

Compressed Sensing and Approximate

Message Passing for the Single-Pixel Camera

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona of

Universitat Politècnica de Catalunya

and in the Fakultät für Elektrotechnik und Informationstechnik of

Technische Universität Wien

by

Jordi Biosca Caro

In partial fulfilment

of the requirements for the degree in

 TELECOMMUNICATION SYSTEMS ENGINEERING

Advisors: Norbert Görtz and Gregori Vazquez Grau

Barcelona, June 2018

 1

Abstract

This thesis is based on the technique of Compressed Sensing and the study of the algorithms of

Approximate Message Passing for the single-pixel camera. This thesis has been developed in the

institute of telecommunication in the Technische Universität Wien (TU Wien) led by the research

group of the professor Norbert Görtz. In the beginning of the thesis it is explained what a single-

pixel camera is and it also talks about what compressed sensing is, later on, two necessarily

iterative schemes (Iterative Hard Thresgolding i Iterative Soft Thresholding) are defined to

understand the algorithms of Approximate Message Passing (AMP) and its Bayesian derivation

(Bayesian Approximate Message Passing, BAMP). The theoretical explanation of the operation of

these algorithms is implicit in the thesis, moreover, AMP and BAMP are implemented in Matlab

code. This implementation allows to see the behaviour of these algorithms in different scenarios

to fully understand the differences between them.

 2

Resum

Aquest treball es basa en la tècnica del compressed sensing i l’estudi dels algoritmes

d’Approximate Message Passing per la càmera d’un sol píxel. És un treball desenvolupat a l’institut

de telecomunicacions de la Technische Universität Wien (TU Wien) liderat pel grup de recerca del

professor Norbert Görtz, el qual ve liderant la recerca en aquest sector des de fa diversos anys. En

l’inici del treball s’explica que és la càmera d’un sol píxel i també es parla de què és el compressed

sensing, més endavant s’expliquen dos esquemes iteratius (Iterative Hard Thresgolding i Iterative

Soft Thresholding) necessaris per entendre els algoritmes de Approximate Message Passing (AMP)

i la seva derivant bayesiana (Bayesian Approximate Message Passing, BAMP). L’explicació teòrica

del funcionament d’aquests algoritmes està implícit en el projecte, a més a més, aquests dos

algoritmes estan implementats en codi Matlab. Aquesta implementació permet veure quin és el

comportament d’aquests algoritmes per diferents escenaris i permet entendre l’algoritme de AMP

i BAMP.

 3

Resumen

Este trabajo se basa en la técnica del Compressed Sensing y en el estudio de los algoritmos de

Approximate Message Passing para la cámara de un solo pixel. Es un trabajo desarrollado en el

instituto de telecomunicaciones de la Technische Universität Wien (TU Wien) liderado por el grupo

de investigación del profesor Norbert Görtz. En el principio del trabajo se explica que es la cámara

de un solo pixel y también se habla de que es el Compressed Sensing, más adelante se explican dos

esquemas iterativos (Iterative Hard Thresgolding i Iterative Soft Thresholding) necesarios para

entender los algoritmos de Approximate Message Passing (AMP) y su derivada bayesiana (Bayesian

Approximate Message Passing, BAMP). La explicación teórica del funcionamiento de estos

algoritmos es implícita en el proyecto, además, estos dos últimos están implementados en código

Matlab. Dicha implementación permite ver cuál es el comportamiento de estos algoritmos en

diferentes escenarios y permite entender el algoritmo de AMP y su derivada bayesiana, BAMP.

 4

Dedication

First of all, I would like to thank professor Norbert Görtz from the Technische Universität of Wien

for being so kind and helpful during all the project in my stay in Vienna. He introduced me in the

field of compressed sensing and approximate message passing algorithms. Whenever I had a doubt

or a question he found the moment to solve it and explained to me. I would also like to thank all

the patience and eases my supervisor in the Universitat Politècnica de Catalunya, Gregori Vazquez,

gave me during this time.

Finally, a personal thank to all the people that has been supporting me during these months with

special mention to my family and friends both in Barcelona and Vienna.

 5

Revision history and approval record

Revision Date Purpose

0 30/05/2018 Document creation

1 20/06/2018 Document revision by Norbert Görtz

2 27/06/2018 Document revision by Gregori Vazquez

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Jordi Biosca Caro jordi.bc94@gmail.com

 Norbert Görtz norbert.goertz@nt.tuwien.ac.at

 Gregori Vazquez Grau gregori.vazquez@upc.edu

Written by: Reviewed and approved by:

Date 30/05/2018 Date

Name Jordi Biosca Caro Name Norbert Görtz & Gregori Vazquez

Position Project Author Position Project Supervisors

mailto:jordi.bc94@gmail.com
mailto:norbert.goertz@nt.tuwien.ac.at
mailto:gregori.vazquez@upc.edu

 6

Table of contents

Abstract ... 1

Resum .. 2

Resumen .. 3

Dedication ... 4

Revision history and approval record ... 5

Table of contents ... 6

List of Figures .. 8

1. Introduction... 9

1.1. Objectives .. 9

1.2. Work plan .. 9

1.2.1. Work Packages .. 10

1.2.2. Gantt diagram ... 11

2. State of the art of the technology used or applied in this thesis: ... 12

2.1. The Single-Pixel Camera ... 12

2.2. Compressed Sensing ... 13

2.2.1. Problem setting: compressed sensing for sparse signals 14

2.2.2. Estimation problem .. 16

2.2.3. Remarks.. 18

3. Iterative schemes .. 21

3.1. Iterative Hard Thresholding (IHT) .. 21

3.1.1. l0-regularized problem ... 22

3.1.2. s-sparse problem ... 25

3.2. Iterative Soft Thresholding (IST) .. 27

3.3. Heuristics for Iterative Recovery ... 31

4. Approximate Message Passing (AMP) and Bayesian derivation (BAMP) 33

4.1. Graphical model for the LASSO ... 33

4.2. Min-sum algorithm ... 35

4.3. Approximate Message Passing (AMP) .. 36

4.3.1. AMP I ... 36

4.3.2. AMP II .. 38

4.4. Bayesian Approximate Message Passing (BAMP) .. 39

 7

4.4.1. BAMP I ... 39

4.4.2. BAMP II... 40

5. Results ... 42

6. Budget ... 51

7. Conclusions and future development: .. 52

Bibliography: ... 53

Glossary ... 54

 8

List of Figures

Figure 1. Gantt diagram of the thesis .. 11

Figure 2. Single-pixel camera structure ... 12

Figure 3. Function of the Hard Thresholding Operator ... 24

Figure 4. Function of the Soft Thresholding Operator .. 31

Figure 5. Graph representation for the LASSO problem ... 34

Figure 6. DCT and histogram for the same image but different algorithms 44

Figure 7. DCT coefficients of the original image, AMP, BAMP and BAMP-pointwise 44

Figure 8. Image reconstruction for the different algorithms .. 45

Figure 9. Comparison of the reconstruction and DCT for different images 48

Figure 10. Study of the different image reconstructions for different undersampling ratios 49

Figure 11. Study of the different image reconstructions for different SNR 49

file:///C:/Users/jordi/Dropbox/Jordi/UPC-ETSETB/TFG/Docs/Memoria/Thesis_JordiBiosca.docx%23_Toc518040822
file:///C:/Users/jordi/Dropbox/Jordi/UPC-ETSETB/TFG/Docs/Memoria/Thesis_JordiBiosca.docx%23_Toc518040823
file:///C:/Users/jordi/Dropbox/Jordi/UPC-ETSETB/TFG/Docs/Memoria/Thesis_JordiBiosca.docx%23_Toc518040824
file:///C:/Users/jordi/Dropbox/Jordi/UPC-ETSETB/TFG/Docs/Memoria/Thesis_JordiBiosca.docx%23_Toc518040829
file:///C:/Users/jordi/Dropbox/Jordi/UPC-ETSETB/TFG/Docs/Memoria/Thesis_JordiBiosca.docx%23_Toc518040830

 9

1. Introduction

This project describes what the Single-Pixel Camera is and talks about the compressed sensing and

how important are sparse signals to allow the implementation of different algorithms such as

Iterative Soft Thresholding (IST), Iterative Hard Thresholding (IHT), Approximate Messape Passing

(AMP) and Bayesian Approximate Message Passing (BAMP) to recover images with a sample rating

below the Nyquist-Shannon theorem. In this section there are explained which are the objectives

of the thesis and the work plan.

1.1. Objectives

The main objective of this project is to find in the compressed sensing topic, also known as

compressive sensing, compressive sampling or sparse sampling, the different algorithms and

methods of work that are normally used. Compressed sensing (CS) is a signal processing technique

for efficiently acquiring and reconstructing signal, by finding solutions to undetermined linear

systems. The goal is to study some of these algorithms, to understand their operating and validate

them to achieve optimal results. Nowadays, the fields involving the compressed sensing are in a

wide ranging, such as signal processing, computational mathematics or sparse sampling. Its broad

scope and generality has enabled several CS approximations in signal processing and compressing,

solution of inverse problems, design of radiating systems, radar, through-the-wall imaging and

antenna characterization. Imaging techniques also have a strong relation with CS include coded

aperture and computational photography. In this thesis, we will talk about these relations, we will

use the discrete cosine transform (DCT) as a way to obtain sparse signals and then apply different

algorithms to see its behaviour.

1.2. Work plan

The work plan has followed the dates proposed in either the work proposal and critical review

despite some modifications were made in the critical review after I decided to do the talk of the

thesis in Technische Universität Wien instead of the Universitat Politècnica de Catalunya. So, finally

the work packages of the project have been structured as follows:

 10

1.2.1. Work Packages

Project: Introduction to the Single-Pixel Camera algorithm WP ref: WP1

Major constituent: Study

Short description: Introduction to the Single-Pixel Camera.

How it works? How can be applied? How signal processing is

involved? Which are the possibilities of the technology?

The first code version must be studied. It should be able to

simulate the Single-Pixel Camera algorithm.

Planned start date: 01/03/2018

Planned end date: 09/03/2018

Start event: 01/03/2018

End event: 09/03/2018

Internal task T1: Introduction to the Single-Pixel Camera

Internal task T2: Analysis of the algorithm

Deliverables:

NA

Dates:

NA

Project: Refinement WP ref: WP2

Major constituent: Code implementation

Short description: The first code version must be done. It

should be able to identify the main characteristics of the

Gaussian form of the signal, its DCT and the histogram.

Planned start date: 12/03/2018

Planned end date: 28/03/2018

Start event: 12/03/2018

End event: 28/03/2018

Internal task T1: First code version implementations

Internal task T2: Validations

Deliverables:

Reporting

Dates:

NA

Project: Study and algorithms implementation WP ref: WP3

Major constituent: Study and algorithms implementation

Short description:

Study how data can be recovered. Implement all the

necessary to recover the signal and find the best solution

Planned start date: 26/03/2018

Planned end date: 26/05/2018

Start event: 26/03/2018

 11

depending on the complexity, the noise, etc of the Single-

Pixel Camera algorithm.

End event: 12/06/2018

Internal task T1: Study and algorithms implementation

Internal task T2: Validations and tests

Deliverables:

Reporting

Dates:

NA

Project: Documentation WP ref: WP4

Major constituent: Documentation

Short description: To complete all the documentation

required in the final bachelor thesis.

Planned start date: 01/03/2018

Planned end date: 10/07/2018

Start event: 01/03/2018

End event: 28/06/2018

Internal task T1: Thesis proposal

Internal task T2: Critical review

Internal task T3: Thesis memory and revision

Deliverables:

Documentation

Dates:

Depending on

the document

1.2.2. Gantt diagram

Where each task has been developed in the specified dates. Note that, although in the beginning

of the project I was focused on the literature and study of the principles in the topic, the longest

part was the implementation and validation of the algorithm as we can see in the next Gantt

diagram:

Figure 1. Gantt diagram of the thesis

 12

2. State of the art of the technology used or applied in this thesis:

In this section there is a review of what a single-pixel camera is and an introduction to the

compressed sensing. This, is used as presentation of the main topics of the thesis and it contains

the main features one needs to know to fully understand the technologies explained in the

following sections. Firstly, it is explained what a single-pixel camera is, its advantages and

disadvantages. Secondly, there is an exhaustive analysis of the compressed sensing technique.

2.1. The Single-Pixel Camera

Nowadays, the standard digital cameras use a large number of photo sensors to determine the

amount of light in each area of the image, we refer these areas as pixels. Thanks to the maturity of

technologies (CCD and CMOS) is possible to obtain, for example, 12.000.000 pixels in a 12-

megapixel camera because they work very well for optical light and is relatively cheap. However,

these technologies only work in the optical range and for other kind of illumination, such as

infrared or ultraviolet cameras, it is more difficult and expensive to produce.

