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Abstract 
 

The dynamic mechanical relaxation of metallic glasses is closely associated with the 
physical and mechanical properties. In the current work, the dynamic mechanical 
relaxation behaviors of Cu46Zr45Al7Y2 and La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk 
metallic glasses are investigated by mechanical spectroscopy. In general, metallic 
glasses display two relaxation modes: main (𝛼𝛼) relaxation and the slow secondary (𝛽𝛽) 
relaxation. The α relaxation is linked to the dynamic glass transition phenomenon and 
viscous flow while the slow 𝛽𝛽 relaxation is associated with many fundamental issues, 
such as diffusion and glass transition phenomenon. The experimental study shows 
La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk metallic glass displays a noticeable slow 𝛽𝛽 
relaxation. Contrarily, the Cu46Zr45Al7Y2 bulk metallic glass relaxation process takes 
the form of an “excess wing”. In the framework of quasi-point defects (QPD) theory, 
the dynamic mechanical response of the metallic glasses is discussed.  
 

  
Keywords: Metallic glass; Viscoelasticity; Dynamic mechanical analysis; Mechanical 
relaxation; Quasi-point defect theory. 
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1. Introduction 

Application of constant stress on a glass induces creep through three simultaneous 

deformation mechanisms: elastic, viscoelastic and viscoplastic. Due to its metastable 

state, the viscoelastic properties are one of the key concerns in glass-forming liquids. 

Metallic glasses, also called amorphous alloys, have been attracting tremendous 

research interest due to their specific combination of structural and functional properties, 

such as superb strength, high elastic limit, excellent thermoplastic formability, good 

corrosion resistance, and superior biocompatibility [1-5].  

The understanding of the viscoelastic behavior of metallic glasses is very important 

for both the fundamental research and engineering application. Mechanical 

spectroscopy or dynamic mechanical analysis (DMA) is a powerful tool to investigate 

the viscoelastic behavior and dynamic mechanical relaxations of metallic glasses and 

metallic glass matrix composite [6-10]. Interestingly, metallic glasses show two 

relaxation kinetics processes, which are called main relaxation (𝑎𝑎  relaxation) and 

secondary relaxation (𝛽𝛽 relaxation) [11, 12]. On the one hand, it is widely accepted 

that α relaxation is connected with the dynamic glass transition and the viscous flow 

behavior, which corresponds to the cooperative atomic movements. On the other hand, 

the β relaxation is closely related to local atomic motion, which appears at lower 

temperature or higher frequency [13-15]. It has been regarded that the 𝛽𝛽 relaxation 

acts as a precursor of the main 𝑎𝑎 relaxation [7, 14, 16-19]. Many investigations proved 

that the 𝛽𝛽  relaxation process is closely linked to internal physical and mechanical 

properties of metallic glasses [6-8, 14, 20]. However, the physical mechanism and 

nature of mechanical relaxation in metallic glasses is still unclear and requires further 

study. 

Here we analyze the dynamic mechanical response of two archetypal metallic 

glasses. Cu46Zr45Al7Y2 and La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk metallic glasses 

were investigated by mechanical spectroscopy. We found that compared with the 

Cu46Zr45Al7Y2 metallic glass, La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 metallic glass 

displays an evident 𝛽𝛽 relaxation below glass transition temperature Tg. The observed 

dynamic mechanical relaxation behaviors are analyzed within the framework of the 
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quasi-point defect theory. It is found that the experimental results are in good agreement 

with the predictions of the quasi-point defect theory. 

 

2. Experimental procedure 

Cu46Zr45Al7Y2 (at.%) and La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10) (at.%) bulk metallic 

glasses were chosen as model alloys due to their high glass forming ability (GFA) and 

excellent thermal stability [21, 22]. The metallic glasses were prepared by copper mold 

suction casting technique in a melting equipment under purified argon atmosphere. All 

the ingots of model alloys were re-melted at least 5 times to keep chemical homogeneity.  

The amorphous nature at ambient temperature of the Cu- and La-based bulk 

metallic glasses was tested by X-ray diffraction (XRD), using Cu Kα radiation produced 

in a commercial device (XRD, Philips PW3830). The thermal stability of the metallic 

glasses was examined by differential scanning calorimetry (DSC, Netzsch DSC 200F3) 

at a constant heating rate of 3 K/min. The thermal parameters, such as glass transition 

temperature Tg, crystallization onset temperature Tx and super-cooled liquid 

temperature range (ΔT, ΔT=Tx-Tg) were obtained based on the experimental results.  

