Compressed Sensing and Approximate

Message Passingr the SinglePixel Camera

A DegreeThesis
Submittedto the Faculty othe

Escola Tecnica d'Enginyeria de Telecomunicaciadesloneof

Universitat Politécnica de Catalunya

and in the Fakultat fur Elektrotechnik und Informationstechnik of

Technische Universitat Wien

FAKULTAT FUR
ELEKTROTECHNIK UND
INFORMATIONSTECHNIK

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Jordi Biosca Caro
In partial bilfilment
of the requirements for the egreein
TELECOMMUNICATION SYSHENEINEERING

Advisors. Norbert Gatz and Gregori Vazquez Grau

Barcelona,June 2018



UNIVERSITAT POLITECNICA TECHNISCHE ) EAKLLIAVE IR
i f ELEKTROTECHNIK UND
3 Jeromnl TU B Q)i [ i e

Vienna|Austria

I 6aG N O

Thisthesisis basedon the techniqueof Compressed Sensing and the study of the algorithms of
Approximate Message Passing for the siqmleel camera. This thesis has been developed in the
institute of telecommunication in the Technische Universitat Wien (TU Wien) led by the research
group d the professor Norbert Gortz. In the beginning of the thesis it is explained what a-single
pixel camera is and it also talks about what compressed sensing is, later on, two necessarily
iterative schemes(lterative Hard Thresgolding i Iterative Soft Thiding) are defined to
understand the algorithms of Approximate Message Passing (AMP) and its Bayesian derivation
(Bayesian Approximate Message Passing, BAMiI@)theoretical explanation of the operation of
these algorithms is implicit in the thesis, moker, AMP and BAM&re implemented in Matlab

code This implementation allows to see the behaviour of these algorithms in different scenarios

to fully understand the differences between them.



Vienna|Austria

¢
UNIVERSITAT POLITECNICA TECHNISCHE E FAKULTAT FOR

) . t ELEKTROTECHNIK UND

@ giF&fgﬁNU:{::CH m UWTI[:\;JERS‘TAT \@ mu';%”,} @ INFORMATIONSTECHNIK

wS adzy

Aquest treball es basa en Ig&cnica del compressed sensing f QS&aidzRA RSt a
RQ! LIWNRPEAYI (S aSaal3sS tlaaiay3da LISNI £ f@AWSENIA (R
de telecomunicacioside la Technische Universitat Wien (TU Wien) liderat pel grup de recerca del

professa Norbert Gortz el qual ve liderant la recerca en aquest sector des de fa diversoskanys
IQAYyAOA RSt GNBoltt AQSELX AOI 1jdzS Sa tIF OLYSNI F
aSyairy3dazr Ysa SyRI gyl aQgtératife HiralZdrgsgdtithdi ltedadivie dzS Y S a
Soft Thresholding)ecessaris per entendre els algoritmesAfmproximate Message PassiddP

i la seva derivant bayesiatiBayesian Approximate Message PassifgyB.[ QS ELX A OF OAs G S
RSt Fdzy OA 2y | alg®nies &Rt ImplidtSea &l Pprojecte, a més a més, aquests dos
algoritmes estan implementats en codi Matlakguesta implementacié permet veure quin és el
O2YLERNII YSY(l RQlljdzSada I dipeéfeiterndd QLISH?2 RATEREKS &
i BAMP.
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Estetrabajo se basa en k&cnicadel Compressed Sensiggen el estudio de los algoritmos de
Approximate Message Passing para la camara de un solo pixel. Es un trabajo desarrollado en el
instituto de telecomunicaciones de la Technische Universitat Wien (TU Wien) liderado por el grupo
de investigacion del profes?Norbert Gortz. En el principio del trabajo se explica que es la camara
de un solo pixey también se habla de que es el Compressed Sensing, mas adelante se explican dos
esquemas iterativos (lterative Hard Thresgolding i Iterative Soft Thresholding)arniesepara
entender los algoritmos de Approximate Message Passing (AMlerivadabayesiana (Bayesian
Approximate Message Passing, BAMP). La explicdei@nca del funcionamiento de estos
algoritmos es implicita en el proyecto, ademas, estos dos dgdtiestan implementados en codigo

Matlab. Dicha implementacion permite ver cual es el comportamiento de estos algoritmos en

diferentes escenarios y permite entender el algoritmo de AMP y su derivada bayesiana, BAMP.



UNIVERSITAT POLITECNICA TECHNISCHE FAKULTAT FUR

) " t ELEKTROTECHNIK UND
DE CATALUNYA I EREITAT /:j) telecom [ @4 | INFORMATIONSTECHNIK
BARCELONATECH o s gresn o b i

Vienna|Austria

5SRAOIGAZ2Y

First of all, | would likéo thank professor Norbert Gortzom the Technische Universitat of Wien
for being sdkind and helful during all the projectn my stay in ViennaHe introduced me in the
field of compressed saingand approximate message passaigorithmsWhenever had a doubt
or aquedion he found themomentto solve itand explained to me.would also like to thank all
the patience andeases my supervisor in the Universitat Politecnica de Catal@rggori Vazquez,

gave meduring this time.

Finally, a personahank to all the people that has been supporting me during these months with

special mention to my family and friends both in Barcelona and Vienna.



O

UNIVERSITAT POLITECNICA

DE CATALUNYA
BARCELONATECH

TECHNISCHE
UNIVERSITAT
WIEN

Vienna|Austria

FAKULTAT FUR
ELEKTROTECHNIK UND
INFORMATIONSTECHNIK

WSOAEGAZ2Y KAAGZ2NE YR | LLINRGIE NBO2N
Revision Date Purpose
0 30/05/2018 Document creation
1 20/06/2018 Document revisioby Norbert @rtz
2 27/06/2018 Document revision by Gregori Vazquez

DOCUMENT DISTRIBUTION LIST

Name

e-mail

Jordi Biosca Caro

jordi.bc94@gmail.com

Norbert Girtz

norbert.goertz@nt.tuwien.ac.at

Gregori Vazquez Grau

gregori.vazquez@upc.edu

Written by: Reviewed and approved by:

Date 30/05/2018 Date

Name Jordi Biosca Caro Name Norbert Girtz & Gregori Vazquez
Position Project Author Position Project Supervisar

R


mailto:jordi.bc94@gmail.com
mailto:norbert.goertz@nt.tuwien.ac.at
mailto:gregori.vazquez@upc.edu

UNIVERSITAT POLITECNICA TECHNISCHE ) EAKLLIAVE IR
i f ELEKTROTECHNIK UND
3 Jeromnl TU B Q)i [ i e

Vienna|Austria

z

¢l o6fS 2F O2yuSyda

AADSTIACT ...t e e 1
LSS U o PP P PP PPP PP 2
ST U 1T o PP 3
[DT=T o [ o=V o] o NP OO PP PP P PP PR PP TP 4
Revision history and approval reCQAId............coooiiiiiiiiiei e )
TaADIE Of CONTENTS. ... i 6
LIST Of FIQUIES ...ttt e et e e e e e e e e e e e e e e e e e aannr e e e e e e e e aaan 8
O 101 (o T [0 Tox 1 o] o OO PP PP PPPRPPPPPR 9
1.1, OBJECHIVES. ...ttt 9
1.2, WOTK PIAN. et e e e e e e e e aaaae 9
1.2.1.  WOrk Packages..........ccooviiiiiiiiiiiiiiii 10
1.2.2.  Gantt diagramMi.....ccco e e 11

2. State of the art of the technology used or applied in this thesis:.............ccccciveeeeennn. 12
2.1. The SINgMPIXEl CAMETAL.......coo e 12
2.2, COMPreSSed SENSING.........ovuuiiiiiie e e e et eeiea e e e e e e e e e e e e et e e e e e e e earrraas 13
2.2.1. Problem setting: compressed sensing for sparse signals..............cccccc.eeee. 14
2.2.2.  EStmation problem...........ooiiii i 16
2.2.3.  REIMAIKS ...ttt 18