At this point, one possible solution is to use a single-pixel camera. The single-pixel camera works

with just one light sensor able to measure the entire image, this allows the use of one really good

light sensor instead of the millions very cheap ones. What this sensor exploits it is the technique

of compressed sensing. As we will see in the next sections, compressed sensing is a technique able

to recover signals below the Nyquist rate.

Figure 2. Single-pixel camera structure

The functioning of the single-pixel is to reflect the image to a digital micro mirror device (DMD)

through a lens onto a photodiode. The DMD used is an array of microscopic mirrors which can be

individually titled. These mirrors are titled in such a way that some of the pixels are focused onto

a light absorber and the others to the photodiode. If we do this procedure thousands of times and

 13

measuring the intensity of the light for each different mirror, we are able to physically realize the

sampling matrix of a compressed sensing system.

On the one hand, the advantage in this case is that any radiation can be reflected from a mirror,

including UV and IR, then this allows to create these kind of cameras much cheaper than is

currently available. On the other hand, the main drawback is that the measurements must be taken

in series rather than all at once as in a traditional camera. For example, in a 1024x1024 image we

need 25% of the pixels for a total of about 260.0000 total pixels. The DMD can move positions in

(worst case) 20𝜇s, allowing the entire image to be captured in 5,25s. However, optical sensors

stabilize much faster (20 ns for IR, 4ns for optical) so there is potential for imaging to become faster

if the switching speed of the mirrors increases. Despite this situation even at this speed the camera

could be used for many non-video applications.

If we take a closer look of how it works, as explained in [1], the object is sensed through a set of

random patterns – a different one for each of the measurements. Those measurements with

different random patterns are used to computationally reconstruct the scene. The implemented

code of the thesis uses this algorithm as we will see in the next sections of the thesis.

2.2. Compressed Sensing

First of all, it is important to define what compressed sensing is and a proper definition could be:

a technique to sample compressible signals below the Nyquist rate, whilst still allowing near

optimal reconstruction of the signal.

Compressed Sensing (CS) is an attractive, rapidly growing field that has captivated considerable

attention in electrical engineering, applied mathematics, statistics and computer science. Since its

initial introduction several years ago, a huge flood of results have been obtained, both of

theoretical and practical nature. CS offers a framework for simultaneous sensing and compression

of finite-dimensional vectors, that relies on linear dimensionality reduction. Quite surprisingly, it

predicts that sparse high-dimensional signals can be recovered from highly incomplete

measurements by using effective algorithms.

In electrical engineering the use of a band-limited signal, with 𝑓𝑔 as the highest frequency of the

signal needs a sampling rate 𝑓𝑠 > 2𝑓𝑔 as explained for the Nyquist-Shannon sampling theorem.

Therefore, with a signal that consists of a few non-zero samples, e.g., single short impulse, the

result is a very large (almost infinite) bandwidth that can cause problems of memory in terms of

computations. If instead of this, one uses a band-limited discrete time signal, e.g., a Discrete

Fourier Transform (DFT) that produces few non-zero coefficients, then we obtain what is called a

 14

sparse signal in the Fourier-domain. During the project the tests will be developed in images so, it

will be used the two-dimensional Discrete Cosine Transform (DCT) which leaves few dominant

coefficients, those are quantized and stored and the other ones are dropped (JPEG source-coding).

In conclusion, it is possible to have an accurate signal representation with fewer coefficients than

the originally sampled.

The question is why sparse signal models are so popular?

2.2.1. Problem setting: compressed sensing for sparse signals

On the one hand, we have a 𝑛 −dimensional signal 𝑥 ∈ ℝ𝑛 that is also sparse after some linear

transformation (DCT for example). Then we assume that 𝑥 is a s-sparse signal, i.e., it has at most s

non-zero components (sparsity level). Taking 𝑚 ≪ 𝑛 linear measurements according to the next

expression

the matrix 𝐴 is assumed to have its full possible rank 𝑚 and its components are independently

drawn realizations of a real random variable, e.g., has a Gaussian1 distribution. Moreover, the

matrix column vectors 𝐴𝑗, 𝑗 = 1,… , 𝑛 (each of dimensions 𝑚 × 1) are assumed to have zero mean

and be normalized2 to unit 𝑙2-norm3, i.e.,

with,

1 In [2], [3] systematic designs of measurement matrices have been investigated by state evolution; in
this thesis we stick for simplicity to the traditional “random Gaussian” designs for the measurement
matrix A but I would like to point out that AMP and BAMP will also work for non-Gaussian designs.
2 When the measurement matrix A is defined by the system designer, the column-normalization can
always be implemented; it simplifies notation. The normalization is, however, not necessarily
required.
3 The 𝑙𝑝 −norm of a vector 𝑥 = {𝑥𝑗 , 𝑗 = 1,2, … , 𝑛} is defined by

 ||𝑥||
𝑝
= (∑ |𝑥𝑗|

𝑝
)
1

𝑝𝑛
𝑗=! , with p=1,2,…,

and the “maximum-norm” is defined as

 ||𝑥||
∞
= max

𝑗
|𝑥𝑗|,

with 𝑥𝑗 the components of the vector.

𝑦[𝑚] = 𝐴[𝑚×𝑛] · 𝑥[𝑛] +𝑤[𝑚] with 𝑚 ≪ 𝑛

𝒚 = 𝑨𝒙 +𝒘 (blond means vector notation)

(1)

 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑛}
(2)

 15

The measurements are assumed to be affected by Gaussian noise that is modelled by the addition

of the 𝑚 − dimensional noise vector 𝑤 ≡ {𝑤𝑗, 𝑗 = 1,… ,𝑚} . The components 𝑤𝑗 of the noise

vector are assumed to be independent and identically distributed Gaussian with variance 𝜎2 > 04.

The problem is to find the vector 𝑥 given the measurements 𝑦 and the matrix 𝐴. As the number 𝑚

of measurements in (1) is smaller than the number 𝑛 of unknowns in 𝑥 , the problem is

undetermined: it is impossible to simply invert (1), even if there was no measurement of noise.

One can try, however, to form a good estimate of 𝑥 , and to do this one can exploit extra

information about that 𝑥 that may be available:

1) If 𝑥 is sparse the solution 𝑥 (estimated solution) would be supposed to contain few non-

zero components.

2) The vector 𝑥 might be known to have a large number of components that take values ±1.

3) The probability distribution 𝑝𝒙(𝑥) (or a mixed distribution/density) of 𝑥 might be known.

In what follows we will focus on case 3). In practice, the given 𝑝𝑥(𝑥) may, however, not be the true

distribution but it may be a good model for it or even only be useful to find a good solution to the

problem of estimating 𝑥 from a given observation vector 𝑦. By choosing a suitable distribution

𝑝𝑥(𝑥), the other two cases 1) and 2) are also covered. If, for instance, a signal of dimension 𝑛 is

known to have 𝑠 ≪ 𝑛 non-zero components (this the sparse case 1), we could set the probability

𝜖 = (𝑛 − 𝑠)/𝑛 (to have a zero-component) and define the prior distribution (in fact a probability

density function (pdf) with a delta-function that centres the probability mas 𝜖 at the single value

𝑥 = 0) for the components 𝑥𝑗 of 𝑥 according to

And assume that the components of 𝑥 are all independent. The function 𝑓𝑋𝑗(𝑥𝑗) in (4) can be any

probability density function, corresponding, e.g., to a uniform or a Gaussian distribution.

In case 2), the vector components might take the values +1 or -1 with equal probabilities of 𝜖/2

while the components take values from some other distribution 𝑓𝑋𝑗(𝑥𝑗) with probability 1 − 𝜖. The

corresponding pdf would read

4 As here is the first time we talk about noise, from now on we define that components 𝑤𝑗of the noise

vector are assumed to be independent and identically distributed Gaussian with variance 𝜎2 > 0

 ‖𝐴𝑗‖2 = 1 ∀ 𝑗
(3)

 𝑝𝑿𝒋(𝑥𝑗) = 𝜖𝛿(𝑥𝑗) + (1 − 𝜖)𝑓𝑋𝑗(𝑥𝑗) ∀𝑗 = 1,… , 𝑛 (4)

 16

2.2.2. Estimation problem

As a formal, deterministic inversion of the measurement equation is impossible and we have to

resort to an estimation of the signal vector, an optimization criterion must be defined. A very

common approach from estimation theory is to pick the signal vector 𝑥 as a solution that minimizes

the expectation of the mean squared error, given the observation 𝑦. With our notation this is

In our problem setting, the measurement vector 𝑦 is deterministically known, so it appears as a

condition in the expectation in (6). Moreover, the expectation is taken over two random

components (indicated by capital letters) which are the measurement noise vector 𝑊and the

unknown signal vector 𝑋 for which we want to find an estimate 𝑥. The solution to (6) is well-known

from estimation theory and easy to derive: partial derivatives of (6) are taken for the vector

components 𝑥𝑗 of 𝑥 and those derivatives are set to zero. The result equals

i.e., the best estimate of 𝑥 is the conditional expectation of the signal vector, given the observation

𝑦.

To understand why it is difficult to evaluate (7) for large signal dimension 𝑛, we write out the

expectation using Bayes rule:

In (8), 𝑝𝑋|𝑌(𝑥|𝑦) is the conditional probability density function (pdf) of the signal vector 𝑥 given an

observation 𝑦 (posterior pdf); for the second equality, Bayes rule was used (i.e., 𝑝𝑋|𝑌(𝑥 | 𝑦) =

𝑝𝑌|𝑋(𝑦 | 𝑥)𝑝𝑋(𝑥)/𝑝𝑌(𝑦)). The pdf 𝑝𝑋(𝑥) is the signal prior and the pdf 𝑝𝑌|𝑋(𝑦 | 𝑥) describes the

noisy measurement process. For independent, Gaussian noise components 𝑤𝑗with variance 𝜎2 we

obtain

 𝑝𝑿𝒋(𝑥𝑗) =
𝜖

2
 𝛿(𝑥𝑗 + 1) +

𝜖

2
 𝛿(𝑥𝑗 − 1) + (1 − 𝜖)𝑓𝑋𝑗(𝑥𝑗) ∀𝑗 = 1,… , 𝑛 (5)

 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝔼𝑋,𝑊{ ||𝑋 − 𝑥||2
2
 | 𝑌 = 𝑦 }

(6)

 𝑥 = 𝔼𝑋,𝑊{𝑋|𝑌 = 𝑦},
(7)

 𝑥 = ∫ 𝑥 𝑝𝑿|𝒀(𝑥|𝑦)𝑑𝑥 =
1

𝑝𝒀(𝑦)
∫ 𝑥 𝑝𝒀|𝑿(𝑦|𝑥)⏟

𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑚𝑒𝑛𝑡 𝑛𝑜𝑖𝑠𝑒

𝑝𝑿(𝑥)⏟
𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑟𝑖𝑜𝑟

𝑑𝑥
ℝ𝑛ℝ𝑛

 (8)

 17

When we write (𝐴𝑥)𝑘 for the 𝑘 -th component of the vector that results from the matrix

multiplication 𝐴𝑥. Note that using (1) the 𝑘-th noise component is explicitly given by 𝑤𝑘 = 𝑦𝑘 −

(𝐴𝑥)𝑘. Re-introducing vector notation in the exponent, the pdf in (9) can also be written as follows:

If the components of the signal vector 𝑥 are also independent, and each of the components has

the pdf 𝑝𝑋𝑗(𝑥𝑗), we can write the prior pdf according to

The unconditional pdf 𝑝𝑌(𝑦) of the observations can be computed by the marginalization

involving the same pdfs as in (9) and (11).

We insert (9) and (11) into (8) to obtain

Even though 𝑝𝑋(𝑥) can be decoupled into 𝑛 factors (due to the assumed independence of the

vector components of the prior), the integration can not be carried out separately over single

components 𝑥𝑗 because each of the 𝑚 factors 𝑒−(𝑦𝑘−(𝐴𝑥)𝑘)
2/(2𝜎2) requires the full vector 𝑥, i.e.

the term cannot be easily decomposed into 𝑛 independent factors. Therefore, to solve (13) a high-

dimensional integration is required for each new observation 𝑦 making this approach infeasible in

practice (particularly when practically relevant dimensions of 𝑛 ≫ 100 are considered).

