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Overview

Considering the expected air traffic growth, the innovation and development of new tools
able to allow a more efficient and safer way of managing aircraft operations is necessary
to achieve future expectations. In this context, it is important to be capable of accurately
predict aircraft trajectories to ensure efficient aircraft operations (e.g., planning and dis-
patching of flights, in-flight trajectory prediction, etc.) as well as to make more robust the
Air Traffic Management (ATM) system (which includes ground based systems for ATC,
predicting demand in ATC sectors, etc). The way of predicting them is based on aircraft
performance models (APM), i.e., sets of equations that allow to model the aircraft perfor-
mance according to some specific coefficients that depend on the aircraft carrying out the
flight. Therefore, the predicted trajectories accuracy will depend directly on the aircraft
performance model used. If the APM does not reflect the reality, the predicted trajectories
will not be accurate enough. Moreover, since these trajectories will not be longer optimal
according to the real performance model, the performance in cost-efficiency and the envi-
ronmental impact of aircraft operations will be decreased. Then, it is required the use of
aircraft performance models as realistic as possible. The objective of this Master Thesis is
the design of an algorithm capable to estimate the coefficients of the functions describing
the aircraft performance model considered, which will be the Base of Aircraft Data (BADA),
from Quick Access Recorder (QAR) flight data. The idea is to obtain the real coefficients
values of each specific tail number aircraft to accurately model their performance for trajec-
tory prediction purposes. To perform the coefficients’ estimation, real flight data has been
used, consisting in a set of trajectories carried out by more than 30 different tail number
aircrafts and obtained from their respective QAR. Among these aircrafts, only one (i.e, its
trajectories) will be selected to design the estimation algorithm, which consist in a nonlin-
ear least squares optimization problem. The output will be the coefficients value that better
fits to the QAR data used, i.e, that minimize the difference between the real trajectories
and the generated predicted trajectories as a result of applying the estimated coefficient’s
value to the BADA model equations. The results show a good estimation accuracy for the
four aircrafts analysed, obtaining a very low prediction error in all cases, which proves the
reliability of the algorithm and the necessity of tailoring the existing performance models
(in this case BADA).





The important thing is to not stop questioning.
Curiosity has its own reason for existing.

Albert Einstein
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INTRODUCTION

The future of the Air Traffic Management (ATM) system is based on the consecution of a
specific set of measurable performance targets that fit to the main ATM Key Performance
Areas (KPAs), particularly in the following ones: safety, efficiency, capacity and environ-
mental impact. In this context, the ATM system performance relies directly on the predic-
tion accuracy of future air traffic evolution and aircraft trajectories. Moreover, in order to
ensure efficient aircraft operations, it is required to know as accurate as possible the cur-
rent aircraft performance (e.g. drag coefficient, fuel flow, ...) and keep track of its evolution
through making comparisons with respect to the theoretical one, which is present in flight
manual after being manufactured and tested.

Considering that real aircraft performance usually differs from theoretical due to structure
degradation and changes produced in main physical factors, it is necessary the research
and development of new tools and methods capable to accurately estimate the mathe-
matical functions and associated coefficients (i.e., the aircraft performance model) that
describe the aircraft performance and, consequently, the current flight performance [1].

However, the aircraft performance model could differ for every single tail number aircraft,
being very difficult to generate a generic analytical model for every single aircraft. Never-
theless, they can be estimated by observing how the aircraft behaves and how it should
behave according to the performances it had just out of the factory. In this context, air-
craft performance models [2] are the core of trajectory computation and prediction, playing
a central role in the development and evaluation of future cockpit, flight dispatching and
ATM systems. There are several existing approaches to aircraft performance modeling to
support various needs for aircraft trajectory prediction, simulation and optimisation. Thus,
depending on the approach and techniques used in modeling there are different forms of
Aircraft Performance Models (APM). In this project, an aircraft performance model named
BADA (Base of Aircraft Data) provided by Eurocontrol will be used [3].

Then, the idea of this Master Thesis would be to design the algorithm capable to estimate
the coefficients of the functions describing BADA APM for a specific tail number aircraft.
For this purpose, a set of real trajectories provided by QARs (Quick Access Recorder) of
an A320 aircraft type fleet will be used. However, the achievement of this particular aim
depends also on the consecution of other sub-objectives, which are presented below:

• Identify the aircraft performance model coefficients to be estimated: Identify
all the coefficients of interest from BADA model equations according to the project’s
case study.

• Develop the estimation algorithm: The algorithm to be developed will be based
on the least squares regression method, which makes possible the comparison of
two trajectories by observing which is the squared difference between the most rep-
resentative state variables of the real and predicted trajectories. These variables
should represent the aircraft behaviour and they can be the horizontal or vertical
position, aircraft mass, acceleration, rate of climb, etc. In this particular case, these
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ones will be given by the Equations Of Motion (EOM) governing the point-mass
model considered. Therefore, the algorithm should provide as output the the best
estimation of the coefficients’ values previously identified, i.e. the values that min-
imizes the difference between the chosen real trajectory state variables and the
corresponding predicted trajectory state variables.

• Test the estimation algorithm: The idea is to perform several tests in order to
detect the errors that the algorithm could present and analyse the algorithm’s sensi-
tivity to the input variables and coefficients. This will allow a proper algorithm tuning
to achieve accurate results.

• Validate the results with QAR data from real flights: What is wanted to obtain is
the coefficients value that minimize the difference between the predicted trajectories
and the real trajectories carried out by a specific tail number aircraft. This means that
the QAR trajectories of the validation set will be compared with the result of combin-
ing BADA model equations with the coefficients already estimated by least squares.
A minimum difference will indicate an accurate estimation of the coefficients.

In order to have a good understanding regarding the current situation of performance mod-
eling and the coefficients estimation process, it is important to give a brief explanation of
which are the sources that have been consulted for the development of this project.

Regarding the algorithm’s design, the estimation process workflow has been inspired in
the one presented in [4] in which an enhanced tailored APM based on flight recorded data
is proposed. To adapt the algorithm’s design to the case study selected, [5] has been
reviewed since it proposes four fuel models that are generated based on recent historical
high-frequency flight data to predict the fuel use of individual aircraft, which is also based
on BADA and real flight data.

Although, in the end, BADA has been the aircraft performance model used in this project,
[6] and [7] were consulted since they propose new approaches of aircraft performance
modeling, the first one, introducing a Compromised Aircraft Performance model with Lim-
ited Accuracy (COALA) and, the second one, presenting a new approach to model aircraft
performances based on machine learning. Moreover, in [8], [9] and [10] new thrust, weight
and optimum climb profiles are developed to improve trajectory prediction accuracy.

Furthermore, regarding statistical prediction of aircraft trajectory, in [11] a standard point-
mass model and some specific statistical regression methods, in which least squares is
also included, are used to predict the altitude of climbing aircraft. Although least squares
were finally selected as the regression method to be used for the coefficients’ estima-
tion, [12] and [13] were also reviewed since they examine three different approaches
to aircraft parameter and dynamics estimation based on Equation-Error, Filter-Error and
Output-Error methods.

Overall, after reading all the sources stated in this section, it was decided to use BADA
model and least squares regression method as the best baseline on which start to build
the coefficients’ estimation algorithm.



CHAPTER 1. BACKGROUND

In this chapter, some theoretical background about BADA model will be provided. For
a proper understanding of the coefficients estimation process, the regression method of
least squares and the DYNAMO trajectory predictor will also be introduced.

1.1. Base of Aircraft Data (BADA)

The Base of Aircraft Data (BADA) [2] is a model developed and maintained by EURO-
CONTROL, with the active cooperation of aircraft manufacturers and operating airlines,
composed by an Aircraft Model and an Atmosphere Model. As it can be observed in figure
1.1, Bada model is structured in three parts: an Aircraft Performance Model (APM), an
Airline Procedure Model (ARPM) and Aircraft Characteristics.

Figure 1.1: BADA Aircraft Model structure

• Aircraft Performance Model (APM): The APM adopted by BADA is based on a
mass-varying, kinetic approach which models an aircraft as a point and requires
modeling of underlying forces that cause aircraft motion [2].

• Airline Procedure Model (ARPM): A generic Airline Procedure Model (ARPM)
is proposed in BADA, providing nominal speeds for the climb, cruise and descent
phases, assuming normal aircraft operations [14].

• Aircraft Characteristics: Each aircraft performance sub-model in BADA is charac-
terized with a set of coefficients, called Aircraft Characteristics, which is used by the
APM and ARPM [14].

Since this project will be focused on the BADA APM, details about its sub-models will
be provided in next sections. Moreover, information about Aircraft Characteristics will be
also presented, as they are the coefficients describing the BADA APM functions, between
which, there are the ones to be estimated in this project. BADA revision 3.12 has been the
version used in this project, which can be found in source [15].

5
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1.1.1. BADA Aircraft Performance Model

The BADA Aircraft Performance Model (APM) consists in a performance database based
on the kinetic approach to aircraft performance modeling design for simulation and pre-
diction of aircraft trajectories for purposes of ATM research and operations [2]. Aircraft
performance parameters and trajectories can be calculated using information and data
contained in BADA. To replicate reality in both operational and research modeling and sim-
ulation systems [16], each and every real aircraft needs a corresponding aircraft model,
since it is the core of the aircraft trajectory computation system as figure 1.2 shows.

Figure 1.2: Aircraft Trajectory Computation System using BADA [16]

BADA APM is structured into four sub-models [17]: Actions, Motion, Operations and Limi-
tations model.

