrian mountain ranges and the Pyrenees; 400-700 mm in the Iberian System range; and less than 400 mm in the central course of the Ebro, and in the lower courses of the Cinca and Segre. In the period 1950-2001 a small decrease in the amount of precipitation at the headwaters located at the Pyrenees were observed, and this was especially concentrated during the
spring and summer (Vicente-Serrano et al., 2007). Evapotranspiration losses have an opposite gradient to those of rainfall: they are higher in lower areas, with a basin average value of 450 mm. Increasing water use and changes in soil use in mountainous regions have greatly reduced runoff volume at Tortosa, near the outfall: from 18500 hm³ yr⁻¹ in the 1960s to 12000 hm³ yr⁻¹ (García-Ruiz et al., 1995; Gallart and Llorens, 2004). In terms of the runoff coefficient this represents a change from 35% to 22.7%.

Due to the extension and geographical configuration of the Ebro basin, there is a high climatic variability between the headwaters and the lowlands and a remarkable influence in the hydrological response due to the preceding seasonal conditions (López-Moreno et al., 2013). This translates into different hydrological regimes, according to which the Ebro basin can be divided into three great hydrological areas, that include one or more subbasins (Figure 1 and Tables 1 and 2):

- The Upper Ebro, or the western subbasin, running from the source to Zaragoza. This section lies approximately in the center of the medium reach and collects the contributions from the tributaries that have an Atlantic influence. It includes the following three types of subbasins. First, there are the rivers that have an Atlantic type of climates: the Oca, Zadoya, Najerilla and Cidacos. Next, we have the subbasins located in the NW of the Iberian System Range: the Jalón and Huerva. Finally, some western Pyrenean subbasins: the Ega, Arga, Aragón and Gállego, although this last tributary contributes downstream Zaragoza. The hydrological regime is driven by rain and snow in winter and spring.

- The southern central Pyrenees basin represented by the main Ebro tributaries: the Cinca and Segre rivers. The hydrological regime is characterized by spring snowmelt and autumn rainfalls. The Cinca and Segre can be considered twin rivers in terms of area, hydrological regime and discharge. However, they have been analyzed separately in this study.

- The Middle and Lower Ebro course, from Zaragoza to the Sea: it contains the small tributaries of the southeastern area of the Iberian System and the Catalan Pre-Coastal Range (Ports de Beseit), such as the Martín, Guadalope and
Matarraña. Rainfall is more frequent in autumn. The water budget in this area is negative due to high evapotranspiration and human use.

The result of this diverse basin is a highly complex hydrological regime in terms of variability, irregularity and seasonality of the flow. According to the climate of the area, the annual maximum instantaneous peak discharge (Qci) can occur at any time in different places within the catchment (Davy, 1975). Thus, in the western area where the Upper Ebro lies, floods generally happen in winter and spring; in the Segre-Cinca system, they happen in spring and autumn; in the upper half of the Lower Ebro, they happen in spring and summer; and in the lower half of the Lower Ebro, near Tortosa (Ports de Beseit), they happen in autumn (Figure 2).

Floods starting in the headwaters of the Ebro basin take 6-7 days to reach the sea: 2-3 days down to Miranda, 1.5-2 days from Miranda to Zaragoza, then 2-3 days from Zaragoza to Tortosa and to the sea. Floods originating in the Segre-Cinca system have a transit time of 1.5-2 days.

Throughout the 20th century, about 190 dams were built in the Ebro basin, primarily in the main Pyrenean tributaries and in the Lower Ebro (Mequinienza, Riba-roja, and Flix). The impoundment runoff index (that is the ratio between impounding capacity and annual runoff volume) is presently 57%. The Mequinenza reservoir (1966) is the largest one with a capacity of 1534 hm³, and together with the Riba-roja reservoir (1967, 210 hm³), these have altered the flood regime in the Lower Ebro (López-Moreno et al., 2013): they have reduced by 30% the peak flows with a return period of between 2 and 10 years (Batalla et al., 2004); and by 25% the peak flows with a return period of between 10 and 25 years (Batalla and Vericat, 2011).

3. METHODOLOGY

To fulfill the objectives of this paper—which is to quantitatively reconstruct the hydrological response of the Ebro basin during the most extreme floods of the last 400 years—it was necessary to separately compile the peak-flow series in the four main subbasins: The Upper Ebro, Segre, Cinca and Lower Ebro (whole Ebro). Furthermore, in order to assess the cause of each flood, meteorological and hydrological information is
also needed: rainfall extension and duration; soil saturation (estimated from rain events in previous days) and snowmelt runoff. All this information is obtained from the sources listed in Table 3, all of which are part of the PREDIFLOOD/AMICME database (Barriendos et al., 2014) that includes 1524 flood events that caused 4244 documented cases of damage.

A site in each subbasin was selected for compiling the peak-flow series. This selection is based on two factors: first the availability of information about discharge data series and historical floods at the site; and, second, its proximity to the subbasin’s outlet. The selected sites were the towns of Zaragoza (Upper Ebro), Fraga (Cinca), Lleida (Segre) and Tortosa (whole Ebro basin). For each site, in order to select the major floods, we defined a discharge threshold by calculating the minimum peak discharge that floods the old town and causes structural damages. The hydrological characteristics of these control subbasins are shown in Table 2. The compiled peak-flow values can be divided into three classes, depending on the information use to obtain them:

- Measured peak flows: obtained from official gauging data series.
- Reconstructed peak flows: when it doesn’t exist a measured peak flow but there is an observed maximum water height.
- Estimated peak flows: for floods that have no measured peak flow nor observed maximum water height, as in the case of five floods at Fraga in the Cinca subbasin.

Regarding the measured peak flows, systematic flow gauging in the Ebro basin started on 1913 in the towns of Zaragoza and Tortosa (Ebro River) and as well as in Lleida (Segre River) and it began in 1928 in Fraga (Cinca River). Many of the gauging stations across the basin have accumulated close to 100 years of data. Unfortunately, peak-flow measurements are scarce: there are no flow measurements of any flood prior to the 20th century and, within that century, most of the systematic measurement series are missing the greatest floods, such as 1907, 1937 and 1982.
The reconstructed peak flows have been either obtained from the literature or calculated ad hoc for this paper. In this last case, the reconstruction method is based on hydraulic modeling from the observed maximum water height (Figure 3), as explained in Benito et al. (2004), Lang et al. (2004), Remo and Pinter (2007), Calenda et al. (2009) and Balasch et al. (2011). Aside from information about observed water height, this reconstruction method requires data about the hydraulics (that is, the geometry and roughness of the river bed and flood plain) at the time of each reconstructed flood (Table 4). These data (observed maximum water height and geometry and roughness of the river bed) are obtained from historical documents such as epigraphic marks, maps, engravings, chronicles, and historical accounts (Table 3). The software used to model the floods is: HEC-GeoRAS, v.10.1 (USACE, 2010a), HEC-RAS v.4.1.0 (USACE, 2010b) and IBER v.2.4 (Bladé et al., 2012, Table 4).

The models were calibrated at each site by using measured peak flows. The flood on 1961 was used to calibrate the models at Zaragoza and Tortosa (Xerta) and the 1982 flood in Fraga and Lleida. For the case of Tortosa, the model was actually applied at the scale of the Sant Marti church at Xerta (Figure 3d). This could be done because the richness and reliability of the Xerta scale. The distance between Xerta and Tortosa is small (10 km) and the basin is only 0.2% larger and, as a consequence, the damping effect is negligible and the discharges calculated at Xerta could be directly extrapolated to Tortosa.

The five estimated peak flows for the Cinca subbasin were obtained by subtracting the Upper Ebro and Segre subbasins peak flows from the peak flow at Tortosa after the proper routing of the flows. Comparisons were made of the hydrographs of the 1930, 1961, 2003 floods at Zaragoza and Tortosa, on the one hand, and of 1982 at Lleida and Tortosa, on the other hand, in order to estimate the routing parameters of the peak flows (travel time and wave attenuation). In addition, different order magnitude floods were modeled in a 150-km long reach in the Lower Ebro subbasin with IBER v.2.4 to quantify the flood lamination downstream Zaragoza.

Both peak-flow reconstructions and estimations are less accurate than direct measurements. Reconstructed peak-flow errors are around 10% when the hydraulic
model could have been calibrated with a recent, well-known flood and they are around 50-80% when such a calibration was not possible (Barriendos et al., 2003; Benito et al., 2004; Gaume et al., 2004; Lang et al., 2004; Ruiz-Bellet et al., 2017). There are no quantifications of the error of peak-flow estimations from water budgets, but they must be undoubtedly larger than those of the reconstructions.