 𝑝𝑌|𝑋(𝑦 | 𝑥) =∏
1

√2𝜋𝜎
𝑒−(𝑦𝑘−(𝐴𝑥)𝑘)

2/(2𝜎2)

𝑚

𝑘=1

 (9)

𝑝𝑌|𝑋(𝑦 | 𝑥) =
1

(√2𝜋𝜎)
𝑚 exp(−∑

(𝑦𝑘 − (𝐴𝑥)𝑘)
2

2𝜎2

𝑚

𝑘=1

)

=
1

(√2𝜋𝜎)
𝑚 exp (−

1

2𝜎2
||𝑦 − 𝐴𝑥||

2

2
)

(10)

 𝑝𝑋(𝑥) =∏ 𝑝𝑋𝑗(𝑥𝑗)
𝑛

𝑗=1
 (11)

 𝑝𝑌(𝑦) = ∫ 𝑝𝒀|𝑿(𝑦|𝑥)𝑝𝑿(𝑥)𝑑𝑥
ℝ𝑛

 (12)

 𝑥 =
1

𝑝𝑌(𝑦)
∫ 𝑥∏

1

√2𝜋𝜎
𝑒−(𝑦𝑘−(𝐴𝑥)𝑘)

2/(2𝜎2)∏ 𝑝𝑋𝑗(𝑥𝑗)𝑑𝑥
𝑛

𝑗=1

𝑚

𝑘=1ℝ𝑛

 (13)

 18

2.2.3. Remarks

In many problem settings the prior pdfs 𝑝𝑋(𝑥𝑗) are unknown, but some sort of prior knowledge

(such as a vague notion of sparsity) can be assumed. In those cases, one can try to define a class of

pdfs that all fulfil some structural constraint (e.g., a sparsity condition) and then search among this

class of pdfs for the worst one, for which then the best possible estimator has to be designed (this

is called a minimax–problem, see e.g. [4], [5], for more details).

If the prior pdf 𝑝𝑋𝑗(𝑥𝑗) is unknown, one can also choose that is convenient to simplify (13) (the

following discussion is again based on [4] and [5]). Such a simplifying choice would be 𝑝𝑋𝑗(𝑥𝑗) =

𝑐𝑒−ℎ(𝑥𝑗)/𝜎
2 , with 𝑐 a normalizing factor that ensures that 𝑝𝑋𝑗(𝑥𝑗) integrates to 1 and ℎ(𝑥𝑗) a

suitable (non-negative) function that can incorporate prior vague knowledge about the signal

components (such as sparsity). If we use the right-hand side of (10) we can write (13) as follows

If we now think of small noise, i.e., 𝜎2 → 0, the exponential under term under the integral is

dominated by the smallest value that 𝐿(𝑥) ≥ 0 can take, i.e., the posterior pdf under the integral

(which includes the constant and 𝑝𝑌(𝑦) in front of it) will approach a delta-distribution that takes

non-zero value for a particular vector �̃�, i.e., for 𝜎2 → 0 (14) can be written as

so the mean squared error estimate at low noise approaches that arguments �̃� for which 𝐿() takes

its smallest value. Therefore, instead of (13) we can write for low noise variance

The problem (15) has been studied extensively, and for a sparse signal vector the function ℎ(𝑥𝑗) =

𝜆|𝑥𝑗| has turned out to be a good choice (see e.g., [6], [7]) that at the same time has the charm to

lead to the convex problem

𝑥 =
1

𝑝𝑌(𝑦)
∫ 𝑥 ·

𝑐𝑛

(√2𝜋𝜎)
𝑚 · exp (−

1

2𝜎2
||𝑦 − 𝐴𝑥||

2

2
−
1

𝜎2
∑ ℎ(𝑥𝑗)

𝑛

𝑗=1
)𝑑𝑥

ℝ𝑛

=
1

𝑝𝑌(𝑦)

𝑐𝑛

(√2𝜋𝜎)
𝑚∫ 𝑥 · exp

(

−
1

𝜎2
(
1

2
||𝑦 − 𝐴𝑥||

2

2

+∑ ℎ(𝑥𝑗)
𝑛

𝑗=1⏟
≐𝐿(𝑥)≥0

)

)

𝑑𝑥

ℝ𝑛

(14)

 𝑥 =𝜎
2→0 ∫ 𝑥𝛿(𝑥 − �̃�)𝑑𝑥 = �̃� with �̃� = argmin

𝑥
𝐿(𝑥)

ℝ𝑛
 (15)

 𝑥 = argmin
�̃�
(
1

2
||𝑦 − 𝐴�̃�||

2

2
+∑ ℎ(�̃�𝑗)

𝑛

𝑗=1
) (16)

 19

Which can be solved in reasonable time for small-to-moderate dimension 𝑛 (the solution (17) is

referred to as the LASSO5 in the literature). The fact that the 𝑙0 -norm -- which would strictly

measure sparsity in (17) but which would cause combinatorial search complexity – can be replaced

by the 𝑙1-norm, with the solutions being the same in most cases. This has been a major factor that

has driven research in compressed sensing. The factor 𝜆 > 0 in (17) controls the trade-off between

the sparsity of an achieved solution (measured by ||�̃�||
1

) and the accuracy (measured by

||𝑦 − 𝐴𝑥||
2

2
) of the solution in terms of reproducing the observation vector. This factor has to be

chosen somehow, and there is no general simple rule of how to do that. The reason is that the

structural constraints used to define (17) are vague (as opposed to the well-defined problem solved

by (13) when the pdfs of the priors are known) and therefore the free factor 𝜆 is the price one has

to pay for a problem that is only defined vaguely. At some point when implementing (17), however

one has to be specific about 𝜆. The knowledge about sparsity is hidden in the choice of 𝜆, once we

are specific about the value of 𝜆 we are implicitly specific about the sparsity of the solution we

want.

Some approaches to solve the LASSO will be discussed in the following sections of the thesis, the

Iterative Soft Thresholding (IST) is a greedy method to solve the LASSO, as well as Approximate

Message Passing (AMP) that is another scheme to solve the LASSO. This algorithm produces

significantly better results with faster convergence and can be extended, in particular a Bayesian-

optimal version (BAMP) exists for known signal prior.

In this section we would like to point out that (13) is significantly complicated to compute. The

approaches to solve the problem include minimax strategies, i.e., the “best solution for the worst

priors”, as well as one that considers the low-noise case, for which the problem (17) has been

derived. It is unclear what happens, if those schemes are used in a high-noise setting and moreover,

one has to cope with adjusting parameter 𝜆.

In the thesis, the discussion of compressed sensing and approaches to solve the underdetermined

inverse problem of deducing 𝑥 from the noisy measurements 𝑦 in (1) is very much focused on a

sparse signal model for 𝑥. This is for very good reasons, as many practically interesting problems

such as image denoising and inpainting, blind source separation, deconvolution, channel

estimation in wireless communications (just to name a few) can be tracked back to sparse signal

5 Least Absolute Shrinkage and Selection Operator, [6].

 𝑥 = argmin
�̃�
(
1

2
||𝑦 − 𝐴�̃�||

2

2
+ 𝜆||�̃�||

1
) , (17)

 20

models, often not with the signal itself being sparse, but rather in some base (e.g. images after a

discrete cosine transform). But compressed sensing as such is no restricted to sparse signals or any

other special signal structure, latter can in fact be freely chosen by appropriate priors. In what

follows we will, therefore, assume at a certain point that we do know6 the prior pdfs to solve the

well-defined problem (13), which directly leads to Bayesian-optimal Approximate Message Passing

(BAMP)- an algorithm without any free factors.

6 If the prior is unknown, it may be estimated within the iterations of Approximate Message Passing
(AMP).

 21

3. Iterative schemes

As explained in the previously section we have a 𝑛 −dimensional signal 𝑥 ∈ ℝ𝑛 that is also sparse

after some linear transformation. Then we assume that 𝑥 is a s-sparse, i.e., it has at most s non-

zero components (sparsity level). Taking 𝑚 ≪ 𝑛 linear measurements according to the next

expression:

With 𝐴 the 𝑚 × 𝑛 sensing matrix and 𝑤 the 𝑚× 1 measurement noise vector.

To reconstruct the signal 𝑥 with the values obtained in 𝑦 after the compression it is impossible to

just invert de value of 𝐴 as the problem is undetermined because of 𝑚 < 𝑛, one could say that the

observation vector 𝑦 is an incomplete description of 𝑥.

The performance to guarantee the reconstruction should exploit the sparsity to resolve the

uncertainty and the relations of 𝑛 ,𝑚 , 𝑠 so reconstruction of 𝑥 from 𝑦 will be successful with high

probability.

There are many different algorithms to exploit this situation some of them are explained below.

3.1. Iterative Hard Thresholding (IHT)

The first one is the Iterative Hard Thresholding (IHT), this algorithm has two different incarnations

of the CS recovery problem to consider. On one hand, the 𝑙0-regularized problem sets

On the other hand, the 𝑠-sparse problem defines if the level 𝑠 is known a priori (or a solution with

some particular sparsity 𝑠 is desired) the optimization problem as:

In both cases we assume that the measurement matrix has a norm ||𝐴||
2
< 1 by normalization of

(18).

 𝑦[𝑚] = 𝐴[𝑚×𝑛] · 𝑥[𝑛] +𝑤[𝑚] with 𝑚 ≪ 𝑛 (18)

 𝑥 = argmin
x̃
(||𝑦 − 𝐴�̃�||

2

2
+ 𝜆 ||�̃�||

0
) (19)

 𝑥 = argmin
�̃�
(||𝑦 − 𝐴�̃�||

2

2
) subject to ||�̃�||

0
≤ 𝑠 (20)

 22

3.1.1. 𝒍𝟎-regularized problem

The problem is with solving the 𝑙0-regularized (also any other 𝑙𝑝-regularized, with 𝑝 ≠ 2) problem.

In this case, the minimization in (19) is for the vector 𝑥 and can be in very large dimensions (more

than 𝑛 = 1000). If we write out the cost function assuming column-vectors everywhere we obtain:

Now, we would like to express the solution of (21) as a sum over the components �̃�𝑗 of x̃, so the

minimization can be conducted separately in each component:

With (𝑥)𝑗 the 𝑗 -th component of the vector 𝑥 and |�̃�0| = 1 if �̃�𝑗 ≠ 0 (|�̃�0| = 0 for �̃�𝑗 = 0).

Therefore, the term �̃�𝑗
∗(𝐴∗𝐴�̃�)𝑗 does not allow for separation of the minimization problem.

To solve this problem, we will use the surrogate cost function [8] instead of the desired cost

function, with the auxiliary variable 𝑧 we could know of the same dimension as �̃�:

Accordingly, for �̃� = 𝑧 we have 𝐶𝑙0
𝑆 (�̃�, �̃�) = 𝐶𝑙0(�̃�) so minimizing 𝐶𝑙0

𝑆 (�̃�, �̃�) for �̃� will minimize the

original cost function (𝐶𝑙0(�̃�)) and generally 𝐶𝑙0
𝑆 (�̃�, 𝑥) will be a majorization of 𝐶𝑙0(�̃�) (if matrix

norm7) ||𝐴||
2
< 1. Hence, minimizing 𝐶𝑙0

𝑆 (�̃�, 𝑧) means we minimize an upper limit of 𝐶𝑙0(�̃�).

Then, if we develop the surrogate cost function we can write:

7 Note the definition of the matrix norm (“largest possible stretching factor”)
||𝐴||

2
≐ max
||𝑤||

2
=1
||𝐴𝑤||

2
< 1

So ||𝐴||
2
< 1 implies that ||𝐴(�̃� − 𝑧)||

2

2
< ||�̃� − 𝑧||

2

2
 and, thus, 𝐶𝑙0

𝑆 (�̃�, 𝑧) ≥ 𝐶𝑙0(�̃�) ∀𝑧

𝐶𝑙0(�̂�) = ||𝑦 − 𝐴�̃�||2
2
+ 𝜆||�̃�||

0
= (𝑦 − 𝐴�̃�)∗(𝑦 − 𝐴�̃�) + 𝜆||�̃�||

0

= ||𝑦||
2

2
− 2�̃�∗𝐴∗𝑦 + (𝐴�̃�)∗(𝐴�̃�) + 𝜆||�̃�||

0

 = ||𝑦||
2

2
− 2�̃�∗𝐴∗𝑦 + �̃�∗𝐴∗𝐴�̃� + 𝜆||�̃�||

0

(21)

 𝐶𝑙0(�̃�) =∑ [−2�̃�𝑗
∗(𝐴∗𝑦)𝑗

𝑛

𝑗=1
+ �̃�𝑗

∗(𝐴∗𝐴�̃�)𝑗 + |�̃�𝑗|0𝜆] + |
|𝑦||

2

2

⏟
const

 (22)

𝐶𝑙0
𝑆 (�̃�, 𝑧) = ||𝑦 − 𝐴�̃�||

2

2
+ 𝜆||�̃�||

0⏟
=𝐶𝑙0(�̃�)

+ ||�̃� − 𝑧||
2

2
− ||𝐴�̃� − 𝐴𝑧||

2

2

⏟
≥0

 (> 0) (23)

 𝐶𝑙𝑜
𝑆 (�̃�, 𝑧) = ||𝑦 − 𝐴�̃�||

2

2
+ 𝜆||�̃�||

0
+||�̃� − 𝑧||

2

2
− ||𝐴�̃� − 𝐴𝑧||

2

2
 (24)