3. HeratiVe SCREIMES ... ..ot e e 21
3.1. lterative Hard Thresholding (IHT)......coooriiiii i, 21
3.1.1. | regularized Problemi..........ccooeieiieee et 22
3.1.2.  GSPArSE PrOBIBML. ......cveeeeeieeeeeeeeeeeeeee ettt 25

3.2. lterative Soft Thresholding (IST)......cccoiiiiiiiii e 27
3.3.  Heuristics for Iterative RECOVELY.........cooviiiiiieeeeeeeeeeeeeee 31
4. Approximate Message Passing (AMP) and BayesiaraienBAMP)........................... 33
4.1. Graphical model for the LASSQ........oooiiiiiiiieeee e 33
4.2, Min-sumalgorithm ..........coooiiiiiiiii 35
4.3. Approximate Message Passing (AMB).......ccooo i e 36
A.3. 1. AMP L 36
A.3.2. AMP L e 38

4.4. Bayesian Approximate Message Passing (BAMP)..........cccocovviiiiiiiiiiiiiiiiinnnnn, 39



UNIVERSITAT POLITECNICA TECHNISCHE FAKULTAT FUR
X ) ELEKTROTECHNIK UND
DE CATALUNYA UWT['_:‘LERS'TAT » te'egg;“ I‘« INFORMATIONSTECHNIK
BARCELONATECH : ) P of Dot e o tnsinn Moy
Vienna|Austria

AA4.L. BAMP L 39

442, BAMP Lo 40
B RESUIES. ..o e e 42
LT = 10 T [ 1 PP PPPREEE 51
7. Conclusions and future developMENL:..........ccuviiiiii i 52
(2] ] [ToTe =T o] 0| 53
GlOSSAINY. ..ttt e et r e e e et e e e e e e e e e e e e e e e e e 54



UNIVERSITAT POLITECNICA TECHNISCHE ) FAKULTAT FUR

) " t ELEKTROTECHNIK UND
DE CATALUNYA I EREITAT ’:% telecom [ @4 | INFORMATIONSTECHNIK
BARCELONATECH T -

Vienna|Austria

[ A4 2F CA3IdzNBa

Figurel. Gantt diagram of the thesSiS.........ccccooi e, 11
Figure 2. SINgPIXel CAMETA StIUCTUIE........coiiiiiiiee et 12
Figure 3. Function of the Hard Thresholding Operatar.............ccooocvvieeiieeiiniiiiieeee e 24
Figure 4. Function of the Soft Thresholding Operator...............ccoo oo iececciiciee e 31
Figure 5. Graph represeritan for the LASSO problem...........c..ovvvieiiiiiiiiiceiieeeee e 34
Figure 6. DCT and histogram for the same image but different algorithms....................... 44
Figure 7. DCT coefficients of the original image, AMP, BAMP and-BAMW®ise.................... 44
Figure 8. Image reconstruction for the different algorithms......................c. i, 45
Figure 9. Comparison of the reconstruction and DCT for different images....................... 48

Figure 10. Study of the different image reconstructions for different undersampling ratiog9

Figure 11. Study of the different image reconstructionsdifferent SNR..............ccccccevvnnen 49


file:///C:/Users/jordi/Dropbox/Jordi/UPC-ETSETB/TFG/Docs/Memoria/Thesis_JordiBiosca.docx%23_Toc518040822
file:///C:/Users/jordi/Dropbox/Jordi/UPC-ETSETB/TFG/Docs/Memoria/Thesis_JordiBiosca.docx%23_Toc518040823
file:///C:/Users/jordi/Dropbox/Jordi/UPC-ETSETB/TFG/Docs/Memoria/Thesis_JordiBiosca.docx%23_Toc518040824
file:///C:/Users/jordi/Dropbox/Jordi/UPC-ETSETB/TFG/Docs/Memoria/Thesis_JordiBiosca.docx%23_Toc518040829
file:///C:/Users/jordi/Dropbox/Jordi/UPC-ETSETB/TFG/Docs/Memoria/Thesis_JordiBiosca.docx%23_Toc518040830

Vienna|Austria

UNIVERSITAT POLITECNICA TECHNISCHE ‘ EAOLIAT LR
i = ELEKTROTECHNIK UND
@ egres m )i (G rnemidnt

1. Introduction

This project describes what the Singlixel Camera is and talks about the compressed sensing and
how important are sparssignals to allow the implementation of different algorithms such as
Iterative Soft Thresholding (IST), Iterative Hard Thresholding (IHT), Approximate Messape Passing
(AMP) and Bayesian Approximate Message Passing (BAMP) to recover images with a sagple rati
below the NyquistShannon theorem. In this section there are explained whrettlae objectives

of the thesis andhe workplan.

1.1. Objectives

The main objective of this project is to find in the compressed sensing topic, also known as
compressive sensingompressive sampling or sparse sampling, the different algorithms and
methods of work that are normally used. Compressed sensing (CS) is a signal processing technique
for efficiently acquiring and reconstructing signal, by finding solutions to undetedmiinear
systems. The goal is to study some of these algorithms, to understand their operating and validate
them to achieve optimal results. Nowadays, the fields involving the compressed sensing are in a
wide ranging, such as signal processing, computatiorathematics or sparse sampling. Its broad
scope and generality has enabled several CS approximations in signal processing and compressing,
solution of inverse problems, design of radiating systems, radar, thrthewall imaging and
antenna characteration. Imaging techniques also have a strong relation with CS include coded
aperture and computational photography. In this thesis, we will talk about these relations, we will
use the discrete cosine transform (DCT) as a way to obtain sparse signalemauaghpity different

algorithms to see its behaviour.

1.2.  Work plan

The work plan has followed the dates proposed in either the work proposal and critical review
despite some modifications were made in the critical review after | decided to do the téike of
thesis in Technische Universitat Wien instead of the Universitat Politécnica de Catalunya. So, finally

the work packages of the project have been structured as follows:
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Project: Introduction to the Singleixel Camera algorithm

WP ref: WP1

Major constituent: Study

Short descriptionintroduction to the Singléixel Camera

How it works? How can be applied? How signal processi

Planned start date: 01/03/2018

Planned end date: 09/03/2018

involved? Which are the possibilities of the technology?

The first code version must be studied. It shob&lable to

simulate the SingtPixel Camera algorithm.

Start event: 01/03/2018

End event: 09/03/2018

Internal task T1: Introdudn to the SingleéPixel Camera Deliverables: | Dates:
Internal task T2: Analysis of tiaggorithm NA NA
Project: Refinement WP ref: WP2

Major constituent: Code implementation

Short descriptionThe first code version must be done.
should be able to identify the main characteristics of {

Gaussian form of theignal, its DCT and the histag.

Planned start date: 12/03/2018

Planned end date: 28/03/2018

Start event: 12/03/2018

End event: 28/03/2018

Internal task T1: FSt code version implementations Deliverables: | Dates:
Internal task T2: Validations Reporting NA
Project: Study and algorithms implementation WP ref: WP3

Major constituent: Study and algorithms implementation

Short description:

Study how data can be recovered. Implement all

Planned start date: 26/03/2018

Planned end date: 26/05/2018

necessary to recover the signal and find the best solu

Start event: 26/03/2018

10
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depending on the complexity, the noise, etc of tBagle End event: 12/06/2018

Pixel Camera algorithm.