Mechanical spectroscopy or dynamic mechanical analysis was used to study the 

bulk properties (i.e., modulus, compliance, internal friction) of materials. In the current 

research, dynamic mechanical behavior of the metallic glasses was studied by 

commercial dynamic mechanical analysis (DMA, TA Q800) and an inverted torsion 

pendulum for internal friction measurements (homemade apparatus in INSA de Lyon, 

France). The dynamic mechanical relaxation behavior of the metallic glasses have been 

described in the previous literature [23]. When the sinusoidal stress σ=σ0sin(ωt) (σ0 is 

the initial stress, ω is the angular frequency and ω=2πf, where f is the driving frequency) 

is applied to the sample, the strain in the materials can be measured. The mechanical 

response of the sample is E=σ/ε, which consists in two parts: the storage modulus E' 

and the loss modulus E". Similarly it is also define shear storage and loss moduli during 

the deformation as 𝐺𝐺′ and 𝐺𝐺′′. The phase lag δ between the applied stress and the 

recorded strain depends on the material, frequency and temperature. While elastic 

materials show no phase lag (δ = 0), positive phase lags are due to the viscoelastic 

https://en.wikipedia.org/wiki/Shear_modulus
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behavior during the deformation.  

    According to deformation modes of the instrument, in complex notation, on the 

one hand, for the DMA Q800 (measured at single cantilever bending model), one can 

write the complex modulus 𝐸𝐸∗ = 𝐸𝐸′ + 𝑖𝑖𝐸𝐸′′, where  𝐸𝐸∗ is the complex modulus. On 

the other hand, for the inverted torsion pendulum apparatus (tested at torsion model), 

the complex shear modulus  𝐺𝐺∗ = 𝐺𝐺′ + 𝑖𝑖𝐺𝐺′′ ,  where   𝐺𝐺∗  is the complex shear 

modulus. As a consequence, the loss factor (also called internal friction) or mechanical 

damping tan 𝛿𝛿 = 𝐸𝐸′′

𝐸𝐸′
= 𝐺𝐺′′

𝐺𝐺′
= 1

2𝜋𝜋
∆𝑊𝑊
𝑊𝑊

 is also determined. It needs to be mentioned that 

the energy loss (∆𝑊𝑊) induced during one loading cycle, which reveals the atomic or 

molecular mobility, is then directly connected to the phase lag δ. 

The dimension of experimental samples for the DMA TA Q800 and the inverted 

torsion pendulum testing is around 30 mm (length) ×3mm (width) ×1mm (thickness). 

Experiments were carried out in two modes: (I) Isochronal measurements were 

performed in DMA TA Q800 at a constant heating rate of 3 K/min with a different 

driving frequencies (i.e., 1, 2, 4, 8 and16 Hz). (II) Isothermal tests were carried out at 

the inverted torsion pendulum under frequency ranges from 10-2 to 2 Hz. 

 

3. Experimental results 

3.1 XRD analysis and thermal properties of the metallic glasses 

Fig. 1 shows XRD patterns of the Cu46Zr45Al7Y2 and 

La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk metallic glasses. The XRD patterns display the 

typical profile of glassy materials, with no detectable sharp Bragg peaks, which 

indicates that the whole volume of the metallic glass samples is in amorphous state. The 

thermal properties of the studied bulk metallic glasses were investigated by the DSC 

technique at a constant heating rate of 3 K/min. The corresponding DSC curves are 

shown in Fig.2 and the glass transition temperatures (Tg) and the onset temperature of 

crystallization (Tx) are defined. The characteristic temperatures Tg and Tx of the two 

studied alloys are listed in Table1. The current DSC results are in excellent agreement 

with previously reports [21, 22].  
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3.2 Dynamic mechanical properties of the bulk metallic glasses 