 23

For real variables and matrixes (always assumed here) 𝑥∗ = 𝑥𝑇 and 𝐴∗ = 𝐴𝑇. We denote by 𝐴𝑗 the

𝑗-th column of the 𝑚 × 𝑛 matrix 𝐴 (𝑚 < 𝑛). Now we can write the terms in (24) that depend on

the vector �̃� as sums over its components �̃�𝑗:

With the ()𝑗 the 𝑗-th component of the vector within the brackets and |�̃�𝑗|0 ≡ {
1 if x̃j ≠ 0

0 if x̃j = 0

Further simplified:

The idea is now to minimize 𝐶𝑙0
𝑆 (�̃�, 𝑧) by variation of �̃� for given 𝑧. As 𝐶𝑙0

𝑆 (�̃�, 𝑧) = ∑ 𝐷(�̃�𝑗) +
𝑛
𝑗=1

𝐾 ≥ 0 ∀�̃� we can minimize 𝐶𝑙0
𝑆 (�̃�, 𝑧) by minimizing the element-wise cost 𝐷(�̃�𝑗) (ignoring the

constant K) for each vector component �̃�𝑗 independently. When minimizing 𝐷(�̃�𝑗) over �̃�𝑗 we have

to distinguish two types of solutions:

a) �̃�𝑗 = 0 → |�̃�𝑗|0 = 0 → 𝐷(�̃�𝑗) = 0

b) �̃�𝑗 ≠ 0 → |�̃�𝑗|0 = 1 → 𝐷(�̃�𝑗) = �̃�𝑗
2 − 2�̃�𝑗 (𝑧𝑗 + (𝐴

𝑇(𝑦 − 𝐴𝑧))
𝑗
) + 𝜆

In this case we obtain the minimum by

= ||𝑦||
2

2
− 2�̃�∗𝐴∗𝑦 + (𝐴�̃�)∗(𝐴�̃�) + 𝜆||�̃�||

0
+ ||�̃�||

2

2
− 2�̃�∗𝑧 + ||𝑧||

2

2

− [(𝐴�̃�)∗(𝐴�̃�) − 2�̃�∗𝐴∗𝐴𝑧 + ||𝐴𝑧||
2

2
]

= ||�̃�||
2

2
− 2�̃�∗𝑧 − 2�̃�∗𝐴∗𝑦 − 2�̃�∗𝐴∗𝐴𝑧 + 𝜆||�̃�||

0
+ ||𝑦||

2

2
+ ||𝑧||

2

2
− ||𝐴𝑧||

2

2

𝐶𝑙0
𝑆 (�̃�, 𝑧) =∑ [�̃�𝑗

2 − 2�̃�𝑗(𝑧𝑗 + (𝐴
𝑇𝑦)𝑗 − (𝐴

𝑇𝐴𝑧)𝑗)]
𝑛

𝑗=1

+∑ 𝜆|�̃�|0 + ||𝑦||2
2
+ ||𝑧||

2

2
− ||𝐴𝑧||

2

2

⏟
>0

𝑛

𝑗=1

(25)

𝐶𝑙0
𝑆 (�̃�, 𝑧) =∑ [�̃�𝑗

2 − 2�̃�𝑗(𝑧𝑗 + (𝐴
𝑇𝑦)𝑗 − (𝐴

𝑇𝐴𝑧)𝑗) + 𝜆|�̃�|0]⏟
𝐷(�̃�𝑗)

𝑛

𝑗=1

+ ||𝑦||
2

2
+ ||𝑧||

2

2
− ||𝐴𝑧||

2

2

⏟
>0⏟

𝐾≡𝑓(�̃�)

(26)

𝑑𝐷(�̃�𝑗)

𝑑�̃�𝑗
= 2�̃�𝑗 − 2 (𝑧𝑗 + (𝐴

𝑇(𝑦 − 𝐴𝑧))
𝑗
) + 𝜆 = 0

(27)

 24

So we find the minimum at �̃�𝑗
𝑜𝑝𝑡
= 𝑧𝑗 + (𝐴

𝑇(𝑦 − 𝐴𝑧))
𝑗
 which be plug back into 𝐷(�̃�):

We will pick either the solution a) or b) – whatever minimizes 𝐷(�̃�𝑗):

 As for a) �̃�𝑗 = 0 and the cost is 𝐷(0) = 0 we will always pick this solution, unless the

second solution b) leads to a negative cost

 𝐷(�̃�𝑗
𝑜𝑝𝑡
) = 𝜆 − (�̃�𝑗

𝑜𝑝𝑡
)
2

 is negative, whenever |�̃�𝑗
𝑜𝑝𝑡
| = |𝑧𝑗 + (𝐴

𝑇(𝑦 − 𝐴𝑧))
𝑗
| > √𝜆

(with 𝜆 the regularization parameter chosen in the original problem(2.1.2)).

In summary, 𝐶𝑙0
𝑆 (�̃�, 𝑧) in (23) is minimized when the components �̃�𝑗, 𝑗 = 1,2,… of the solution

vector �̃� ≐ {�̃�1, �̃�2, … , �̃�𝑛} are chosen as follows:

As the notation in (29) is bulky, we define the Hard Thresholding Operator (with threshold 𝜏):

It operates component-wise when applied to a

vector 𝒖 instead of a scalar 𝑢.

With (30) the solution (29) reads in vector notation (with 𝐻(. , .) applied component-wise)

Finally, this equation is the solution of the minimization of the surrogate cost function (23) for a

given auxiliary variable 𝑧.

We analyse the possible different solutions for a given 𝑧, we have that if 𝑧 = 𝑥 then 𝐶𝑙0
𝑆 (�̂�, 𝑧) =

𝐶𝑙0(�̂�), i.e., a solution of the original problem. Otherwise, if 𝑧 ≠ 𝑥 , 𝐶𝑙𝑜
𝑆 (�̂�, 𝑧) is still minimized by

 𝐷(�̃�𝑗
𝑜𝑝𝑡
)
2
− 2(�̃�𝑗

𝑜𝑝𝑡
)
2
+ 𝜆 = 𝜆 − (�̃�𝑗

𝑜𝑝𝑡
)
2

(28)

 𝑥𝑗 = �̃�𝑗
𝑜𝑝𝑡
= {
𝑧𝑗 + (𝐴

𝑇(𝑦 − 𝐴𝑧))
𝑗
 if |𝑧𝑗 + (𝐴

𝑇(𝑦 − 𝐴𝑧))
𝑗
| > √𝜆

0 otherwise
 (29)

𝐻(𝑢; 𝜏) = {

𝑢 if |u| > τ
0 otherwise

 (30)

 𝑥 = 𝐻(𝑧 + (𝐴𝑇(𝑦 − 𝐴𝑧)) ; √𝜆)
(31)

Figure 3. Function of the Hard Thresholding
Operator

 25

(29) and due to 𝐶𝑙0
𝑆 (�̂�, 𝑧) ≥ 𝐶𝑙0(�̂�) we still minimize an upper bound of the original cost function

𝐶𝑙0(·). Hence, it is reasonable to assume that, if 𝑧 ≠ 𝑥, the solution 𝑥 of (31) will be closer than 𝑧

to the desired solution that minimizes 𝐶𝑙0(·). This motivates to iterate (31) – with the iteration

counter 𝑖 – and use the previous solution of (31) as the value for 𝑧 in the next step 𝑖 + 1 when

solving (31) again, i.e.,

Finally, the algorithm of the IHT for the 𝑙0-regularized problem is:

with the hard thresholding operator (applied component-wise):

and with ||𝐴||
2
≐ max
||𝑥||

2
=1
||𝐴𝑥||

2
= √max{eig(𝐴∗𝐴)} < 1.

As have already explained before, the parameter 𝜆 controls the trade-off between accuracy and

sparsity in (19), we also define the start of the algorithm with 𝑥(0) = 0, as is not a critical choice.

We also define a suitable stopping criterion that iterates until ||�̂�(𝑖+1) − 𝑥(𝑖)||
2
< 𝜖 ||�̂�(𝑖)||

2
, with

𝜖 < 10−4.

The algorithm can also be applied to signal vectors 𝑥 that are not strictly sparse, the resulting error

will contain a component, due to the best 𝑠-sparse approximation. This means the algorithm is

robust in the sense that it can cope with measurement noise as well as not exactly sparse signals,

this is rather important in practice.

3.1.2. 𝒔-sparse problem

As defined in (20) the algorithm is made to guarantee a sparse solution (as opposed to the 𝑙0-

regularized problem). The concept in this case is similar as above (23), optimizing a surrogate cost

function [8] with the auxiliary variable 𝑧 of the same dimension as �̃�:

 𝑥(𝑖+1) = 𝐻 (𝑥(𝑖) + (𝐴𝑇(𝑦 − 𝐴𝑥(𝑖))) ; √𝜆) (32)

 𝑥(𝑖+1) = 𝐻(𝑥(𝑖) + 𝐴𝑇(𝑦 − 𝐴𝑥(𝑖))⏟
=𝑢

; √𝜆) 𝑖 = 0, 1, 2, 3, … (33)

 𝐻(𝑢; 𝜏) = {
𝑢 if |u| > τ
0 otherwise

 (34)

 26

As above, (35) can be decoupled into sum of terms over the signal components. We obtain the

same as (26), only without a constraint scaled by 𝜆.

Therefore, if we minimize the cost-contributions 𝐷(�̃�𝑗) of the components separately we obtain:

so we find the minimum at 𝑥𝑗
𝑜𝑝𝑡
= 𝑧𝑗 + (𝐴

𝑇(𝑦 − 𝐴𝑧))
𝑗
 which once if plugged back into 𝐷(�̃�𝑗):

Consequently, the total cost is:

The total cost takes its smallest value for a given number 𝑠 of non-zero components, when the 𝑠

largest (in magnitude) components �̃�𝑗
𝑜𝑝𝑡

 are picked.

A simplified notation as (31) defines

with the hard thresholding operator (known already from above; again applied component wise)

8 Note: no regularization here, but the constraint ||�̃�||

0
≤ 𝑠 is inserted later

𝐶𝑠
𝑆(�̃�, 𝑧) = ||𝑦 − 𝐴�̃�||

2

2

⏟
=𝐶𝑠(�̃�)

+ ||�̃� − 𝑧||
2

2
− ||𝐴(�̃� − 𝑧)||

2

2

⏟
≥0 as ||𝐴||

2
<1

 (> 0) (35)8

𝐶𝑠
𝑆(�̃�, 𝑧) =∑ [�̃�𝑗

2 − 2�̃�𝑗 (𝑧𝑗 + (𝐴
𝑇(𝑦 − 𝐴𝑧))

𝑗
)]⏟

𝐷(�̃�𝑗)

+ ||𝑦||
2

2
+ ||𝑧||

2

2
− ||𝐴𝑧||

2

2

⏟
>0⏟

𝐾≡𝑓(�̃�)

𝑛

𝑗=1
 (36)

𝑑𝐷(�̃�𝑗)

𝑑�̃�𝑗
= 2�̃�𝑗 − 2(𝑧𝑗 + (𝐴

𝑇(𝑦 − 𝐴𝑧))
𝑗
) = 0

(37)

 𝐷(�̃�𝑗
𝑜𝑝𝑡
) = (�̃�𝑗

𝑜𝑝𝑡
)
2
− 2(�̃�𝑗

𝑜𝑝𝑡
)
2
= −(�̃�𝑗

𝑜𝑝𝑡
)
2

(38)

𝐶𝑠
𝑆(�̃�, 𝑧) =∑ [(𝑧𝑗 + (𝐴

𝑇(𝑦 − 𝐴𝑧))
𝑗
)]⏟

�̃�
𝑗
𝑜𝑝𝑡

+ ||𝑦||
2

2
+ ||𝑧||

2

2
− ||𝐴𝑧||

2

2

⏟
>0⏟

𝐾≡𝑓(�̃�)

𝑛

𝑗=1
 (39)

 𝑥 = 𝐻(𝑧 + (𝐴𝑇(𝑦 − 𝐴𝑧)) ; 𝜏𝑠)
(40)

 𝐻(𝑢; 𝜏) = {
𝑢 if |u| > τs
0 otherwise

 (41)

 27

and the threshold 𝜏𝑠 selected as the 𝑠-largest magnitude of the vector 𝑢 = 𝑧 + (𝐴𝑇(𝑦 − 𝐴𝑧)). A

common alternative is to defined the 𝑠-sparse vector-base hard thresholding operator 𝐻𝑠(𝑢) that

keeps the components with the 𝑠 largest magnitudes and sets the rest to zero.

Therefore, the 𝑠-sparse iterative hard thresholding algorithm reads

with ||𝐴||
2
≐ max
||𝑥||

2
=1
||𝐴𝑥||

2
= √max{eig(𝐴∗𝐴)} < 1.