• The Actions model is a representation of the forces acting on the aircraft. These
actions are responsible for the motion of the aircraft and come from three distinct
categories: aerodynamic, gravitational and propulsive. Aerodynamic actions are
referring to the drag and lift forces. The gravitational action corresponds to the weight
force and, finally, the representative force of the propulsive category of actions is
the thrust force. Apart from thrust, the propulsive action model provides a model
to compute the fuel flow, which affects the aircraft’s mass. Therefore, the Actions
model is composed by the following sub-models: Drag, Lift, Weight, Thrust and Fuel
flow.
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• The Motion model consists of the system of different equations that describes the
aircraft motion. One of these equations is the Total-Energy Model (TEM), a physical
model based on the 2nd newton’s law that connects geometrical, kinematic and ki-
netic aspects of the aircraft motion, which is essential in order to calculate the aircraft
trajectory and performance. The other equation considered is the fuel consumption
model, which is also included in the Motion Model.

• The Operations model provides information about the way the aircraft is operated,
being responsible for capturing aspects of the flight which are not directly related to
the Actions or the Motion model, but are necessary to take into consideration while
computing the aircraft motion. This is important since different ways of operating the
aircraft may result in different trajectories.

• The Limitations model ensures a realistic aircraft behaviour within certain limits.
These limitations are set to secure not only the realistic aircraft behavior and provid-
ing flight safety, but also to limit the degradation of the aircraft equipment.

The existing relations structure between these BADA sub-models is represented in figure
1.3:

Figure 1.3: BADA Aircraft Performance Model relations structure

In this project, the Actions and Motion BADA sub-models will be considered. What is
important to understand is that the Actions model equations modeling D, T and f f are
based on the TEM and fuel consumption models included in the Motion model, which
constitude the baseline of BADA APM. Find in following sections the equations describing
each of these models.

1.1.2. Total Energy Model and Fuel Consumption Model

The BADA APM is based on the TEM, a simplified point-mass model that equates the rate
of work done by forces acting on the aircraft to the rate of increase in potential and kinetic
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energy [15]:

(T −D)·v = mg0
dh
dt

+mv
dv
dt

(1.1)

where:

• T is the thrust force acting parallel to the aircraft velocity vector [N]

• D is the aerodynamic drag force [N]

• v is the true airspeed of the aircraft [m/s]

• m is the aircraft’s mass [kg]

• g0 is the gravitational acceleration [m/s2]

• d
dt denotes the time derivative

• h is the geometric altitude [m]

As it has been aforemetioned, the Fuel Consumption Model is also included in BADA
Motion Model, which expresses the variation of mass in flight through equation 1.2:

m =− fnom (1.2)

The forces involved (D, T ) in the TEM as well as the fuel consumption model are functions
that depend on the performance model considered. These functions, which are included in
the Actions model, are parametrized with some specific coefficients, or aircraft character-
istics, which are the ones to be estimated and particularized for each tail number aircraft.
In next sections, the Actions model equations regarding D, T and f f modeling will be
presented as well as the coefficients included in each of them.

1.1.3. Drag Model

The drag force can be calculated using the expression 1.3, where ρ is the air density
(kg/m3), S the wing reference area (m2) and v the true airspeed (m/s).

D =
CD·ρ·v2·S

2
(1.3)

As it can be observed, it depends directly on the drag coefficient, which under nominal
conditions is specified as a function of the lift coefficient CL as follows [15]:

CD =CD0 +CD2· (CL)
2 (1.4)
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This formula is valid for all configurations. The drag coefficients are CD0 and CD2 which
refer to the parasitic drag coefficient and induced drag coefficient respectively. However,
depending on the configuration considered the coefficients will vary. Regarding the lift co-
efficient CL, this one can be calculated assuming that the flight path angle is zero. However,
a correction for a bank angle φ is made.

CL =
2·m·g0

ρ·v2·S·cosφ
(1.5)

Thus, the coefficients necessary to be estimated in order to model the drag force are: CD0
and CD2.

1.1.4. Engine Thrust Model

The thrust is calculated in Newtons and includes the contributions from all engines. BADA
model provides coefficients that allow the calculation of 3 different thrust levels [15], which
are:

• Maximum climb and take-off: The maximum climb thrust at standard atmosphere
conditions, (Tmaxclimb)ISA, is calculated in Newtons as a function of the following
information:

– Engine type: either Jet, Turboprop or Piston

– Geopotential pressure altitude, hp [ft]

– True airspeed, v [kt]

– Temperature deviation from standard atmosphere, ∆T [K]

Since all the QAR trajectories used in this project are performed by A320 aircrafts,
which is a jet engine aircraft type, the equations presented below will be used to
model the thrust according to this engine type. The methodology will be the same
for other aircraft types, but the equations and its coefficients will vary.

In this context, it is possible the modeling of the maximum climb and take-off thrust
with the following equation:

(Tmaxclimb)ISA =CTc,1·(1−
hp

CTc,2
+CTc,3·h2

p) (1.6)

However, it is important to point out that, for all engines, the maximum climb thrust is
corrected for temperature deviations from standard atmosphere, ∆T , in the following
manner:

Tmaxclimb = (Tmaxclimb)ISA·(1−CTc,,5·∆Te f f ) (1.7)

where:
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∆Te f f = ∆T −CTC,4 (1.8)

with the limits:

0.0≤ ∆Te f f ·CTc,,5 ≤ 0.04 (1.9)

being:

CTc,,5 ≥ 0.0 (1.10)

This maximum climb thrust is used for both take-off and climb phases.

• Maximum cruise: The normal cruise thrust is by definition set equal to drag (T =
D). However, the maximum amount of thrust available in cruise situation is limited.
The maximum cruise thrust is calculated as a ratio of the maximum climb thrust that
is [15]:

(Tcruise)MAX =CTcr ·Tmaxclimb (1.11)

In BADA, the coefficient CTcr is currently uniformly set for all aircraft.

• Descent: Descent thrust is calculated as a ratio of the maximum climb thrust given
by expression 1.7, with different correction factors used for high and low altitudes,
and approach and landing configurations, that is [15]:

– If h > hdes:
Tdes,high =CT des,high·Tmaxclimb (1.12)

– If h≤ hdes:

– Cruise configuration:

T hrdes,low =CT des,low·Tmaxclimb (1.13)

– Approach configuration:

Tdes,app =CT des,app·Tmaxclimb (1.14)

– Landing configuration:

Tdes,ld =CT des,ld·Tmaxclimb (1.15)

where hdes is the transition altitude. Therefore, for the jet engine thrust case, and
considering the modeling of an entire trajectory from the ascent phase to the descent
phase, the coefficients of interest would be: CTc,1, CTc,2, CTc,3, CTc,4, CTc,5, CTcr ,
CT des,high and CT des,low.
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1.1.5. Fuel Flow Model

For the jet and turboprop engines, the thrust specific fuel consumption, η [kg/(min·kN)], is
specified as a function of the true airspeed, v [kt]:

η =C f 1·(1+
v

C f 2
) (1.16)

The nominal fuel flow, fnom [kg/min], can then be calculated using the thrust, T :

fnom = η·T (1.17)

These expressions are used in all flight phases except during idle descent and cruise, in
whose case the following equations are to be used:

• The minimum fuel flow, fmin [kg/min], corresponding to idle thrust descent condi-
tions for both jet and turboprop engines, is specified as a funtion of the geopotential
pressure altitude, hp [ft], that is:

fmin = c f 3·(1−
hp

C f 4
) (1.18)

• The cruise fuel flow, fcr [kg/min], is calculated using the thrust specific fuel con-
sumption η, the thrust T , and a cruise fuel flow factor, C f cr:

fcr = η·T ·C f cr (1.19)

In this case, the coefficients extracted from the fuel consumption model are: C f 1, C f 2, C f 3,
C f 4 and C f cr.

To sum up, the coefficients that should be estimated to model the D, T and f f of an aircraft
performing an entire flight from the ascent phase to the descent phase would be the ones
listed in table 1.1.
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Model Coefficient Meaning
Drag Model CD0 Parasitic drag coefficient (cruise)
Drag Model CD2 Induced drag coefficient (cruise)
Thrust Model CTc,1 1st max. climb thrust coefficient
Thrust Model CTc,2 2nd max climb thrust coefficient
Thrust Model CTc,3 3rd max. climb thrust coefficient
Thrust Model CTc,4 1st thrust temperature coefficient
Thrust Model CTc,5 2nd thrust temperature coefficient
Thrust Model CTcr Cruise thrust coefficient
Thrust Model CT des,high High altitude descent thrust coefficient
Thrust Model CT des,low Low altitude descent thrust coefficient
Fuel Flow Model C f 1 1st thrust specific fuel consumption coefficient
Fuel Flow Model C f 2 2nd thrust specific fuel consumption coefficient
Fuel Flow Model C f 3 1st descent fuel flow coefficient
Fuel Flow Model C f 4 2nd descent fuel flow coefficient
Fuel Flow Model C f cr Cruise fuel flow factor

Table 1.1: Drag, Thrust and Fuel flow BADA models coefficients

1.1.6. BADA Aircraft Characteristics

As it has seen in previous sections, the equations describing each aircraft model in BADA
are characterized with a set of coefficients called Aircraft Characteristics, some of them
included in table 1.1. In BADA, the value of these coefficients is already given, values
specified per aircraft type (e.g. A320), which can be found in the aircraft corresponding
Operations Performance File (OPF).