3.2.1 Isochronal testing 

The dynamic mechanical analyzer plays an important role in studying the 

viscoelastic response of materials. Fig. 3 shows the storage modulus 𝐸𝐸′and the loss 

modulus 𝐸𝐸′′ of the Cu46Zr45Al7Y2 bulk metallic glass (as-cast state) with increasing 

testing temperature at a fixed driving frequency of 1Hz and heating rate of 3K/min. For 

temperatures up to about 660K, the Cu46Zr45Al7Y2 bulk metallic glass exhibits mainly 

elastic deformation with a low loss modulus. As the temperature continues to increase, 

the storage modulus 𝐸𝐸′decreases dramatically. In parallel, the loss modulus E" reaches 

a maximum. In this temperature range, the deformation mainly corresponds to the large 

viscoelastic component. This phenomenon corresponds to the occurrence of α 

relaxation of the metallic glass. Similar phenomenon has been widely observed for 

other glassy materials, such as polymers, oxide glasses and metallic glass matrix 

composites [9, 24]. At even higher temperatures, the storage modulus rises again while 

the loss modulus starts to decrease, which corresponds to a complex procedure of 

crystallization.  

 Fig. 4 shows the temperature dependence of the normalized loss modulus at 

different frequencies at a heating rate of 3 K/min for the Cu46Zr45Al7Y2 bulk metallic 

glass. (𝐸𝐸𝑢𝑢  is the unrelaxed modulus which can be represented by 𝐸𝐸′  at room 

temperature). It can be noted that the peak of the loss modulus decreases and the 

corresponding peak temperature increases as the driving frequency increases.  

The temperature of loss modulus peak increases along with the increase of the 

driving frequency. This dependence is well described by Arrhenius equation 

 ωmax=ω0exp(-Eα/kT) (1) 

which describes the temperature dependence of thermally activated reaction rates as a 

function of the energy of activation. ωmax is the characteristic frequency, which is linked 

to the maximum of the relaxation. ω0 is the pre-exponential factor, Ea is the activation 

energy of the α relaxation in glassy materials. The logarithm of the equation (1) yields 

to  
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 ln(ωmax)= -Eα/kT +lnω0 (2) 

On the basis of the equation (2), we obtained that the apparent activation energy 

Eα of the main α relaxation of the Cu46Zr45Al7Y2 and 

La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10) metallic glass is 5.56 eV and 3.27 eV, respectively. 

It should be noted that the current results are in good agreement with the previously 

work [25-27]. In the case of the metallic glasses, it is well-known that the activation 

energy of the slow β relaxation is around 1-1.5 eV [8, 28, 29]. 

It has been proven that the slow 𝛽𝛽 relaxation in metallic glass depends on the 

chemical composition [28]. Fig. 5 illustrates the difference in the slow β relaxation 

between the Cu46Zr45Al7Y2 and La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk metallic 

glasses. Compared to Cu-based metallic glass, it is worth noting that La-based metallic 

glass displays a pronounced slow  𝛽𝛽  relaxation (shoulder) at lower temperature. 

However, the Cu-based metallic glass does not exhibit an obvious slow 𝛽𝛽 relaxation. 

As a result, these two different kinds of the slow 𝛽𝛽  relaxation will affect the 

mechanical properties. The reason of the appearance of the slow 𝛽𝛽 relaxation is that 

the metallic glass under room temperature is metastable and the atoms of the glassy 

alloy are in “frozen” state. When the temperature rises but it is still well below the glass 

transition temperature Tg, the “frozen” atoms will absorb some amount of energy, 

displaying the slow 𝛽𝛽  relaxation on the temperature dependence profile of the 

normalized loss modulus.  

The atomic origin of the distinct behavior of the β relaxation in the two studied 

alloys is yet not understood. While it is generally accepted that β relaxation is due to 

string-like atomic rearrangements [30, 31]. It is not clear why these rearrangements are 

more probable in some alloys. According to Ref. [28] “Pronounced β-relaxations are 

associated with systems where all the atomic pairs have large similar negative values 

of enthalpy of mixing, while positive values, or large fluctuations in the values, of 

enthalpy of mixing suppress β-relaxations”. It must be noted that neither Cu46Zr45Al7Y2 

nor La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 show a pronounced β-relaxation. Table 2 shows 

the mixing enthalpies according to the Miedema’s model [32, 33] . Using this model, 

the average mixing enthalpy and standard deviation of Cu46Zr45Al7Y2 are -26.3 KJ/mol 
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and 8.3 KJ/mol, while those of La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 is -27.2 KJ/mol and 

8.9 KJ/mol. That is, there is no significant difference in the mixing enthalpies of both 

alloys. Thus, the more intense β-relaxation of La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 can 

be attributed to the enhanced mobility of the Ni/Co pairs in rare-earth based metallic 

glasses [34].  

