Aquesta és una còpia de la versió *author’s final draft* d'un article publicat a la revista “Discrete applied mathematics”.

URL d'aquest document a UPCommons E-prints: http://hdl.handle.net/2117/123591

Article publicat / Published paper:

Rainbow connectivity of Moore cages of girth 6

C. Balbuenaa,*, J. Fresán-Figueroab, D. González-Morenob, M. Olsenb

a Departament d’Ingenieria Civil i Ambiental, Universitat Politècnica de Catalunya, Spain
b Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico

\textbf{A B S T R A C T}

Let G be an edge-colored graph. A path P of G is said to be rainbow if no two edges of P have the same color. An edge-coloring of G is a rainbow t-coloring if for any two distinct vertices u and v of G there are at least t internally vertex-disjoint rainbow (u, v)-paths. The rainbow t-connectivity $rc_t(G)$ of a graph G is the minimum integer j such that there exists a rainbow t-coloring using j colors. A $(k; g)$-cage is a k-regular graph of girth g and minimum number of vertices denoted $n(k; g)$. In this paper we focus on $g = 6$. It is known that $n(k; 6) \geq 2(k^2 - k + 1)$ and when $n(k; 6) = 2(k^2 - k + 1)$ the $(k; 6)$-cage is called a Moore cage. In this paper we prove that the rainbow k-connectivity of a Moore $(k; 6)$-cage G satisfies that $k \leq rc_k(G) \leq k^2 - k + 1$. It is also proved that the rainbow 3-connectivity of the Heawood graph is 6 or 7.

* Corresponding author.

E-mail addresses: mcamino.balbuena@upc.edu (C. Balbuena), jfresan@correo.cua.uam.mx (J. Fresán-Figueroa), dgonzalez@correo.cua.uam.mx (D. González-Moreno), Olsen@correo.cua.uam.mx (M. Olsen).

1. Introduction

All graphs considered in this work are finite, simple and undirected. We follow the book of Bondy and Murty [1] for terminology and notations not defined here. Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. The distance between two vertices u and v, denoted by $d_G(u, v)$, is the length of a shortest (u, v)-path. For each vertex $v \in V(G)$ we use $N_G(v)$ and $d_G(v)$ to denote the set of neighbors and the degree of v in G. A graph G is called k-regular if each of its vertices has degree k. The girth $g(G)$ of G is the length of a shortest cycle in G.

An edge-coloring of a graph G is a function $\rho : E(G) \rightarrow R$, where R is a set of distinct colors. Throughout this paper we only consider edge-colorings. Let G be an edge-colored graph. A path P in G is called rainbow if no two edges of P are colored the same. Chartrand, Johns, McKeon and Zhang [3] defined the rainbow connecting colorings. An edge-colored graph G is said to be rainbow connected if there exists a rainbow path between every two distinct vertices of G. Clearly, every connected graph G has an edge-coloring that makes it rainbow connected (simply color the edges of G with distinct colors). The rainbow connection number $rc(G)$ of a connected graph G is the minimum number of colors that are needed to make G rainbow connected.

Menger [14] proved that a graph G is t-connected if and only if there are at least t internally vertex-disjoint (u, v)-paths for every two distinct vertices u and v. Schiermeyer studied rainbow t-connected graphs with a minimum number of edges [15], and very recently the rainbow connectivity of certain products of graphs has been studied in [12]. Similar to rainbow connecting colorings, an edge-coloring is called a rainbow t-coloring if for every pair of distinct vertices u and v there are at least t internally disjoint rainbow (u, v)-paths. Clearly, coloring the edges of a t-connected graph G with as many colors as edges, every two vertices of G are connected by t internally vertex-disjoint rainbow paths. Thus, the rainbow t-connectivity $rc_t(G)$ (defined by Chartrand et al. [4]) of a graph G can be defined as the minimum integer j such that there...
exists a rainbow t-coloring using j colors. Moreover, \(rc(G) = rc_1(G) \) and \(rc_t(G) \leq rc_{2t}(G) \) for \(1 \leq t_1 \leq t_2 \). The complexity of computing the \(rc \) has been studied in [7]. For 2-connected graphs it has been proved that \(rc(G) \leq \lceil |V(G)|/2 \rceil \), see [8]. Also for t-connected graphs with \(t \geq 5 \) and girth \(g(G) \geq 5 \) it has been proved that \(rc(G) \leq |V(G)|/t + 19 \), see [8]. Some \(rc_{2t}(G) \) has been computed when \(G \) is a complete graph or a complete bipartite graph in [4]. For more references on rainbow connectivity and rainbow k-connectivity see [9] and the book by Li and Sun [10] or the survey by Li, Shi, and Sun [10].