4. RESULTS

The chronological study of the long series for historical flooding in the study area (except Fraga) was started by Barriendos and Martín-Vide (1998), Llasa et al. (2005) and Barriendos and Rodrigo (2006), all of whom prepared the first catalogue on the severity and extension of the different cases (292), but without quantifying the magnitude of the peak discharges, the spatial distributions or the persistence of the rain.

In this section we will first describe the events by subbasins and for the whole basin at Tortosa. Secondly, the most relevant events of the historical period for the whole basin will be shown. Finally, the floods will be classified according to different spatial patterns and considering the meteorological and hydrological processes involved in the subbasin.

4.1 Floods at the subbasins

4.1.1 Upper Ebro subbasin (western basin up to Zaragoza)

It’s important to note that during the analyzed period 7 floods with peak flows greater than 3500 m3s$^{-1}$ occur at Zaragoza (Figure 4a, Table 5); most of them since 1850 (Ruiz-Bellet et al., 2015b).

Between 1600 and 1750 there was only one large flood (1643), which largely affected the bridge. The estimated peak flow of 5560 m3s$^{-1}$ is considered to be the record in the Zaragoza register. Two documented smaller floods at cities located at the upper basin (1636, 1670) do not seem to have occurred at Zaragoza. During a second short period (1750-1800), two large events occurred 12 years apart, 1775 and 1787 (with peak flows of 5180 and 4600 m3s$^{-1}$, respectively). Since 1850, the occurrence of floods increased. In 1871, the latest large flood occurred with a peak flow of 4844 m3s$^{-1}$. From this moment
on, smaller floods happened, with the most important episode of the 20th occurring in
1961, with 4130 m³s⁻¹.

In summary, three first-order floods occurred at Zaragoza between 1600 and 1850, that
is, 1.2 events per century with very important peak flows. Since 1850, 4 extreme floods
(over-threshold) have occurred (2.7 per century), but with less severity. The maximum
specific peak discharge at the Zaragoza section is 0.13 m³s⁻¹km⁻².

4.1.2 Cinca River at Fraga subbasin

The reconstructed series of maximum peak flow of the Cinca River at Fraga includes peak
discharges above 2500 m³s⁻¹ and has a heterogeneous quality, especially for the oldest
floods (Figure 4b, Table 6). Taking into account the severity of the analyzed damages,
during the 17th century and the first half of the 18th, they are not large floods compared
to the following centuries. However, at the beginning of the 17th century was the
November 1617 event, which is reported by several documented sources to have
affected the east side of the Ebro basin, including Fraga (Thorndycraft et al., 2006).
Calculations show that, despite the duration of the episode (it rained for approximately
one month), the maximum peak flow for this event would be around 2500 m³s⁻¹, lower
than subsequent registered maximum peak flows during other episodes. Between 1750
and 1850, there are 2 important floods (1787, 1788) and one of second order (1762).
The most important flood in the Ebro basin, occurred in October 1787, is not
extraordinary at Fraga. Documents describe this flood as smaller than the flood of
September 1788, when the historical peak flow maximum at Fraga was reached with
4500 m³s⁻¹ (or 0.47 m³s⁻¹km⁻²). There is no record of this flood at the mouth of the Ebro
(Tortosa) due to the damping of the flow during its routing and the lack of contributions
from other subbasins.

During the second half of the analyzed period (1850-2010), there are six episodes with
a peak flow of around 2500 m³s⁻¹ or higher (1853, 1866, September 1874, 1907, 1937,
and 1982), that is, four per century; the most intense period is between 1850 and 1910
with four episodes having peak flows of between 2500 and 3900 m³s⁻¹. Surprisingly, the
second largest maximum peak flow occurred in November 1982 (4200 m³s⁻¹) when the
reservoirs had already been built; and the third one occurred in October 1907 (3900 m3s$^{-1}$).

4.1.3 Segre River at Lleida subbasin

The historical and recent floods registered at the Segre River at Lleida in the period 1600-2017 comprises 14 events (Figure 4c, Table 7). We have selected the 9 floods with a maximum peak discharge greater than 3000 m3s$^{-1}$, which is the threshold flow necessary for flooding the right bank of the city. Between 1600 and 1850 there is a low frequency of extreme events: there are only 3 episodes (1.2 per century). This period starts with the episode in November 1617 (Thorndycraft et al., 2006), which produced catastrophic damages in the basins of eastern Catalonia, but it was not as important in the Segre basin, with a maximum peak flow around 4000 m3s$^{-1}$, being a second order event for this basin. However, the more exceptional episode in this period occurred in October 1787, with a maximum peak flow of around 8500 m3s$^{-1}$ (or 0.75 m3s$^{-1}$km$^{-2}$) which represents more than 100 times the mean instantaneous peak flow for this section.

From 1850, there is an increase in the number and magnitude of the episodes. During this period, there are 6 events with more than 3000 m3s$^{-1}$ (4 per century). Despite this fact, it can be clearly observed from mid-20th century onward that the influence of the reservoirs in this basin, damping the peak flows. For instance, during the large flood of 1907, none of the reservoirs had been built yet and the maximum peak flow at Lleida is 5250 m3s$^{-1}$. In contrast, the floods in October 1937 and November 1982 had maximum peak flows of 3600 and 3400 m3s$^{-1}$, respectively, which were damped by the constructions for regulating flow, influencing especially the latest episode.

4.1.4 Lower Ebro subbasin (Ebro River at Tortosa)

The flood record of the Ebro at Tortosa is based on the flood marks at Xerta and the database at Tortosa, Móra d’Ebre, and Benifallet. It supposedly includes the 9 largest floods that have occurred since 1600 (Figure 4d, Table 8). For all of them, the maximum peak flow is above 4500 m3s$^{-1}$. Consequently, we have near the river mouth, a complete and trustworthy register of the large floods over the last 400 years (Ruiz-Bellet et al., 2015b).
At this point, there is a first period (1600-1850) characterized by the low frequency of events with maximum peak flows greater than the threshold (2 events, 0.8 events per century). From 1620 to 1750, there is not any maximum peak flow greater than 4500 m3s$^{-1}$. Then, in October 1878, occurred the flood with the largest maximum peak flow of the studied period: the flood on October 1787. The maximum peak flow at the final section of the Ebro River is estimated to have been around 13000 m3s$^{-1}$ (or 0.15 m3s$^{-1}$ km$^{-2}$), which occurred at some hydraulic obstructions at some gorges along the lower course: at the Pas de l’Ase and at the Barrufemes gorges, which can be estimated from several flood marks at different locations (Abellà, 2013).

On the other hand, there is a clear increase in the number of episodes (7, 4.6 events per century) since 1850. Ever since the construction of reservoirs around the mid-20th century near the Pyrenees and along the middle course of the Ebro, there has been a reduction in the magnitude of the maximum peak flows at Xerta, where they hardly surpass 4500 m3s$^{-1}$ (for instance, in 1982, when the central Pyrenees basins are largely affected but only 3780 m3s$^{-1}$ was registered at Tortosa). After the flood of 1787, the largest peak flows correspond to the events in 1907 (10500 m3s$^{-1}$) and 1937 (9250 m3s$^{-1}$).

4.2 The whole Ebro basin. The largest floods and origin

Table 9 shows the results for the 16 largest floods registered for the Ebro River and its tributaries during more than 400 years (1600-2017), including all floods above the threshold in the subbasins and the most remarkable secondary floods (1930 and 1982), and indicating also the method of determination of the maximum peak flow: systematic register, hydraulic reconstruction or hydraulic budget.

Additionally, for each analyzed flood and with the documented sources included, Table 10 shows the role played by previous rainfall episodes that may have an influence on initial soil moisture conditions, the occurrence of precedent floods and the existence of snowmelt.
The most significant episodes during the studied period in the whole basin, are classified according to their magnitude, with a maximum peak discharge at Tortosa greater than 7000 m3s$^{-1}$ and they are:

1. 1787 (7-9 October). This affected the whole Ebro basin. It was the episode with the highest peak flow at Tortosa (12900 m3s$^{-1}$) and Lleida (8500 m3s$^{-1}$), being of the first order at Zaragoza (4500 m3s$^{-1}$) and having a secondary relevance at Fraga. No influence of snow thaw has been found in the documentary sources. It was produced by 10-12 nearly consecutives days of rain caused by 2 very active low-pressure areas that were blocked by a large high-pressure system moving between Scandinavia and the Balkans, combined with warm and moist air coming from the Mediterranean Sea – according to the interpretation of historical barometric data.

2. 1907 (23-24 October). This episode registers as the second highest peak flow at Tortosa (10500 m3s$^{-1}$) and the third highest at Lleida (5250 m3s$^{-1}$) and at Fraga (3900 m3s$^{-1}$). In the western basin, the flood reaches 2900 m3s$^{-1}$ when Gállego River tributes the Ebro River downstream Zaragoza. It was generated by a passing front that produced moderate to severe precipitation in the Pyrenees after an unusual episode of persistent precipitation after the end of September. Snowmelt does not seem to have played any role.