 

3.2.2 Isothermal testing 

In order to properly understand the dynamic mechanical relaxations of the 

metallic glass, isothermal spectra was obtained at various temperatures. Fig.6 shows 

the frequency evolution of the normalized storage modulus 𝐺𝐺′ 𝐺𝐺𝑢𝑢⁄  and loss modulus 

𝐺𝐺′′ 𝐺𝐺𝑢𝑢⁄  as a function of frequency for the Cu46Zr45Al7Y2 bulk metallic glass at various 

temperatures. 𝐺𝐺𝑢𝑢 is the non-relaxed modulus which is assumed by the storage modulus 

𝐺𝐺′ at ambient temperature. One can found that: (i) At constant temperature, the storage 

modulus decreases by decreasing the frequency while the loss modulus increases by 

decreasing the frequency; (2) At constant frequency (i.e. the isothermal testing 

temperature less than 700 K in the current work), the storage modulus decreases by 

increasing temperature while the loss modulus increases by increasing the temperature. 

These results are in good accordance with the previous investigations [35, 36]. It must 

be noted that the α relaxation peak can be only observed at high isothermal testing 

temperature or at the higher temperature (i.e. when the temperature above 700 K) in 

isochronal measurements. 

With the help of the time-temperature superposition (TTS) principle, master 

curves of glassy materials can be determined by a simple horizontal shift (one 

temperature could be fixed as a reference temperature Tf). Fig.7 shows the master curve 

of the normalized storage modulus 𝐺𝐺′ 𝐺𝐺𝑢𝑢⁄  and loss modulus 𝐺𝐺′′ 𝐺𝐺𝑢𝑢⁄   of the 

Cu46Zr45Al7Y2 bulk metallic glass.  

   

 

4. Discussion 

4.1 Description of master curves by a stretched exponential function 
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    It is well established in the literature that the main α relaxation process of the 

glassy materials can be well described with a Kohlrausch-Williams-Watts (KWW) 

relaxation function [37]: 

( ) ( )

( ) ( )

,

, exp / KWW

i
d t

G G L
dt

with t t

α α
α ω

β
α α α

ϕ τ
ω

ϕ τ τ

 
′′ = ∆ − 

 
 = −  

                               (3)                                                        

where Liω indicates the Laplace transform, τa is the characteristic time of the α 

relaxation in glassy materials,  𝜑𝜑𝛼𝛼  is the so-called stretched exponential and the 

Kohlrausch exponent 𝛽𝛽𝐾𝐾𝑊𝑊𝑊𝑊  ranges from 0 and 1 in glassy materials [38]. The 

relaxation strength is ∆𝐺𝐺 = 𝐺𝐺𝑢𝑢 − 𝐺𝐺𝑟𝑟, 𝐺𝐺𝑢𝑢 the unrelaxed modulus and 𝐺𝐺𝑟𝑟 the relaxed 

modulus. The value these exponents obtained from the fit of the isothermal spectra to 

the KWW function is 𝛽𝛽𝐾𝐾𝑊𝑊𝑊𝑊=0.546 in Cu46Zr45Al7Y2 metallic glass and 𝛽𝛽𝐾𝐾𝑊𝑊𝑊𝑊=0.456 

in La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 metallic glass. Significantly, it is usually 

observed that the stretched exponent 𝛽𝛽𝐾𝐾𝑊𝑊𝑊𝑊~0.5 could be well described the master 

curve of bulk metallic glasses at the glass transition region, which is independent of the 

chemical composition and fragility [6, 39-41]. Interestingly, it should be noted that the 

Kohlrausch exponent 𝛽𝛽𝐾𝐾𝑊𝑊𝑊𝑊  of La-based metallic glass is smaller that of Cu-based 

metallic glass; it may be concluded that the La-based metallic glass presents a wider 

distribution of relaxation times. This wider relaxation time maybe associated with the 

microstructural heterogeneity in metallic glasses. 