The OPF file is an ASCII file, which for a particular aircraft type specifies the value of
those coefficients included in BADA actions, operations and limitations models [15]. It is
constituted by three types of lines identified by the first two characters in the line. These
line types with their associated two leading characters are: CC (Comment Line), CD (Data
line) and FI (end-of-file line). The comment lines are provided solely for the purpose of
improving the readability of the file. All coefficients are contained within the CD lines in a
fixed format. The end-of-file line is included as the last line in the file in order to facilitate
the reading of the file in certain computing environments. Moreover, the data is organised
into a total of eight blocks, separated between them by a comment line containing the block
name to make easier the identification of each section [15]. These blocks are the following
listed:

• File identification block: The file identification block provides information on the
file name, creation date and modification date.

• Aircraft type block: This block specifies the ICAO code, number of engines, engine
type and wake category of the aircraft type considered.

• Mass block: It provides the value of the aircraft reference, minumum, maximum and
maximum payload masses, as well as, the weight gradient on maximum altitude.
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• Flight envelope block: The flight envelope block provides the value of BADA speed
envelope parameters, such as the maximum altitude at MTOW and ISA, the tem-
perature gradient on maximum altitude and the maximum operating speed, mach
number and altitude.

• Aerodynamics block: The OPF aerodynamics block provides the values of the
parasitic and induced drag coefficients, as well as the value in knots of the stall
speed Vstall , which are informed for different configurations and presented in the
following order:

– CR: Cruise

– IC: Initial Climb

– TO: Take-Off

– AP: Approach

– LD: Landing

Moreover, another parameters affecting the aircraft aerodynamics are also specified:

– S: reference wing surface area in m2

– CLbo(M=0): Buffet onset lift coefficient (jet only)

– K: Buffeting gradient (jet only)

– CM16: Compressibility effects

– CD0,∆LDG: drag increment for landing gear down

• Engine thrust block: The Engine thrust block includes the values of the maximum
climb thrust coefficients, cruise and descent thrust coefficients and reference speeds
during descent.

• Fuel consumption block: This block specifies the values of those coefficients re-
garding the thrust specific fuel consumption and the descent fuel flow. The cruise
fuel flow correction factor value is also informed.

• Ground movements block: It includes the value of the BADA coefficients in refer-
ence of ground movements, such as take-off and landing length and aircraft wingspan.

The coefficients to be taken into account are included within the aerodynamics, engine
thrust and fuel consumption blocks, which are those blocks corresponding to the Actions
Model. In order to visualize the structure of the file, find an example below of an OPF
file for an A320 aircraft type, as it is the type of aircraft that has carried out the QAR real
trajectories used in this project. The value of the coefficients have been hided since it is
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not public information.

CCCCCCCCCCCCCCCCCCCCCCCCCCCC A320.OPF CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC/
CC /
CC AIRCRAFT PERFORMANCE OPERATIONAL FILE /
CC /
CC /
CC File name: A320.OPF /
CC /
CC Creation date: Apr 30 2002 /
CC /
CC Modification date: May 14 2004 /
CC /
CC /
CC====== Actype ==================================================================/
CD A320 2 engines Jet M /
CC Airbus A320 212 with CFM56 5 A3 engines wake /
CC /
CC====== Mass (t) =================================================================/
CC reference minimum maximum max payload mass grad /
CD XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CC====== Flight envelope ============================================================/
CC VMO(KCAS) MMO Max.Alt Hmax temp grad /
CD XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CC====== Aerodynamics =============================================================/
CC Wing Area and Buffet coefficients (SIM) /
CCndrst Surf(m2) Clbo(M=0) k CM16 /
CD 5 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CC Configuration characteristics /
CC n Phase Name Vstall(KCAS) CD0 CD2 unused /
CD 1 CR Clean XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CD 2 IC 1 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CD 3 TO 1+F XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CD 4 AP 2 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CD 5 LD FULL XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CC Spoiler /
CD 1 RET /
CD 2 EXT XXXXXXXX XXXXXXXX /
CC Gear /
CD 1 UP /
CD 2 DOWN XXXXXXXX XXXXXXXX XXXXXXXX /
CC Brakes /
CD 1 OFF /
CD 2 ON XXXXXXXX XXXXXXXX /
CC====== Engine Thrust =============================================================/
CC Max climb thrust coefficients (SIM) /
CD XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CC Desc(low) Desc(high) Desc level Desc(app) Desc(ld) /
CD XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CC Desc CAS Desc Mach unused unused unused /
CD XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CC====== Fuel Consumption ==========================================================/
CC Thrust Specific Fuel Consumption Coefficients /
CD XXXXXXXX XXXXXXXX /
CC Descent Fuel Flow Coefficients /
CD XXXXXXXX XXXXXXXX /
CC Cruise Corr. unused unused unused unused /
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CD XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CC====== Ground ==================================================================/
CC TOL LDL span length unused /
CD XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX /
CC===============================================================================/
FI /

However, all these coefficients values are given for a specific aircraft type, in this case, an
A320, not for every tail number aircraft, whose estimation is the purpose of this project.

1.2. Least Squares Regression Method

Within statistical modeling field, regression analysis is a set of statistical processes de-
signed to estimate the relationships among variables. It includes several modeling and
analysis techniques that allow the proper understanding of how the value of a dependent
variable (or ’criterion’ variable) changes when any one of the independent variables (or
’predictors’) is varied while the other independent variables keep fixed.

Regression analysis is widely used for prediction and forecasting, where its use has sub-
stantial overlap with the field of machine learning. Regression analysis is also used to
understand which among the independent variables are related to the dependent variable,
and to explore the forms of these relationships [18].

In all cases, a function of the independent variables called the regression function is to
be estimated. In regression analysis, it is also of interest to characterize the variation of
the dependent variable around the prediction of the regression function using a probability
distribution. Depending on the way of defining the regression function, it is possible to
differenciate two types of regression techniques:

• Parametric: Parametric methods are characterized by defining the regression func-
tion in terms of a finite number of unknown coefficients that are estimated from data.
Linear regression is an example of this kind of technique.

• Nonparametric: Nonparametric regression refers to techniques that allow the re-
gression function to lie in a specified set of functions, which may be infinite-dimensional.

Since the objective of this project is to estimate the coefficients describing the BADA model
equations (regression functions), the Least Squares parametric regression method will be
applied.

1.2.1. Ordinary Least Squares

Ordinary Least Squares (OLS) regression is a statistical method of analysis that attempts
to model the relationship between one or more independent variables and a dependent
variable by fitting a linear equation to observed data. The simplest statement of such a
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relationship between an independent variable, labeled x, and a dependent variable, labeled
y, may be expressed as a straight line in this formula [19]:

y = a+bx (1.20)

Where a is the intercept and indicates where the straight line intersects the y axis and b
is the slope, which indicates the degree of the line steepness. However, since there are
infinite number of lines to represent this relationship, the chosen straight line needs to be
the one that minimizes the error between the predicted value of y and the actual value of
ȳ. The error will be given by a and b coefficients values, since they indicates how is the
line, i.e., how the relationship between y and x is.

Thus, the OLS method allows to adjust linearly the coefficients of a model function (a and
b) in order to better fit a data set. The best-fitting line is calculated by minimizing the sum
of the squares of the vertical deviations from each data point to the line (if a point lies on
the fitted line exactly, then its vertical deviation is 0), as it can be seen in figure 1.4.

Figure 1.4: Least Squares Regression concept

Because the deviations are first squared and then summed, there are no cancellations
between positive and negative values. These vertical deviations, also called as residuals,
are actually, the difference between the observed data values (ȳ) and the fitted values pro-
vided by the model (y), which are obtained as results of every single equation involved.

The problem would be generally formulated in the following manner:

Given a simple data set of K points (data pairs) (x̄i, ȳi), i=1,...,K, x̄i is the independent vari-
able and ȳi is the dependent variable whose values are found by observation. The model
function has the form y = f (x,p), where n adjustable coefficients are held in vector p. The
goal would be to find the value of p that minimizes the sum of the squared differences
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between the observed values of the dependent variable ȳi and the values predicted by the
model yi, as expressed in next equation:

q =
K

∑
i=1

W(ȳi−yi)
2 (1.21)

In this project, the observed values (ȳi) are referring to the real trajectory states vector ȳi =
[sQARi, hQARi, vQARi, mQARi] and the predicted values (yi) to the predicted trajectory states
vector modelled with BADA yi = [sBADAi, hBADAi, vBADAi, mBADAi], being s the distance to
go, h the geometric altitude, v the True Airspeed (TAS) and m the aircraft mass. The sum
of squared difference between them at each point i is what is wanted to minimize for all
trajectories composing the training set. W is the weight vector associated to the state vec-
tor, which indicates the relative importance of each state when minimizing q.

Nevertheless, the generation of y, i.e., sBADA, hBADA, vBADA, mBADA depends on D, T and
f f obtained from BADA model equations, which are nonlinear functions of the coefficients
(p) presented above. For this reason, Nonlinear Least Squares (NLS) method will be the
one applied in this project.

1.2.2. Nonlinear Least Squares

Nonlinear Least-Squares method (NLS) is an extension of Linear Least-Squares regres-
sion, as it approximates the model by a linear one and then refines the coefficients by
successive iterations. Thus, the unknown coefficients estimation process is conceptually
the same, but allowing the use of a much larger and more general class of functions. See
an example of nonlinear data fitting in figure 1.5, where the model function f (x) depends
on a nonlinear way to the coefficients a and b [20].