3. 1937 (28-29 October). The maximum peak flow at Tortosa was 9250 m3s$^{-1}$, and it was produced by similar contributions from the Segre at Lleida (3600 m3s$^{-1}$), the Cinca at Fraga (2600 m3s$^{-1}$) and the Ebro at Zaragoza (3020 m3s$^{-1}$). It was produced by a front passage crossing over the Pyrenees and producing three days of intense precipitation (Pino et al., 2016). Again, the snow contribution isn’t documented. For this event, some regulation of the flow of the Segre River has to be considered by the reservoirs in Tremp and Camarasa.

4. 1853 (24-25 May). Maximum peak flows were 8250 m3s$^{-1}$ at Tortosa, 6000 m3s$^{-1}$ at Lleida and around 3000 m3s$^{-1}$ at Fraga. There is no flood in the western basin. For this case, snow thaw due to rain, high temperatures and the soil saturation played an important role. Previous rains are documented during the same month, and a low-pressure system centered over Catalonia sent a humid and
warm air mass from the Mediterranean Sea causing severe precipitation that
enhanced snow melting at the headwaters of the basin.

5. 1866 (21 October). Several rainy days produced a maximum peak flow of 7750
m3s$^{-1}$ at Tortosa, coming from the Segre (5000 m3s$^{-1}$) and Cinca (3000 m3s$^{-1}$). Soils
of the basin presented large moisture due to continuous rainy days. No snow
accumulated at the headwaters of the basin, and no flooding was recorded in
the western basin (Upper Ebro).

6. 1617 (8 de November). After several days of persistent rain over the NE IP and
the Pyrenees after the end of September, severe precipitation occurred between
2 and 4 November, thus producing maximum peak flows at the Segre (4000 m3s$^{-1}$)
and Cinca (2500 m3s$^{-1}$) with a maximum peak flow of 7500 m3s$^{-1}$ at Tortosa. In
contrast, there are no flood records at Zaragoza. The role of snow thaw in this
episode is unclear, but with some probability of occurrence.

The temporal analysis allows us to distinguish two different periods:

1) A first period between 1600 and 1850 characterized by a low frequency of
events, two clear minima in the periods 1650-1750 and 1790-1850, with no
extraordinary floods in these two periods. In between these two periods
occurred the flood of October 1787, which is the event with the highest
maximum peak flow in the Ebro basin not only during the analyzed period but
probably also over the last millennia, if we consider the information provided by
the flood marks (Miravall, 1997b). Moreover, before these two periods, another
episode with the second largest extension occurred in November 1617.

2) From 1850, the frequency of the floods increases two or threefold. At the end of
this period, around 1950, we can observe a reduction in the magnitude of the
maximum peak flow due to construction of several reservoirs in the Pyrenees
and along the middle basin of the Ebro River. Except for the floods of 1787 at
Lleida, and 1788 at Fraga, it is during this second period when these tributaries
present larger maximum peak discharges.

4.3 Spatial patterns of the floods and seasonality
It can be concluded from Sections 4.1 and 4.2 that, for the largest three floods (1787, 1907 and 1937), the maximum peak discharges calculated at Tortosa were due mainly to the contribution of all formative subbasins, but with a larger contribution of the central Pyrenean ones (Segre and Cinca). Despite the amount of precipitation, this fact can be explained by taking into account the location of these rivers, which are much closer to the mouth (130-150 km), and the large flow created by the slope of the basins on the southern side of the Pyrenees. The synchronicity of the maximum peak discharge of the two analyzed central Pyrenean basins can reach up to 10000 m3s$^{-1}$. In contrast, the floods coming from the western basin (Upper Ebro) can have maximum peak flows at Zaragoza of around 5000 m3s$^{-1}$ and the flow needs to travel along the basin to reach Tortosa (340 km of a meandering pathway). As a consequence, the floods at Tortosa that do not receive a significant contribution from the Pyrenean subbasins, and they therefore present lower maximum peak flows (lower than 4500 m3s$^{-1}$). For the rest of the floods, the contribution of the subbasins was quite different for each flood: Atlantic (Upper Ebro River) or Mediterranean (central Pyrenees and Lower Ebro).

Taking into account the atmospheric processes that produced the floods, it is important to note that – with the exception of 1853 flood – the largest floods occurred during autumn, and only due to extreme and persistent (from 3 days to one month) precipitations, especially over the headwaters at the Pyrenees (Pino et al., 2016). It is surprising to the traditional interpretation of events that snowmelt has no influence on most of Pyrenean floods. In contrast, during the event on 1853 snowmelt contributed largely to the flood (Table 10).

Considering the whole system (16 floods), the results clearly show four different flood patterns regarding the area where precipitation originates and concentrates:

a) Floods affecting the whole Ebro basin
b) Floods generated at the Upper Ebro basin
c) Floods generated at the central Pyrenean tributaries
d) Floods generated at the lower course of the river

Pattern a) The floods affecting the whole basin includes the events in 1787, 1907 and 1937 (18.7% of the analyzed), all of them occurring in autumn and where snowmelt did
not play any role. Surprisingly, these floods do not affect sites located upstream Zaragoza, such as, Miranda de Ebro or Logroño. This can be explained because there is a direct influence of the western Pyrenees (Ega, Arga and Aragón Rivers) and central Pyrenees (Segre and Cinca Rivers), but without any contribution from the Ebro headwaters.

The remaining events are generated mainly in only one area of the basin (either the Upper Ebro basin, central Pyrenees or the lower course) with zero or small contributions from the other areas. This fact indicates that it is very unlikely to have intense frontal precipitation affecting the whole basin. Consequently, there is a clear distinction between frontal episodes coming from the Atlantic and affecting mainly the Upper Ebro River up to Zaragoza and others originating at the Mediterranean Sea that affected the central Pyrenean basins or, more rarely, the lower areas of the Ebro basin.

Pattern b) The floods that affect only the Atlantic side of the basin, in the west and up to Zaragoza, including the western Pyrenean subbasins, represent 37.5% of the analyzed floods (6). Most of them (83%) occur during winter and less often during spring (17%). This pattern includes the largest floods at Zaragoza in 1643 (4500 m3s$^{-1}$), 1775 (5000 m3s$^{-1}$), 1871 (4850 m3s$^{-1}$), January 1874 (3624 m3s$^{-1}$), and 1930 (3600 m3s$^{-1}$), all of which had small consequences at Tortosa because there was not any contribution from the rivers on the northeastern side of the basin. In contrast, the flood in 1961 (4130 m3s$^{-1}$) had a slightly larger maximum peak flow in the lower course of the river (4580 m3s$^{-1}$), despite not having any contributions from the central Pyrenean rivers. Taking into account that these floods in the western part of the basin occur during winter and spring, they are characterized by high runoff increased by snowmelt (1643, 1871, 1930, 1961 and probably January 1874) and more rarely, without any previous snow cover (1775), as it appears in the historical sources and modern reports. These are floods with a slow response time of the basin, meaning that they need between 48 to 72 hours to reach Zaragoza and around one week to reach Tortosa.

Pattern c) This pattern concerns the Segre and Cinca subbasins (central Pyrenees) and represents 31.3% (5) of the analyzed floods. Among these, 60% occur during autumn and the rest in spring or winter. This pattern includes the floods in 1617, 1766, 1853, 1866 and 1982. Due to the seasonality of these floods, snowmelt plays no role in producing the floods; this is an important difference when comparing them with the
western subbasin. They present a sharper hydrograph when compared with pattern b).

At Tortosa the peak flow includes main contributions from the Segre River, followed by the Cinca and the western part of the basin. These floods would be caused by continuous precipitation for several days (in some cases more than 10) produced by frontal systems passing over the area and fed by Mediterranean mesoscale convective systems. Due to the slope of the Pyrenean basins (>8mkm\(^{-1}\)) and the distance between the headwaters of the rivers and the Ebro, they need 24-36 hours to reach the Ebro.

Pattern d) The final type of floods is represented by two events that occurred in the Lower Ebro and its vicinity: September 1874 and September 1884 (12.5%). The event in September 1874 is known as the Santa Tecla flash-floods (Balasch et al., 2010; Ruiz-Bellet et al., 2015a), and it was an extraordinary flash flood of convective origin over the tributaries of the lower course of the Segre and at the Lower Ebro depression where large peak flows are produced and, as a consequence, it is included here. The flood in September 1884 (Ebro at Tortosa: 6500 m\(^3\)s\(^{-1}\)) occurred only in the Lower Ebro tributaries, and the flood wave’s proximity to the Ebro’s final course helped to avoid routing losses. In this event, precipitation was restricted to the area of Ports de Beseit mountain range, on the SE-side of the Iberian Mountain Range and in the Lower Ebro depression. Due to the proximity between the precipitation area and Tortosa, these floods propagated quickly (1-2 days), similar to a big flash-flood even though the maximum peak flows were not among the highest ones. The precipitation producing the flood was intense and of short duration (less than 24 hours), which is related with deep convective systems of Mediterranean origin.