Internal task T1: Study and algorithms implementation | Deliverables: | Dates:

Internaltask T2: Validations and tests Reporting NA

Project: Documentation WP ref: WP4

Major constituent: Documentation

Short description: To complete all the documentatio| Planned start date: 01/03/2018

required in the final bachelor thesis. Planned end date: 10/07/2018

Start event; 01/03/2018

End event: 28/06/2018

Internal task T1: Thesis proposal Deliverables: | Dates:

Internal task T2: Criticabview Documentation| Depending on

Internal task T3: Thesis memory and revision the document

1.2.2. Gantt diagram

Where each task has been developed in the specified dates. Note that, although in the beginning
of the project | was focused dhe literature and study of the principles in the topic, the longest
part was the implementation and validation of the algorithm as we can see in the next Gantt

diagram:

Bachelor Thesis

WP1 - Introduction to the Single-Pi... r
Introduction to the Single-Pixel Came...
|

Analysis of the Matlab code

|

WP2 - Code implementation
First code version implementations 1
Validations I

WP3 - Study and algorithm implem... I 1
Study and algorithm implementations |
Validations and tests I

WP4 - Documentation

Thesis proposal ]

Critical review I
Thesis memory and revision |

Figure 1. Gantt diagram of the thesis

11
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2. State of the art ofthe technology used or applied in thihesis

In this sectionthere is a review of what a singfexel camera is and an introduction to the
compressed sensinghis, is used gxesentation of the main topics dhe thesis and it contains
the main featurs one needs to know to fully understand the technologies explained in the
following sections.Firstly, it is explained what a singleixel camera is, its advantages and

disadvantages. Secondly, there is an exhaustive analysis of the compressed tsahgigge.

2.1. The SinglePixel Camera
Nowadays, the standard digital cameras use a large number of photo sensors to determine the

amount of light in each area of the imageg refer these areas gsxek. Thanks to the maturity of
technologies(CCD and CMO$) possible to obtain, for example, 12.000.000 pixels in a 12
megapixel camera because they work very well for optical light and is relatively cheap. However,
these technologies only work in the optical range and for other kihdlumination, such as

infrared or ultraviolet cameras, it is more difficult and expensive to produce.

At this point, one possible solution is to use a sifilel cameraThe singlepixel camera works
with just one light sensor able to measure the entire image, this allows shetione really good
light sensor instead of the millions very cheap on&at this sensor exploits is the technigue
of compressed sensings we will see in the next sections, compressed sensintgchniqueable

to recover signals below the Nyqtisite.

Rice 1-Pixel Camera

single photon
detector

Low-cost, fast, sensitive

optical detection

Xmtr

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
and random basis

DSP

random image
pattern on reconstruction
DMD array

Figure 2. Singlepixel camera structure
The functioning of the singlpixel is to reflecthe image toa digital micro mirror device (DMD)
through a lens onto a photodiod@heDMDusedis an array of microscopmirrors which can be
individually titled These mirrors are titled in such a way that some of the pixels are focused onto

a light absorber and the others to the photodiode. If we do this procedure thousands of times and

12
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measuring the intensity of the ligtior each different mirror, we are able to physically realize the

sampling matrix of a compressed sensing system.

On the one hand, the advantage in this case is that any radiation can be reflected from a mirror,
including UV and IR, then this allows teate these kind of cameras much cheaper than is
currently available. On the other hand, the main drawback is that the measurements must be taken
in series rather than all at once asarraditional cameraFor example, in a 1024x1024 image we
need 25% othe pixels for a total of about 260.00@0tal pixels. The DMD can move positions in
(worst case) 20s, allowing the entire image to be captured in 5,25s. However, optical sensors
stabilize much faster (20 ns for IR, 4ns for optical) so there is potémtiahaging to become faster

if the switching speed of the mirrors increases. Despite this situation even at this speed the camera

could be used for many nevideo applications.

If we take a closer look of how it works, as explainefjnthe object is sensethrough a set of
random patternsc a different one for each of the measuremeniBhose measurements with
different random patterns are used to computationatieconstruct the scenel’he implemented

code of the thesis uses this algorithm as we will see in the next sections of the thesis.

2.2. Compressed Sensing

First of all, it is important to define what compressed sensing is and a proper definition could be:
a technique to sample compressible signals below the Nyquist rate, whilst still allowing near

optimal reconstruction of the signal.

Compressed Sensing (CSansattractive, rapidly growing field that hasaptivatedconsiderable
attention in electrical engi@ering, applied mathematics, statistics and computer science. Since its
initial introduction several years ago, a huge flood of results have been obtained, both of
theoretical and practical nature. CS offers a framework for simultaneous sensing and csiompres
of finite-dimensional vectors, that relies on linear dimensionalitguetion. Quite surprisingly, it
predicts that sparse higtimensional signals can be recovered from highly incomplete

measurements by using effective algorithms.

In electrical engieering the use of a banlimited signal, withiQas the highest frequency of the
signal needs a sampling ra2 ¢'Qas explained for the Nyqui&hannon sampling theorem.
Therefore, with a signal that consists of a few fmmmo samples, e.g., siegshort impulse, the
result is a very large (almost infinite) bandwidth that can cause problems of memory in terms of
computations. If instead of this, one uses a bdindted discrete time signal, e.g., a Discrete

Fourier Transform (DFT) that produces fean-zero coefficientsthen we obtainwhatis called a

13
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sparse signal in the Fouridomain. During the project the tests will be developed in images so, it
will be used the twedimensional Discrete Cosine Transform (DCT) which leaves few dominant
coefficents, those are quantized and stored and the other ones are dropped (JPEGcodirgg).

In conclusion, it is possible to have an accurate signal representation with fewer coefficients than

the originally sampled.

The question is why sparse signal madmile so popul&

2.2.1. Problem setting: compressed sensing for sparse signals
On the one hand, whave a&& dimensional signabM s that is also sparse after some linear
transformation(DCT for exampleYhen we assume thatis as-sparse signal, i.e., it has at mast
non-zero components (sparsity level). Takind. € linear measurements according to the next
expression
A} 0 ® U xEOHBL ¢
@

« =e = (blond means vector notation)

the matrixo is assumed to have its full possible rankand its components are independently
drawn realizations of a real random variable, e.g., has a Gadshsribution. Moreover, the
matrix column vector® FQ pfB fE (each of dimensiond  p) are assumed to have zero mean

and be normalizetto unit & -norn?, i.e.,
5 o MBH @)

with,

1In[2],[3] systematic designs of measurement matrices have been investigated by state evolution; in

OEEO OEAOEO xA OOEAE & O OEIiI Pl EAEOU O OEA OOAAEOQEII
matrix ! but | would like to point out that AMP and BAMP will alsevork for non-Gaussian designs.

2When the measurement matrix is defined by the system designer, the columnormalization can

always be implemented; it simplifies notation. The normalization is, however, not necessarily

required.

3Thed normofavedor ® & hQ plgkB Rt is defined by

LB B s ,xEOE PEphch8h
Al A OEA GiiKkdwi GO AAEET AA AO
| Ads

with @ the components of the vector

14
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The measurements are assumed to be affected by Gaussian noise that is modelled by the addition

of the& dimensional noise vectad k 0 AQ pHB K . The component®$ of the noise

vector are assumed to be independent and identically distributed Sansvith variance TH.

The problemisto find the vecta wgiven the measurement®and the matrixd. As the numbeé

of measuremerd in (1) is smaller than the nureb ¢ of unknowns inw, the problem is
undetermined: itis impossible to simplinvert (1), even if there was no measurement of noise.
One can try, havever, to form a good estimatef o, and to do this one can exploit extra

information about thatwthat may be available

1) If wis sparsehe solutionw(estimated solution) would bsupposed to contain fewon-
zero components.
2) The vectormmight be known to have a largeuimber of components that take values.

3) The probability distributiom, @ (or a mixed distribution/density) abmight be known.

In what follows we will focsion case 3). In practice, the givgn @ may, however, not be the true
distribution but it may be a good model for it or even only be useful to find a good solution to the
problem of estimatingofrom a given observation vecton By choosing a suitable distribution

N o, the other two cases 1) and 2) are also covered. If, for instance, a signal of dimersion
known to have L & non-zero components (this the sparse cdgewe could set the probability

i ¢ | ¥t (to have a zereccomponent) and define the prior distribution (in fact a probability
density function (pdf) witha deltafunction that centresthe probability ma$ at the single value

w ) for the componentso of waccording to
o flo p 7'QolQ pBH “4)
And assume that the component$ ware all independent. The functicR @ in (4) can be any

probability density function, corresponding.g., to a uniform or a Gaussian distribution.