The general problem consists in fitting a set of K observations with a model that is non-
linear in n unknown coefficients (K > n). In the context of this project, given a set of
K observed data points, ȳi=[sQARi, hQARi, vQARi, mQARi] and a set of functions modeling
yi=[sBADAi, hBADAi, vBADAi, mBADAi], which depend on a non-linear way of n coefficients
(p=p1, p2, ... pn) describing D, T and f f , with K ≥ n, the goal is to find the value of the
coefficients vector p such that BADA model functions fit best the given data in the least
squares sense, i.e. minimizing the sum of squared ȳi-yi shown in expression 1.21.
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Figure 1.5: Nonlinear data fitting example [20]

However, the cost function q expressed by equation 1.21 must be adapted in the following
manner to consider all the N trajectories of the training set.

q =
N

∑
j=1

K

∑
i=1

W(ȳi−yi(p))
2 (1.22)

For this purpose, Nonlinear Least-Squares method, starting from a coefficients initial value
(p0) equal to BADA OPF file values (for an A320), will start refining them by successive
iterations until the cost function q is minimized.

1.3. DYNAMO Trajectory Predictor

DYNAMO (DYNAMic Optimiser) [21] is a trajectory prediction and optimisation framework
capable to rapidly compute trajectories using realistic weather and aircraft performance
data. DYNAMO generates the predicted trajectories decoupling their lateral and vertical
profiles. The lateral profile prediction module is in charge of generating the sequence of
waypoints from origin to destination, while the vertical profile prediction module generates
the altitude and speed profiles with a fixed route. In order to understand how DYNAMO
works and generates the modeled trajectories, the prediction problem must be explained.

Let us divide the aircraft trajectory into N flight phases. For each phase i, defined over the
time period [t(i)0 , t(i)f ], a state vector x (i)(t), a control vector u (i)(t) and parameter vector

p (i) are defined. In this project, the state vector x = [v, h, s, m] is composed by the True
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Airspeed (TAS), the geometric altitude, the distance to go and the mass of the aircraft and
the control vector u=[T , γ] is composed, respectively, by the thrust and the aerodynamic
flight path angle.

The dynamics of x are expressed by the following set of Ordinary Differential Equations
(ODE), considering a pointmass representation of the aircraft reduced to a gamma-command
model, where vertical equilibrium is assumed [22]:

ṡ = vcosγ+Ws (1.23)

ḣ = vsinγ (1.24)

v̇ =
T −D

m
−gsinγ (1.25)

ṁ =− f f (1.26)

where D is the aerodynamic drag, Ws the longitudinal wind speed, g is the local gravity
acceleration and f f is the total fuel flow. Find in figure 1.6 a visual representation of this
point-mass model.

Figure 1.6: Distribution of forces of a point-mass model

From an initial aircraft state (x0), DYNAMO allows to compute future states, based on the
flight intent, weather data and an aircraft performance model. Mathematically, the flight
intent of each flight phase i could be given as a certain control vector closing the two
degrees of freedom of ODE system (1.23-1.26), and an end condition. In practise, how-
ever, aircraft are not operated following specific T and γ profiles, and these controls are
not known beforehand. Instead, climbs and descents are typically composed by constant
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Mach (M), Callibrated Airspeed (CAS) or Energy Share Factor (k) segments performed at
maximum climb and idle thrust, respectively; while in the cruise phase aircraft typically fly
at constant pressure altitude (hp) and M. In a generic formulation, two path constraints
close the mathematical problem, allowing the explicit determination of the control vector u
and consequently the obtention of an ODE system suitable for numerical integration using
standard numerical procedures. The integration is performed until reaching the end condi-
tion, which triggers the switch to the following phase.

For this particular project, DYNAMO will be able to compute future states after being fed
with the values of D, T and f f obtained from BADA model equations, needed to integrate
the ODE system represented by equations 1.23 - 1.26. Moreover, although DYNAMO can
work with modelled weather data, in this case, it will be used real weather data extracted
from QAR flights, since what is wanted to do is to generate the predicted trajectories under
the same weather conditions in which real trajectories were performed to achieve a more
accurate prediction.

Thus, the general role of DYNAMO in this project will be the generation of the predicted
trajectories, which in the end is the generation of the cost function q to be minimized by
least squares. DYNAMO will build q progressively, expressing all future states of each
trajectory as a function of p. However, DYNAMO must be adapted to take the training set
trajectories initial state vector (x̄0) as the starting point to compute the first future states
of the predicted trajectories (x0), whose values will be used as reference to compute the
following states and so on.

This is a general overview of the DYNAMO’s role in this project, but more details and
specifications of its adaptation according to the case study chosen, will be presented in
chapter 4.
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A Quick Access Recorder (QAR) [23] is an airborne flight recorder designed to provide
quick and easy access to raw flight data, through means such as USB or cellular network
connections and/or the use of standard flash memory cards. QARs are typically used by
airlines to improve flight safety and operational efficiency, usually in the scope of their flight
operational quality assurance plans. Like the aircraft’s flight data recorder (FDR), a QAR
receives its inputs from the Flight Data Acquisition Unit (FDAU), recording over 2000 flight
parameters.

The QAR [24] is also able to sample data at much higher rates than the FDR and, in some
cases, for longer periods of time. Unlike the FDR, the QAR usually is not required by a
national Civil Aviation Authority on commercial flights and is not designed to survive an
accident. Despite this, some QARs have survived to accidents and they have provided
valuable information beyond what was recorded by the FDR.

The set of real flight data used in this project is composed by more than 3.000 coma sep-
arated value (csv) files, each one representing a single trajectory. These trajectories have
been obtained through a set of QARs of a fleet of different tail number aircrafts of a spe-
cific airline, whose name can not be mentioned due to data confidentiality. The trajectories
are discretized at one second interval represented by a file line. This is the reason why
each file have different longitude in terms of number of lines, since every trajectory has
different duration with respect to each others. Every line, provides the value of more than
40 different flight parameters, which thus, are informed at every second.

All flights considered are performed from a wide variety of European airports, as well as
from some others from out of Europe during 3 consecutive years. Moreover, all these tra-
jectories have been carried out using a fleet of more than 30 different tail number aircrafts,
whose number of flights operated will be shown in section 2.3.

Apart from that, although the flight phase indicated in all files is 6 for all lines, plotting the
altitude profile of several files it could be seen that each one represents a complete trajec-
tory, from the ascent phase to the descent one. Thus, the flight phase field in files does
not provide reliable information. However, not all trajectories have been plotted, so it is not
possible to confirm that all files correspond to an entire trajectory.

Due to the confidential character of data, some information about the set of real trajectories
used for this project will not be provided. However, some details about its caracterization
will be presented in the following sections, as it is important to understand what kind of
data we will work with.

21
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2.1. Flight Parameters

In order to understand what kind of information it is required to work with, it has been
detailed some of the parameters included in the corresponding csv files. The separation
between the parameters values is not uniform, requiring a space normalization when pro-
gramming with them. Since the data has been provided without any documentation or
specification, the units indicated in table 2.1 are deductions done after analyse data.

Parameters Meaning Units
FLIGHT NO Unique Identifier -
From ICAO code Airport of Origin -
To ICAO code Airport of Destination -
A/C REG Tail Number (A/C Registration) -
Date Date -
TIME Time (HH:MM:SS)
groundspeed Ground Speed Knots
machNum Mach Number -
tAt Total Air Temperature oC
FlightPhase Flight Phase -
fuelFlowEngine1Fine Fuel Flow Engine 1 kg/h
fuelFlowEngine2Fine Fuel Flow Engine 2 kg/h
n1Eng1 Engine 1 N1 % maximum rpm
computedAirspeed Callibrated Airspeed Knots
radioHeight1 Radio-Altimeter Height Ft
E1N2 Engine 1 N2 % maximum rpm
E1EGT Exhaust Gas Temperature Engine 1 oC
PitchAttitude Pitch Angle Degrees(o)
RollAttitude Roll Angle Degrees(o)
VerticalSpd Vertical Speed Ft/min
gearSelDown Gear Down -
ApLatModes Approach Lateral Mode -
ApLongModes Approach Longitudinal Mode -
ApOpDesMode Autopilot Open Descent Mode -
AthrActive Auto-Thrust Active -
E2N1 Engine 2 N1 % maximum rpm
E2N2 Engine 2 N2 % maximum rpm
E2EGT Exhaust Gas Temperature Engine 2 oC
SpdBrkAngle Speed Brake Angle Degrees(o)
autoLandWarn Auto Landing Warning -
Weight Weight kg
Altitude Pressure Altitude Ft
Fuel Fuel kg
MagHeading Magnetic Heading Degrees(o)
FlapLeverPosition Flap Lever Position -
LongitudeHiRes Longitude Degrees(o)
LatitudeHiRes Latitude Degrees(o)

Table 2.1: Flight Parameters of Real Data Set
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2.2. Origin/Destination Airports

The number of different airports from which these flights have been performed is 63, being
57 European and 6 out of Europe. Conversely, there is only one airport considered as
destination for all flights. As it has been aforementioned, due to data confidentiality, the
name of these airports can not be provided. For this reason, the following plots show how
many flights have been carried out from each airport, which are represented by a number.