Regarding the seasonality of the floods as a function of the subbasin (Figure 5), we can observe clear differences between the Upper Ebro basin and the central Pyrenean ones. While the extreme floods at Zaragoza occur mainly during winter, floods at Fraga and Lleida are more frequent during autumn. At Tortosa, floods occur especially during autumn and with less frequency in winter, pointing out again the importance of the central Pyrenean tributaries.

5. **DISCUSSION**

5.1 **Uncertainty of the results**
The uncertainty of the results depends on the uncertainty of the input data and of the hydraulic models. Regarding the historical input data, historical accounts used here are quite heterogeneous, having different data quality. The more complete and checked records are Tortosa and Lleida. The Zaragoza and Fraga records need additional work for studying the original sources which limits the capacity to generate results. When reconstructing flood series, we will always have uncertainty about the completeness of the sources regarding the episodes that occurred during the studied period (Barriendos et al., 2014). The dates obtained for the episodes are absolutes and very precise and the reliability and precision of the floods marks are included in the corresponding tables. Reliable epigraphic references of the maximum flood heights have an irregular spatial and temporal distribution. They do not cover all the studied period: the oldest ones are from 1617 at Tortosa (Xerta), 1787 at Lleida, and 1775 at Zaragoza, and the scarce flood marks that are known at Fraga are largely uncertain. This implies that the information generated is quite heterogeneous and, consequently, needs to be completed in the future, especially for the Cinca River at Fraga.

In relation to the models, the greatest source of uncertainty is the geometry of the modeled reach, since, in some cases, it may have changed considerably in the last four centuries. This uncertainty is kept to a minimum by using ancient maps and contemporary etchings. Besides, in some cases, the existence of old bridges’ remains is used to confirm the minimum changes in the geometry due to erosion and deposition of sediments (cases of Zaragoza, Fraga and Lleida). Moreover, the resolution of the Digital Elevation Model and the number of cross sections (in the case of HEC-RAS) are considered sufficient to obtain reliable results. Model uncertainty is also reduced with the calibration with modern day floods of known peak flow and water height at Zaragoza, Lleida, Fraga and Tortosa. Uncertainty for modeled peak flows of extreme floods in Tortosa has been estimated at 30% (Ruiz-Bellet et al., 2017). This uncertainty can be greater in the case of Fraga, where, due to the scarcity of information, many of the reconstructed peak flows are obtained by subtracting from the flow at Tortosa the routed contributions of the other two tributaries (Upper Ebro and Segre). In any case, peak-flow routing results obtained independently from the comparison of known hydrographs at Zaragoza, Lleida and Tortosa and from a 3000 m3-
1 and a 5500 m3s$^{-1}$ flood modeling in a 150 km long reach are consistent and they reveal that, between Zaragoza and Mequinenza, peak flows have virtually no lamination (< 5%).

5.2 Comparison of discharge magnitudes

Despite the Ebro being a western Mediterranean river, the maximum specific peak discharge of the flood series at Tortosa (0.15 m3s$^{-1}$km$^{-2}$) is slightly higher than the largest values registered for some European rivers of similar size in moister regions: the Po at Pontefagoosuro (Italy) with 0.14 m3s$^{-1}$km$^{-2}$, the Danube at Wien (Austria) with 0.13 m3s$^{-1}$km$^{-2}$, the Rhône at Beaucaire (France), at around 0.12 m3s$^{-1}$km$^{-2}$, and the Neman at Smolnikai (Russia), with 0.08 m3s$^{-1}$km$^{-2}$ (Stanescu, 2004). However, the maximum peak discharge at Tortosa is far from the maximum value registered in 1970 on the Narmada River at Gurdeshwar (India): 0.79 m3s$^{-1}$km$^{-2}$. This is the world record for maximum peak discharge in any basin of comparable size (Herschy, 2003).

5.3 Meteorological and hydrological mechanisms of flood generation

Table 10 includes the initial soil moisture conditions of the subbasins produced by previous rainfall, occurrence of floods in nearby dates, and the availability of a snow cover, while Table 11 summarizes the affected subbasin in relation to the whole system and the flood generating processes involved. According to this information, we classify the flood generating mechanisms in four groups:

1. **Persistent precipitation.** Precipitation lasts more than 10 days for some episodes occurring during autumn and winter. The most iconic events occurred in 1617, 1766, 1775, 1787, 1866 and 1907. These events are the final stages of previously very wet periods that already generated problems of excessive moisture during the harvest (see Table 10). These floods are generated by saturation-excess overland flow due to the complete soil profile saturation after the progressive accumulation of water with a slow response, but involving important runoff volumes and no significant role played by snow thaw.

2. **Persistent precipitation and snowmelt.** It includes the events in 1643, 1853, 1871, 1930, 1961, and probably January 1874. They present the largest runoff volumes, as can be seen in the existing hydrographs of 1871 (Galván et al., 2013),
1930 and 1961 (Marcuello, 2001). These were caused by persistent precipitation, but with saturation overland flow by snowmelt also remarkable (Table 10). Most of these events occurred at the western side of the basin, upstream Zaragoza, except 1853. In other words, snow is an important hydrological factor in the western Ebro basin, but it is not important on the Mediterranean side of the basin.

3. **Short, intense precipitation.** For the events on 1937 and 1982 precipitation only lasted 3 days and fell over dry soils and without any snow. During these episodes intensity of the precipitation reached high values during some hours (> 200 mm in 24 h, Table 10) producing hortonian (infiltration-excess) overland flow in many areas, which added to the saturation-excess overland flow. They produced intermediate runoff volumes.

4. **Extremely short intense precipitation.** A fourth group of episodes present a much more intense hydrological response; the floods occurred in September 1874 (Santa Tecla), and in 1884. These are flash floods but occurring over a large area. They are caused by short precipitations (less than one day), but they are very severe as can be concluded from the documentary sources. The hydrological response of flash floods was caused mainly by an hortonian overland flow and scarce runoff volume.

5.4 Perspectives in a global paleoclimatic framework

The temporal analysis of the hydrological extremes indicates that there is no clear regularity, but they appear to be concentrated in different periods that are associated with the climatic variability related to changes in the global atmospheric circulation, which itself is forced by different drivers, such as, solar radiation, volcanism, changes in the latitude of the north-Atlantic thermohaline circulation, greenhouse gases, among others. Climatic variability might play a major role in enhancing the intensity of the most extreme events rather than enhancing the ordinary ones (Knox, 2000) or during periods of rapid climate change (Macklin et al, 2006).

Part of the analyzed period (1600-1850) corresponds with the second half of the Little Ice Age (LIA), a climatic period characterized by high humidity, and a decrease in average temperatures of around 1°C with respect the current average (Oliva et al., 2018). During
this period, there is greater volcanic activity, lower solar radiation, and a southern movement of the North-Atlantic thermohaline circulation, which is related to the NAO. As explained above, in the Ebro basin, the period 1600-1850 is characterized by a low frequency of events, but with one maximum (1760-1790) and two clear minima (1650-1750 and 1790-1850). During the maximum, which is related to the Maldá Oscillation that is characterized by a series of droughts and floods (1760-1800, Barriendos and Llasat, 2003), large floods occurred in the Segre (1766), in the Upper Ebro (1775) and in the western and central Pyrenean subbasins (1787). The first minimum of floods (1650-1750) occurred during the cold period of the Maunder Minimum. This is a rainy period that lacks extreme phenomena due to low convectivity, and this is consistent with a decrease in drought and flood frequencies recorded in Catalonia (Barriendos, 1997). The second minimum (1790-1850) might be related to the cold period of the Dalton Minimum, when a long drought period also occurred (1812-1825) (Prohom et al., 2016). Following 1850, the frequency of extreme events is doubled or tripled, especially during the period 1850-1885. This can be explained by: a) an increase in atmospheric instability that produced severe precipitations at the end of the LIA (Oliva et al., 2018); and b) an increase in the exposure of the population in the flooding areas, and this is tied to an increase of the agricultural activity and population growth. Previous authors (Barriendos and Martín Vide, 1998; Llasat et al., 2005; Benito et al., 2008; Machado et al., 2011; Barrera-Escoda and Llasat, 2015; Corella et al., 2016; Oliva et al., 2018) have pointed out a similar behavior of different rivers in the IP during the same periods. Since 1950, the number of extreme floods decreases not only because there is a small decrease in the amount of precipitation at the Pyrenees at headwaters (Vicente-Serrano et al., 2007), but also because of the volumes of the flood retained in the different reservoirs. Considering the whole Mediterranean basin during the last 2000 years, we can observe different phases with major flood activity, occurring the last one between 1750 and 1800, when cold and humid climatic conditions prevailed, and two periods with low frequency around 1600 and 1825 (Luterbacher et al., 2012). Sheffer et al. (2008) also pointed out that floods in France were more intense during the 18th than during the 20th century. Regarding the relation between the floods in the Ebro basin, the synoptic configurations and the general circulation modes, the most extraordinary floods occurred during last
stages of the LIA (1870-1940) and they are related with a negative phase of NAO and a positive phase of the Scandinavian pattern. This is characterized by an anticyclonic blocking over the Scandinavian Peninsula that produces a wavy pattern of the jetstream and low-pressure systems, that would be intensified in the Mediterranean area, producing high convectivity. On the contrary, the floods during the warm period (1940-2010) are related with a positive phase of the NAO and negative of the Scandinavian pattern. This might produce west flows over the IP that favors the occurrence of cold fronts related with medium or low convectivity (Peña et al., 2017).