Given two integers \(k \geq 2 \) and \(g \geq 3 \) a \((k; g)\)-cage is a \(k \)-regular graph of girth \(g \) and minimum number of vertices, that is denoted by \(n(k; g) \). For more information on cages see the survey on cages [5]. In this paper we focus on the case \(g = 6 \). It is known that \(n(k; 6) \geq 2(k^2 - k + 1) \) and concerning the connectivity of any \((k; 6)\)-cage, it has been proved that they are \(k \)-connected [13]. When \(n(k; 6) = 2(k^2 - k + 1) \) the \((k; 6)\)-cage is called a Moore \((k; 6)\)-cage. It is known that the incidence graph of a projective plane of order \(k - 1 \) is a Moore \((k; 6)\)-cage [5,6].

Definition 1.1. A projective plane \((\mathcal{P}, \mathcal{L})\) is a non-empty set \(\mathcal{P} \) of points together with a set \(\mathcal{L} \) of non-empty subsets of \(\mathcal{P} \), called lines, satisfying the following axioms:

GP1. For any two distinct points \(p \) and \(p' \), there exists a unique line \(\ell \) connecting them.

GP2. For any two distinct lines \(\ell \) and \(\ell' \), there exists a unique point \(p \) in their intersection.

GP3. There exist at least four points such that no three of them are collinear.

From this definition it follows that each point \(p \in \mathcal{P} \) belongs to \(n + 1 \) lines and each \(\ell \in \mathcal{L} \) line contains \(n + 1 \) points yielding that \(|\mathcal{P}| = |\mathcal{L}| = n^2 + n + 1 \). Thus, the number \(n \) is said to be the order of the projective plane \((\mathcal{P}, \mathcal{L})\) which must be \(n \geq 2 \).

The incidence graph of a projective plane \((\mathcal{P}, \mathcal{L})\) of order \(n \) is a bipartite graph \(G \) with vertex set \(\mathcal{P} \cup \mathcal{L} \). A vertex \(p \in \mathcal{P} \) is adjacent to a vertex \(\ell \in \mathcal{L} \) if and only if \(p \) is incident with \(\ell \) in \((\mathcal{P}, \mathcal{L})\). Note that \(G \) is a Moore \((n + 1; 6)\)-cage, because it is a regular graph of degree \(n + 1 \) with \(2(n^2 + n + 1) \) vertices and girth 6. Moreover, the diameter of \(G \) is three. A Moore \((n + 1; 6)\)-cage has been constructed for \(q \) where \(q \) is a prime power. In Fig. 2 is depicted the \((3; 6)\)-cage (Heawood graph), which is the incidence graph of the Fano plane.

Chartrand, Johns, McKeon and Zhang [2] showed that the rainbow 3-connectivity of the Petersen graph is 5, and the rainbow 3-connectivity of the Heawood graph is between 5 and 7 inclusive. In this paper we prove that if \(G \) is a Moore \((k; 6)\)-cage, then \(k \leq rc_6(G) \leq k^2 - k + 1 \). It is also proved that the rainbow 3-connectivity of the Heawood graph is 6 or 7.

2. Bounds on the rainbow connectivity of cages

In this section we give a lower bound and an upper bound for the rainbow \(k \)-connectivity of a \((k; 6)\)-Moore cage.

Theorem 2.1. Let \(G \) be the incidence graph of a projective plane of order \(n \geq 3 \) and let \(\rho : E(G) \to R \) be a coloring of \(G \). If every path of \(G \) of length at most 3 is rainbow, then \(\rho \) is a rainbow \((n + 1)\)-coloring.