Figure 2.1: Number of flights performed per airport

2.3. Tail Number

These trajectories have been provided by the QARs of a fleet of more than 30 different tail
number aircrafts, all of them corresponding to a A320-232. Considering that the purpose
of this project is to estimate the degradation performance factors of a specific tail number
aircraft, it is necessary to know how many trajectories have been carried out by each one.
This is required in order to decide which is the aircraft chosen to fed the estimation algo-
rithm, as the amount of trajectories performed by this aircraft must be enough for having a
training data set and a validation data set. In general, since the higher the number of input
flights the higher the prediction accuracy and reliability, the aircraft with a major number
of flights carried out will be the one selected. Figure 2.2 shows the number of flights per-
formed by each of the most representative 25 tail number aircrafts (in terms of amount of
flights carried out), each one represented by a number. Therefore, the chosen aircraft has
been the number 1, whose flights will be used to design the estimation algorithm.
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Figure 2.2: Number of flights performed by each tail number aircraft

2.4. Flights Distribution along the Time

In order to have an idea about the distribution of the flights along the time, find in the
following table the percentage of flights performed per month and year:

Year 1 Year 2 Year 3 Total

January 0% 3,2% 8,3% 11,5%

February 0% 2,2% 2,6% 4,8%

March 0% 1,6% 0% 1,6%

April 0% 4,0% 0% 4,0%

May 0% 7,0% 0% 7,0%

June 0,6% 7,5% 0% 8,1%

July 2,9% 7,4% 0% 10,3%

August 4,0% 8,7% 0% 12,7%

September 3,5% 6,0% 0% 9,5%

October 3,2% 5,5% 0% 8,7%

November 2,4% 6,6% 0% 9.0%

December 4,2% 8,6% 0% 12,8%

Total 20,8% 68,3% 10,9% 100%

Table 2.2: Distribution of fligths along months/years

Another important information is the percentage of flights distributed along the day. Al-
though the trajectories have been carried out at different days of different years, the flights
have been grouped by their initial time (indicated by the ”TIME” parameter of QAR files
first line) to have an idea about how these ones are distributed along the day. In figure
2.3, it can be observed that the 55% of flights take place between 06:00 and 15:00 in
the morning, followed by those ones performed during the afternoon between 15:00 and
21:00, representing a 38%. At night only a 7% is carried out between 21:00 and 06:00.
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Figure 2.3: Percentage of flights vs Hour

2.5. Altitude Profile

After a previous analysis of the flight phase parameter, it is highlighted that 6 is the common
value for all lines of all real trajectories. However, without information about what this value
means or which flight phase it is referring to, the best option was to plot some flights and
see which phases are included. All flights plotted include ascent, cruise and descent,
but not all trajectories have been plotted, so it is not possible to ensure that all of them
includes these three same phases. Find in figure 2.4 the altitude profile of four of the
plotted trajectories.

Figure 2.4: Altitude profile of 4 different flights.





CHAPTER 3. PARAMETERS ESTIMATION
ALGORITHM

Once all tools and methods involved in this project have been introduced, it is important
to know how they are related to and which is the process to follow for the coefficients
estimation. Find in figure 3.1 the scheme of the estimation process workflow.

Before starting explaining the estimation process workflow, each component functionality
will be introduced. As it is possible to observe, there are three differenciated blocks: QAR
set of data, estimation architecture and validation and benchmark.

• QAR set of data: In chapter 2 it was shown the number of flights performed by
each of the 25 most representative tail number aircrafts in terms of number of flights
carried out. The aircraft represented by number 1 has been selected to design the
estimation algorithm, as it is the one that performed the highest number of trajecto-
ries.

These trajectories have been divided into two different data sets: a training set, used
to train the estimation algorithm and composed by more than a half of the flights,
and a validation set formed by the remaining flights that will be used to validate the
results. Both sets should provide information about the initial conditions (initial tra-
jectory states, x̄0), trajectory states x̄i=[si, hi, vi, mi] and trajectory intents, which will
be the inputs of the estimation architecture.

However, the information provided by QAR files do not include any information about
the intents, aspect that will constitute the main argument to justify the selection of
the case study chosen.

• Estimation Architecture: The estimation architecture will be the result of integrat-
ing BADA models, real weather data, DYNAMO trajectory predictor and Nonlinear
Least Squares (NLS) regression method.

– BADA model: Actions BADA model equations, which were presented in chap-
ter 1, will be used to model D, T and f f as functions of the coefficients vector
p, whose value must be estimated. These equations will be one of the DY-
NAMO trajectory predictor inputs, as they will be required to generate the cost
function (q) that will be later minimized by least squares.

– Weather Forecast: The weather forecast module pretends to provide the
same weather conditions under which real trajectories were performed. For
this reason, air temperature, pressure and density will be calculated from train-
ing set trajectories QAR parameters. Moreover, since longitudinal wind speed
is required to integrate ṡ as equation 1.23 expresses, it is necessary its calcu-
lation as well. The longitudinal wind speed will be treated as a new parameter
of the QAR trajectories, being informed at each second like the others.

27
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Figure 3.1: Estimation process workflow
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– DYNAMO Trajectory Predictor: With the real weather environment and the
BADA equations modeling D, T and f f , DYNAMO will be able to integrate s, h,
v and m, i.e., it will be able to generate the cost function (q) from which future
states of the predicted trajectory will be computed by applying the estimated
value of p, as result of minimize q.

– Least Squares Regression Method: Nonlinear least squares regression method,
which will be integrated in DYNAMO framework, will refine iteratively the value
of the coefficients until q is minimized, i.e., until the sum of the squared dif-
ferences between the real and predicted trajectory states is minimized for all
training set trajectories. The output will be the tailored coefficients vector value,
that will be the main input of the validation and benchmark process.

• Validation and Bechmark: In order to analyse if the estimated coefficients value
obtained is realistic and reliable, this one will be applied to BADA model equations
for the obtention of the asociated D, T and f f , values that will be used to integrate
those predicted trajectories (i.e. the states) corresponding to the real ones forming
the validation set. Actually, it is the same methodology than the followed in the esti-
mation process but applying the coefficients previously estimated. The results must
reflect a difference minimization, i.e., high similarity degree between the generated
predicted trajectories and the real trajectories of the validation set.

Once the functionality and role of every component have been specified, the workflow can
be detailed step by step.

• 1) The Actions BADA model equations will be the starting point of the estimation
process. From the drag, thrust and fuel flow models equations, the coefficients to be
estimated, represented by p, will be identified.

• 2) DYNAMO will be fed with the real weather environment extracted from QAR train-
ing set trajectories, composed by air temperature, pressure, density and longitudinal
wind speed. Moreover, DYNAMO will use the initial states of these same trajectories
(x̄0) as the starting point of the predicted trajectories that it must generate (i.e., x̄0
=x0) . Finally, the last DYNAMO’s input will be the BADA model equations modeling
D, T and f f . With all this data, DYNAMO will be able to predict the future states
xi from which the cost function q will be generated. The cost function, at the end,
will be a very long formula, expressing xi as a function of the coefficients vector p.
Therefore, in order to obtain the values of xi=[si, hi, vi, mi], p must be estimated
through q minimization.

• 3) Then, Nonlinear Least Squares method will take q, which is the sum of the
squared difference between the states of the predicted trajectories with respect to
the reals, and it will start refining the values of p until q is minimized. Least squares
will start the tuning process from an initial coefficients value p0 corresponding to the
ones indicated in the BADA OPF file of the aircraft type considered (in this case,
A320). The p output value will be the one allowing the obtention of those D, T and
f f at each point that minimize the difference between all predicted states (xi) with
respect to the real states (x̄i) for all training set trajectories.



30 Estimation of aircraft performance from quick access recorder flight data

• 4) Finally, in the validation and benchmark process, the estimated values of p will
be applied to BADA equations in order to obtain the D, T and f f values used to in-
tegrate xi , which will be compared with the validation set trajectories states. Again,
the integration process will start with the initial states of the validation set trajecto-
ries. If the generated trajectories are ”the closest” to the real trajectories, pointing
out a minimization of the difference between them, the reliability of the estimation
algorithm will have been proved.

This is a general overview of the estimation process. However, this one must be adapted
according to the case study considered, reason why some of these elements will be ex-
plained again more in deep, together with the new changes applied.
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4.1. Pre-processing of input data

The estimation process already introduced contemplates the coefficients estimation from
the trajectory segment prediction associated to one or more flight phases or even the en-
tire flight. However, it is essential to know the intents corresponding to each flight phase.
In this particular case, the flight intents are unknown, as the QAR csv files do not include
any parameter that indicates them. For this reason, the case study was initially focused
on the cruise phase, in which aircraft typically fly at constant pressure altitude and mach
number.

Nevertheless, in the end, instead of constrain the problem through the intents, it was de-
cided to apply a certain control vector (u) formed by the T and γ estimated values at each
point. This solution provides more flexibility as this method is more general and it can be
applied to any flight phase. Although the approach changed, it was decided to continue
considering only the cruise phase due to its stability and its lower complexity. However, to
simplify the problem, only the values of T will be estimated while keeping fix the γ value,
which will be always 0. This will allow to filter the actual cruise phase to consider only
those trajectory points that keep the altitude constant. Therefore, the unknowns of this
project are not only the tailored coefficients values, but also the values of T at each data
point that must be applied to generate the future states of the predicted trajectories.

On one hand, it makes the dimension of the problem lower in terms of number of coef-
ficients considered. In chapter 2 all the coefficients that could be estimated in case of
consider an entire trajectory prediction were identified, but only the ones referred to the
cruise phase are the coefficients of interest for this particular case study. Find in table 4.1
all the cofficients that will be estimated:

Model Coefficient Meaning
Total Energy Model (TEM)-Drag CD0 Parasitic drag coefficient
Total Energy Model (TEM)-Drag CD2 Induced drag coefficient
Fuel Flow Model (FF) C f 1 1st thrust specific fuel consumption coefficient
Fuel Flow Model (FF) C f 2 2nd thrust specific fuel consumption coefficient
Fuel Flow Model (FF) C f cr Cruise fuel flow factor

Table 4.1: Case Study Coefficients

On the other hand, this represents an impact on the estimation architecture, since it is
necessary to adapt it through including new elements and processes for the proper identi-
fication and extraction of the data corresponding to the cruise phase of every single training
set trajectory. In summary, the complete trajectories will not feed the estimation process
but only their most representative cruise segment. For this purpose, it is required the
incorporation of a vertical speed filter and a cruise segments filter, as figure 4.1 shows.