In case 2), the vector components might take the values +1 aith equal probabilities f7¢

while the components take values from some other distribut@n w with probabilityp 7. The

corresponding pdf would read

4 As here is the first time we talk about noise, from now on we define th@bmponentsu of the noise
vector are assumed to be independent and identically distributed Gaussian with variange 1t

15
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2.2.2. Estimation problem

As a formal, deterministic inversioof the measurement equation is impossible and we have to
resort to an estimation of the signal vector, an optimization criterion must be defined. A very
common approach from estimation theory is to pick the signal vewi@s a solution that minimizes

the expectation of the mean squared error, given tieservationi With our notation this is
O Ol WL O s O ® ©)

In our problem setting, the measuremenéctorwis deterministically known, so &ppears as a
condition in the expectation in (6). Moreover, thexpectation is taken over two random
components(indicated by capital letters) which are the measurement noise veciand the
unknown signal vectai for which we want to find an estimai& The solution to (6) is welinown
from estimation theory anckasy to derive: partial derivatives of (6) are taken for the vector

componentsw of wand those derivatives are set to zero. The result equals
G M O & )
i.e., the best estimate abis the conditional expectation of the signal vector, given the observation
@
To understand why it is difficult to evaluate (7) for large signal dimerisiome write out the

expectation usin@ayes rule:
. N Ny N p . \ N \ N ) N (8)
w WNLgl W Q@ —- W Mgt G ntw Qw
A r]J'L W A
In(8,n ¢ amw is theconditional probability density function (pdf) of the signal veaigiven an
observationw (posterior pdf); for thesecond equality, Bayes rule was used (ije;, WSw
Nsg Wswn w7 w). The pdf)  is the signal prior and the pdf ; wsw describes the

noisy measurement process. For independent, Gaussian noise companeitls variance, we

obtain

16
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When we write 0 @ for the 'Qth component of the vector that results from the matrix

multiplicationd wNote that using (1) th&th noise component is explicitly given by  ®

0 ® . Reintroducing vector notation in the expent, the pdf in (P can also be written as follows:

Mc“ " CH (10)
— P appP oo osa
nc“ ,, G

ns WSW

If the components of the signal vectarare also independent, and each of the components has

the pdfry @ , we can write the prior pdf according to
n oo noo )
The unconditionapdfr] w of the observations can be computed by the marginalization
n o Fliel GRO ML B'Q G (12)
A

involving the same pdfs as in (9) and (11).

We insert (9) and (11) into (8) to obtain

@ hLd) ) @ W%'Q 7 o Qo 13
Even though] o can be decoupled inte factors (due to the assumed independence of the
vector components of the prior), the integration can not be carried out separately over single
componentsw because each of thé factorsQ 7 requires the full vectory i.e.
the termcannot be easily decomposed irtdndependent factors. Therefore, to solve (13) a high

dimensional integration is required for each new observatiomaking this approach infeasible in

practice (particularly when practically relevant dimensions of prt rare considered).
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2.2.3. Remarks

In many problem settings the prior pdiis @ are unknown, but some sort of prior knowledge

(such as a vague notion of sparsity) can be assumed. In those cases, one can try to define a class of
pdfs that all fulfil some stictural constraint (e.g., a sparsity condition) and then search among this
classof pdfs for the worsbne, for which then the best possible estimator has to be giesil (this

is called a minimagproblem, see e.d4], [5], for more details)

If the prior pdffy @ is unknown, one can also choose that is conveniersimplify (13) (the

following discussion is again based[dhand [5). Such a&implifying choicavould ber]

(K9] 7 with ®a normalizing factor that ensures tht ¢ integrates to land Qo a

suitable (nonnegative) fundbn that can incorporate prior vaguknowledge abouthe signal

components (such as spar9ityf we use the righband side of (10) we can write (13) as follows

W — W — AQD—SA) 0(@ — Qo Qw
n W 4 ng*,, . »
(14
&) oy ey
‘p, — cbﬁ@i?yﬁgaw 0 & Qo xQw
n©wnue, = o 6
&} n o

If we now think of small noise, i.e,, © T, the exponential under term under the integral is
dominated by the smallest value thatew  Tcan take, i.e., the posterior pdf under the integral
(which includes the constant amd « in front of it) will approach aelta-distribution that takes
non-zero value for a particular vectay i.e., for, © 711(14) can be written as
) L, 010 Q0 @  xEOE & AJGEl® (15)

so the mearsquared error estimate at low noise approaches that argumesfsr whichd takes
its smallest value. Therefore, instead of (13) we can write for low noise variance

o A dgéig w 668 Qi (16)
The problem (15) has been stediextensivelyand for a sparse signal vector the functiGno

_swshas turned out to be a good choi¢see e.g.[6], [7]) that at the same time has the charm to

lead to the convex problem
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o AGCET- % 668 _ws (17)

Which can be solved in reasonable time for sr@inoderate dimensioi (the solution {7) is
referred to as the LASS® the literature). The fact that thé -norm -- which would strictly
measure sparsity irl{) but which would cause combinatorial search complexisn be replaced
by thea -norm, with the solutims being the same in most cases. Has been a majdiactor that
has driven research in compressed sensing. The factortin (17) controls the tradeoff between

the sparsity of an achieved solution (measured & ) and the accuracy (measured by

0 0 @ ) of the solution in terms of reproducing the obsation vector. This factor has to be

chosen somehow, and there is no general simple rule of how to do that. The reason is that the
structural constraints used to define (17) are vague (as opposed to thelefeled problem solved

by (13) when the pdfs othe priors are known) and therefore the free factors the price one has

to pay for a problem that is only defined vaguely. At some point when implemeriffghowever

one has to be specific about The knowledge about sparsity is hidden in the caaf_, once we

are specific about the value ofwe areimplicitly specific about the sparsityf the solution we

want.

Some approaches to solve the LASSO will be discussed in the following sections of the thesis, the
Iterative Soft Thresholding (ISi§)a greedy method to solve the LASSO, as well as Approximate
Message Passing (AMP) that is another scheme hleghe LASSO. This algorithm produces
significantly better results with faster convergence and can be extendguriicular a Bayesian

optimal version(BAMPexists for known signal prior.

In this section we would like to point out thatJ) is significantly complicated compute The
F LILINE | OKSa G2 az2ft@dS GKS LINRBoftSY AyOfdzRS YAYAYIE
LINJA 2 N&elE a5 onke #éhat considers the lemoise case, for which the problem7) has been
derived. t is unclear what happens, if those schemes aezlus a highnoise setting andnoreover,

one has to cope with adjusting parameter

In the thesis, the discuss of compressed sensing and approasie solve the underdetermined
inverseproblem of deducingofrom the noisy measurementsin (1) is very much focused on a
sparse signal model foa This is for very good reasons, as many practically interegtoigems

such as image denoising and inpainting, blind source separation, deconvolution, channel

estimation in wireless communications (just to name a few) can be tracked back to sparse signal

5 Least Absolite Shrinkage and Selection Operatof] .
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models, often not with the signal itself being sparse, but eatim some base (e.g. images after a
discrete cosine transform). But compressed sensing as such is no restricted to sparse signals or any
other special signal structure, latter can in fact be freely chosen by appropriate priorfiain w
follows we will, terefore,assumeat a certain pointhat we do knowv the prior pdfs to solve the
well-defined problem 13), which directly leads to Bayestaptimal Approximate Message Passing

(BAMP) an algorithm without any free factors.