 

4.2 Physical aging on the metallic glass below Tg 

Physical aging (or structural relaxation below the glass transition temperature Tg) 

in metallic glasses is always linked to modifications of physical, mechanical properties 

and densities [42-45]. In order to study the influence of physical aging on the evolution 

on mechanical properties in the La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 and Cu46Zr45Al7Y2 

metallic glasses, an in-situ DMA testing was carried out at 385 K for the La-based and 

660 K for the Cu-based metallic glasses. Fig.9 shows the evolution of storage modulus, 

loss modulus and loss factor of the aging time for La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 
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and Cu46Zr45Al7Y2 metallic glasses . It can be observed that physical aging induces an 

increase of the storage modulus and a decrease of the loss factor and loss modulus. The 

glassy material shifts to a more stable state during the physical aging process.  

 

4.3 Quasi-point defects (QPD) theory 

In order to establish the link between the dynamic mechanical properties of metallic 

glass and its microstructure, Perez et al. developed quasi-point defect theory based on 

the quasi-point defect (QPD) model, giving a framework to describe mechanical 

response of glassy materials [46-48]. Quasi-point defect theory proposes that glassy 

materials contain quasi-point or flow detects in nanoscale. It has been reported that 

amorphous materials show density fluctuations in the nanoscale, which corresponds to 

fluctuations of enthalpy and entropy. The existence of quasi-point defects can be 

verified by small angle Synchrotron X-ray scattering [49]. Thanks to these quasi-point 

defects, the atoms of the metallic glass can perform a cooperative motion, which leads 

to the relaxation behavior in the macroscopic scale. On the basis of the QPD theory, the 

characteristic relaxation time of relaxation of a glassy material can be denoted as 

 τ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑡𝑡0 �
𝜏𝜏𝛽𝛽
𝑡𝑡0
�
1/𝜒𝜒

 (4) 

where τrelax is the mean time of a structural unit jumping over the distance equivalent to 

its dimension, t0 is the time scale parameter, τβ is the mean time of the thermally 

activated jump of a structural unit in glassy materials, which corresponds to the 

characteristic time of β relaxation, and 𝜒𝜒 is the correlation factor which is related to 

the quasi-point defect concentration (Cd) ranging from 0 (full order—perfect crystal) to 

1 (full disorder—perfect gas) .  

The loss factor tan δ of glassy materials at a high temperature and low frequency 

(low enough to avoid the resonating frequency) can be denoted as  

 tan 𝛿𝛿 = 𝐾𝐾0(𝜔𝜔𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)−𝜒𝜒 (5) 

In the framework of QPD theory, the evolution of the loss factor tanδ can be given as 

 ln(tanδ) = −
𝑈𝑈𝛽𝛽
𝑘𝑘𝑘𝑘

− 𝜒𝜒ln𝜔𝜔 − 𝜒𝜒 ln(𝜏𝜏∗) + ln𝐾𝐾0 (6) 

here, τ*is the characteristic time associated with the β relaxation in glass, τ
∗

=
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𝑡𝑡0 �
𝜏𝜏0𝛽𝛽
𝑡𝑡0
�
1/𝜒𝜒

. Uβ is the apparent activation energy of the β relaxation. 

According to eq. (6), for a fixed temperature ln(tanδ) varies linearly with ln ω, and 

the slope of this linear relation is χ. Fig. 10 (a) shows the variation of ln (tan δ) versus 

frequency of the Cu46Zr45Al7Y2 bulk metallic glass at various temperatures (the data 

obtained in the inverse torsion pendulum). Note that the proposed linear relationship 

between ln(tanδ) and ln ω holds over 5 decades, showing that the experimental data can 

be well described by the QPD theory. Fig. 10 (b) shows the evolution of the correlation 

factor χ with temperature in the Cu46Zr45Al7Y2 bulk metallic glass. The behavior of the 

correlation factor χ is clearly correlated to the state of the glass. While χ remains almost 

constant below the glass transition temperature, it increases above Tg. According to the 

QPD model, below the glass transition temperature Tg the glassy system stays in an iso-

configurational state. Thus, the correlation factor χ is independent of the temperature. 

On the contrary, above the glass transition temperature Tg the main α relaxation process, 

associated with the cooperative atomic motion, is activated. Thus, the correlation factor 

χ increases by increasing the temperature.   

Fig. 11 shows the loss tan δ and the correlation factor χ as a function of 

temperature in La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk metallic glass. It should be noted 

that the change in the behavior of the correlation factor χ shows clearly the intensity of 

the slow β relaxation. It should be stressed that the quasi-point defect model is able to 

describe the main relaxation for glass-forming liquids. However, it fails when the slow 

β relaxation is noticeable. According to the Fig.11, tendency of the correlation factor 

with the temperature in La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10  metallic glass shows a 

very similar result than that of the Cu46Zr45Al7Y2 bulk metallic glass. It is found that 

the theoretical prediction of QPD is fulfilled in the Cu46Zr45Al7Y2 bulk metallic glass. 