As in the 𝑙0-regularized problem, we define the start of the algorithm with 𝑥(0) = 0, as is not a

critical choice. We also define a suitable stopping criterion that iterates until ||𝑥(𝑖+1) − 𝑥(𝑖)||
2
<

𝜖 ||�̂�(𝑖)||
2

, with 𝜖 < 10−4. Its important to denote that this algorithm can handle huge vector

dimension (as opposed to many other schemes).

The algorithm can also be applied to signal vectors 𝑥 that are not strictly sparse, the resulting error

will contain a component, due to the best 𝑠-sparse approximation. This means the algorithm is

robust in the sense that it can cope with measurement noise as well as not exactly sparse signals,

this is (as in 𝑙0-regularized problem).

The performance guarantee is a rather strong statement, but it has a disadvantage because the

Restricted Isometry Property (RIP) is required for 𝐴 which is hard to check for a given measurement

matrix. Another, performance guarantee is also of the “uniform type”, ensuring error bounds and

convergences guarantees for any possible source vector: this is again a rather strong statement. In

practice we may often be more interested in average performance guarantee rather than in one

for the worst case (as the one above). In addition, we cannot draw strong conclusions from a worst-

case guarantee for the average-case, so one way to obtain “average-case guarantees” is to run

simulations.

3.2. Iterative Soft Thresholding (IST)

The problem setting is the same one as explained in (18) the first part of this section. As we have

seen in the previous algorithm, IHT has a combinatorial complexity due to 𝑙0-pseudo-norm. For the

Iterative Soft Thresholding (IST) algorithm we change the norm to 𝑙1 instead of 𝑙0 as a common

relaxation of the problem:

 𝑥(𝑖+1) = 𝐻𝑠(𝑥
(𝑖) + 𝐴𝑇(𝑦 − 𝐴𝑥(𝑖))) 𝑖 = 0, 1, 2, 3,… (42)

 28

The difficulties in this case come from the convex optimization problem (still rather complex for

high dimension 𝑛), the Least Absolute Shrinkage and Selection Operator (LASSO) problem, also

called Basis Pursuit Denoising (BPDN). The 𝑙1-norm also promotes sparsity that often leads to the

same result as for 𝑙0-norm.

For convenience, instead of the desired cost function in (44) we normalize differently:

Similar as for IHT (see (23)) we consider a surrogate cost function with the auxiliary variable 𝑧 of

the same dimension as �̃�:

Again as for IHT we request ||𝐴||
2
≐ max
||𝑤||

2
=1
||𝐴𝑤||

2
, then if ||𝐴||

2
< 1 implies that ||𝐴(�̃� −

𝑧)||
2

2
< ||�̃� − 𝑧||

2

2
 and, hence, 𝐶𝑙1

𝑆 (�̃�, 𝑧) ≥ 𝐶𝑙1(�̃�) ∀𝑧. Accordingly, for �̃� = 𝑧 we have 𝐶𝑙1
𝑆 (�̃�, �̃�) =

𝐶𝑙1(�̃�) so minimizing 𝐶𝑙1
𝑆 (�̃�, �̃�) for �̃� will minimize the original cost function (𝐶𝑙1(�̃�)) and generally

𝐶𝑙1
𝑆 (�̃�, 𝑥) will be a majorization of 𝐶𝑙1(�̃�)). Hence, minimizing 𝐶𝑙1

𝑆 (�̃�, 𝑧) means we minimize an

upper limit of 𝐶𝑙1(�̃�). With exactly the same steps as for derivation of (27), we re-write (46) as a

sum over independent contributions to the total cost:

As 𝐶𝑙1
𝑆 (�̃�, 𝑧) = ∑ 𝐷(�̃�𝑗) + 𝐾 ≥ 0 ∀�̃�

𝑛
𝑗=1 we can minimize 𝐶𝑙1

𝑆 (�̃�, 𝑧) by minimizing independently

the element-wise cost 𝐷(�̃�𝑗) for each component �̃�𝑗 ignoring the constant 𝐾. At that point, when

minimizing

 𝑥 = argmin
x̃
(
1

2
||𝑦 − 𝐴�̃�||

2

2
+ 𝜆 ||�̃�||

1
)

(43)

 𝑥 = argmin
x̃
(||𝑦 − 𝐴�̃�||

2

2
+ �̃� ||�̃�||

1
) (so �̃� = 2𝜆) (44)

𝐶𝑙1
𝑆 (�̃�, 𝑧) = ||𝑦 − 𝐴�̃�||

2

2
+ �̃�||�̃�||

0⏟
=𝐶𝑙1(�̃�)

+ ||�̃� − 𝑧||
2

2
− ||𝐴(�̃� − 𝑧)||

2

2

⏟
≥0 𝑎𝑠 ||𝐴||

2
<1

 (> 0) (45)

𝐶𝑙1
𝑆 (�̃�, 𝑧)

=∑ [(�̃�𝑗
2 − 2�̃�𝑗 (𝑧𝑗 + (𝐴

𝑇(𝑦 − 𝐴𝑧))
𝑗
)) + �̃�|�̃�𝑗|]

⏟
𝐷(�̃�𝑗)

𝑛

𝑗=1

+ ||𝑦||
2

2
+ ||𝑧||

2

2
− ||𝐴𝑧||

2

2

⏟
>0⏟

𝐾≡𝑓(�̃�)

(46)

 29

over �̃�𝑗 we have to distinguish solutions with |�̃�𝑗| ≥ 0 and |�̃�𝑗| < 0. Note that 𝑟𝑗 can take any real

value.

a) �̃�𝑗 ≥ 0 ⟹ |�̃�𝑗| = �̃�𝑗 hence (noting �̃� = 2𝜆)

In this case we obtain a minimum by

we plug (50) back into 𝐷(�̃�𝑗) in (49):

so as long as 𝑟𝑗 > 𝜆 we obtain negative “cost” (ignoring constant 𝐾) and the optimal

solution is given by

for 𝑟𝑗 < 𝜆 the smallest possible value 𝐷(�̃�𝑗) = 0 is taken at �̃�𝑗 ≥ 0. In summary we have

for 𝑥𝑗 ≥ 0:

b) �̃�𝑗 < 0 ⇒ |�̃�𝑗| = −�̃�𝑗, hence (noting �̃� = 2𝜆)

We obtain a minimum by

 𝐷(�̃�𝑗) = �̃�𝑗
2 − 2�̃�𝑗 (𝑧𝑗 + (𝐴

𝑇(𝑦 − 𝐴𝑧))
𝑗⏟

≐𝑟𝑗

)+ �̃�|�̃�𝑗|
(47)

 𝐷(�̃�𝑗) = �̃�𝑗
2 − 2�̃�𝑗(𝑟𝑗 − 𝜆) = �̃�𝑗 (�̃�𝑗 − 2(𝑟𝑗 − 𝜆)) (48)

𝑑𝐷(�̃�𝑗)

𝑑�̃�𝑗
= 2�̃�𝑗 − 2(𝑟𝑗 − 𝜆) = 0 ⇒ �̃�𝑗

𝑜𝑝𝑡
= (𝑟𝑗 − 𝜆) ∀𝑟𝑗 ≥ 𝜆

(49)

 𝐷(�̃�𝑗
𝑜𝑝𝑡
) = �̃�𝑗

𝑜𝑝𝑡
(�̃�𝑗
𝑜𝑝𝑡
− 2�̃�𝑗

𝑜𝑝𝑡
) − (�̃�𝑗

𝑜𝑝𝑡
)
2

(50)

 �̃�𝑗
𝑜𝑝𝑡
= 𝑟𝑗 − 𝜆 if 𝑟𝑗 ≥ 𝜆 (51)

 𝑥𝑗 = �̃�𝑗
𝑜𝑝𝑡
= {
𝑟𝑗 − 𝜆 if 𝑟𝑗 ≥ 𝜆 then 𝐷(𝑥𝑗) ≤ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 then 𝐷(𝑥𝑗) = 0
 (52)

 𝐷(�̃�𝑗) = �̃�𝑗
2 − 2�̃�𝑗(𝑟𝑗 + 𝜆) = �̃�𝑗 (�̃�𝑗 − 2(𝑟𝑗 + 𝜆)) (53)

 30

we plug (55) back into 𝐷(�̃�𝑗) in (54):

so as long as 𝑟𝑗 < −𝜆 we obtain negative “cost” (ignoring constant 𝐾) and the optimal

solution is given by

for 𝑟𝑗 ≥ −𝜆 the optimal solution must be located at the corner of the definition region

�̃�𝑗 < 0, as (55) has only one solution. We take the again cost functions (without constants):

hence, for 𝑟𝑗 ≥ −𝜆 the smallest possible value 𝐷(�̃�𝑗) = 0 is taken at �̃�𝑗 = 0. Finally, for

𝑥𝑗 < 0:

Given the two solutions a) and b) above, which both apply for any real number 𝑟𝑗, we still have to

decide which one to pick for a given value 𝑟𝑗. As the regularization parameter 𝜆 ≥ 0 there is only a

chance to obtain a negative cost, when solution a) is chosen for 𝑟𝑗 > 0 (negative cost if 𝑟𝑗 > 𝜆, zero

cost in all other cases). The same principle applies to values 𝑟𝑗 < 0. Therefore, the overall solution

reads:

𝑑𝐷(�̃�𝑗)

𝑑�̃�𝑗
= 2�̃�𝑗 − 2(𝑟𝑗 + 𝜆) = 0 ⇒ �̃�𝑗

𝑜𝑝𝑡
= (𝑟𝑗 + 𝜆) ∀𝑟𝑗 < −𝜆

(54)

 𝐷(�̃�𝑗
𝑜𝑝𝑡
) = �̃�𝑗

𝑜𝑝𝑡
(�̃�𝑗
𝑜𝑝𝑡
− 2�̃�𝑗

𝑜𝑝𝑡
) − (�̃�𝑗

𝑜𝑝𝑡
)
2

(55)

 �̃�𝑗
𝑜𝑝𝑡
= 𝑟𝑗 + 𝜆 if 𝑟𝑗 < −𝜆 (56)

 𝐷(�̃�𝑗) = �̃�𝑗 (�̃�𝑗 − 2(𝑟𝑗 + 𝜆)) ≥ 0 for 𝑟𝑗 ≥ −𝜆 and 𝑥𝑗 < 0 (57)

 𝑥𝑗 = �̃�𝑗
𝑜𝑝𝑡
= {

𝑟𝑗 + 𝜆 if 𝑟𝑗 < −𝜆 then 𝐷(𝑥𝑗) < 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 then 𝐷(𝑥𝑗) = 0
 (58)

 𝑥𝑗 = {

𝑟𝑗 − 𝜆 if 𝑟𝑗 > 𝜆 then 𝐷(𝑥𝑗) < 0

0 if −𝜆 ≤ 𝑟𝑗 ≤ 𝜆 then 𝐷(𝑥𝑗) = 0

𝑟𝑗 + 𝜆 if 𝑟𝑗 < −𝜆 then 𝐷(𝑥𝑗) < 0

 (59)

 31

With these conditions the solution using the Soft Thresholding operator 𝜂(𝑟𝑗; 𝜆) is:

The Soft Thresholding operator is applied component-wise in vector notation. Certainly, the

surrogate cost function 𝐶𝑙1
𝑆 (�̃�, 𝑧) in (46) is minimized for given measurements 𝑦 and a given

auxiliary variable 𝑧 by

Similar as for IHT, we motivate iterations by considering that 𝐶𝑙1
𝑆 (�̂�, 𝑧) ≤ 𝐶𝑙1

𝑆 (�̃�, 𝑧) ∀�̃�. So, if we

estimate 𝑥(𝑖) , we can use it as an auxiliary variable 𝑧 = 𝑥(𝑖) and improve this estimate by

minimizing 𝐶𝑙1
𝑆 (�̃�, 𝑥(𝑖)). This is achieved by application of (63), i.e.,

This is the scheme we call Iterative Soft Threholding, it was introduced for Compressed Sensing in

[8]. As well as the IHT we start iterations with 𝑥(0) = 0 as is not a critical choice. The threshold

parameter 𝜆, according to the derivation just adopted from the cost function might not be the best

choice to really minimize 𝐶𝑙1(�̃�), as the derivation minimizes a surrogate cost function and not

𝐶𝑙1(�̃�) directly.

We won’t consider other versions of IST in this thesis but is good to know that there is an

accelerated version introduced in [10].