6 If the prior is unknown, it may be estimaed within the iterations of Approximate Message Passing
(AMP).
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3. lterative schemes

Asexplainedin the previously sectiowe have & dimensional signab™ s that is also sparse
after some linear transformation. Then we assume thi as-sparse, i.e., it has at moston-
zero components (sparsity level). TakingL ¢ linear measurements according to the next
expression:

o b O 0 xEORB L ¢ (18)

With 0 thed& € sensing matrix and the& p measurement noise vector.

To reconstruct the signab with the values obtained ithafter the compession it is impossible to
just invert de value ob as the problem is undetermined becauseiof &, one could say that the

observation vectow is anincompletedescription ofta

The performanceto guarantee the reconstruction should exploit the sgity to resolve the
uncertainty and the relations @f it i so reconstruction ofafrom ¢ will be successful withigh

probability.

There are many different algorithms to exploit this situatsmme of themare explained below.

3.1. lterative Hard Thesholding (IHT)

The first one is the Iterative Hard Thresholding (IHT), this algorithm has two different incarnations
of the CS recovery problem to consider. On one handgtitegularized problem sets
o AGCETEy 068 _ L% (19)

On the other hand, thé-sparse problem defines if the leviels known a priori (or a solution with

some particular sparsitly isdesired the optimization problem as:
R AN ~E R o moal o a A oA A (20)
w AQCETa 6oz OOA OAID i

In both cases we assume that the measurement matrix has a r@gn  p by normalization of

(18).

21



¢
UNIVERSITAT POLITECNICA TECHNISCHE E FAKULTAT FOR

) . t ELEKTROTECHNIK UND

@ giF&fgﬁNU:{::CH m UWTI[:\;JERS‘TAT \@ mu';%”,} @ INFORMATIONSTECHNIK

Vienna|Austria

3.1.1. m-regularized problem

The problem is with solving thee-regularized (also any othér-regularized, with)  ¢) problem.
In this case, the minimization i19) is for the vectowand can be in very large dimensions (more

thang¢ p 1 17X H we write out the cost function asming columnrvectors everywhere we obtain:

0 w I 0 _I® W 0w’ ®w 0w _ B
TE D B0 dd  _ T® (21
L CWO'W WO'0w _ LB
Now, we would like to express the solution &flf as a sum over the componenisof & so the

minimization can be conducted separately in each component:

6 6 AT AR TR R (22

With @ the '&h component of the vectowandsvs pif®w Tm(ws Tmforw ).

Therefore, the term” 6°6® does not allow for separatioof the minimization problem.

To solve this problem, we will use the surrogate cost funcf8jninstead of the desired cost

function, with the auxiliary variabl@we could knowof the same dimension as
6 ahd g Oag _gE W & Do 08§ T (23)

Accordingly, foro awe haved afy & & so minimizing afwo for cowill minimize the
original cost functiond ) and generallyy chw will be a majorization 0b @& (if matrix

norm’) DS p. Hence, minimizing it means we minimize an upper limit 6f .

Then, if we develop the surrogate cost function we can write:

6 du o b6s  _gs W 8 DO 08 24

7 Note the definition of the matrix norm O1 AOC A O ® ORIAG@GEAIT &£ AAAOT 06 Q
os h JA a0 ® P

So s pimpliesthat H & ¢S  6s and, thusd ofx 6 o !
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Y8 (WO BeBe- _Us  B®  CWE LS
Be-b6- Wooa D&
VBB WA CWO'D WO G I W B DG

For real variables and matrixes (always assumed hédre) @ andd® 0 .We denote by the
'@h column of thed & matrixd (&  ¢). Now we can write the terms ir24) that depend on

the vectorwas sums over its componerds.

0 ah W Cwa 0w 00a
(25)
L W’ W D¢
. . o . p EZE 1
With the  the '@h component of the vector within the brackets and k -
mEZ&E 1«
Further simplified:
6 o W Cwad 0w bo6a _®
(26)

The idea is now to minimize oftx by variation ofiofor givend. As6 ot B O ®
0 T} @we can minimizéd o by minimizing the elementise costO @ (ignoring the
constant K) for each vector componeaitindependently. When minimizin® o overw we have

to distinguish two types of solutions:
a) w TmO w MmO 0w ™
b) ® m° w POO0Ow W c¢cwa O w O0a

In this case we obtain the minimum by

QOw ‘ C e 27)
x w Q 0O W oA Tt
o @ ¢ ¢ . -
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So we find the minimum ab @ O & O & whichbe plug back int® w:

0 C i & (28)

We will pick either the solution a) or whatever minimize© ® :

C Asfora)y mandthe costi®© m  1twe will always pick this solution, unless the

second solution b) leads to a negative cost

0 ® _ @ is negative, whenevert G 0 w 0a R

([@%

(with _ the regularization parameter chosen in the original probl2rhg)).

In summary$ ofi in 23) is minimized when the componenéshQ plgi8 of the solution

vectoroh @ ho B o  are chosen as follows:

¢ o6 o ba EMA 6 6 dba 29
Tt i OEAOXxEOA

As the notation inZ9) is bulky, we define the Hard Thresholding Operator (with threshpld

A H(u;T)
el o~ 6 Eds z (30)
I - o A~ s -
T u OO0 i GEAOXEC
It operates componentvise when applied to a

vector$ instead of a scalad.

Figure 3. Function of the Hard Thresholding
Operator

With (30) the solution 29) reads in vector notation (witfD &8 applied componenivise)

O 04 b @ o6& NV (31

Finally, this equation is the solution of the minimization of the surrogate cost fun@@rfgr a
given auxiliary variablé.

We analyse the possible different solutions for a gigiewe have that it wthend it

6 ®, i.e., a solution of the original problem. Otherwisel if ¢y BU G is still minimized by
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(29) and due tod oftr & @ we stil minimize an upper bound of the original cost function
0  &Hence, it is reasonable to assume thaty if &y the solutionwof (31) will be closer thai
to the desired solution that minimizés . This motivates to iterate3() ¢ with the iteration
counter'@ and use the previous solution a81) as the value fo@rin the next stegQ p when

solving (3) again, i.e.,

©  0a & @ dd MU (32)
Finally, the algorithm of the IHT for tlée-regularizedoroblem is:
0 Ow 6 & 6k M Q nphchofB (33)
with the hard thresholding operator (applied componemise)
06Nt 6 Eds z (34)

nl OEAOxEOA
andwith ¥s h | AZ®D & I AAEXLD p.
ss
As havealready explained before, the parametecontrols the tradeoff between accuracy and
sparsity in 19), we also define the start of the algorithm widh T, as is not a critical choice.
We also define a suitable stopping criterion that iterates unga () T ® , With

T pT.

Thealgorithm can also be applig¢d signal vectorsothat are not strictly sparse, the resulting error
will contain a corponent, due to the best-sparse approximation. This means the algorithm is
robust in the sense that it can cope with measurement noise as well as not exactly sparse signals,

this is rather important in practice.

3.1.2. 'wsparse problem

As defined inZ0) the dgorithm is made to guarantee a sparse solution (as opposed ta the
regularized problem). The concept in this case is similar as aB8yeptimizing a surrogate cost

function[8] with the auxiliaryvariabled of the same dimension as
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6 chay g 0w W s DD as T (35)8
S S

As above, 35) can be decoupled into sum of terms over thignal components. We obtain the

same as46), only without a constraint scaled by

6 o ® cwa 0 ® 0a SO R o (36)

Therefore, if we minimize the cesbntributionsO w of the components separately we obtain:

o Cw ¢4 0 w 0a 1
so we find the minimum ab @ O & 0 & whichonce if plugged back in®® o :
0 & C W & (38)

Consequently, the total cost is:

6 o a 0 © 6d L W DE (39)

The total cost takes its smallest value for a given nunilirnonzero components, when thie

largest (in magnitude) components are picked.
A simplified notation as3() defines

© 04 b & bant (40)

with the hard thresholding operator (known already from above; again applied component wise)

" 6 Eds z (41)
oM i GEAOXEOA

8 Note: no regularization here, but the constraint L% i isinserted later
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and the threshold- selected as thé-largest magnitude of the vectar @ 0 @ 0 & . A
common alternative is to defined thesparse vectobase hard thresholding operatd® ¢ that

keeps the components with thielargest magnitudes and sets the rest to zero.