 

5. Conclusion 

In the current research, the dynamic mechanical properties of Cu46Zr45Al7Y2 and 

La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk metallic glasses were investigated by 

mechanical spectroscopy. The main results are listed as follows: 
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● La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk metallic glass shows an obvious slow β 

relaxation while Cu46Zr45Al7Y2 bulk metallic glass presents an “excess wing” 

relaxation process. 

● Physical aging leads to an increase of the storage modulus and a decrease of the 

loss modulus and loss factor in metallic glasses. 

● The dynamic mechanical response of the metallic glasses is discussed on the 

basis on the quasi-point defects theory. In good agreement with the QPD theory, the 

state of metallic glasses is well described by the correlation factor χ. χ describes 

properly the “defect” concentration, which remains constant below the glass transition 

temperature and increases above it.  
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Table 1 Characteristic temperatures of the Cu46Zr45Al7Y2 and 

La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 metallic glasses 
 

Chemical composition Tg(K) 𝑘𝑘gonset(K) 𝑘𝑘gend(K) 𝑘𝑘x(K) 

Cu46Zr45Al7Y2 698 685 710 761 

La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 414 403 424 458 

 

 

 

Table 2 Enthalpies of mixing (kJ/mol) of the constituting elements according to 
Miedemas’ model (Ref.[32, 33] ). 

 

Element Co Ni Cu Y Zr Ag La 

Al -19 -22 -8 -38 -44 -4 -38 

Co  0 6 -21 -41 19 -17 

Ni   4 -31 -49 15 -27 

Cu    -22 -23 2 -21 

Y     9 -29 0 

Zr      -21 13 

Ag       -29 
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Fig. 1. XRD patterns of Cu46Zr45Al7Y2 and La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk 
metallic glasses. 
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Fig. 2. DSC curves of Cu46Zr45Al7Y2 and La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk 
metallic glasses (heating rate is 3 K/min). 
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Fig. 3. Evolution of storage (E') and loss (E") moduli of Cu46Zr45Al7Y2 metallic glass 
(heating rate: 3 K/min, driving frequency: 1 Hz).  
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Fig. 4. Normalized loss modulus E" of Cu46Zr45Al7Y2 metallic glass as a function of 
temperature with different driving frequencies. Inset is the Arrhenius plot of ln(f) vs 

1000/T. The activation energy Eα of the α relaxation is around 5.56 eV. 
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Fig.5. Temperature dependence of normalized loss modulus of Cu46Zr45Al7Y2 and 
La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk metallic glasses (Driving frequency of 1Hz 
and heating rate of 3K/min). 
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Fig. 6. Dependence of the normalized storage G'/Gu (a) and loss G"/Gu (b) moduli on 
frequency at various temperatures for Cu46Zr45Al7Y2 bulk metallic glass. Temperature 
ranges from 570 to 715 K on intervals of 5 K. 
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Fig.7. Master curve of the normalized storage modulus G′/Gu and the normalized loss 
modulus G″/Gu for Cu46Zr45Al7Y2 metallic glass. The reference temperature is 700 K. 
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Fig. 8 Master curve of the normalized loss modulus G″/Gu of Cu46Zr45Al7Y2 and 
La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk metallic glasses, respectively. The solid lines 
are fitted by KWW equation (equation 3). 
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Fig. 9 The normalized storage modulus G'/Gu, loss modulus G″/Gu and loss factor tan 

δ in Cu46Zr45Al7Y2 and La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 metallic glasses as a 

function of annealing time at given aging temperatures (Driving frequency is 0.3 Hz). 
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Fig. 10 (a) Influence of the driving frequency on the loss factor tanδ at different 
temperatures in Cu46Zr45Al7Y2 bulk metallic glass (the isothermal temperature ranges 
from 630 to 710 K, on an interval of 5 K). Solid lines are fitted by equation (6). (b) 
Evolution of the correlation factor χ with temperature.  
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Fig. 11 Evolution of loss tan δ and correlation factor χ with temperature for 
La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 bulk metallic glass. 