3.3. Heuristics for Iterative Recovery

First of all, we start from noiseless measurement equation 𝑦[𝑚] = 𝐴[𝑚×𝑛] · 𝑥[𝑛] with 𝑚 = 𝑛. If 𝐴

is orthogonal, i.e., 𝐴∗ = 𝐴−1 (and 𝐴∗ = 𝐴𝑇 for 𝐴 real: always assumed), then the solution could be

fined by simple inversion, i.e., 𝐴∗𝑦 = 𝑥. However, if we assume 𝑚 < 𝑛, 𝐴 can’t be orthogonal and

is not invertible but we could still write:

 𝑥𝑗 = 𝜂(𝑟𝑗; 𝜆) = {

𝑟𝑗 − 𝜆 if 𝑟𝑗 > 𝜆

0 if −𝜆 ≤ 𝑟𝑗 ≤ 𝜆

𝑟𝑗 + 𝜆 if 𝑟𝑗 < −𝜆
 (60)

 = 𝑠𝑖𝑔𝑛(𝑟𝑗)max(|𝑟𝑗| − 𝜆, 0)
(61)

 𝑥 = 𝜂(𝑧 + (𝐴𝑇(𝑦 − 𝐴𝑧)); 𝜆) (62)

 𝑥(𝑖+1) = 𝜂 (𝑥(𝑖) + (𝐴𝑇(𝑦 − 𝐴𝑥(𝑖))) ; 𝜆) (63)

Figure 4. Function of the Soft Thresholding
Operator

 32

The term 𝐻𝑥 can be interpreted as “noise”, due to random entries of 𝐴, so 𝐴∗𝑦 = 𝑥 + 𝑛𝑜𝑖𝑠𝑒 ≐ �̃�.

De-noising from the literature (e.g. [3],[11]): appropriately tuned (𝜆) soft thresholding of (x +

noise) will reduce noise and lead to an estimate 𝑥(1) of 𝑥 with smaller Mean Squared Error (MSE).

Then, de-noising of sparse signal by soft thresholding 𝜂(), applied component-wise to �̃� ≐ 𝑥 +

𝑛𝑜𝑖𝑠𝑒:

If 𝑥(1) is a better estimate of 𝑥 than �̃� = 𝐴∗𝑦, we have ||𝑥 − �̂�(1)||
2

2

< ||𝑥 − 𝐴∗𝑦||
2

2
. Then if we use

iterative soft thresholding with the initialisation 𝑥(0) = 0:

With the appropriate threshold 𝜆 the “noise” 𝐻(𝑥 − 𝑥(𝑖)) gets smaller (in MSE) with each

iteration. Ultimately, 𝑥(𝑖)
𝑖→∞
→ 𝑥, so 𝑥(𝑖+1) = 𝜂(𝑥; 𝜆) with 𝜆 → 0 then with decreasing noise, the

threshold 𝜆 must approach zero, as only then we obtain a fixed point 𝑥 = 𝜂(𝑥; 0) at the desired

solution. Therefore, the exact recovery for noiseless measurements are only possible with adaptive

𝜆. The choice of 𝜆 with noisy measurements can be seen as a problem where extra measurement

noise adds to the “noise” due to undersampling (𝑚 < 𝑛). Additionally, IHT (for the 𝑙0-regularized

problem) has the same problem with adjusting the threshold.

Finally, now that we know how all these algorithms work we are ready to recover our signal, but

there are still some difficulties. First of all, one could say that the results are not the best possible,

moreover, is not clear how we choose the parameters of 𝜆 and 𝜏 and the convergence of the signal

is slow.

In an extensive numerical study in [6] several iterative recovery algorithms were optimally tuned

for given undersampling factor 𝛿 = 𝑚/𝑛, this parameter is known from the measurement matrix.

 𝐴∗𝑦 = 𝐴∗𝐴𝑥 = 𝑥 + (𝐴∗𝐴 − 𝐼)⏟
≐𝐻

𝑥 (64)

 𝑥(1) = 𝜂(�̃�; 𝜆) = {

�̃� − 𝜆 if �̃� > 𝜆
0 if − 𝜆 ≤ �̃� ≤ 𝜆
�̃� + 𝜆 if �̃� < −𝜆

} = 𝑠𝑖𝑔𝑛(�̃�)max|�̃�| − 𝜆, 0) (65)

𝑥(𝑖+1) = 𝜂(𝐴∗(𝑦 − 𝐴𝑥(𝑖) + 𝑥(𝑖); 𝜆) 𝑖 = 0, 1, 2, …

= 𝜂(𝐴∗𝐴(𝑥 − 𝑥(𝑖)) + 𝑥(𝑖); 𝜆)

= 𝜂(𝐴∗𝐴(𝑥 − 𝑥(𝑖)) + 𝑥(𝑖) + 𝑥 − 𝑥; 𝜆)

= 𝜂(𝐴∗𝐴(𝑥 − 𝑥(𝑖)) − (𝑥 − 𝑥(𝑖)) + 𝑥; 𝜆)

= 𝜂(𝐻(𝑥 − 𝑥(𝑖)) + 𝑥; 𝜆) with H ≐ A∗A − I

(66)

 33

4. Approximate Message Passing (AMP) and Bayesian derivation

(BAMP)

Approximate Message Passing (AMP) is a rather new topic and as yet the field has not settled. In

this section we will jump from the IST to new AMP algorithm thanks to the graphical model for the

LASSO and the min-sum algorithm.

 As it has seen in the previous sections of the thesis we set the general noisy problem

Where 𝑦 is the observation vector, 𝑤 the measurement vector noise with variance 𝜎𝑤
2 and 𝑥 is the

sparse signal to be recovered. The measurement matric 𝐴 = {𝐴:1, 𝐴:2, … , 𝐴:𝑛}, assume normalized

column vectors ||𝐴:𝑗||
2
= 1.

4.1. Graphical model for the LASSO

At this point, we want to find a some sparse solution and this lead us to the Least Absolute

Shrinkage and Selection Operator (LASSO). This is the method that performs both variable selection

and regularization in order to enhance the prediction accuracy and interpretability of the statistical

model it produces. In our case, we represent the LASSO problem in the so-called Lagrangian form

Therefore, our cost function 𝐶𝑙1(�̃�) expressed as the 𝑞𝑡ℎ component

Where (𝐴�̃�)𝑞 denotes the 𝑞𝑡ℎ component of the “measurement” resulting from a particular

choice for �̃�. Then, if we develop the cost function in (70)

𝑦[𝑚] = 𝐴[𝑚×𝑛] · 𝑥[𝑛] +𝑤[𝑚] with 𝑚 ≪ 𝑛

𝒚 = 𝑨𝒙 +𝒘

(67)

 𝑥 = argmin
�̃�
(
1

2
||𝑦 − 𝐴�̃�||

2

2
+ 𝜆||�̃�||

1⏟
𝐶𝑙1(�̃�)

) (68)

 𝐶𝑙1(�̃�) =
1

2
||𝑦 − 𝐴�̃�||

2

2
+ 𝜆||�̃�||

1
=
1

2
∑ (𝑦𝑞 − (𝐴�̃�)𝑞)

2
+ 𝜆∑ |�̃�𝑗|

𝑛

𝑗=1

𝑚

𝑞=1
 (69)

 34

with 𝐹 = {1, 2, … ,𝑚} the set of all measurement indices and 𝑉 = {1, 2, … , 𝑛} the set of all indices

of the components of the signal vector. This notation is introduced to better match the cost

function to standard graph notation.

Now the goal is to minimize the cost function by suitable choice of the optimization variables, i.e.,

the components �̃�𝑗 , 𝑗 = 1,… , 𝑛 of the signal vector �̃�. As well known, a direct minimization of the

first part in (71) will be prohibitively complex in very high dimensions 𝑛 (even though is a convex

problem). The principle of a graph-based approach is that one tries to minimize the total cost by

local minimization of the components 𝐶𝑞(�̃�) and 𝐶𝑗(�̃�) of the cost function. Note that we had

achieved this before by manipulation of the cost function such that the minimization problem

could be algebraically decomposed into independent sums of costs per optimization variable �̃�𝑗. It

is important to know too that depending on the matrix 𝐴, the sum-terms 𝐶1(�̃�) may not all contain

all signal components �̃�𝑗.

Once the cost functions are settled, we define the general graph for measurement matrix 𝐴 =

{𝑎𝑞,𝑗}, 𝑞 = 1,… ,𝑚; 𝑗 = 1,… , 𝑛. We assume that the graph is fully connected, i.e., 𝑎𝑞,𝑗 ≠ 0 ∀𝑞 and

∀𝑗, as it is a common case in compressed sensing.

Then if we represent the measurement matrix in a graph model we obtain:

𝐴 =

{

𝑎11 𝑎12 𝑎1𝑗 𝑎14 … 𝑎1𝑛
𝑎𝑞1 𝑎𝑞2 𝑎𝑞𝑗 𝑎𝑞4 … 𝑎𝑞𝑛
𝑎31 𝑎32 𝑎3𝑗 𝑎34 … 𝑎3𝑛
… … … … … …
𝑎𝑚1 𝑎𝑚2 𝑎𝑚𝑗 𝑎𝑚4 … 𝑎𝑚𝑛}

Once, the graph model is settled we use the min-sum algorithm to minimize our cost function.

𝐶𝑙1(�̃�) =
1

2
∑ (𝑦𝑞 − 𝐴𝑞:�̃�)

2
+ 𝜆∑ |�̃�𝑗|

𝑛

𝑗=1

𝑚

𝑞=1

=∑
1

2
(𝑦𝑞 − 𝐴𝑞:�̃�)

2

⏟
𝐶𝑞(�̃�)

+∑ 𝜆|�̃�𝑗|⏟
𝐶𝑗(�̃�)

𝑗∈𝑉𝑞∈𝐹

(70)

Figure 5. Graph representation for the LASSO problem

 35

4.2. Min-sum algorithm

The min-sum algorithm is an established scheme to minimize a cost function on a graph, for

background details see ¡Error! No se encuentra el origen de la referencia.. In this case, we apply

the algorithm to the last part of (71) and we obtain for the message-update rules for all 𝑗 = 1,… , 𝑛

and 𝑞 = 1,… ,𝑚:

The final step is to estimate 𝑥𝑗 after convergence of the messages 𝑣𝑗→𝑞
(𝑖+1)

(�̃�𝑗) and 𝑓𝑞→𝑗
(𝑖+1)

(�̃�𝑗):

As we can see the message 𝑓𝑞→𝑗
(𝑖+1)

(�̃�𝑗) depends on �̃�𝑗 only through the term 𝑎𝑞𝑗�̃�𝑗, then, we can

assume that this function is approximated by a Taylor series that is developed around the (for the

moment unknown) 𝑥𝑗-value that minimizes the local cost function. This minimum later appears as

a number that describes the function 𝑓𝑞→𝑗
(𝑖+1)

(�̃�𝑗). The minimum-operation in 𝑓𝑞→𝑗
(𝑖+1)

(�̃�𝑗) (for the

LASSO cost function) enforces a solution that can be expressed by soft thresholding 𝜂(·;·) [Section

3.2]. During this procedure of the somewhat complicated derivation, various terms can be safely

dropped under the assumption that the matrix columns are normalized (unit-norms columns of 𝐴)

and that the dimension considered are large [10].

As an intermediate result we obtain a new (and approximate) message-passing rules. The message-

update rules for iteration 𝑖 for all 𝑗 = 1,… , 𝑛 and 𝑞 = 1,… ,𝑚 are:

The final step consists in estimate 𝑥𝑗 after convergence of the messages �̃�𝑗→𝑞
(𝑖+1)

 and 𝑟𝑞→𝑗
(𝑖)

:

variable-node 𝑗 to factor-node 𝑞: 𝑣𝑗→𝑞
(𝑖+1)

(�̃�𝑗) = 𝜆|�̃�𝑗| +∑ 𝑓𝑞→𝑗
(𝑖)
(�̃�𝑗)

�̃�∈𝜕𝑗\𝑞
 (71)

factor-node 𝑞 to variable-

node 𝑗:
𝑓𝑞→𝑗
(𝑖+1)

(�̃�𝑗) = min
�̃�𝜕𝑞\𝑗

{
1

2
(𝑦𝑞 − 𝐴𝑞:�̃�)

2
+∑ 𝑣𝑗→𝑞

(𝑖)
(�̃�𝑗)

�̃�∈𝜕𝑞\𝑗
} (72)

 𝑥𝑗 = argmin
�̃�∈ℝ

{𝜆|�̃�𝑗| +∑ 𝑓𝑞→𝑗
(𝑖+1)

(�̃�𝑗)
𝑞∈𝜕𝑗

} (73)

 �̃�𝑗→𝑞
(𝑖+1)

= 𝜂 (∑ 𝐴�̃�𝑗𝑧𝑞→𝑗
(𝑖) ; 𝜃𝑖

𝑚

�̃�=1,�̃�≠𝑞
) (74)

 𝑧𝑞→𝑗
(𝑖)

= 𝑦𝑞 − (∑ 𝐴�̃�𝑗�̃�𝑗→𝑞
(𝑖)

𝑛

�̃�=1,�̃�≠𝑗
) (75)

 36

This message passing algorithm is still very complicated, as for each signal component 𝑗 the

iterations must be run separately with the sums in (75) and (76) having to be computed also for

each different value of 𝑞 and 𝑗.