5.5 Future projections and scenarios

Climate change models (IPCC, 2003) project variations on the floods in the Mediterranean river basins in regard to on three different aspects: 1) climatically; 2) changes in the land use of the basin and riverbanks, and 3) infrastructures (Hall et al., 2014). We expect to observe a reduction in the total annual precipitation in the Ebro basin and in the number of extreme events (Vicente-Serrano et al., 2007). On the other hand, torrentiality might increase in some specific areas.

Regarding the changes on land use, it is presumed that, if temperatures increase, snow thaw would appear at the end of the winter, thus enhancing soil saturation and the winter base flows in the western basin. This would coincide with the season of maximum precipitation and therefore produce an increase of runoff volumes. The role of the changes in land use on the floods has been largely discussed (Andreassian, 2004). Although some studies show changes in the forest cover at the headwaters (González-Sampériz et al., 2017), this fact cannot be directly related to a change in flood frequency or intensity, especially for large basins (Calder and Aylward, 2006).

During the 20th century it occurred a reduction of the dimensions of the bedchannel and the decrease of the area of the flood plains at the mid-course of the Ebro River (Magdaleno and Fernández-Yuste, 2011) Nevertheless, an effort to reconnect flood plains that were disconnected in the past by the constructions of levees in the mid and lower course of the river is advisable to recover their damping natural role (Ollero, 2010). On the other hand, regarding the river channels and banks, there is no new large reservoir projected in the area to reduce the impact of the floods. Moreover, an increase
of population is also projected for the urban areas, producing more exposition and
vulnerability in flood prone areas.

Due to the superposition of these factors, which influence floods in opposite directions,
it is difficult to determine whether recent climate warming has any influence on the
occurrence of the floods in the Mediterranean basin, an area that was particularly
affected by anthropic changes during the 20th century (Luterbacher et al., 2012), but
probably the climatic factor will be dominant.

6. CONCLUSIONS

We have hydraulically reconstructed the maximum peak flows of the major floods at the
mouth of the Ebro River (Tortosa) during the last 400 years, and this has allowed us to
determine the contributions of the main subbasins (Upper Ebro, Cinca, Segre and Lower
Ebro) according to their magnitude, flooding periods, seasonality, complementarity of
their contributions, and the role of previous rainfall and snowmelt. Although this is an
initial global evaluation, the results provide us a quantitative hydraulical and
hydrological scheme about how the historical extreme flood events behaved in a first-
order Mediterranean basin during the last 400 years.

Regarding the spatial pattern, during the analyzed period, there is only three events
affecting the whole basin (1787, 1907 and 1937). Most of the episodes affect only to
one part of the basin: the western area, (upper and middle Ebro courses); the central
Pyrenean tributaries; or, very rarely, only the Lower Ebro basin. For each of these areas
the main hydrometeorological factors controlling the occurrence the most extreme
floods are different.

a) In the floods generated in the Upper Ebro basin during winter, long lasting
rainfall (10-30 days) and snow thaw play a major role. These are floods having a
higher hydraulic path: more than 300 km of meanders with small slope channels
along the middle and lower courses of the river.

b) Episodes with the highest peak flows originate in the central Pyrenees (Segre-
Cinca system). They are clearly associated to autumn fed when the snow cover
is generally absent and, more rarely, in spring. These are associated to long-
lasting rainfall (more than 10 days) and, also short but intense rainfall events (3
days) due to supply of warm and humid air from the Mediterranean Sea and enhanced convection by the orography.

c) Finally, the less common floods that affect only the lower course of the river, produced by high intensity thunderstorms (1 day). They have a fast and violent response (flash floods), but they have a reduced peak flow and a shorter time period compared to the previous floods.

Regarding the temporal evolution of the floods, we can distinguish two different periods. The first one, between 1600 and 1850, presents a low frequency of events, but includes probably the most important flood during the last millennia: October 1787, with a maximum specific discharge ratio among the largest ones in European rivers. The second period, since 1850, shows an increase in the frequency and magnitude of the events in the central Pyrenean basins and along the lower course. However, during the second part of the 20th century reservoirs play a fundamental role in regulating the peak flows throughout the whole system. This dynamic has also been observed in other basins in the IP and in the Mediterranean area, and it is related to an increase in climatic variability during the last stages of the Little Ice Age, to demographic changes and to reservoir constructions.

In all the studied cases, the maximum values of the reconstructed peak flows are higher than those recorded in the systematic series. This has important implications when calculating the return periods for these events, because the maximum peak flows for a given return period should be much higher than those calculated using only the systematic or instrumental series.

Acknowledgements

This work has been partially supported by the Spanish Ministry of Economy and Innovation (CGL2016-75996-R). A. Pelechâ and J. Salleras, local historians in the town of Fraga, supplied valuable information about the historical floods of Fraga. O. Llanos helped in preparing in some of the figures. A. Abellà, D. Mérida, A. Monserrate, A. Sánchez and E. Thoussaint helped with some of the numerical simulation models during their BSc. We would also like to acknowledge the data and support provided by the Confederación Hidrográfica del Ebro.
References

European Union 2007/60/EU.

Llasat, M.C., Barriendos, M., Barrera, A., Rigo, T., 2005. Floods in Catalonia (NE Spain) since the 14th century. Climatological and meteorological aspects from historical documentary sources and old instrumental records. J. Hydrol. 313, 32–47.

Table 1. Morphological, climatic and mean hydrological characteristics of the four analyzed subbasins.

<table>
<thead>
<tr>
<th>Subbasin</th>
<th>Size (km²)</th>
<th>Percentage over total Ebro area (%)</th>
<th>Area Contribution to runoff (%)</th>
<th>River length (km)</th>
<th>Mean channel slope (mkm⁻¹)</th>
<th>Predominant climates</th>
<th>Hydrological regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Ebro</td>
<td>40434</td>
<td>47%</td>
<td>54%</td>
<td>588</td>
<td>2.8</td>
<td>Atlantic/Continental/Subalpine</td>
<td>Pluvio-nival</td>
</tr>
<tr>
<td>Cinca</td>
<td>9699</td>
<td>11%</td>
<td>18%</td>
<td>170</td>
<td>12.5</td>
<td>Alpine/Mediterranean/Semiarid</td>
<td>Nivo-pluvial</td>
</tr>
<tr>
<td>Segre</td>
<td>12880</td>
<td>15%</td>
<td>19%</td>
<td>265</td>
<td>8.7</td>
<td>Alpine/Mediterranean/Semiarid</td>
<td>Pluvio-nival</td>
</tr>
<tr>
<td>Lower Ebro</td>
<td>21998</td>
<td>25%</td>
<td>9%</td>
<td>342</td>
<td>0.46</td>
<td>Mediterranean/Semiarid</td>
<td>Pluvial</td>
</tr>
<tr>
<td>Ebro at the mouth</td>
<td>85362</td>
<td>100%</td>
<td>100%</td>
<td>930</td>
<td>---</td>
<td>---</td>
<td>Pluvio-nival</td>
</tr>
</tbody>
</table>
Table 2. Measured mean and maximum peak flows at the four analyzed sites.