31
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Figure 4.1: Case Study Estimation Architecture

In the following sub-sections each of the estimation algorithm input elements will be more
in deep explained including their particularities associated to the case study, as well as,
the vertical speed filter and segments filter, specifying how each element works and which
is their functionality and role.
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4.1.1. Vertical speed filter

In order to estimate the coefficients, the predicted trajectory have to be compared with
the real trajectory, concretely with the most representative QAR cruise phase segment.
In order to isolate it from the csv files, first of all, the complete cruise phase has to be
extracted. The vertical speed filter is the element in charge of performing this extraction,
process that can be illustrated in figure 4.2.

Figure 4.2: Cruise Phase Extraction

The cruise phase is the phase of flight from the top of climb (TOC) to the start of the de-
scent toward the destination aerodrome or landing site [25]. During cruise, aircraft may
fly at different cruising level/altitudes segments in which air pressure keeps constant (con-
stant pressure altitude) as figure 4.2 shows.

In this context, vertical speed has been the QAR parameter selected to detect when the
cruise phase starts and ends. Vertical speed indicates the vertical distance that aircraft
is travelling per time unit, so when it is near 0 for a prolonged period of time, it can be
concluded that the aircraft is neither ascending nor descending, and it is flying mantaining
a constant altitude. Nevertheless, 0 is not a reliable value due to implicit data noise or
small altitude fluctuations that could produced, reason why the target value of this param-
eter must be near 0 but enough conservative to consider these factors. Sometimes the
recordings include errors in the measurements and this is something that has to be taken
also into account when treating with data.

After analysing the correspondance between the altitude profile and the vertical speed
profile of several trajectories, it was observed that 150 ft/min was a proper absolute value
for the noise of this parameter. The vertical speed is positive in case of ascending and
negative if the aircraft is descending, so by making the absolute value of this parameter, it
was decided to extract the part of the trajectory with a vertical speed lower than 150, i.e.,
those points where the vertical speed is between 150 and -150 ft/min.
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Figure 4.3: Vertical Speed bounds for cruise phase extraction

Therefore, what will be obtained will be the set of real trajectory points with an associated
vertical speed lower than 150 ft/min in absolute value, points that can be consecutive or
not, and even, they could belong to the climb and/or descent phases level off. This is the
criterion applied to identify the phases at consant altitude of the training set trajectories.
However, once the cruise phase has been isolated, the following step will be the selection
of the most representative cruise segment, which will constitute the real trajectory segment
to be compared with the generated by DYNAMO during the estimation process.

4.1.2. Cruise Segment Filter

Once the cruise phase has extracted, it is important to differenciate the cruising level seg-
ments included in this phase. Since there is not a ”Flight Level” parameter in the QAR
csv files, firstly, it is required to know the flight level corresponding to each trajectory point.
In order to do this, the ’Altitude’ QAR parameter value, which is expressed in feet, will be
divided by 100 and then rounded to obtain the associated flight level. This will enable the
classification of each trajectory point to a specific flight level, causing a separation of the
cruise phase into flight level segments. However, the points corresponding to the same
flight level can be consecutive or not.

Therefore, after all segments are identified, those with the same associated flight level are
grouped. Since the idea is to select the most representative segment for the estimation
process, the criterion for its identification is based on duration, reason why, the groups
with a duration of 5 min or less will be discarded. Between the remaining, the flight level
group selected for the experiment will be the one of major duration, which in figure 4.4
corresponds to the group of duration 2 (d2).

However, each group may be composed by the segments previously identified, and once
the group has been selected, it is required to have another criterion to determine which
is the most appropiate segment. The criterion will be the same used to choose the group
of interest, i.e., the segment of major duration. Nevertheless, in order to determine their
duration, it is needed a method capable to detect when these segments start and end.
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Figure 4.4: Cruise segments grouped by flight level

The method used for this purpose has been the accumulative sum. First of all, it is neces-
sary to calculate the ∆t between every trajectory point of the group considered. When the
∆t is of one minute or less, it means that both points are included in the same segment,
and when it is higher, it means that another segment has started. Although, the points of
the real trajectories are separated by one second and, probably, it would serve as the ∆t
of reference, it has been considered 1 minute to be more conservative in their separation
(it can exists measurement errors or imprecisions in data).

To apply the accumulative sum to this problem, the idea is to begin in the first point at 0
and then, start summing all the ∆t observed in next points. The process will end when the
last ∆t observed is higher than 1 minute. In that moment, the counter will be restarted at
0, since it indicates a new group segment. The result will be a clear differenciation of the
group segments with their respective accumulated ∆t, among which, the one with the high-
est accumulated ∆t will be the one selected. See in figure 4.5 a conceptual representation
of this method.
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Figure 4.5: Accumulative Sum applied to cruise segment selection

4.1.3. Weather Forecast

The Weather Forecast module provides weather data to the estimation environment. The
idea is to generate predicted trajectories as similar as possible to the real trajectories, rea-
son why, the weather data will be extracted from the QAR csv files to guarantee that the
weather conditions in both cases are the same.

In order to simulate these weather conditions, parameters such as temperature, pressure,
density and longitudinal wind speed must be provided. However, there is no information
about these parameters in the csv files, so it is required their calculation through the other
QAR parameters.

The first step will be the calculation of the longitudinal wind speed, whose horizontal com-
ponent is present in the point-mass model considered, and which is defined by the follow-
ing expression 4.1:

Ŵs = (S̄− v̂)·cos γ̂ (4.1)

where S is the ground speed, v is the true airspeed and γ is the flight path angle. Those
parameters available in QAR csv files will be represented with ’ ¯ ’ symbol, while the ones
calculated from QAR data will be symbolized with ’ˆ ’.

Contrary to what happens with the ground speed, which is one of the QAR parameters, v
and γ are unknown and must be calculated too. Since v is required to obtain γ, v will be
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firstly determined by applying the following formula:

v̂ = M̄·
√

γa·R·τ̂ (4.2)

where M is the Mach number, γa the specific heat ratio of the air (1.4), R the specific gas
constant for dry air (287,058 J/kg−1K−1), and finally, τ is the absolute air temperature.

τ is needed to obtain the windspeed, but at the same time is one of the required weather
parameters. This one depends on M and the total air temperature (TAT) as equation 4.3
points out.

τ̂ =
TAT

1+ γa−1
2 ·M̄2

(4.3)

By obtaining τ, it is already possible the determination of v. However, in order to calculate
the longitudinal wind speed it is also required to know the value of γ.

In order to calculate γ, it has been assumed that the vertical speed QAR parameter is the
derivative of the geometric altitude, when in reality is the derivative of the pressure altitude.
Therefore, by assuming this, the vertical speed can be expressed as:

¯̇h = v̂·sin γ̂ (4.4)

Thus, γ can be isolated in the following manner:

γ̂ = arcsin

(
¯̇h
v̂

)
(4.5)

The idea is to have the longitudinal wind speed associated to every single point of the
real cruise segment selected. The next step will be the calculation of the air pressure and
density. The air pressure can be obtained by dividing by 100 the pressure altitude QAR
parameter, whose values will be used to calculate the air density together with τ:

ρ̂ =
P̂
Rτ̂

(4.6)

However, the temperature, pressure and density of the air as well as the longitudinal wind
speed are parameters expressed as a function of travelled distance (s), since the dis-
cretization of generated points will be defined for a set of specific ”s”. For this reason, the
approach followed until now must change to consider s as the independent variable of the
point-mass model represented by 1.23 -1.26, in which the trajectory states are expressed
as a function of time. The details about all the modifications applied to the estimation
algorithm in reference to this approach change are specified in section 4.2.
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These are the elements in charge of pre-processing the input data. However, two more
filters have been applied to correct some inconsistencies found in relation to aircraft mass.
It was observed that in several consecutive points the mass were exactly the same, when
it should decrease instead of remain equal, i.e., the f f should never be equal to 0. There-
fore, those points that present the same mass value than their previous points, i.e, that
present a duplicated value, have been removed.

Furthermore, the other inconsistency detected has been that in some points the mass was
higher than the previous point mass or lower than the following. These points have been
also deleted to guarantee that the estimation algorithm is fed with realistic and consistent
data. Find an example of this issue in figure 4.6.

Figure 4.6: Mass values inconsistency
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4.2. Case study 1 estimation algorithm

The estimation algorithm is the result of combining DYNAMO with NLS regression method,
which uses the previously filtered data of the QAR training set trajectories as input to per-
form the coefficients estimation.

As it has been explained in previous chapters, DYNAMO computes the future predicted
trajectory states, in this case, those states corresponding to the cruise segment selected
(xi), by integrating the ODE system represented by equations 1.23 - 1.26. The states inte-
gration is performed by the fourth order Runge-Kutta method. Runge-Kutta methods [26]
are one group of predictor-corrector methods that can be applied to an infinite variety of
specific integration techniques. The basic idea of all Runge-Kutta methods is to move
from step yi to yi+1 by multiplying some estimated slope by a timestep. The difference be-
tween particular implementations involve how one estimates the slope. In the fourth-order
Runge-Kutta method, which is the one used by DYNAMO, the basic idea is to combine 4
preliminary estimates to get one really good slope.

DYNAMO will integrate the first future states x1 starting from the initial states x̄0 of the
training set trajectories, which will feed BADA model equations to model the D and f f as-
sociated to the following point. Therefore, with D and f f and starting from x1 , the second
future states x2 will be computed, process that will be repeated until the last point is inte-
grated. The integration process output will be the cost function (q), being the sum of the
squared differences between the predicted and real states, in which the states associated
to each predicted point (xi) will be expressed as a function of p and T , function that will be
minimized by least squares.