In the final steps, the message passing scheme above is further simplified, again by dropping terms

in expanded version that can be neglected due to matrix-columns normalization and large

dimension assumed. The final result is of the type:

with signal-dependent constants 𝜃𝑖 and 𝑏(𝑖−1) and 𝑖 the iterations counter and soft-thresholding

operator seen in the [Section 3.2]

that is applied component-wise to the vector 𝑟𝑗 = 𝑥
(𝑖−1) + 𝐴𝑇𝑧(𝑖−1).

Note that this algorithm is very similar to IST, the difference is the term 𝑏(𝑖−1)𝑧(𝑖−1) in (80).

4.3. Approximate Message Passing (AMP)

The Approximate Message Passing (AMP) scheme has constants/thresholds that must be

determined. We can find two schemes depending on whether the measurement noise variance is

known or unknown. As we have solved the LASSO problem, there remains a free parameter 𝜆 that

is a tuning factor to control achieved sparsity of the solution and it depends on the measurement

noise variance.

4.3.1. AMP I

In the first algorithm of AMP the measurement noise variance 𝜎2 is known and based on [10] the

solution of the algorithm for iterations 𝑖 = 1, 2, … is:

 𝑥𝑗 = 𝜂 (∑ 𝐴𝑞𝑗𝑧𝑞→𝑗
(𝑖)
; 𝜃𝑖

𝑚

𝑞=1
) (76)

 𝑥(𝑖) = 𝜂(𝑥(𝑖−1) + 𝐴𝑇𝑧(𝑖−1); 𝜃𝑖)
(77)

 𝑧(𝑖) = 𝑦 − 𝐴𝑥(𝑖) + 𝑏(𝑖−1)𝑧(𝑖−1)
(78)

 𝑥𝑗 = 𝜂(𝑟𝑗; 𝜆) = {

𝑟𝑗 − 𝜆 if 𝑟𝑗 > 𝜆

0 if −𝜆 ≤ 𝑟𝑗 ≤ 𝜆

𝑟𝑗 + 𝜆 if 𝑟𝑗 < −𝜆
} = 𝑠𝑖𝑔𝑛(𝑟𝑗)max(|𝑟𝑗| − 𝜆, 0)

(79)

 37

And the initial parameters are set when 𝑖 = 0 as described above:

As we can see the proposed solution for the adaptation of the “effective-noise variance”, 𝑐(𝑖), and

𝜎2 the actual measurement noise variance is interesting. Applying the unilateral Z-transform (time

index 𝑘 = 𝑖 − 1) to 𝑐(𝑖) we obtain:

and the solution in time-domain is

First, if we assume that the scheme recovers the correct 𝑠 -sparse solution then 𝑏(𝑖−1) =

1

𝑚
||�̂�(𝑖)||

0
=

𝑠

𝑚
. Therefore, we treat 𝑏(𝑖−1) = 𝑏 =

𝑠

𝑚
< 1 as a constant. Note that lim

𝑘→∞
𝑏𝑘+1𝜎[𝑘] =

0, as |𝑏| < 1, so

𝑥(𝑖) = 𝜂 (𝑥(𝑖−1) + 𝐴𝑇𝑧(𝑖−1); √𝛽𝑐(𝑖−1))

𝑏(𝑖−1) =
1

𝑚
||𝑥(𝑖)||

0

𝑧(𝑖) = 𝑦 − 𝐴𝑥(𝑖) + 𝑏(𝑖−1)𝑧(𝑖−1)

𝑐(𝑖) = 𝜎2 + 𝑐(𝑖−1)𝑏(𝑖−1)

(80)

𝑥(0) = 0𝑛×1 (signal vector; dimension n > m)

𝑧(0) = 𝑦 (dimensions:m × 1)

𝑐(0) = 𝜎2 +
1

𝑚
||𝑧(0)||

2

2
 (scalar)

(81)

 𝐶(𝑧) =
𝜎2

1 − 𝑏
(
𝑧

𝑧 − 1
− 𝑏

𝑧

𝑧 − 𝑏
) + 𝑏𝑐(−1)

𝑧

𝑧 − 𝑏

(82)

𝑐(𝑘) =
𝜎2

1 − 𝑏
(1 − 𝑏𝑘+1) 𝜎[𝑘] + 𝑐(−1)𝑏𝑘+1𝜎[𝑘]

=
𝜎2

1 − 𝑏
 𝜎[𝑘] + (𝑐(−1) −

𝜎2

1 − 𝑏
)𝑏𝑘+1𝜎[𝑘]

(83)

 lim
𝑘→∞

𝑐(𝑘) =
𝜎2

1 − 𝑏
> 𝜎2

(84)

 38

As 𝑐(𝑘) is the noise variance in the current iteration that is used in the thresholding function, this

means that the effective noise variance 𝑐(𝑘) in the 𝑛 signal components is larger than the

measurement noise variance 𝜎2 in the 𝑚 measurements, so it causes extra noise because of the

undersampling.

Second, if we now consider that 𝑏(𝑖−1) is not a constant, but for whatever reason ||𝑥(𝑖)||
0

 is close

to 𝑚 we obtain 𝑏(𝑖−1) → 1. This means 𝑐(𝑘) become very large, as (1 − 𝑏) approaches zero. From

a maths-perspective this may still be good, as large 𝑐 means that in the next iteration most

components will be set to zero by the soft thresholder 𝜂() and then 𝑐(𝑖) = 𝜎2.

Third, and last option, is when 𝑏 > 1, then the implementation is set to avoid trouble by limiting

𝑏(𝑖−1) = max {𝑏(𝑖−1),
𝑚−1

𝑚
}. A bigger result of 𝑏(𝑖−1) could result to divergences of the AMP I

algorithm. These divergences are solved in the second algorithm of approximate message passing.

4.3.2. AMP II

In this algorithm the noise variance 𝜎2 is unknown, therefore we have:

and the initializations at 𝑖 = 0:

In this case, thanks to the new definition of 𝑐 (as we do not know the noise variance 𝜎2) we are

able to solve the problem of divergence we had in the first approximate message passing algorithm.

In both cases AMP algorithms I and II can use the stopping criterion known from other iterative

schemes: iterate, until ||𝑥(𝑖+1) − 𝑥(𝑖)||
2
 < 𝜖 ||�̂�(𝑖)||

2
, with 𝜖 < 10−4.

𝑥(𝑖) = 𝜂 (𝑥(𝑖−1) + 𝐴𝑇𝑧(𝑖−1); √𝛽𝑐(𝑖−1))

𝑧(𝑖) = 𝑦 − 𝐴𝑥(𝑖) + 𝑧(𝑖−1)
1

𝑚
||𝑥(𝑖)||

0

𝑐(𝑖) =
1

𝑚
||𝑧(𝑖)||

2

2

(85)

𝑥(0) = 0𝑛×1 (signal vector; dimension n > m)

𝑧(0) = 𝑦 (dimensions:m × 1)

𝑐(0) =
1

𝑚
||𝑧(0)||

2

2
 (scalar)

(86)

 39

4.4. Bayesian Approximate Message Passing (BAMP)

In addition to this, if we come back to the estimation problem of other sections. We picked a prior

of the form 𝑝𝑋𝑗(𝑥𝑗) = 𝑐 𝑒
−ℎ(𝑥𝑗)/𝜎

2
 using ℎ(𝑥𝑗) = 𝜆|𝑥𝑗| for sparse signals and considering small

noise 𝜎2 → 0, this led us to the well-known LASSO problem. All these assumptions were justified

to have a primary motivation for those approximations, also because of the fact that the prior pdf

is indeed often unknown, but is known that the solution shall be sparse. With that a graph-based

approach was used to solve the LASSO, then the min-sum algorithm with various approximations

and in the large-system limit (𝑛 → ∞) led the solution to the Approximate Message Passing. But

what will happen if we know the pdf, does it change something? The BAMP algorithm responds

this problem as we can see above.

The problem setting is the same as AMP, in particular the columns of the measurement matrix 𝐴

are assumed to be normalized to one. Derivation in [2] and [4]. The basic concept is the same as

for AMP, it starts from

and it is necessary to find a graph-model and apply message-passing algorithm, but this time no

low-noise assumption as it is no longer the goal to get the LASSO problem (see [13], Sec. 6.2]). The

approximations are similar as for AMP, also including 𝑛 → ∞ to obtain a feasible algorithm. The

key difference is the signal prior, 𝑝𝑋𝑗(𝑥𝑗), that is now used and not approximated by something

“reasonable” from an exponential family. For simplicity the same pdf is assumed for all source

vector component 𝑥𝑗, 𝑗 = 1,… , 𝑛 and all components are independent.

4.4.1. BAMP I

This algorithm is related to the first scheme in AMP because in this case the measurement noise

variance 𝜎2 is known as well. Therefore. in the first iteration we have:

 �̂� =
1

𝑝𝒀(𝑦)
∫ 𝑥

1

(√2𝜋𝜎)
𝑚 exp (−

1

2𝜎2
||𝑦 − 𝐴𝑥||

2

2
)∏ 𝑝𝑋𝑗(𝑥𝑗)

𝑛

𝑗=1
𝑑𝑥

ℝ𝒏

 (87)

𝑥(0) = 0𝑛×1 (signal vector; dimension n > m)

𝑧(0) = 𝑦 (dimensions:m × 1)

𝑐(0) = 𝜎2 +
1

𝑚
||𝑧(0)||

2

2
 (scalar)

(88)

 40

No difference between both algorithms in this case, the disparity comes when the iteration starts,

then algorithm is

with the scalar operators (neglecting the iteration index 𝑖 − 1 of the scalar arguments).

And with new variables introduced here defined as

4.4.2. BAMP II

In this case, the measurement noise variance 𝜎2 is unknown. The initializations are exactly the

same as the AMP II algorithm and what changes is the scheme for the iterations.

Then, for the iteration 𝑖 = 1, 2, … :

𝑢(𝑖−1) = 𝑥(𝑖−1) + 𝐴𝑇𝑧(𝑖−1)

𝑥𝑗 = 𝐹 (𝑢𝑗
(𝑖−1)

; 𝑐(𝑖−1))

𝑣𝑗 = 𝐺 (𝑢𝑗
(𝑖−1); 𝑐(𝑖−1))

𝑞𝑗
(𝑖−1)

= 𝐹′ (𝑢𝑗
(𝑖−1)

; 𝑐(𝑖−1))

𝑥(𝑖) = {𝑥1
(𝑖)
, 𝑥2
(𝑖)
, … , 𝑥𝑛

(𝑖)
}
𝑇

𝑧(𝑖) = 𝑦 − 𝐴𝑥(𝑖) + 𝑧(𝑖−1)
1

𝑚
∑ 𝑞𝑗

(𝑖−1)
𝑛

𝑗=1

𝑐(𝑖) = 𝜎2 +
1

𝑚
∑ 𝑣𝑗

𝑡
𝑛

𝑗=1

(89)

𝐹(𝑢𝑗; 𝑐) = 𝔼𝑋𝑗{𝑋𝑗|𝑈𝑗 = 𝑢𝑗}

𝐺(𝑢𝑗; 𝑐) = 𝑉𝑎𝑟𝑋𝑗{𝑋𝑗|𝑈𝑗 = 𝑢𝑗}

𝐹′(𝑢𝑗; 𝑐) =
𝑑

𝑑𝑢𝑗
𝐹(𝑢𝑗; 𝑐)

(90)

𝑥(0) = 0𝑛×1 (signal vector; dimension n > m)

𝑧(0) = 𝑦 (dimensions:m × 1)

𝑐(0) =
1

𝑚
||𝑧(0)||

2

2
 (scalar)

(91)

 41

If the prior pdf takes a simple form, we can get explicit and relatively simple equations for the

MMSE estimator 𝐹(𝑢𝑗; 𝑐), the variance 𝐺(𝑢𝑗; 𝑐) of the estimate and the derivative 𝐹′(𝑢𝑗; 𝑐). This

is useful for an implementation so one can try to obtain each depending on the prior.

In this thesis, we will focus our attention in solving the BAMP algorithm for sparse signals, more

specifically in the ones that have a Gaussian prior (with zero mean). Therefore, the computations

for 𝐹, 𝐺 and 𝐹′ will be done for this prior. In the Appendix B of the thesis one can find how this

variables are obtained and which is the final result used in the practice.

𝑢(𝑖−1) = 𝑥(𝑖−1) + 𝐴𝑇𝑧(𝑖−1)

𝑥(𝑖) = 𝐹(𝑢(𝑖−1); 𝑐(𝑖−1))

𝑧(𝑖) = 𝑦 − 𝐴𝑥(𝑖) + 𝑧(𝑖−1)
1

𝑚
∑ 𝐹′(𝑢(𝑖−1); 𝑐(𝑖−1))

𝑛

𝑗=1

𝑐(𝑖) =
1

𝑚
||𝑧(𝑖)||

2

2

(92)

 42

5. Results

The results obtained in this thesis are based on the theory explained before. What has been done

is an implementation of the algorithms of message passing (AMP and BAMP) to compare the

differences between them. Some explanation of the code and the results obtained are described

below, moreover, one can find all the Matlab code in the Appendix A.