<table>
<thead>
<tr>
<th>Subbasin</th>
<th>Site</th>
<th>Distance to Tortosa (km)</th>
<th>Gauging record starting year</th>
<th>Mean flow (m3s$^{-1}$)</th>
<th>Specific mean flow (m3s$^{-1}$km$^{-2}$)</th>
<th>Maximum peak flow (m3s$^{-1}$) and year of occurrence</th>
<th>Maximum specific peak flow (m3s$^{-1}$km$^{-2}$)</th>
<th>Maximum peak flow / mean flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Ebro</td>
<td>Zaragoza</td>
<td>342</td>
<td>1913</td>
<td>231</td>
<td>0.006</td>
<td>4130 (1961)</td>
<td>0.10</td>
<td>18</td>
</tr>
<tr>
<td>Cinca</td>
<td>Fraga</td>
<td>133</td>
<td>1928</td>
<td>78</td>
<td>0.008</td>
<td>4200 (1982)</td>
<td>0.43</td>
<td>54</td>
</tr>
<tr>
<td>Segre</td>
<td>Lleida</td>
<td>153</td>
<td>1913</td>
<td>80</td>
<td>0.006</td>
<td>3600 (1937)</td>
<td>0.28</td>
<td>45</td>
</tr>
<tr>
<td>Whole Ebro</td>
<td>Tortosa</td>
<td>0</td>
<td>1913</td>
<td>428</td>
<td>0.005</td>
<td>9250 (1937)</td>
<td>0.11</td>
<td>22</td>
</tr>
</tbody>
</table>
Table 3. Sources of information.

<table>
<thead>
<tr>
<th>Site</th>
<th>Meteorological, hydrological and hydraulic information</th>
<th>Channel geometry information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Consulted archives and institutions</td>
<td>Flood lists, flood descriptions</td>
</tr>
</tbody>
</table>
| Zaragoza | - Zaragoza Urbanistic Archives
- Archives of the Confederación Hidrográfica del Ebro (CHE) in Zaragoza | Blasco-Ijazo (1959)
Galván (2018)
Galván et al. (2013)
Ruiz-Bellet et al. (2015) | Painting by J. Bautista Martínez del Mazo (1647)
Map by Rapins-Tindals (1710)
Anonymous engraving (1820)
City map by Casañal (1879)
Puente de Piedra (1972) elevation blueprint (1972, CHE Archives) |
| Fraga | - Town Hall Archive
- Regional Archive of the Palau de Montcada
- Archives of the Corona d’Aragó in Barcelona | Salleras and Espinosa (1994) | No previous information | Baldí’s engraving (1668)
Anonymous (1779)
Anonymous (1799)
Anonymous (1885) |
| Lleida | - Book of Minutes of the Municipal Council (Paeria House)
- Municipal Archive of Lleida
Lladonosa (1975)
Pleyán de Porta, (1945) | Balasch et al. (2007)
| Tortosa | - Chapterhouse Archives of the Tortosa Cathedral
- Historical Municipal Archives of Tortosa
- Ebro Observatory in Roquetes | Boquera (2008)
Curto (2007)
Miravall (1997a)
Ruiz-Bellet et al. (2017)
Sánchez (2007) | Wyngaerde’s engraving (1563)
Sier de Beaulieu’s engraving (1648)
V. der Aa’s engraving (1707)
Map of Collin (1811) |
Table 4. Parameters used in the hydraulic modeling of the reconstructed peak flows.

<table>
<thead>
<tr>
<th>Site</th>
<th>Software</th>
<th>Reach length (m)</th>
<th>Number of cross sections</th>
<th>Mean slope (m km⁻¹)</th>
<th>Manning coefficient (channel/banks/forest/floodplain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaragoza</td>
<td>HEC-RAS v.4.1.0</td>
<td>10500</td>
<td>142 (5m x 5m)</td>
<td>0.5</td>
<td>channel: 0.0023 orchards: 0.037 urban areas: 0.127 riparian dense forest: 0.1 riparian sparse forest: 0.06 wasteland: 0.03</td>
</tr>
<tr>
<td>Fraga</td>
<td>IBER 2-D v.2.4</td>
<td>6000</td>
<td>(10m x 10m)</td>
<td>2.1</td>
<td>Mean weighted coefficient: 0.05</td>
</tr>
<tr>
<td>Lleida</td>
<td>HEC-RAS v.4.1.0 and IBER 2-D v.2.4</td>
<td>7750</td>
<td>18 (10m x 10m)</td>
<td>1.6</td>
<td>channel: 0.035 banks: 0.04 riparian forest and urban areas: 0.1 floodplain: 0.04</td>
</tr>
<tr>
<td>Tortosa</td>
<td>HEC-RAS v.4.1.0 and IBER 2-D v.2.4</td>
<td>7690</td>
<td>45 (5m x 5m)</td>
<td>0.24</td>
<td>channel: 0.039 riparian dense forest: 0.1 dense scrubland: 0.1 orchards: 0.06 urban areas: 0.03</td>
</tr>
</tbody>
</table>
Table 5. Main floods in the Ebro River section at Zaragoza since the 17th century. Dates in bold indicate the largest floods (Q>3500 m3s$^{-1}$).

<table>
<thead>
<tr>
<th>Date of peak flow at Zaragoza</th>
<th>Reference sitea,b or source</th>
<th>Height over the riverbed (m)</th>
<th>Height (m a.s.l.)</th>
<th>Reliabilityc</th>
<th>Precisiond (cm)</th>
<th>Maximum peak discharge (m3s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-2-1643</td>
<td>Predicadores (Preachers) Monastery: 0.83 m over the walls</td>
<td>9.33e</td>
<td>199.33</td>
<td>2</td>
<td>25</td>
<td>5560</td>
</tr>
<tr>
<td>25-6-1775</td>
<td>Water enters Sancho’s gate</td>
<td>8.95f</td>
<td>198.95</td>
<td>2</td>
<td>25</td>
<td>5180</td>
</tr>
<tr>
<td>9-10-1787</td>
<td>Almost reaches Sancho’s gate</td>
<td>8.45f</td>
<td>198.45</td>
<td>2</td>
<td>25</td>
<td>4600</td>
</tr>
<tr>
<td>13-1-1871</td>
<td>Stone bridge (iron ring)</td>
<td>6.7g</td>
<td>195.93</td>
<td>3</td>
<td>10</td>
<td>4844</td>
</tr>
<tr>
<td>Jan-1874</td>
<td>Stone bridge (iron ring)</td>
<td>5.92g</td>
<td>195.15</td>
<td>3</td>
<td>10</td>
<td>3624</td>
</tr>
<tr>
<td>1878</td>
<td>Stone bridge (iron ring)</td>
<td>5.36g</td>
<td>194.59</td>
<td>3</td>
<td>10</td>
<td>2805</td>
</tr>
<tr>
<td>1888</td>
<td>Stone bridge (iron ring)</td>
<td>4.61g</td>
<td>193.84</td>
<td>3</td>
<td>10</td>
<td>1965</td>
</tr>
<tr>
<td>18-11-1906</td>
<td>López-Bustos (1972)</td>
<td>5.58</td>
<td>194.81</td>
<td></td>
<td></td>
<td>3030</td>
</tr>
<tr>
<td>23-10-1907</td>
<td>López-Bustos (1972)</td>
<td>4.34</td>
<td>193.57</td>
<td></td>
<td></td>
<td>1700</td>
</tr>
<tr>
<td>17-3-1930</td>
<td>CHE database</td>
<td>5.89</td>
<td>195.12</td>
<td></td>
<td></td>
<td>3600</td>
</tr>
<tr>
<td>29-10-1937</td>
<td>CHE database</td>
<td>5.57</td>
<td>194.8</td>
<td></td>
<td></td>
<td>3020</td>
</tr>
<tr>
<td>2-1-1961</td>
<td>CHE database, calibration stone bridge</td>
<td>6.32</td>
<td>195.55</td>
<td>3</td>
<td>10</td>
<td>4130</td>
</tr>
<tr>
<td>9-11-1982</td>
<td>CHE database</td>
<td>4.6</td>
<td>193.83</td>
<td></td>
<td></td>
<td>1910</td>
</tr>
</tbody>
</table>

aFor the Sancho’s gate and Preachers Monastery references, every ±25 cm of difference in the section located at Sancho’s gate is equivalent to a difference of ±250 m3s$^{-1}$ in the maximum peak discharge.

bFrom 1871 until 1961 (scale at the Stone Bridge), we assume for the reconstructions that a variation of ±10 cm of the water height is equivalent to ±200 m3s$^{-1}$.

cAccording to the definition by Bayliss and Reed (2001): 1-unreliable, 2-reliable, 3-very reliable.
Expected maximum difference (cm) between the observed and simulated maximum water mark.

Level refers to the section at the Preachers Monastery.

Level refers to the section at the Sancho’s Gate.

Level refers to the scale installed by the CHE at the Stone Bridge up the end of the 1960’s and can be observed on a map on 1972. The current scale was moved in the 1970’s to the Santiago Bridge.
Table 6. Main floods in the Cinca river section at Fraga since 17th century. Dates in bold indicate the most important floods ($Q \geq 2500$ m^3s^{-1}).