First of all, since the control vector considered will be ui=[Ti, 0], only the thrust values ap-
plied at each point for the complete set of predicted trajectories will be estimated. Contrary,
γ will be always 0, simplifying the original ODE system in the following manner:

ṡ = v+Ws (4.7)

ḣ = 0 (4.8)

v̇ =
T −D

m
(4.9)

ṁ =− f f (4.10)

As a result, the point-mass model is reduced to a 3rd order ODE system, since ḣ is 0, which
means that altitude h will be kept constant. Nevertheless, since the points to be generated
will be discretized as a function of travelled distance ”s”, this last ODE system must be
adapted to consider s as independent variable instead of time. Therefore, considering
that:
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ṡ =
ds
dt

= v+Ws (4.11)

then:

t
′
=

dt
ds

=
1

v+Ws
(4.12)

v
′
=

dv
ds

=
T −D

m
1

v+Ws
(4.13)

m
′
=

dm
ds

=− f f
1

v+Ws
(4.14)

Therefore, t
′
, v
′
and m

′
will be the new states that DYNAMO must integrate at each point.

In the end, the problem will be constrained through the application of one of the charac-
teristic intents of the cruise phase (constant altitude) while keeping T as control variable,
whose values at each point, Ti, will must be estimated as well. Therefore the unknowns of
this case study will be the tailored value of the coefficients vector p=[CD0,CR, CD2,CR, C f 1,
C f 2, C f cr] and also Ti values.

The Ti value applied at each point must be the one that minimizes the difference between
the predicted and real states at the following point i+1. This process will be repeated until
it is reached the end of the segment. Therefore, for a cruise segment prediction, in which
K points must be generated, i.e, K state vectors, K− 1 control vectors [T1,0]...[TK−1,0]
will must be applied. Find in figure 4.7 a conceptual illustration of this process.

Figure 4.7: DYNAMO trajectory prediction problem resolution
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As result, the cost function q generated by DYNAMO will be the sum of the squared differ-
ences between the predicted states and real states for all cruise segments of the training
set, where the predicted states will be expressed as a function of p and the set of Ti
applied:

q =
N

∑
j=1

K j

∑
i=1

(x̄i−xi(xi−1,p,Ti−1))
2 (4.15)

where N is the number of QAR cruise segments involved in the estimation process and
K j the number of discretization points, which depends on the real trajectories being used.
However, when dealing with a prediction problem, not always the prediction pretends to be
optimal for all the states, in whose case, it is required to determine their relative importance
by associating a specific weight to every single state. For example, if it is wanted to obtain
an optimal prediction in terms of aircraft mass, the weight corresponding to m will be 1,
while respect to the remaining states will be 0.

Thus, the weight vector Wj=(Wv, Wh, Ws, Wm) must be multiplied by the squared difference
between real (x̄i) and predicted states (xi). Thus, the final cost function q to be minimized
is:

q =
N

∑
j=1

K j

∑
i=1

Wj(x̄i−xi(xi−1,p,Ti−1))
2 (4.16)

Since in this project is wanted to obtain, to the greatest extent possible, an optimal pre-
diction for all the components of the state vector, 1 will be the value associated to each
state for the sake of simplicity. Then, nonlinear least squares will minimize q by refining
iteratively the values of p and Ti starting from an initial value of both, corresponding to the
A320 BADA OPF file values as p0 and the initial drag D0 (calculated by assuming BADA)
as T0.

Finally, in order to obtain reasonable results, the estimated values of p and Ti will be
estimated within certain limits. The upper and lower bounds applied are the following:

• Bounds of p:

– Upper: 10p0

– Lower: 0.1p0

• Bounds of Ti:

– Upper: 1.2D0

– Lower: 0.8D0

This means that the results must be values of p and Ti located within these limits. In case
of p, the limits have been set according to own criteria about what would be coherent and
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acceptable. On the other hand, the bounds of T have been set considering this particular
case study, i.e., taking into account only the cruise flight phase, in whose case it has been
assumed that the values of thrust obtained will not exceed the Tmax and Tmin obtained from
BADA. However, in future work, if it is wanted to consider also climb and descent phases,
these bounds should be set according to BADA Tmax and Tmin values.

Actually, what the algorithm really does is to find the best combination of coefficients and
thrust values, i.e., the combination that minimizes q within the limits established for p and
T . Nevertheless, once the estimated values of p and Ti have been obtained and analysed,
it has observed that, although they fulfill the optimality criteria (allow to minimize q), they
are neither coherent nor reflecting the reality.

For this reason, it was necessary the implementation of an other approach in reference to
the estimation algorithm design, which has been considered as case study 2. This second
case study, will consider only the estimation of p by restricting the problem through the
two intents characterizing the cruise phase (constant altitude and mach number). This will
enable to focus the estimation to only the coefficients vector, allowing the obtention of more
accurate and realistic values. However, an other filter, concretely a true airspeed filter, will
be required to guarantee that the input real trajectories are only the ones performed at
constant altitude and velocity.
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4.3. Case study 2 estimation algorithm

In this second case study, the idea is to apply intents instead of control variables and
design the estimation algorithm to only estimate the value of the coefficients for every
particular tail number aircraft. Thus, the problem will be constrained through the intents
corresponding to the cruise flight phase, which are:

ḣ = 0 (4.17)

Ṁ = 0 (4.18)

When aircraft fly at constant altitude, the temperature in a relative short distance should
be quite constant as well. Therefore, by observing equation 4.2 and assuming constant h,
M and τ, it is possible to conclude that v (TAS) will be kept constant too, i.e, v̇=0.

The first intent was already applied in case study 1 by considering γ as 0. Now, by applying
the second intent, the ODE system will be reduced to a single differential equation, which
is the one referring to aircraft mass:

ṁ =− f f (4.19)

Then, since:

v̇ =
T −D

m
−gsinγ = 0 (4.20)

and considering that γ is 0, thrust and drag will be equal (T =D). Therefore, the coeffi-
cients of interest will be the same that the ones estimated in case study 1. The fuel flow
coefficients will be necessary to integrate ṁ, and the drag coefficients to compute D, and
consequently T , which will also depend on the value of m at each point (D depends on lift
coefficient (CL), that at the same time, requires the value of m to be calculated, as equation
1.5 indicates).

The input data required is the same than in previous case study except for the longitudinal
wind speed that it is not already needed. Contrary, the other weather parameters, i.e, τ,
P and ρ, will have to be calculated too. Since the pre-process presented in section 4.1.
allows to filter data by constant altitude, the next step will be to filter them by constant v.
The idea consists in applying a true airspeed filter, identifing those cruise segments that
have not been performed at constant v, which will be excluded of the estimation process.
For this purpose, it is required to have a criteria to decide if v has been contant or not,
criteria that, in this case, have been based on the following three indicators:
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• Standard deviation: The standard deviation is the square root of the v variance,
which is the average of the squared ∆v measured from the mean.

• Range: The difference between the maximum and minimum value of v in a given
cruise segment.

• Mean squared deviation: Measures the average of the squared ∆v in a given cruise
segment.

In the end, these indicators point out how v has varied along the trajectory segment. There-
fore, the higher the values of these parameters, the less constant the true airspeed has
been. However, it is required to determine these parameters thresholds from which v will
not be considered constant. These thresholds have been fixed according to a previous
analysis of the observed standard deviation, range and mean squared deviation of the
cruise segments composing the training set. These ones must be enough restrictive to
guarantee that this second intent is fulfilled, but allowing to work with the majority of cruise
segments of the training set, since those ones with any of these parameters value higher
than its established threshold will be excluded from the estimation process.

Once all input data have been pre-processed, the estimation process followed is the same
than the one presented in previous section but considering only the estimation of p values.
However, this time what is wanted to minimize is the difference between the predicted
final mass (m f ) and the observed final mass (m̄ f ). However, the results obtained will be
compared with the ones estimated when considering a mass difference minimization at
each cruise segment point. The idea is to analyse if the accuracy of the estimation varies
significantly or not. Therefore, the final cost functions to be minimized are:

q =
N

∑
j=1

(m̄ f −m f (p))
2 (4.21)

which is the cost function associated to a final mass difference minimization. The q referred
to a mass difference minimization at each point is the following:

q =
N

∑
j=1

K j

∑
i=1

(m̄i−mi(mi−1,p))2 (4.22)

As in case study 1, nonlinear least squares method will refine the values of p iteratively
until q is minimized, taking into account the same values of p0 (A320 BADA OPF file
coefficients value) and the imposed upper and lower bounds to the output (i.e., 10p0 and
0.1p0 respectively). Find in figure 4.8 the final estimation process workflow followed for the
coefficients estimation considering both mass difference minimization approaches.
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Figure 4.8: Case Study 2 Estimation Architecture
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4.4. Results

In this section, an analysis of the results will be given. Since the algorithm has been de-
signed to estimate the tailored coefficients values, the estimation of p has been performed
for all different tail number aircrafts considered in this project.

For a proper validation of the results, the values obtained have been used to compute the
final predicted mass (m f ) corresponding to the cruise segments of the validation set, with
whose final observed mass (m̄ f ) have been compared. In order to analyse the reliability of
the estimation algorithm, the difference between both has been displayed in a scatterplot
to easily observe if the results are enough accurated. Thus, four scatterplots have been
included in figure 4.9, showing the difference between m f and m̄ f for all the trajectories
carried out by the tail number aircrafts 1,2,3 and 4, since they are the ones that have
performed more trajectories.

