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Abstract. The Johnson graph J(n,m) has the m–subsets of {1, 2, . . . , n} as

vertices and two subsets are adjacent in the graph if they share m−1 elements.
Shapozenko asked about the isoperimetric function µn,m(k) of Johnson graphs,

that is, the cardinality of the smallest boundary of sets with k vertices in

J(n,m) for each 1 ≤ k ≤
(n
m

)
. We give an upper bound for µn,m(k) and

show that, for each given k such that the solution to the Shadow Minimization

Problem in the Boolean lattice is unique, and each sufficiently large n, the

given upper bound is tight. We also show that the bound is tight for the small
values of k ≤ m + 1 and for all values of k when m = 2. Johnson graph and

Isoperimetric problem and Shift compression.

1. Introduction

Let G = (V,E) be a graph. Given a set X ⊂ V of vertices, we denote by

∂X = {y ∈ V \X : d(X, y) = 1}, B(X) = {y ∈ V : d(X, y) ≤ 1} = X ∪ ∂X,

the boundary and the ball of X respectively, where d(X, y) denotes min{d(x, y) :
x ∈ X}.

We write ∂G and BG when the reference to G has to be made explicit. The
vertex-isoperimetric function (we will call it simply isoperimetric function) of G is
defined as

µG(k) = min{|∂X| : X ⊂ V, |X| = k},
that is, µG(k) is the size of the smallest boundary among sets of vertices with
cardinality k.

The isoperimetric function is known only for a few classes of graphs. One of
the seminal results is the exact determination of the isoperimetric function for the
n–cube obtained by Harper [19] in 1966 (and by Hart with the edge–isoperimetric
function at [21] in 1976.) Analogous results were obtained for cartesian products
of chains by Bollobás and Leader [8] and Bezrukov [3], cartesian products of even
cycles by Karachanjan [22] and Riordan [27] (see also Bezrukov and Leck at [5])
and some other cartesian products by Bezrukov and Serra [6].

The Johnson graph J(n,m) has the m–subsets of [n] = {1, 2, . . . , n} as vertices
and two m–subsets are adjacent in the graph whenever their symmetric difference
has cardinality 2. It follows from the definition that, for m = 1, the Johnson graph
J(n, 1) is the complete graph Kn. For m = 2 the Johnson graph J(n, 2) is the line
graph of the complete graph on n vertices, also known as the triangular graph T (n).
Thus, for instance, J(5, 2) is the complement of the Petersen graph, displayed in
Figure 1. Also, J(n, 2) is the complement of the Kneser graph K(n, 2), the graph
which has the 2–subsets of [n] as vertices and two pairs are adjacent whenever they
are disjoint.
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Figure 1. The Johnson graph J(5, 2).

Johnson graphs arise from the association schemes named after Johnson who
introduced them, see e.g. [11].The Johnson graphs are one of the important classes
of distance–transitive graphs; see e.g. Brouwer, Cohen, Neumaier [10, Chapter 9]
or Godsil [18, Chapter 11].

Given a family S of m–sets of an n–set, its lower shadow ∆(S) is the family of
(m− 1)–sets which are contained in some m–set in S. The upper shadow ∇(S) of
S is the family of (m+ 1)-sets which contain some m–set in S. The ball of S in the
Johnson graph J(n,m) can be written as

(1) B(S) = ∇(∆(S)) = ∆(∇(S)).

These equalities establish a connection between the isoperimetric problem in
the Johnson graph with the Shadow Minimization Problem (SMP) in the Boolean
lattice, which consists in finding, for a given k, the smallest cardinality of ∆(S)
among all families S of m–sets with cardinality k. The latter problem is solved by
the well–known Kruskal–Katona theorem [24, 23], which establishes that the initial
segments in the colex order provide a family of extremal sets for the SMP.

Recall that the colex order in the set of m–subsets of [n] is defined as X ≤ Y
if and only if max((X \ Y ) ∪ (Y \ X)) ∈ Y (we follow here the terminology from

Bollobás [7, Section 5]; we also use
(

[n]
m

)
to denote the family of m–subsets of an

n–set, and [k, l] = {k, k + 1, . . . , l} for integers k < l.) The computation of the
boundary of initial segments in the colex order (the family of the first m– subsets
in this order) provides the following upper bound for the isoperimetric function of
Johnson graphs:

Proposition 1.1. Let µn,m : [N ] → N denote the isoperimetric function of the
Johnson graph J(n,m), where N =

(
n
m

)
. Let

k =

(
k0

m

)
+

(
k1

m− 1

)
+ · · ·+

(
kr

m− r

)
, k0 > · · · > kr ≥ m− r > 0,

be the m–binomial representation of k. Then

(2) µn,m(k) ≤ f(k, n,m),

where

(3) f(k, n,m) =

(
k0

m− 1

)
(n−k0)+

r∑
i=1

((
ki

m− i− 1

)
(n− k0 − 1)−

(
ki

m− i

))
.
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Proof. The initial segment I of length k in the colex order is the disjoint union