Therefore, thd -sparse iterative hard thresholding algorithm reads
© Od b & dh 'Q mipiiofs (42)
with s h | AZD & i ABEXH p.
S

As in thed -regularized problem, @ define the start of the algorithm witto 1T, as is not a

critical choice. We also define a suitable stopping criterion that iterates udatil @

T , with] ~ p 7 . Its important to denote that this algorithm can handle huge vector

dimension (as opposed to many other schemes).

The algorihm can also be applied to signal vectarthat are not strictly sparse, the resulting error
will contain a component, due to the beistsparse approximation. This means the algorithm is
robust in the sense that it can cope with measurement noise asaseibt exactly sparse signals,

this is(as int -regularized problem)

The performance guarantee is a rather strong statement, but it has a disadvantage because the
Restricted Isometry Property (RIP) is requiredaevhich is hard to chdcfor a givermeasurement

matrix® ! Y2 1KSNE LISNF2NXYIFyOS 3Jdza NI yiSS Aa +ftaz 27
convergences guarantees for any possible source vector: this is again a rather strong statement. In
practice we may often be more interested in aage performance guarantee rather than in one

for the worst case (as the one above). In addition, we cannot draw strong conclusions from-a worst

case guarantee for the averagel 4 S> &2 2yS 4l O asd AddNXYy I EBEHSNRK

simulations.

3.2.  lterative Soft ThresholdingIST)

The problem setting is the same one as explained & the first part of this section. As we have
seen in the previous algorithm, IHT has a combinatorial complexity duepgeudenorm. For the
Iterative Soft Thresholdin¢JST) algorithm we change the normd&adnstead of & as a common

relaxation of the problem:
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6 Adgéiggb s _ w® (43)

The difficulties in this case come from the convex optimization problem (still rather complex for
high dimensiort), the Least Absolute Shrinkage and Selection Operator (LASSO) problem, also
called Basis Pursuit Denoising (BPDN).dFherm also promote sparsity that often leads to the

same result as fout -norm.

For convenience, instead of the desired cost functiod#) ve normalize differently:

o AGCET® o _ s O c_ (44)

Similar as for IH{See 23)) we consider a surrogate cost function with the auxiliary varialaf

the same dimension as

6 ot g 068 _Is W s Do 4s T (45)
S S

Again as for IHT we requesbs h | A@D s , then if DS  p implies that D
$s

as s 0s and, hencep ofx & ® ! & Accordingly, foto Gwe haved Gfw

6 G so minimizingd oft for cwill minimize the original cost functio ( &) and generajl
6 ofw will be a majorization ob @ ). Hence, minimizing it means we minimize an
upper limit of6 @ . With exactly the same steps as for derivation2¥)( we rewrite (46) as a

sum over independent contributions to the tdteost:
6 G

® cw @ 0 w oaq _Ws
(46)

As6 ¢y B ©Ow 0 m @we can minimizéd G by minimizing independently
the elementwise costO w for each componentv ignoring the constand . At that point, when

minimizing
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Obd & cb a & & da  _gvs (47)
h

over® we have to distinguish solutions witth ~ mand @ 1@ Note thati can take any real

value.

a o T @  w hence (noting. ¢_)

Od ® i _ oo ¢i _ (48)
In this case we obtain a minimum by
Q0m ‘ ‘ ‘ : ‘ (49)
!
o) Cw ¢iI _ T+t i _ i _
we plug (50 back intoO @ in (49):
(50)

O w 0w W QN &)

soaslongas _9S 200FAYy yS3AFGADS @) @adiheéoptiah Iy 2 NA Y

solution is given by

o i _ it i _ (51)
fori  _the smallest possible vali® w  Ttis taken atv Tt In summary we have
foro 1T

i E A OEDIw m

W Tt e A an (52)

Tt E®NI VQ OEDIG 1

b) ® mt+ w, hence (noting.  ¢_)
06w @ ¢oi & Ci (53)

We obtain a minimum by
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Q0 (54)
‘ ‘ ‘ : i
o Cw ¢i _ Tt i _ i _

we plug (5% back intdO @ in (54):

06 o @ W & (55)
so as long as _86S 20GFAY yS3AFGAGS (9 aRldha éptinalh Iy 2 NR Y
solution is given by
W I | A _ (56)
fori _the optimal solution must be located at the corner of the definition region

@ T as 65) has only one solution. We take the again cost functions (without constants):

Od ®& ci _ mfori _ ande T (57)
hence, for _the smallest possible valt® w Ttis taken ato T Finally, for
W T

i E A OEMDInw m
SRR - s (°8)
Tt ETNI 0Q DEDIw 1

Given the two solutions a) and b) above, which both apply for any real numhee still have to
decide which one to pick for a given valueAs the regularization parameter Ttthere is only a
chance to obtain a negative cost, when solution ahissen foi ~ 1t(negative costif _, zero

cost in all other cases). The same principle applies to valuest Therefore, the overall solution

reads:
i EA | OEDI0® =
o m EAE_ 1 _ OE Did n (59)
i EAE i OEDIn =
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With these conditions the solution using the Soft Thresholding operatof) is:

n(r;: A i
A (7 ) i _EAT
W —in ™ EAL£ 1 _ (60
i _EA
X o
i Q0:i A@s _fm (6D

Figure 4. Function of the Soft Thresholding
Operator

The Soft Thresholding operator is applied compongise in vector notation. Certainly, the
surrogate cost functio ¢ in (46) is minimized for given measuremertsand a given

auxiliary variabléx by

O -4 b & barn (62)

Similar as for IHT, we motivate iterations by considering ¢éhatdty 6 ofx | @ So, if we

estimate® , we can use it as an auxiliary variale @ and improve this estimate by

minimizingd ¢t . This is achieved by application 68), i.e.,

O  —d b h bd N (63

This is the scheme we call Iterative Soft Threholding, it was introduced for Compressed Sensing in
[8]. As well as the IHT we start iterations with 1tas is not a critical choice. The threshold
parameter_, according to the derivation just adopted from the cost function might not bdothst

choice to really minimizé @, as the derivation minimizes a surrogate cost function and not

0 w directly.

28 g2y Qi O2y&ARSNI 20KSNJ OSNEA2Yya 2F L{¢ Ay

accelerated version introduced jf0].

3.3.  Heuiristics for Iterative Recovery

First of all, we start from noiseless measurement equation 0 w witha ¢£.1fo

is orthogonal, i.ed” 0O (andd® O for 0 real: always assumed), then the solution could be

fined by simple inversion, i.& & @ However, ifwe assume £,001 y Qi 6S 2Nl K232y

is not invertible but we could still write:
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0w 00w ®» 060 Ow (64)
h
ThetermOOt Yy 0SS AYUGSNLINBGSR | a 4o/fob'®Se 5¢ éRArIQ (12 NI yF
Denoising from theliterature (e.g.[3],[11]): appropriately tuned () soft thresholding of @
T T EWilkreduce noise and lead to an estimabe of cwith smaller Mean Squared Error (MSE).
Then, denoising of sparse signal by soft thresholding, applied componentvise towh G
€ € Q

w _ EE£® _
O -6 T EAE_ & _ i Q@i Ags _n (65)
w _EL£0 _
If is a better estimate ofothanw 0w we have ® & W O6°we . Then if weuse

iterative soft thresholding with the initialisation T

@ -0" o 0w o I Q nphB
e w @ o M
6D 0 @ @ oL (66)
N R SRR o

0w ® oL x EQOEh!*l )
With the appropriate threshold. (i KS & 020A @ S gets smaller (in MSE) with each

iteration. Ultimately,w O_J 0 SOW — ofL with _© ttthen with decreasing noise, the
threshold _ must approach zero, as only then we obtain a fixed paint— ot at the desired
solution. Therefore, the exact recovery for noiseless measurements are only possible with adaptive
_. The choice of with noisy measurements can be seen as a problem where extra measurement
y2AaS RRa G2 GKS ayai &SAdditiRrdd IHT dor tdey-ieduilbidzdd Y LI A y 3
problem) has the same problem with adjusting the threshold.