Proof. Let \(G \) be the incidence graph of a projective plane \((\mathcal{P}, \mathcal{L})\). Since the diameter of \(G \) is three, we distinguish three different cases according to the distance between two vertices in \(G \).

Case 1. Let \(a \in \mathcal{P} \) and \(L \in \mathcal{L} \) be such that \(d_G(a, L) = 3 \). Then there is a geodesic \((a, L_a, b, L)\) in \(G \) which is rainbow by hypothesis. Let \(L_a^{(i)} \), \(i = 1, \ldots, n \), be the \(n \) lines adjacent to \(a \) different from \(L_a \). Observe that \(|N_G(L_a^{(i)}) \cap N_G(L)| = 1 \) because \(G \) is the incidence graph of a projective plane and let \(\{p^{(i)}\} = N_G(L_a^{(i)}) \cap N_G(L) \) for \(i = 1, \ldots, n \). Note that \(p^{(i)} \neq a, b \) and \(p^{(i)} \neq p^{(j)} \) for \(i \neq j \) because \(G \) has girth 6. The paths \(\{(a, L_a^{(i)}, p^{(i)}, L) : 1 \leq i \leq n\} \) are internally vertex-disjoint paths between \(a \) and \(L \), and they are rainbow by hypothesis.

Case 2. Let \(a, b \in \mathcal{P} \) be such that \(d_G(a, b) = 2 \) and let \((a, L_ab, b) \) be the geodesic between \(a \) and \(b \) which is unique because the girth is 6, that is, \(N_G(a) \cap N_G(b) = \{L_ab\} \). This geodesic is rainbow by hypothesis. Let \(L_{ab}^{(i)} \), \(i = 1, \ldots, n \), be the \(n \) lines adjacent to \(a \) different from \(L_ab \) and let \(L_{ab}^{(i)} \), \(i = 1, \ldots, n \), be the \(n \) lines adjacent to \(b \) different from \(L_ab \). Let \(\{p^{(i)}\} = N_G(L_{ab}^{(i)}) \cap N_G(L) \), for \(i = 1, \ldots, n \), and observe that \(p^{(i)} \neq p^{(j)} \) for \(i \neq j \) because \(G \) has girth 6. Denote the color of the edge \(al^{(i)} \) by \(r_i = \rho(al^{(i)}) \), \(i = 1, \ldots, n \), and note that \(r_i \neq r_j \) for \(i \neq j \) because by hypothesis paths of length 2 are rainbow. Analogously, denote by \(r_i' = \rho(bl^{(i)}), t = 1, \ldots, n \), and observe that \(r_i' \neq r_j' \) for \(t \neq h \) by hypothesis. If there is no color in common among these sets of colors \(\{r_i\}, \{r_i'\} \), then the \(n \) paths \(\{(a, L_{ab}^{(i)}), p^{(i)}, L) : 1 \leq i \leq n\} \) are internally vertex-disjoint rainbow paths between \(a \) and \(b \). If there are \(k \) colors in common, without loss of generality we may assume that \(r_i = r_i' \) for \(i = 1, \ldots, k, k \leq n \), and \(r_i \neq r_j \) for \(t = k + 1, \ldots, n \). Then the \(n \) paths \(\{(a, L_{ab}^{(i)}), u^{(i)}, b) : 1 \leq i \leq n\} \), where \(u^{(i)} = N_G(L_{ab}^{(i)}) \cap N_G(L_{ab}^{(i'+1)}), i = 1, \ldots, n \), and the sum of superindex is taken modulo \(n \), are internally vertex-disjoint rainbow paths between \(a \) and \(b \) by hypothesis and the girth of \(G \) is 6. The case when \(L', L \in \mathcal{L} \) such that \(d_G(L, L') = 2 \) is solved analogously by duality.