First of all, the algorithm vectorise the image, i.e., stack all columns into one column-vector of 𝑥

dimensions 𝑛 × 1, we also create a random pattern of 𝑚 × 𝑛 measurements and we obtain the

standard compressed sensing measurement model as:

Each of the components of 𝑦[𝑀] represents one measurement that results one of the random

patterns. The vector 𝑤[𝑀] is used to model the measurement of the noise (can be zero). We need

to exploit the structure of the image, that is, for instance, sparsity in the DCT/Fourier domain

because the image itself will usually not be sparse.

A brief explanation of DCT, in that case the DCT-II used for images is defined as follows

If we come back to our problem then it is written following this matrix notation with 𝐷[𝑁×𝑁] the

DCT-Transform matrix:

and the inverse transform

Note that (𝐷[𝑁×𝑁])
−1
= 𝐷[𝑁×𝑁]

𝑇 because DCT is a unitary transform. In the implementation we will

avoid to use the matrix 𝐷[𝑁×𝑁] directly, as for image dimensions of 1000 × 1000, we have a DCT

 𝑦[𝑀] = 𝐴[𝑀×𝑁] · 𝑥[𝑁] +𝑤[𝑀] with 𝑀 ≪ 𝑁 (93)

 𝑋𝑘 =∑ 𝑥𝑛 cos (
𝜋

𝑁
(𝑛 +

1

2
) 𝑘) for 𝑘 = 0,1, … ,𝑁 − 1

𝑁−1

𝑛=0

(94)

 𝑥𝑛 =
1

2
𝑋0 +∑ 𝑋𝑘 cos (

𝜋

𝑁
(𝑛 +

1

2
)𝑘) for 𝑛 = 0,1,… ,𝑁 − 1

𝑁−1

𝑘=1

(95)

 𝑋[𝑁] = 𝐷[𝑁×𝑁]𝑥[𝑁]
(96)

 𝑥[𝑁] = 𝐷[𝑁×𝑁]
𝑇 𝑋[𝑁]

(97)

 43

matrix of the dimensions 106 × 106 . With the DCT-matrix we form the compressed sensing

measurement equation used for recovery:

With the compound measurement matrix Φ[𝑀×𝑁] we now have a sparse vector 𝑋[𝑁] of DCT-

coefficients we can recover by using the functions of AMP and BAMP created for the thesis. Note

that the size of the measurement matrix Φ[𝑀×𝑁] is much smaller than the 𝑁 × 𝑁 DCT-matrix 𝐷

when 𝑀 ≪ 𝑁.

After recovery – from which we obtain �̂�[𝑁] – we need to transform back to the image domain,

i.e.,

Finally, the vector 𝑥[𝑁] of recovered pixels has to be reshaped into the original pixels.

Once, we know how to compress and recover the image we could jump to the next step. After the

compressing of the image we send the signal to our algorithms that return the new signal to be

decompressed after their iterations.

Now, we are going to show some results of the code and some plots made to compare and decide

which one is the algorithm that is able to reconstruct the best image. In the code, there are explicit

some plots and figures.

The first one shows the DCT-coefficients of the original image and the resulting ones from the

algorithms of AMP and BAMP. In the code is also implemented a variation of the BAMP algorithm

that, instead of using the Gaussian model for all the components of the 40 images, computes the

model for each of the components of the 40 images, i.e., if the size of the image is 100 × 100 we

obtain a sigma for the 10.000 components. Therefore, what we have is a Gaussian model for each

of the pixels of all the images instead one model for all the pixels and images. For sure, this is an

accurate model and as we will see below the results are better for the BAMP-pointwise recovery.

The first result of the Matlab code shows which are differences between each of the DCT-

coefficients of the algorithms implemented. It also shows how is the histogram of this signal before

the reconstruction.

𝑦[𝑀] = 𝐴[𝑀×𝑁] · 𝑥[𝑁] +𝑤[𝑀] with 𝑀 ≪ 𝑁

= 𝐴[𝑚×𝑛]𝐷[𝑁×𝑁]
𝑇

⏟
=Φ[𝑀×𝑁]

𝑋[𝑁] +𝑤[𝑀]
(98)

 𝑥[𝑁] = 𝐷[𝑁×𝑁]
𝑇 �̂�[𝑁]

(99)

 44

Figure 6. DCT and histogram for the same image but different algorithms

The next plot of the code shows how these DCT-coefficients are distributed in 2D and as in the first

picture, we can appreciate the differences between all the algorithms.

Figure 7. DCT coefficients of the original image, AMP, BAMP and BAMP-pointwise

In the third figure, the image reconstruction is done and we can compare the differences between

the images reconstructed and the original one. In this figure we can appreciate the difference

between each algorithm.

 45

Figure 8. Image reconstruction for the different algorithms

In all these three figures is easy to value which is the best algorithm. As in the first one is difficult

distinguish which histogram is more similar as the original one, if we take a look to the DCT-

coefficients in the left-side of the first figure and the second one it is clear that the BAMP-pointwise

algorithm has the most similar coefficients referred to the original one. In the third figure we can

see the differences reflected in the reconstruction of the images for each algorithm, despite the

reconstruction not fits perfectly to the original one. We can still differentiate more characteristics

in the last picture while in the first one is difficult to realise which is the object.

The next figures, show for more images the differences between algorithms. As 40 images were

used to create the Gaussian model for the BAMP algorithm we took advantage of it and if one

wants it is possible to plot all the images. In the following pictures there are some examples of the

images used. In this case the undersampling ratio is 0.4 instead of the 0.2 above.

 46

 47

 48

Figure 9. Comparison of the reconstruction and DCT for different images

 49

Another interesting result is to compare the same image but changing the undersampling ratio. In

this case we can really appreciate that for low undersampling ratios the BAMP-pointwise algorithm

recovers much better the image than the others and for higher undersampling ratios the difference

is not that significant.

All the measurements before were done without the noise measurement, but if we add to our

implementation a Gaussian noise and we take a look at the behaviour for different signal to noise

ratio we obtain:

Figure 10. Study of the different image reconstructions for different undersampling ratios

Figure 11. Study of the different image reconstructions for different SNR

 50

Also in this case, the behaviour of the BAMP-pointwise algorithm is still having the best results.

Finally, once explained the differences between algorithms in terms of DCT-coefficients, signal to

noise ratio, undersampling ratios we talk now in terms of computation. We refer to the best

computation algorithm to the one that needs less iterations to find a suitable result before the

stopping criterion breaks. If we simulate the first images and one creates a figure for the number

of iterations needed, we obtain:

As can be seen here the AMP algorithm breaks at the 25th iteration while in the worst case of the

BAMP-pointwise is at the 19th one. Therefore, the BAMP-pointwise algorithm beats the other two

in terms of computation as well.

If one wants to try the Matlab code one will be able to obtain the same figures as in the first figures

7, 8, 9 and 10. The code to obtain the last two pictures are not included in this thesis as they require

more computational time.

Note that the results in practice are the expected from the theoretical part.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11

N
u

m
b

er
 o

f
it

er
at

io
n

s

Number of iterations per image (R=0.4)

AMP BAMP BAMP-ptwise

 51

6. Budget

The main costs of this project comes from the salary of the researches and time spent in it as the

software used is free thanks to university license for Matlab. The team for the development of this

thesis is formed by two senior engineers (the advisors Norbert Görtz and Gregori Vazquez) and

myself as a junior engineer. Considering that the total duration of the project was 18 weeks as

presented in the Gantt diagram this would be the budget of the project:

Position Amount Wage/hour Dedication Total

Junior engineer 1 8,00 €/h 25 h/week 3,600 €

Senior engineer 2 20,00 €/h 1 h/week 720 €

Total 4,320 €

 52

7. Conclusions and future development:

During all the project has been demonstrated that theoretically the most advanced compressive

sampling algorithms are supposed to obtain better results. The most advanced CS recovery

schemes allow for higher resolution, speed and lower measurement ratios. It has been

demonstrated that the Bayesian algorithm beats the approximate message passing, also it is fair

to say that the pointwise derivation of the BAMP improves the results obtained by the original one.

Taking advantage of the Gaussian model obtained pointwise, i.e., collecting different Gaussian

models for each of the pixels of 40 training images. The figure 11 shows how is the evolution of

the algorithms for different undersampling ratios there we can appreciate that the BAMP-

pointwise has the best results possible when it is about lower ratios. Also for high lower

measurement noise ratios as it has been seen in the figure 12. Although, all the algorithms are very

efficient computationally the table of iterations shows that the algorithm that needs less iterations

based on our stopping criterion is the BAMP-pointwise as well.

Despite, it is clear that BAMP-pointwise algorithm is the best I would also like to point out that

compressed sensing is really an improvement and all the algorithms (AMP and BAMP) used are

able to estimate the image with a certain degree of similarity compared to the original one even

using by far less signal measurements. This topic as explained during the thesis is a highly growing

field and I believe its applications in mathematics, electrical engineering, statistics and computer

science will be in the future relevant for our daily lifes.

In what concerns us, one of things I found the most relevant is the fact of the importance of the

pdf. Just estimating the Gaussian for some training images the results are considerably much better,

this encourage me to keep studying on this field to discover and to research more algorithms able

to estimate images for smaller undersampling ratios, smaller signal to noise ratios and even more

efficient computationally.

Future developments of this project could be to apply the same algorithms in Matlab but instead

of using black and white images use colour ones. Moreover, as this thesis has been done in

software it would be great to try to implement a single-pixel camera hardware to compare if the

results expected are the same. The research and implementation for new algorithms in

compressed sensing is another development to be done in the future.

 53

Bibliography:

[1] DMD-based Compressive Imaging & Spectroscopy Ting Sun Dharmpal Takhar A 1-Pixel Camera
& Beyond - Ting Sun, Dharmpal Takhar, Marco Duarte, Jason Laska, Richard Baraniuk, & Kevin
Kelly - http://people.ee.duke.edu/~lcarin/kelly.pdf .

[2] F. Krzakala M. Mézard F. Sausset Y. F. Sun L. Zdeborová "Statistical-physics-based
reconstruction in compressed sensing" Phys. Rev. X vol. 2 pp. 021005 May 2012

[3] D. L. Donoho, A. Javanmard and A. Montanari, "Information-Theoretically Optimal Compressed
Sensing via Spatial Coupling and Approximate Message Passing," in IEEE Transactions on
Information Theory, vol. 59, no. 11, pp. 7434-7464, Nov. 2013.

[4] Eldar, Yonina C., and Gitta Kutyniok, eds. Compressed sensing: theory and applications.
Cambridge University Press, 2012.

[5] Montanari, Andrea. "Graphical models concepts in compressed sensing." Compressed Sensing:
Theory and Applications (2012): 394-438.

[6] Tibshirani, Robert. "Regression shrinkage and selection via the lasso." Journal of the Royal
Statistical Society. Series B (Methodological) (1996): 267-288.

[7] Donoho, David L. "For most large underdetermined systems of linear equations the minimal
𝓁1‐norm solution is also the sparsest solution." Communications on pure and applied
mathematics 59.6 (2006): 797-829.

[8] Donoho, David L., Arian Maleki, and Andrea Montanari. "Message-passing algorithms for
compressed sensing." Proceedings of the National Academy of Sciences 106.45 (2009): 18914-
18919.

[9] Donoho, David L., Arian Maleki, and Andrea Montanari. "How to design message passing
algorithms for compressed sensing." preprint (2011).

[10] Bayati, Mohsen, and Andrea Montanari. "The dynamics of message passing on dense graphs,
with applications to compressed sensing." IEEE Transactions on Information Theory57.2
(2011): 764-785.

[11] Krzakala, Florent, et al. "Probabilistic reconstruction in compressed sensing: algorithms, phase
diagrams, and threshold achieving matrices." Journal of Statistical Mechanics: Theory and
Experiment 2012.08 (2012): P08009.

[12] Goertz, Norbert, et al. "Iterative recovery of dense signals from incomplete
measurements." IEEE Signal Processing Letters21.9 (2014): 1059-1063.

[13] Som, Subhojit, and Philip Schniter. "Compressive imaging using approximate message passing
and a Markov-tree prior." IEEE transactions on signal processing 60.7 (2012): 3439-3448.

http://people.ee.duke.edu/~lcarin/kelly.pdf

 54

Glossary

CS: Compressed Sensing

AMP: Approximate Message Passing

BAMP: Bayesian Approximate Message Passing

IHT: Iterative Hard Thresholding

IST: Iterative Soft Thresholding

LASSO: Least Absolute Shrinkage and Selection Operator

MSE: Mean Squared Error