Finally,now that we know how all these algorithms work we are ready to recover our signal, but
there are still some difficulties. First of all, one could say that the results are not the best possible,
moreover, is not clear how we choose the parameters ahd T and theconvergencef the signal

is slow.

In an extensive numerical study [@B] several iterative recovery algorithms were optimally tuned

for given undersampig factof & e, this parameter is knen from the measurement matrix
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4. Approximate Message Passing (AMP) and Bayesian derivation
(BAMP)

Approximate Message Passing (AMP) is a rather new topic and as yet the field has notlsettled.

this section we will jump from the IST to new AMP algorithm thanks to the graphical model for the

LASSO and the mgum algorithm.

As it has seen in the previous sections of the thesis we set the general noisy problem

W 0 [ 0 xEOQOBL ¢

(67)

Wherewis the observation vector) the measurement vector noise with variange and wis the

sparse signal to be recovered. The measurement matric 0y qu B qu , assume normalized

column vectors Oy p.

4.1. Graphical model for the LASSO

At this point, we want to find a someparse solution and this lead us to the Least Absolute
Shrinkage ad Selection Operator (LASSO). This istéthod that performs both variablselection
and regularization in order to enhance the prediction accuracy and interpretability of the statistical

model it produces. In our case, we represent the LASSO problem in-tiadlet Lagrangian form

& Adc;éiggb bis  _ s (69)
Therefore, our cost functiod @ expressed as thf component
& ggb bes  _ s g o 66 _ ws (69

Where 6w denotes thep O2 YLIR2 Yy Syl 2F GKS aYSIFadaNBYSyize

choice fora Then, if we develop the cost function i#0}
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N |0

(70)

Fale)

with"O  phghB ha  the set ofall measurement indices and ~ phgFB8 FE  the set of all indices
of the components of the signal vector. This notation is introduced to better match the cost

function to standard graph notation.

Now the goal is to minimize the cost function by suitable choice of the optimization variables, i.e.,
the componentsbAQ pfB FE of the signal vectoda As well known, a direct minimization of the
first part in (71) will be prohibitively complex in we high dimensions (even though is a convex
problem). The principle of a gragiased approach is that one triés minimize the total cost by
local minimization of the component8 ® and0  of the cost function. Note that we had
achieved thisbefore by manipulation of the cost function such that the minimization problem
could be algebraically decomposed into independent sums of costs per optimization varidble

is important to know too that depending on the matdx the sumtermsd @ may not all contain

all signal components.

Once the cost functions are settled, we define the general graph for measurement matrix
©Op M pB MIMQ prB FE. We assume that the graph is fully connected, &e;, 1) ) and

| "Qas it is @ommon case in compressed sensing.

Then if we represent the easurement matrix in a graph model we obtain:

set F' of factor nodes

AW O 8 B

b 0w O 8 ®
- 8 8 8 8 8 8 .
O 0w 0 ©® 8 O g

set V' of variable nodes z;

Figure 5. Graph representation for the LASSO problerr

Once, the graph model is settled we use the sim algorithm to minimize our cost function.
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4.2. Min-sum algorithm

The minsum algorithm is an established scheme to minimize a cost function on a graph, for
badground details segkrror! No se encuentra el origen de la referencitn this case, we apply

the algorithm to the last part of7(L) and we obtain for the messaggdate rules for alQ ph8 FE

andp pf8 ha:

variablenode Qo factor-noden: Do W _® QY w (71)
factor-noden to variable L

) R e [Efe b vo @ (7
node’'Q S 5

The final step is to estimate after convergence of the messages @ andQ ® :
. COA e n . (73)
w Ad (%E I_w Q W

As we can see the messa@s @ depends orw only through the term , then, we can
assume that this function is approximated by a Taylor series that is developed around the (for the
moment unknown)w-value that minimizes the local cost function. This minimum later appears as
a number that describes the functiof, @ . The minimurroperation in'Q, @ (for the

LASSO cost function) enforces a solution that can be expressed by ssitaldiag— N [Section
3.2). During this procedure of the somewhat complicated derivation, various terms can be safely
dropped under the assumption that the nra¢ columns are normalized (unibrms columns od)

and that the dimension considered are lafd®].

As an intermediate result we obtain a new (and approximateysagepassing rules. The message

update rules for iteratiorior all’Q pf8 [ andry piB 4 are:

G - 6 o M- (79

do @ B o (75)

The final step consists in estimateafter convergence of the messages andi , :
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o - 5 4o N— (79

This message passing algorithm is still very complicated, as for each signal com@teent
iterations must be run separately with the sums 1)(and {6) having to be computed also for

each different value off and’Q

In the final steps, the messagassing scheme above is further simplified, again by dropping terms
in expanded version that can be neglected due to matdbkumns normalization and large

dimension assumed. The final result is of the type:
O -—o 84 N 77
” : (78)

with signaldependent constants—and @ and®he iterations counter and softhresholding

operator seen in th¢Section3.2]

i _EEIT _
O —in m  EA I _ {Q0i Ads _fm (79)
i _ E A& _
that is applied componenbise to the vector @ 0 &

Note that tis algorithm is very similar to IST, the difference is the ®@rm & in (80).

4.3. Approximate Message Passing (AMP)

The Approximate Message Passing (AMP) schemecbastants/thresholds that must be
determined. We can find two schemes depending on whether the measurement noise variance is
known or unknown. As we have solved the LASSO problem, there remains a free parathater

is a tuning factor to control achiedesparsity of the solution and it depends on the measurement

noise variance.

43.1. AMP I

In the first algorithm of AMP the measurement noise variancés known and based di0] the

solution of the algorithm for iteration® phgF8 is:
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[ (80)

And the initial parameters are set whé® Ttas described above:

® Tt OECOARAMREDO ATIOET 1

o ® AET AT @Eipl O (81)
il p 1 = ~ A 4 ~

® .oz OAAI AO

ra S Oly a8S8S (KS LINRLRASR a2 ty2imasy ab2NendiyKESS é 3R |
» the actual measurement noise variance is interesting. Applying the unilaténa@hgform (time

indexQ "Q p)tow we obtain:

” (:x 5 (:x TR ('.x (82)
O CX 5 3 (k}, d (AIA) 5 5
p wa p a a w
and the solution in timelomain is
o —(:) P ®© ,0 o o ,0
P (83)
B0 P - 6,0
p p W

First, if we assume that the scheme recovers the corfesparse solution therd

- —. Therefore, we treat ® — pasaconstant Notethat Ed ,

T, aswus P, SO

(84)

—
o
&
'O‘_
e
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As® is the noise variance in the current iteration that is used in the thresholding function, this
means that the effective noise variance in the ¢ signal components is larger than the
measurement noise variange in thed measurements, so it causes extra noise because of the

undersampling.

Second, if we now consider that is not a constant, but for whatever reasoiw is close

to & we obtain® O p. This mean&) become very large, ap ( &) approaches zerdsrom
a mathsperspective this may still be good, as lagmeans that in the next iteration most

components will be set to zero by the soft thresholder and then® i

Third and las option, is when® p, then the implementation is set to avottbuble by limiting

&) i Ad h— . A bigger result ofd  could result to divergences of the AMP |
algorithm. These divergences are solved in the second algorithm of approximate message passing.
4.3.2. AMP I

In this algorithm the noise variange is unknown, therefore we have:

w - 0« nt )
85
& 6B 4 2o ®9
a
6 Loy
a
and the initializations af) 1T
@ i OECOMAREOATIOHET 1
o ® AEI AT @ETIpl O (86)
. p A% iy &
W o a OAAI AO

In this case, thanks to the new definition®fas we donot know the noise variance ) we are

able to solve the problem of divergence we had in the first approximate message passing algorithm.