Case 3. Let \(a \in \mathcal{P} \) and \(A \in \mathcal{L} \) be such that \(d_G(a, A) = 1 \). Let \(\{(L^{(i)}, L) : 1 \leq i \leq n\} = N_G(a) - A \) and \(\{(a^{(i)}, \ldots, a^{(i)} = N_G(A) - a \). Moreover, let \(\{M^{(i)} = N_G(a^{(i)}) - A \) and let \(\{b^{(i)}, \ldots, b^{(i)} = N_G(L^{(i)}) - a \) for \(i = 1, 2, \ldots, n \). Since there exists a perfect matching between the sets \(N_G(a) - A \) and \(N_G(L^{(i)}) - a \), for all \(i, j \), we may assume without loss of generality that \(b^{(i)} a^{(i)} \in E(G) \). Let \(r_1 = \rho(aL) \) and \(s_1 = \rho(Aa) \).
First, suppose that \(\rho(l^{(1)}b^{(1)}) = s_2 \neq s_1 \). If \(\rho(M^{(1)}a^{(1)}) = r_2 \neq r_1 \), then \(\rho(b^{(1)}M^{(1)}) \not\in \{r_1, r_2, s_1, s_2\} \), because by hypothesis paths of length 3 are rainbow. Therefore the path
\[
(a, L^{(1)}, b^{(1)}, M^{(1)}, a^{(1)}, A)
\]
is rainbow. Then we have to suppose that \(\rho(M^{(1)}a^{(1)}) = r_1 \), which implies that \(\rho(M^{(1)}a^{(1)}) = r_j \neq r_1 \) for all \(j \geq 2 \) since paths of length 2 are rainbow by hypothesis. Since \(n \geq 3 \), we can take \(j \in \{2, \ldots, n\} \) such that \(\rho(l^{(1)}b^{(1)}) = s_j \neq s_1 \). Then \(\rho(b^{(1)}M^{(1)}) \not\in \{r_1, r_j, s_1, s_j\} \), since paths of length 3 are rainbow by hypothesis, which implies that the path
\[
(a, L^{(1)}, b^{(1)}, M^{(1)}, a^{(1)}, A)
\]
is rainbow. Second, suppose that \(\rho(l^{(1)}b^{(1)}) = s_1 \). Then \(\rho(l^{(1)}b^{(1)}) = s_j \neq s_1 \) for all \(j = 2, \ldots, n \). Since \(n \geq 3 \), we can take \(j \in \{2, \ldots, n\} \) such that \(\rho(M^{(1)}a^{(1)}) = r_j \neq r_1 \). Then \(\rho(b^{(1)}M^{(1)}) \not\in \{r_1, r_j, s_1, s_j\} \), since paths of length 3 are rainbow by hypothesis, yielding that the path
\[
(a, L^{(1)}, b^{(1)}, M^{(1)}, a^{(1)}, A)
\]
is rainbow in either case we can find a rainbow path of length 5 between \(a \) and \(A \) through vertices \(l^{(1)}, a^{(1)} \) and vertices in \(N_G(l^{(1)}) - a \) and through vertices in \(N_G(a^{(1)}) - A \). Repeating this process for each \(i = 2, \ldots, n \), we find \(n \) internally vertex-disjoint rainbow paths between \(a \) and \(A \) which along with the edge \(aA \) give us \(n + 1 \) vertex-disjoint \((a, A)\)-paths.

Definition 2.1. Let \((P, L) \) be a projective plane and \(G \) the corresponding incidence graph. For all \(L \in L \) let \(\sigma_L : L \to L \) be a permutation such that \(\sigma_L(a) \neq a \) for every \(a \in L \). For each edge \(e \) of \(G \) with \(e \in P \) and \(L \in L \), we color \(e \) with the color \(\sigma_L(e) \). This coloring over the edges of \(G \) is said to be a \(\sigma \)-coloring.

As an example of **Definition 2.1**, let us consider the following permutations of lines of Heawood graph defining a \(\sigma \)-coloring shown in Fig. 1.

\[
\sigma_{L_1} = (132); \sigma_{L_2} = (147); \sigma_{L_3} = (165); \sigma_{L_4} = (264); \sigma_{L_5} = (273); \sigma_{L_6} = (354); \sigma_{L_7} = (367).
\]

Lemma 2.1. Let \(G \) be the incidence graph of a projective plane of order \(n \geq 2 \) with a \(\sigma \)-coloring. Then every path of length at most three of \(G \) is rainbow.