Figure 4.9: Predicted final mass values vs real final mass values per tail number aircraft

The x axis points out the m̄ f of every trajectory composing the validation set, while the y
axis indicates the m f computed by applying the estimated tailored value of p (correspond-
ing to the tail number aircraft that is being analysed) to the BADA model equations. If the
estimation was perfect, each point of the scatterplot would correspond to a value of m f
equal to the value of m̄ f .

As it is possible to observe, the four scatterplots reflect a good estimation accuracy of
p, since the values of m̄ f and m f of each cruise segment considered are very similar,
especially for tail number aircrafts 1 and 3. In case of tail number aircrafts 2 and 4, the
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dispersion of points (m̄ f , m f ) is higher, aspect that denotes that the estimated value of the
coefficients does not allow a prediction of m f as accurate as in previous cases regarding
tail number aircrafts 1 and 3.

Nevertheless, it is important try to identify the reason why the estimation accuracy is lower
for aircrafts 2 and 4. For this purpose, instead of graphically represent how different are
m̄ f and m f at each point as in figure 4.9, it has been quantified this difference in kg to have
an idea about which is the error’s magnitude. Find in figure 4.10 the error in kg associated
to the last point of each validation set cruise segment for these same 4 aircrafts.

Figure 4.10: Error’s magnitude considering a final mass error minimization

In plots included in figure 4.10, the x axis indicates the cruise segment number, i.e., the
cruise segment identifier, whose associated error, m̄ f - m f , in kg is specified in y axis.
Clearly, it can be seen the correspondance of the error with the dispersion observed in
figure 4.9. Overall, the error associated to tail number aircrafts 1 and 3 is quite low, pre-
senting a difference between m̄ f and m f lower than 100kg for the 94,5% and 96,1% of
points respectively (all points below green line).

On the other hand, with respect to the tail number aircrafts 2 and 4, the error is of much
greater proportions than in case of aircrafts 1 and 3. Firstly, there is not any point with an
associated error lower than 100 kg. The minimum error found is of 180,5 kg and 160,9 kg
and the maximum of 4463,2 kg and 5412,2 kg for aircrafts 2 and 4 respectively. To have
a general idea, only a 36,3% and a 36,5% of the points associated to these two aircrafts
present an error lower than 1000 kg (points below red line). However, although the error
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is significantly higher with respect to aircrafts 1 and 3, in reality it is low in terms of aircraft
mass, since 1000 kg is approximately only a 1,5% of this one.

This difference in the error’s magnitude could be given by the freedom that a final mass
error minimization provides along all cruise segment except in last point. In order to discard
this possibility, the error will also be displayed in figure 4.11 when the mass difference is
minimized at each point.

Figure 4.11: Error’s magnitude considering a mass error minimization at each point

As it can be seen, the estimation accuracy slightly improves for the four aircrafts analysed.
Regarding aircraft 1, the 95% of points have an associated mass difference lower than
100kg. With respect to aircraft 2, the 60 % of the points present an error lower than
1000kg from which, the 2.7 % corresponds to points with a mass difference under 100kg.
The aircraft 3 is the one that reflects the most accurate estimation with a total of 96.6 % of
points with a mass error lower than 100kg. Finally, aircraft 4, has been the one showing
a greater difference between both approaches, whose estimation accuracy has improved
a lot by applying a mass error minimization at each point. In this case a 99 % of points
present an error’s value below 1000kg (in front of the 36,5% considering a final mass error
minimization), from which the 22.8 % are under 100kg. Find a more illustrative summary
of this comparison in figure 4.12.
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Figure 4.12: Error obtained according to the mass error minimization approach applied

In order to have more information, the range and mean value of the coefficients are dis-
played in figures 4.13, 4.14 and 4.15, from which it is also possible to perform an analysis
about how dispersed are the estimated coefficients values when considering all set of dif-
ferent tail number aircrafts.

Starting from drag coefficients (figure 4.13), and applying a final mass error minimization,
the 75% of the parasitic drag coefficient (CD0) values are found between 0.03 and 0.08
approximately, from which the 50% are around 0.06, as mean value indicates. Further-
more, as it can be observed, the induced drag coefficient (CD2) presents a higher range of
values than CD0 since the minimum value of both are common but the maximum for CD2 is
higher, concretely, 0.19. The distribution of the values when minimizing the mass error at
each point is quite similar for these coefficients. The only aspect to be highlighted is that
the range regarding CD0 is higher in this second case. Note that red cross in boxplots are
representing p0, allowing to observe how different some of the tailored values of p are with
respect to the ones provided by BADA, which are generalized by aircraft type.

Regarding the fuel flow coefficients, C f 1 presents a more uniform distribution of the values,
since the range is defined between 0.05 and 0.78 aproximately when minimizing mass er-
ror at last point, locating the 50% of values between 0.05 and 0.4 and the remaining 50%
from 0.4 to 0.78. Contrary, C f 2 concentrates the 50% of the values between 450000 to
550000, while the others are more dispersed from 210000 to 450000. Considering an
error minimization at each point, the distribution sligthly varies. Concretely, C f 1 presents
a higher range of values, but the 50% is more concentrated between almost 0.4 and 0.6.
Regarding C f 2, again, the range is higher, and consequently the dispersion, but mean
value remains equal for both coefficients as it is shown in figure 4.14.

Finally, as it can be observed in figure 4.15, the cruise fuel flow factor (C f cr) value is almost
common for all tail number aircrafts in both mass difference minimization cases.
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Figure 4.13: Drag coefficients range and mean value

Figure 4.14: C f 1 and C f 2 coefficients range and mean value
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Figure 4.15: C f cr coefficient range and mean value

Thus, although the mass difference minimization at each point slightly improves the es-
timation accuracy, there are not large differences between both approaches, obtaining
results quite similar. Probably this difference on the error magnitude between tail number
aircrafts 1-3 and 2-4 is due to the bounds imposed to the output that were set. Observing
the estimated values of p for each of them, it can be seen that those corresponding to air-
craft 2 and 4 present some coefficients values equal to the bounds. Concretely, for aircraft
2, the values of CD2, C f 1 and C f 2 are equal to 0.1p0[CD2], 0.1p0[C f 1] and 10p0[C f 2] for
both error minimization approaches, as well as, for aircraft 4 when minimizing final mass
difference. When applying a mass error minimization at each point, the p values obtained
for aircraft 4 includes 10p0[CD0], 0.1p0[CD2] and 10p0[C f 2] as CD0, CD2 and C f 2.

Therefore, it can be concluded that, if the output were not bounded, the estimation accu-
racy obtained for tail number aircrafts 2 and 4 would be the same that the one achieved
for aircrafts 1 and 3, although the values probably would not be realistic. Regarding the
approach followed, the final mass error minimization would be the best option, since the
cost function to be minimized is less complex allowing reduced execution times and the
differences with respect to the error minimization at each point are not significant. More-
over, all coefficients except C f cr, could vary a lot depending on the tail number aircraft
considered. This means that, for an accurate trajectory prediction, it is not enough to have
the values of these coefficients generalized by aircraft type, but they must be particularized
for each different tail number aircraft, taking into account the specific performance of each
individual aircraft.
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CHAPTER 5. CONCLUSIONS

The main objective of this project was to design an algorithm capable to estimate the real
performance coefficients value of a specific tail number aircraft, which are modelled by
using BADA APM. The idea was to design a tool that made possible the building of tailored
aircraft performance models.

One of the difficulties of this project was the analysis of the QAR real data to work with.
This data, due to confidentiality issues, were provided without any documentation or spec-
ification and it was complicated to have a clear idea about what kind of information was
being provided by each parameter, as well as, in which units they were being informed.

Moreover, an other big issue was to decide the project’s case study according to the avail-
able data. During the project’s development, the approach was changed several times
trying to find the best case study fitting the QAR data. In the end, it was decided to focus
the problem on the cruise phase, since the intents were already known. However, it would
be interesting to explore other phases adapting the algorithm to be more general.

Furthermore, the estimation process has only been performed for jet aircraft. Thus, the
modeling of other aircraft which are not based in jet engines would be an additional impor-
tant point to take into account in future work. This offers a new criteria of tailoring aircraft
performance models, in whose case, other BADA equations should be used.

The estimation algorithm developed is a code in python language responsible for the input
data pre-processing (in charge of reading the QAR data files, selecting the most represen-
tative cruise segment, filtering data to solve some inconsistencies found and computing
weather parameters from QAR ones) and coefficients estimation by combining the use of
DYNAMO trajectory predictor and nonlinear least squares. In the future, this code could
be improved in so many ways. Improvements could be applied in the model part in order
to consider, as it has been commented previously, other flight phases and other aircraft
types, and in the estimation part, to apply a more reliable output bounds setting criteria.

Results are promising, since they show a good estimated coefficients’ fitting to the QAR
data used. However, in the end, the problem was constrained through the characteristic
cruise phase intents, discarding the estimation of thrust and flight path angle as controls,
case that is more realistic and it could be interesting to explore. Nevertheless, unrealistic
results were obtained when thrust values were estimated together with the coefficients in
case study 1. For this reason, if a certain degree of freedom is considered in the system,
other ways of limitting the output should be studied to achieve coherent results.
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Finally, although BADA3 has been used as baseline of this project, the accuracy of the
estimation algorithm could be improved if BADA4 model equations were used instead, as
it provides a more accurate modeling of aircraft over the entire flight envelope and enables
the modeling and simulation of future systems’ advanced concepts.

Overall, it can be concluded that, although the algorithm could be improved by correcting
and adapting some of its parts, this project has been a good starting point towards the
obtention of tailored aircraft performance models.
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