In both cases AMP algorithms | and Il can use the stopping criterion known from other iterative

schemes: iterate, until @ W T ,withf  p 1T
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4.4. Bayesian Approximate Message Passing (BAMP)

In addition to this, if we come back to the estimatiproblem of other sections. We picked a prior
of the formr} &  @Q T usingQo  _gwsfor sparse signals and considering small

noise, © T, this led us to the weknown LASSO problerll these assumptions wre justified

to have a prinary motivation for those approximations, also because of the fact that the prior pdf
is indeed often unknown, but is known that the solution shall be sparse. With that a-bessd
approach was used to solve the LASSO, themtiresum algorithm with vaous approximations

and in the largesystem limit(e © H) led the solution to theApproximate Message Passing. But
what will happen if we know the pdf, does it change something? The BAMP algorithm responds

this problem as wean see above.

The problem settig is the same as AMP, in particular the columns of the measurement raatrix
are assumed to be normalized to origerivation in[2] and[4]. The basic concept is the same as
for AMP, it starts from

° —— AQDC—gb 0 & n o Qo (87)

and it is necessary to find a graptodel and apply messagmssing algorithm, but this time no
low-noise assumption as it is no longer the goal to get the LA&SEm (sed13], Sec. 6.2])The
approximations are similar as for AMP, also includirfg Hbto obtain a feasible algorithm. The
key difference is the signal priaf, ® , that is now used andot approximated by something
NBI a2yl 6t S¢ Tialdily. IFof sindplcinghg Sayhe pdf is assumed for all source

vector componentofiQ pFB FE andall components are independent.

4.4.1. BAMP |

This algorithm is related to the first scheme in AMP because in this case the measurement noise

variance, isknown as wellTherefore. m the first iteration we have:

o m OECOMRAMIED ATIOEI T

¢ AET AT GEipl O 89)
. p fx i A A

w » O(_ a OAAIl AO
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No difference between both algorithms in this case, the disparity comes when the iteration starts,

then algorithm is

0 W 0 a
© 06 Mo
b 06 M
f 0o Ie (89

with the scalar operators (neglecting the iteration ind@x p of the scalar arguments)

And with new variables introduced here defined as
oo M dSY o
V6 wd dOSY o (90)

R O
4.42. BAMP II

In this case, the measurement noise variapcas unknown. The initializations are exactly the

same as the AMP Il algorithm and what changes is the scheme for the iterations.

o m OECOMRAMIED ATIOEI T
R AET AT GEipl O (91)
. p A i A A
Gz a OAAI AO

Then, for the iteratioiQ phci :
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92

If the prior pdf takes a simple form, we can get explicit and relatively simple equations for the
MMSE estimatofO6 M fthe variancé06 Mo of the estimate and the derivativa . This

is useful for an implementation so one can try to obtain each depending on the prior.

In this thesis, we will focus our attention in solving the BAMP algorithm for sparsdssigraae
specifically in the ones that have a Gaussian prior (with zero mé&hajefore, the computations
for "GiOand"@avill be done for this prior. In the Appendix B of the thesis one cantowd this

variables are obtained and which is the finadukt used in the practice.
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5. Results

The results obtained in this thesis are based on the theory explained before. What has been done
is an implementation of the algorithms of message spag (AMP and BAMP) to compare the
differences between them. Some eaphtion of the code and the results obtained are described

below, moreover, one can find all the Matlab code in the Appendix A.

First of all, thealgorithm vectorise the image, i.e., stack all columns into one coluector ofw
dimensiong p, we also create a random pattern @ & measurements and we obtain the

standard compressed sensing measurement model as:

o b ® 0 withd L0 (93)

Each of the components 0§ represents one measurement that results one of the random
patterns. The vectob  is used to model the measurement of the noise (can be zero). We need
to exploit the structure of the image, that is, for instance, sparsity in the DCT/Fourier domain

becaise the image itself will usually not be sparse.

A brief explanation of DCT, in that case the llICiEed for images is defined as follows

& GAT©¢ 20 Al @ MR p (94
o Po o AT & ¢ g*Q El G Tt p (99)

If we come back to our problem then it is written following this matrix notation W@th  the

DCTTransform matrix:

() (6] w (96)
and theinverse transform

© 0 & 97
Note that 'O (@) because DCT is a unitary transform. In the implementation we will
avoid to use the matri©o directly, as for image dimensions pfrt 1 7p 1T TVve have a DCT
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matrix of the dimensiong 1 p 1. With the DCInatrix we form the compressed sensing

measurement equation used for recovery:

W 0 W 0 withd0 L O
(98)
0 O () 0
With the compound measurement matrix we now have a sparse vectar of DCT

coefficients we can recover lusing the functions of AMP and BAMP created for the théige
that the size of the measurement matigx is much smaller than the 0 DCTmatrix O

when0 L 0.

After recoveryg from which we obtaindd ¢ we need to transform back to the image domain,

i.e.,

®© 0 @ (99

Finally, the vectotw of recovered pixels has to be reshaped into the original pixels.

Once, we know how to compress and recover the image we could jump to the next step. After the
compressing of the image we send the signal to our algorithms that return the new signal to be

decompressed after their iterations.

Now, we are going to show some results of the code and some plots made to compare and decide
which one is the algorithm that is able to reconstruct the best image. In the code, there are explicit

some plots and figures.

The first one shows the D&®efficients of the original image and the resulting ones from the
algorithms of AMP and BAMP. In the code is also implemented a variation of the BAMP algorithm
that, instead of using the Gaussian model foitladl components 6the 40 images, computes the
model for each of the components of the 40 images., if the size of the imagegst 11p 1T We

obtain a sigma for the 10.000 component$erefore, what we have is a Gaussiardeidor each

of the pixels of all thémages intead one model for all the pixelnd imagesFor sure, this is an

accurate model and as we will see below the results are better for the B#duwise recovery.

The first result of the Matlab code shows which are differences between each of the DCT
coefficients of the algorithms implemented. It also shows how is the histogram of this signal before

the reconstruction.
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Figure6. DCT and histogram for the same image but different algorithms

The next plot of the code shows how thd3€Tcoefficients are distributed in 2D and as in the first

picture, we can appreciate the differences between all the algorithms.

DCT coeffs Original

DCT coeffs AMP

DCT coeffs BAMP BG prior

DCT coeffs BAMP ptwise Gaussian

Figure 7. DCT coefficients of the original image, AMP, BAMP and BpditRwise

In the thirdfigure, the image reconstruction is done and we can compare the differences between

the images reconstructed and the original one. In this figareecan appreciatéhe difference

between each algorithm.
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Original AMP

Rate R=0.20 Rate R=0.20

BAMP, Sparse Gaussian Prior BAMP, ptwise Gaussian

Figure 8. Imagereconstruction for the different algorithms

In all these three figures is easy to value which is the best algorithm. As in the first one is difficult
distinguish which histogram is more similar as the original one, if we take a look to the DCT
coefficientsin the left-side of the first figure and the second one it is clear that the BAbiRtwise
algorithm has the most similar coefficients referred to the original one. In the third figure we can
see the differences reflected in the reconstruction of the gas for each algorithm, despite the
reconstruction not fits perfectly to the original one. We can still differentiate more characteristics

in the last picture while in the first one is difficult to realise which is the object.

The next figures, show for m@imagesthe differenceshetween algorithms. As 40 images were
used to create the Gaussian model for the BAMP algorithm we took advantage of it and if one
wantsit is possible to plot all the imageln the following pictures there are some examples ef th

images used. In this case the undersamptatip is 0.4 instead of the P.above.
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