Proof. If a path has length one, clearly it is rainbow. Let \((a, L, b) \) be a path of length two of \(G \). Since \(\sigma_L \) is a permutation of the points of \(L \) and \(a, b \in L \) with \(a \neq b \), then \(\sigma_L(a) \neq \sigma_L(b) \). Let \((L, a, L') \) be a path of length two of \(G \). In this case \([a] = L \cap L' \), and \(\sigma_L, \sigma_L \) are permutations of the points of \(L \) and \(L' \), respectively. If \(\sigma_L(a) = \sigma_L(a) = [a] \), then \(p \in L \cap L' \), that is \(p = a \), which is a contradiction because \(\sigma_L(a) \neq a \) and \(\sigma_L(a) = a \) according to **Definition 2.1**.

Let \((a, L_{ab}, b, L_b) \) be a path of length three of \(G \). Then \(\sigma_{L_{ab}}(a) \neq \sigma_{L_{ab}}(b) \neq \sigma_{L_b}(b) \). If \(\sigma_{L_{ab}}(a) = \sigma_{L_b}(b) = p \), then \(p \in L_{ab} \cap L_b = \{b\} \), yielding that \(p = b \), which is a contradiction because \(\sigma_{L_{ab}}(a) \neq b \) by **Definition 2.1**.

As an immediate consequence of **Theorem 2.1** and **Lemma 2.1** we can write the following result.

Theorem 2.2. Let \(G \) be the incidence graph of a projective plane of order \(n \geq 3 \) with a \(\sigma \)-coloring. Then \(G \) is rainbow \((n + 1)\)-connected and \(r_{\sigma(n+1)}(G) \leq n^2 + n + 1 \).

The following assertions hold for $i \in \{1, 2\}$:

(i) If $[2i - 1, 2i]$, $[2i - 3, 2i - 4] \in [r]$, then $[2i + 1, 2i + 2]$, $[2i + 4, 2i + 5] \notin [r]$.

(ii) If $[2i - 1, 2i]$, $[2i - 7, 2i - 6] \in [r]$, then $[2i + 1, 2i - 8]$, $[2i + 3, 2i + 4] \notin [r]$.

(iii) If $[2i - 1, 2i]$, $[2i + 7, 2i + 6] \in [r]$, then $[2i + 5, 2i + 4]$, $[2i - 5, 2i - 6] \notin [r]$.

(iv) If $[2i - 1, 2i]$, $[2i + 3, 2i - 6] \in [r]$, then $[2i + 1, 2i + 2]$, $[2i - 2, 2i + 7] \notin [r]$.

(v) If $[2i - 1, 2i]$, $[2i + 3, 2i + 2] \in [r]$, then $[2i - 3, 2i - 2]$, $[2i - 6, 2i - 5] \notin [r]$.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
edge & color & edge & color \\
\hline
$1L_1$ & 2 & $6L_4$ & 4 \\
$2L_1$ & 3 & $2L_5$ & 7 \\
$3L_1$ & 1 & $5L_5$ & 2 \\
$1L_2$ & 4 & $7L_5$ & 5 \\
$4L_2$ & 7 & $3L_6$ & 4 \\
$7L_2$ & 1 & $4L_6$ & 5 \\
$1L_3$ & 6 & $5L_6$ & 3 \\
$5L_3$ & 1 & $3L_7$ & 6 \\
$6L_3$ & 5 & $6L_7$ & 7 \\
$2L_4$ & 6 & $7L_7$ & 3 \\
$4L_4$ & 2 & & \\
\hline
\end{tabular}
\end{table}

Fig. 2. Heawood graph with a σ-coloring which is not 3-rainbow.

Remark 2.1. In Theorem 2.2, the hypothesis $n \geq 3$ is necessary as shown for the σ-coloring depicted in Fig. 2 of Heawood graph. We can check that this σ-coloring satisfies the hypothesis of Lemma 2.1, but between 1 and L_1 there are no 3 internally rainbow vertex-disjoint paths.

However, the σ-coloring of Heawood graph shown in Fig. 1 does work.

3. Rainbow 3-connectivity of Heawood graph

In the previous section we have described a rainbow 3-coloring of the Heawood graph of 7 colors. We prove that the rainbow 3-connectivity of Heawood graph is at least 6.