<table>
<thead>
<tr>
<th>Date of the peak flow at Fraga</th>
<th>Reference site or source</th>
<th>Height over the riverbed (m)</th>
<th>Height (m a.s.l.)</th>
<th>Reliabilitya</th>
<th>Precisionb (cm)</th>
<th>Maximum peak discharge (m^3s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-12-1607</td>
<td>Damages at the bridgef</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-11-1617</td>
<td>A royal traveler explains the bridge is broken</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>2500^c</td>
</tr>
<tr>
<td>6-5-1762</td>
<td>Destroys the bridgef</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-10-1787</td>
<td>It affects the Capuchin Monasteryf</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>2500^c</td>
</tr>
<tr>
<td>6-9-1788</td>
<td>Water is 1.5 m at the Capuchin Monasteryf</td>
<td>6.02</td>
<td>99.49</td>
<td>2</td>
<td>50</td>
<td>4500^d</td>
</tr>
<tr>
<td>28-9-1852</td>
<td>Destroys a suspended bridgef</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-05-1853</td>
<td>Water reaches the fort and a small bridge at the Capuchin Monasteryf</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3000^e</td>
</tr>
<tr>
<td>21-10-1866</td>
<td>The second suspended bridge disappearsf</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3000^e</td>
</tr>
<tr>
<td>1882</td>
<td>Destroys the bridge, 40 people drownf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-9-1874</td>
<td>Affects the bridge without destroying any pillarsf</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>2500^c</td>
</tr>
<tr>
<td>23-10-1907</td>
<td></td>
<td>5.35</td>
<td>98.82</td>
<td>3</td>
<td>10</td>
<td>3900^e</td>
</tr>
<tr>
<td>29-10-1937</td>
<td></td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
<td>2600^e</td>
</tr>
<tr>
<td>9-11-1982</td>
<td></td>
<td>5.76</td>
<td>99.23</td>
<td>3</td>
<td>10</td>
<td>4200^e</td>
</tr>
</tbody>
</table>

a According to the definition by Bayliss and Reed (2001): 1-unreliable, 2-reliable, 3-very reliable.

b Expected maximum difference (cm) between the observed and simulated maximum water marks.

c Estimated from the hydraulic budget between subbasins.

d Modeled with HEC-RAS by using an approximated flow mark.

e Calculated by the CHE.
Salleras and Espinosa (1994).
Table 7. Main floods in the Segre River section at Lleida since the 17th century. Dates in bold indicate the largest floods (Q>3000 m³·s⁻¹).

<table>
<thead>
<tr>
<th>Date of the peak flow at Lleida</th>
<th>Reference site or source</th>
<th>Height over the riverbed (m)</th>
<th>Height (m a.s.l.)</th>
<th>Reliability</th>
<th>Precision</th>
<th>Maximum peak discharge (m³·s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1604</td>
<td>Flood at the Trinity and Saint Agustin Monasteries (Garcia and Payà, 1999)</td>
<td>7</td>
<td>146.5</td>
<td>2</td>
<td>50</td>
<td>3000</td>
</tr>
<tr>
<td>8-11-1617</td>
<td>The Blessed Sacrament of the Saint Agustin Monastery was saved by boat (Lladonosa, 1975)</td>
<td>8</td>
<td>147.5</td>
<td>2</td>
<td>50</td>
<td>4000</td>
</tr>
<tr>
<td>11-10-1625</td>
<td>Flood at Cappont</td>
<td>7</td>
<td>146.5</td>
<td>2</td>
<td>50</td>
<td>3000</td>
</tr>
<tr>
<td>1726</td>
<td>3 pillars destroyed Some houses by the river are evacuated</td>
<td>8.5</td>
<td>148.0</td>
<td>2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>17-12-1766</td>
<td>The water reaches the Trinity Monastery</td>
<td>7.5</td>
<td>147.0</td>
<td>2</td>
<td>50</td>
<td>3500</td>
</tr>
<tr>
<td>14-06-1773</td>
<td>The water reaches beyond the Trinity Monastery</td>
<td>7</td>
<td>146.5</td>
<td>2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>8-10-1787</td>
<td>Façade of the gate of Arc del Pont</td>
<td>12.3</td>
<td>151.8</td>
<td>2</td>
<td>20</td>
<td>8500</td>
</tr>
<tr>
<td>6-1-1826</td>
<td>Flood over the orchards</td>
<td>6.5</td>
<td>146.0</td>
<td>2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>24-05-1853</td>
<td>Water reaches the second step of the stairs of the new Cathedral*. Rambla de Ferran** (2 m)</td>
<td>9.3</td>
<td>146.5* 148.8**</td>
<td>3</td>
<td>20</td>
<td>6000</td>
</tr>
<tr>
<td>21-10-1866</td>
<td>Lower than the previous flood, but it destroys two arcs of the bridge</td>
<td>8.3</td>
<td>147.8</td>
<td>3</td>
<td>50-100</td>
<td>5000</td>
</tr>
<tr>
<td>23-9-1874</td>
<td>Floods Rambla de Ferran, 1 m below the level of the 1853 flood (Iglesies, 1971)</td>
<td>7.5</td>
<td>147</td>
<td>3</td>
<td>50</td>
<td>3200</td>
</tr>
<tr>
<td>23-10-1907</td>
<td>Flood reaches Rambla de Ferran* (García-Farià, 1908) and the first step of the stairs of the new Cathedral** (Abadal, 1950) Pillar of the Theater Camps Elisís***</td>
<td>9.1</td>
<td>148.6* 146.2** 147.8***</td>
<td>3</td>
<td>20-30</td>
<td>5250</td>
</tr>
<tr>
<td>29-10-1937</td>
<td>Water enters into Rambla de Ferran</td>
<td>7.7</td>
<td>147.2</td>
<td>3</td>
<td>20</td>
<td>3600</td>
</tr>
<tr>
<td>9-11-1982</td>
<td>Water enters into Rambla de Ferran 1.5 m of water at the Civil Government building</td>
<td>8.5</td>
<td>148</td>
<td>3</td>
<td>10</td>
<td>3400</td>
</tr>
</tbody>
</table>

1075 a According to the definition by Bayliss and Reed (2001): 1-unreliable, 2-reliable, 3-very reliable.

1076 b Expected maximum difference (cm) between the observed and simulated maximum water marks.
Table 8. Main floods in the Ebro River section at Xerta (Sant Martí church) since the 17th century. Dates in bold indicate the largest floods ($Q>4500 \text{ m}^3\text{s}^{-1}$).

<table>
<thead>
<tr>
<th>Date of the peak flow at Tortosa</th>
<th>Reference site or source</th>
<th>Height over the riverbed (m)</th>
<th>Height (m a.s.l.)</th>
<th>Reliability</th>
<th>Precision</th>
<th>Maximum peak discharge (m^3s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-11-1617</td>
<td>Xerta scale</td>
<td>7.66</td>
<td>13.83</td>
<td>3</td>
<td>10</td>
<td>7500</td>
</tr>
<tr>
<td>9-10-1787</td>
<td>Xerta scale</td>
<td>9.98</td>
<td>16.15</td>
<td>3</td>
<td>10</td>
<td>12900</td>
</tr>
<tr>
<td>25-5-1853</td>
<td>Xerta scale</td>
<td>8.06</td>
<td>14.23</td>
<td>3</td>
<td>10</td>
<td>8250</td>
</tr>
<tr>
<td>21-10-1866</td>
<td>Xerta scale</td>
<td>7.86</td>
<td>14.03</td>
<td>3</td>
<td>10</td>
<td>7750</td>
</tr>
<tr>
<td>21-1-1871</td>
<td>Xerta scale</td>
<td>6.41</td>
<td>12.58</td>
<td>3</td>
<td>10</td>
<td>5000</td>
</tr>
<tr>
<td>17-9-1884</td>
<td>Xerta scale</td>
<td>7.24</td>
<td>13.41</td>
<td>3</td>
<td>10</td>
<td>6500</td>
</tr>
<tr>
<td>23-10-1907</td>
<td>Xerta scale</td>
<td>9</td>
<td>15.17</td>
<td>3</td>
<td>10</td>
<td>10500</td>
</tr>
<tr>
<td>29-10-1937</td>
<td>Xerta scale</td>
<td>8.50</td>
<td>14.67</td>
<td>3</td>
<td>10</td>
<td>9250</td>
</tr>
<tr>
<td>4-1-1961</td>
<td>Xerta scale</td>
<td>6</td>
<td>12.17</td>
<td>3</td>
<td>10</td>
<td>4580</td>
</tr>
<tr>
<td>9-11-1982</td>
<td>Scale Tortosa (CHE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3780</td>
</tr>
</tbody>
</table>

a According to the definition by Bayliss and Reed (2001): 1-unreliable, 2-reliable, 3-very reliable.

b Expected maximum difference (cm) between the observed and simulated maximum water mark.
Table 9. Maximum peak discharges of the 16 analyzed floods in the four subbasins and their respective contributions to the total peak discharge at Tortosa.