Lemma 3.1. Let G be a k-regular and k-connected graph, and let ρ be a rainbow k-coloring of G. If e_1 and e_2 are two incident edges, then $\rho(e_1) \neq \rho(e_2)$.

Proof. Suppose by contradiction that there are two incident edges $e_1 = uv$, $e_2 = vw$ of G such that $\rho(e_1) = \rho(e_2)$. Since G is rainbow k-connected there are k vertex disjoint rainbow paths between vertices u and w. Since $d(u) = d(w) = k$, it follows that among these k vertex disjoint rainbow paths there is one containing e_1 and that path cannot contain e_2, and there must be another path containing e_2 and this path cannot contain e_1. A contradiction, because these two paths are not vertex-disjoint.

Let ρ be a coloring of a graph G. A **chromatic class** $[r]$ is the set of edges of G with color r. By Lemma 3.1, the following corollary is immediate.

Corollary 3.1. Let G be the incidence graph of a projective plane of order n and let ρ be a rainbow $(n + 1)$-coloring of G. Then every chromatic class is independent.

It is well known that the Heawood graph can be described as a bipartite graph with $V(G) = \mathbb{Z}_{14}$ and $E(G) = \{[2i, 2i + 1], [2i, 2i - 1], [2i + 1, 2i + 6] : i = 0, \ldots, 6\}$, see Fig. 3. In the rest of the paper we use this notation for the Heawood graph.

Lemma 3.2. Let H be the Heawood graph, let $\rho : E(H) \to R$ be a rainbow 3-coloring of H with $|R| = 5$, and let $[r]$ be a chromatic class. The following assertions hold for $i \in \{0, \ldots, 6\}$:

(i) If $[2i - 1, 2i]$, $[2i - 3, 2i - 4] \in [r]$, then $[2i + 1, 2i + 2]$, $[2i + 4, 2i + 5] \notin [r]$.

(ii) If $[2i - 1, 2i]$, $[2i - 7, 2i - 6] \in [r]$, then $[2i + 1, 2i - 8]$, $[2i + 3, 2i + 4] \notin [r]$.

(iii) If $[2i - 1, 2i]$, $[2i + 7, 2i + 6] \in [r]$, then $[2i + 5, 2i + 4]$, $[2i - 5, 2i - 6] \notin [r]$.

(iv) If $[2i - 1, 2i]$, $[2i + 3, 2i - 6] \in [r]$, then $[2i + 1, 2i + 2]$, $[2i - 2, 2i + 7] \notin [r]$.

(v) If $[2i - 1, 2i]$, $[2i + 3, 2i + 2] \in [r]$, then $[2i - 3, 2i - 2]$, $[2i - 6, 2i - 5] \notin [r]$.

Proof. Note that if $d_H(a,b) = 2$ for $a, b \in V(H)$, then the shortest (a, b)-path is unique because the girth of H is 6. Let $N(a) = \{c, a', a''\}$ and $N(b) = \{c, b', b''\}$. Then a, c, b is the shortest path between a and b. Since ρ is a rainbow 3-coloring, it follows that between a and b there are another two vertex disjoint rainbow paths which must have even length at least 4 because H is bipartite. Moreover, since $|R| = 5$ these paths must have length exactly 4. If $aa', bb' \in [r]$, then there must be
unique paths of length 2 joining a' with b' and b' with a'' without edges in $[r]$. To prove the lemma we use this fact and we only indicate the shortest path (a, c, b) in most of the cases.

(i) Suppose that $\{2i - 1, 2i\}, \{2i - 3, 2i - 4\} \not\subseteq [r]$. Let us consider the path of length two $\{2i - 4, 2i - 5, 2i\}$. One vertex disjoint rainbow path between $2i - 4$ and $2i$ must join $2i - 3$ with $2i + 1 \in N(2i) \setminus \{2i - 5, 2i - 1\}$ since $\{2i - 1, 2i\} \subseteq [r]$, and having no edges in $[r]$. This path is $\{2i - 3, 2i + 2, 2i + 1\}$ and $\{2i + 1, 2i + 2\} \not\subseteq [r]$. And the other vertex disjoint rainbow path must join $2i - 1$ with $2i + 5 \in N(2i) \setminus \{2i - 5, 2i - 3\}$ since $\{2i - 4, 2i - 3\} \subseteq [r]$, and having no edges in $[r]$. This path is $\{2i - 1, 2i + 4, 2i + 5\}$ and $\{2i + 5, 2i + 4\} \not\subseteq [r]$.

(ii) Suppose that $\{2i - 1, 2i\}, \{2i - 7, 2i - 6\} \subseteq [r]$. The result follows by considering the path $\{2i - 1, 2i - 2, 2i - 7\}$.

(iii) Suppose that $\{2i - 1, 2i\}, \{2i + 7, 2i + 6\} \subseteq [r]$. The result follows by considering the path $\{2i - 1, 2i - 2, 2i + 7\}$.

(iv) Suppose that $\{2i - 1, 2i\}, \{2i + 3, 2i + 8\} \subseteq [r]$. The result follows by considering the path $\{2i - 1, 2i + 4, 2i + 3\}$.

(v) Suppose that $\{2i - 1, 2i\}, \{2i + 3, 2i + 2\} \subseteq [r]$. The result follows by considering the path $\{2i, 2i + 1, 2i + 2\}$.

\begin{theorem}
Let H be the Heawood graph. Then $6 \leq rc_3(H) \leq 7$.
\end{theorem}

\begin{proof}
Let $\rho : E(H) \rightarrow R$ be a rainbow 3-coloring on the edges of H. We reason by contradiction assuming that $rc_3(H) = |R| = 5$, which implies that there is a chromatic class $[r]$ with $|r| \geq 5$ because $|E(H)| = 21 = \sum |r|$. Let $[r]$ be such a chromatic class. Observe that a matching of at least 5 edges in Heawood graph always contains two edges at distance 2. Without loss of generality suppose that $\{1, 2\} \subseteq [r]$. At distance two of $\{1, 2\}$ there are 8 edges which induce a cycle of length 8: $C = \{7, 12, 13, 4, 5, 10, 9, 8, 7\}$. Assume that $\{7, 8\} \subseteq [r]$. Since $\{7, 8\}, \{1, 2\} \subseteq [r]$, by item (ii) of Lemma 3.2 (taking $i = 4$), it follows that $\{9, 0\}, \{11, 12\} \not\subseteq [r]$.

We consider the following cases according to the edges in $E(C) \cap [r]$.

Suppose that there are four edges in C with color r. In this case, the class $[r]$ must contain the edges $\{1, 2\}, \{7, 8\}, \{9, 10\}, \{5, 4\}$ and $\{13, 12\}$. Since $\{7, 8\}, \{5, 4\} \subseteq [r]$, by item (i) of Lemma 3.2 (taking $i = 4$), it follows that $\{9, 10\}, \{13, 12\} \not\subseteq [r]$, a contradiction. Hence C contains at most 3 edges in $[r]$ including $\{7, 8\}$.

Suppose that $\{7, 8\}, \{13, 12\} \in E(C) \cap [r]$. Since $\{1, 2\}, \{13, 12\} \subseteq [r]$ it follows that $\{3, 4\} \not\subseteq [r]$ by item (i) of Lemma 3.2 (taking $i = 1$). If $\{5, 10\} \subseteq [r]$, by Lemma 3.1 and (1) there is no other edge belonging to $[r]$, see Fig. 3(a), and so $|r| = 4$, which is a contradiction. Hence, $\{5, 10\} \not\subseteq [r]$. If $\{5, 4\} \subseteq [r]$, then taking into account that $\{7, 8\} \subseteq [r]$, it follows by item (i) of Lemma 3.2 (taking $i = 4$) that $\{12, 13\} \not\subseteq [r]$, a contradiction. Thus, $\{5, 4\} \not\subseteq [r]$. If $\{9, 10\} \subseteq [r]$, using that $\{13, 12\} \subseteq [r]$, item (v) of Lemma 3.2 (taking $i = 5$) implies that $\{7, 8\} \not\subseteq [r]$ which is a contradiction; then $\{9, 10\} \not\subseteq [r]$. Furthermore, if $\{5, 6\} \subseteq [r]$ using that $\{12, 13\} \subseteq [r]$, item (iii) of Lemma 3.2 (taking $i = 3$) implies that $\{11, 10\} \not\subseteq [r]$ yielding that $|r| = 4$ which is a contradiction. Hence, if $\{7, 8\} \subseteq [r]$ then $\{12, 13\} \not\subseteq [r]$. By symmetry, if $\{7, 8\} \subseteq [r]$ then $\{9, 10\} \not\subseteq [r]$. Thus, if $[r]$ contains two edges of C these two edges must be at distance at least 2 in C.