<table>
<thead>
<tr>
<th>Date of the peak flow at Tortosa</th>
<th>Peak flow (m3s$^{-1}$)</th>
<th>Most contributing subbasin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper Ebro at Zaragoza</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cinca at Fraga</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Segre at Lleida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ebro at Tortosa</td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td>Month</td>
<td>Year</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>1617</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>1643</td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>1766</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>1775</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1787</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>1853</td>
</tr>
<tr>
<td>21</td>
<td>10</td>
<td>1866</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1871</td>
</tr>
<tr>
<td>---</td>
<td>1</td>
<td>1874</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>1874</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>1884</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
<td>1907</td>
</tr>
<tr>
<td>17</td>
<td>03</td>
<td>1930</td>
</tr>
<tr>
<td>29</td>
<td>10</td>
<td>1937</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1961</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>1982</td>
</tr>
</tbody>
</table>

NF = no flood.

- ^{a} Estimated by performing an hydraulic budget between subbasins.
- ^{b} Modeled with HEC-RAS or IBER from an approximate flood mark.
- ^{c} Modeled with HEC-RAS or IBER from an exact flood mark.
- ^{d} Calculated by López-Bustos (1972).
- ^{e} Calculated by the Confederación Hidrográfica del Ebro (CHE) or the Centro de Estudios y Experimentación de Obras Públicas (CEDEX) (Spanish Hydraulic Administrations).
- ^{f} 1200 m3s$^{-1}$ need to be added to this value due to the contribution of the Gállego River, downstream Zaragoza.
- ^{g} Compilated by Fontseré and Galcerán (1938).
Table 10. For each analyzed flood, information about the influence of antecedent precipitation, floods and snowmelt.

<table>
<thead>
<tr>
<th>Day</th>
<th>Month</th>
<th>Year</th>
<th>Upper Ebro</th>
<th>Cinca</th>
<th>Segre</th>
<th>Lower Ebro</th>
<th>Northeast of the Ebro basin</th>
<th>Southeast of the Ebro basin</th>
<th>Snowmelt information in the AMICME databasea or in other sources</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>11</td>
<td>1617</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>Without data</td>
<td></td>
<td>30 days of rainfall during Oct. and beginning of Nov.d</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>1643</td>
<td>1</td>
<td></td>
<td></td>
<td>7</td>
<td>2</td>
<td>Yes</td>
<td>Snow in Catalonia. Cold winter</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>1766</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>Continuous rainfall since mid Sept. Failed harvests</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>1775</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>Noe</td>
<td>Flood in Bilbao (Nervión River) on 20 June</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1787</td>
<td>9</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>No</td>
<td>More than 10 days of rainfall and thunderstorms. There is a previous flood of the Aragón River 14 days before</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>1853</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>Yes</td>
<td>Rainy May (238 mm in Barcelona) and torrential rainfall during the 3 days before the eventa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>10</td>
<td>1866</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>No</td>
<td>Two rainfall periods of 5 days separated by 14 days. 330 mm over the last 30 days in Barcelonaa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Number of cases with torrential or persistent rain or floods registered in the AMICME database for each subbasin of the Ebro basin during the 15 days before the event.

b Number of cases with torrential or persistent rain or floods in the AMICME database in adjacent basins during the 15 days before the event.

c Snowmelt information in the AMICME database or in other sources.

d Observations.

e Without data.
<table>
<thead>
<tr>
<th>Date</th>
<th>Rainfall Days</th>
<th>Snow Precipitation</th>
<th>Runoff Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1871</td>
<td>1</td>
<td>Yes</td>
<td>Snow precipitations in Dec. and Jan. Three rainfall days before the event</td>
</tr>
<tr>
<td>1874</td>
<td>1</td>
<td>Without data</td>
<td></td>
</tr>
<tr>
<td>1874</td>
<td>1 2 4</td>
<td>No</td>
<td>155 mm/6h</td>
</tr>
<tr>
<td>1884</td>
<td>1 4 3 3</td>
<td>No</td>
<td>Estimated runoff volume: 560 hm³</td>
</tr>
<tr>
<td>1907</td>
<td>1 13 30</td>
<td>No</td>
<td>During Oct., 217 mm accumulated until 23rd in Puigcerdà (headwaters of Segre River)</td>
</tr>
<tr>
<td>1930</td>
<td>2</td>
<td>Yes</td>
<td>50-60 cm of snow in the Pyrenees 12-13 Jan. 3 rainy days and strong snowmelt</td>
</tr>
<tr>
<td>1937</td>
<td>2</td>
<td>No</td>
<td>300-430 mm of rain in the central Pyrenees over 3 days</td>
</tr>
<tr>
<td>1961</td>
<td>1</td>
<td>Yes</td>
<td>62 cm of snow in the central Pyrenees in Dec. 1960. Very wet winter in Central and Western Pyrenees</td>
</tr>
<tr>
<td>1982</td>
<td>4 2</td>
<td>No</td>
<td>240-640 mm of rain in the central Pyrenees over 3 days</td>
</tr>
</tbody>
</table>

Barriendos et al. (2014).

Llobregat, Ter, Besos, and Francolí river basins.

Turia, Jucar, and Segura river basins.

Thorndycraft et al. (2006).

Galván (2018).

Galván et al. (2013).

Estimated by Ruiz-Bellet et al. (2015a).

CEDEX.
Balasch et al. (2007).
Fontseré and Galcerán (1938).
Albentosa (1983).
Table 11. List of the main floods in the Ebro basin since 1617, and their occurrence in to the four studied sites. Colors indicate the flood-generating process (see legend below).

<table>
<thead>
<tr>
<th>Ebro NW → SE</th>
<th>Cinca</th>
<th>Segre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miranda → Logroño → Zaragoza → Tortosa</td>
<td>Fraga → Lleida</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>1643 (Feb)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1775 (June)</td>
<td>1775 (June)</td>
<td>1775 (June)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>1787 (Oct)</td>
</tr>
<tr>
<td>1853 (May)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>1871 (Jan)</td>
<td>1871 (Jan)</td>
</tr>
<tr>
<td>1874 (Jan)</td>
<td>1874 (Jan)</td>
<td>1874 (Jan)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>1907 (Oct)</td>
</tr>
<tr>
<td>1930 (Mar)</td>
<td>1930 (Mar)</td>
<td>1930 (Mar)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>1937 (Oct)</td>
</tr>
<tr>
<td>1961 (Jan)</td>
<td>1961 (Jan)</td>
<td>1961 (Jan)</td>
</tr>
</tbody>
</table>

Legend:
- **Blue:** 10 or more days of rain
- **Green:** Less than 10 days of rain
- **Yellow:** Snow melt + rain
- **Red:** Local flash flood
- **Pink:** Flood-generating process not ascertained
Figure 1. a) Location of the Ebro basin within SE Europe and the Iberian Peninsula, and b) map of the Ebro River basin and subbasins, with the most important sites, reservoirs and canyons located along the lower course.
Figure 2. Maximum annual discharge (Qci) by month for the Ebro at Zaragoza, the Cinca at Fraga, the Segre at Lleida, and the Ebro at Tortosa. The number of Qci values for each site are also indicated.
Figure 3. a) Etching of the 1871 flood at Zaragoza, where the Stone Bridge can be taken as a reference for the hydraulic reconstruction; b) post card of the Cinca River at Fraga during the 1930 flood showing the dimensions of the wall protecting the left side; c) flood mark at Camps Elisis in Lleida, used for the reconstruction of the 1907 flood; and d) scale on the Sant Martí church wall in Xerta, where the 9 highest water marks are indicated. Sources: a) Municipal Archives of Zaragoza; b) Fototipia Thomas de Barcelona, 1930; c) courtesy of R. Batalla; d) courtesy of A. Sánchez.
Figure 4. Non-systematic and systematic series of peak discharges (Qci) at a) Zaragoza, b) Fraga, c) Lleida, and d) Tortosa. The threshold for major floods is indicated for each site by a red horizontal line. Years between brackets indicate second order floods. At Tortosa, we have included secondary floods just below the threshold, whose magnitude is unknown but lower than 4500 m3s$^{-1}$.
Figure 5. Month of occurrence of major floods for the Ebro at Zaragoza, the Cinca at Fraga, the Segre at Lleida, and the Ebro at Tortosa.