Suppose that $\{7, 8\}, \{5, 10\} \subseteq [r] \cap E(C)$. Observe that the only other edges that can be in $[r]$ are $\{3, 4\}, \{13, 0\}, \{13, 4\}$ (see Fig. 3(b)). By item (iv) of Lemma 3.2 (taking $i = 1$), $\{1, 2\}, \{5, 10\} \subseteq [r]$ implies that $\{3, 4\} \not\subseteq [r]$, yielding that $|r| \leq 4$, a contradiction. Thus, $\{5, 10\} \not\subseteq [r]$. By symmetry $\{4, 13\} \not\subseteq [r]$.

Suppose that $\{7, 8\}, \{5, 4\} \subseteq [r] \cap E(C)$. At this point the only edges that can be in $[r]$ are $\{3, 4\}, \{10, 11\}$ (see Fig. 3(c)). By item (v) of Lemma 3.2 (taking $i = 1$), $\{1, 2\}, \{5, 4\} \subseteq [r]$ implies that $\{10, 11\}, \{13, 0\} \not\subseteq [r]$, yielding that $|r| = 4$ which is a contradiction. Thus, we conclude that $[r] \cap E(C) = \{7, 8\}$.

Therefore, we have all the edges incident with $\{1, 2\}, \{7, 8\}$ (by Lemma 3.1) together with the edges of C minus $\{7, 8\}$, and $\{11, 12\}, \{9, 0\}$ (by (1)) do not belong to $[r]$. Hence, the edges that can be in $[r]$ are $\{3, 4\}, \{5, 6\}, \{10, 11\}$ and $\{13, 0\}$. Suppose $\{13, 0\} \subseteq [r]$. Then $\{7, 8\}, \{13, 0\} \subseteq [r]$ implies that $\{3, 4\} \not\subseteq [r]$ by item (ii) of Lemma 3.2, and $\{10, 11\}, \{13, 0\} \subseteq [r]$. Therefore, we have all the edges incident with $\{1, 2\}, \{7, 8\}$ (by Lemma 3.1) together with the edges of C minus $\{7, 8\}$, and $\{11, 12\}, \{9, 0\}$ (by (1)) do not belong to $[r]$. Hence, the edges that can be in $[r]$ are $\{3, 4\}, \{5, 6\}, \{10, 11\}$ and $\{13, 0\}$. Suppose $\{13, 0\} \subseteq [r]$. Then $\{7, 8\}, \{13, 0\} \subseteq [r]$ implies that $\{3, 4\} \not\subseteq [r]$ by item (ii) of Lemma 3.2, and $\{10, 11\}, \{13, 0\} \subseteq [r]$.

implies that \(\{1, 2\} \not\in [r] \) by item (i) of Lemma 3.2 which is a contradiction. Therefore, if \(\{13, 0\} \in [r] \), \(|[r]| = 4 \) which is a contradiction. Hence, \(\{13, 0\} \not\in [r] \). By symmetry \(\{10, 11\} \not\in [r] \), yielding that \(|[r]| \leq 4 \) which is a contradiction.

Since in every case we obtain a contradiction we conclude that for each chromatic class \(|[r]| \leq 4 \) which implies that \(|R| \geq 6 \). ■

Acknowledgments

The first author’s research was supported by the Ministry of “Economía y Competitividad”, Spain, and the European Regional Development Fund (ERDF), both under project MTM2014-60127-P. The third author’s research was supported by CONACyT-México, under project CB-222104.

References