I = I0 ∪ · · · ∪ Ir,

where I0 consists of all m–sets in
(

[k0]
m

)
and, for j > 0, Ij consists of all sets

containing {kj−1 + 1, . . . , k0 + 1} and m− j elements in [kj ]. The right hand side
of (3) is the cardinality of ∂I as can be shown by induction on r. If r = 0 then ∂I

consists of the
(
k0
m−1

)
(n− k0) sets obtained by replacing one element in [k0] by one

element in [k0 +1, n] from a set in I. Suppose that r > 0 and write I = I ′∪Ir as the
disjoint union of I ′ = I0∪ · · ·∪ Ir−1 and Ir. We have ∂I = (∂I ′ \ Ir)∪ (∂Ir \B(I ′)),
the union being disjoint. Since Ir ⊂ ∂I ′ we have,

|∂I ′ \ Ir| = |∂I ′| − |Ir| = |∂I ′| −
(

kr
m− r

)
,

while

|∂Ir \B(I ′)| =
(

kr
m− r − 1

)
(n− k0 − 1),

since the only sets in ∂Ir \ B(I ′) are those obtained from a set in Ir by replacing
one element in [kr] by one element in [k0 + 2, n]. � �

The family of initial segments in the colex order does not provide in general a
solution to the isoperimetric problem in J(n,m). A simple example is as follows.

Example 1.2. Take n = 3(m + 1)/2. The ball B({x}) of radius one in J(3(m +
1)/2,m) has cardinality

|B1| = 1 +m(n−m) =
(m+ 2)(m+ 1)

2
=

(
m+ 2

m

)
,

and its boundary has cardinality

|∂B1| =
(
m

2

)(
n−m

2

)
=
m(m− 1)(m+ 3)(m+ 1)

16
.

On the other hand, according to (3) and the m–binomial decomposition of |B1|, the
initial segment I of length |B1| has cardinality

|∂I| =
(
m+ 2

m− 1

)
m− 1

2
=

(m+ 2)(m+ 1)m(m− 1)

12

= |∂B1|+
(m+ 1)m(m− 1)2

48
,

which shows that the unit ball can have, as a function of m, an arbitrarily smaller
boundary than the initial segment in the colex order. �

In his monograph on discrete isoperimetric problems Leader [25] mentions the
isoperimetric problem for Johnson graphs as one of the intriguing open problems in
the area. Later on, in his extensive monograph on isoperimetric problems, Harper
[20] atributes the problem to Shapozenko, and recalls that it is still open. Recently,
Christofides, Ellis and Keevash [14] have obtained a lower bound for the isoperi-
metric function of Johnson graphs which is asymptotically tight for sets with cardi-
nality 1

2

(
n
m

)
. The Johnson graphs J(n, 2) provide a counterexample to a conjecture

of Brouwer on the 2–restricted connectivity of strongly regular graphs, see Cioabâ,
Kim and Koolen [12] and Cioabâ, Koolen and Li[13], where the connectivity of the
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more general class of strongly regular graphs and distance–regular graphs is stud-
ied. It is also worth mentioning that the edge version of the isoperimetric problem,
where the minimization is for the number of edges leaving a set of given cardinality,
has also been studied, see e.g. Ahlswede and Katona [1] or Bey [2]. We will only
deal with the vertex isoperimetric problem in this paper and refer to it simply as
the isoperimetric problem.

Our main purpose in this paper is to show that the initial segments in the colex
order still provide a solution to the isoperimetric problem in J(n,m) for many small
values of k, thus providing the exact value of the isoperimetric function in these
cases.

We call a set S of vertices of J(n,m) optimal if |∂(S)| = µn,m(|S|). Our first
result shows that initial segments in the colex order are optimal sets in J(n, 2).

Theorem 1.3. For each n ≥ 3 and each 1 ≤ k ≤
(
n
2

)
we have

µn,2(k) = f(k, n, 2).

In particular, the initial segments in the colex order are optimal sets of J(n, 2) for
each n ≥ 3.

The following theorem allows one to show that the inequality (2) is also tight in
J(n,m) for very small sets.

Theorem 1.4. For k ≤ m + 1 and n ≥ 2m + 1 the initial segment of length k of
the colex order in J(n,m) is an optimal set.

Our last result, Theorem 1.5, extends Theorem 1.4 in an asymptotic way, by
showing that the inequality (2) is tight for a large number of small cardinalities
and gives a lower bound for all small cardinalities.

Theorem 1.5. Let k,m be positive integers and let

k =

(
k0

m

)
+

(
k1

m− 1

)
+ · · ·+

(
kr

m− r

)
, k0 > · · · > kr ≥ m− r > 0,

be the m–binomial representation of k.
There is n(k,m) such that, for all n ≥ n(k,m), the following holds.

(i) If r < m− 1 then
µn,m(k) = f(k, n,m),

and the initial segment in the colex order with length k is the only (up to au-
tomorphisms) optimal set with cardinality k of the Johnson graph J(n,m).

(ii) If r = m− 1 then

µn,m(k) ≥ f(k − kr, n,m)− kr.
The proof of Theorem 1.5 provides the estimation

n(k,m) ≤ m+ k + 1 + µm+k+1,m(k)− f(k,m+ k + 1,m)

for the value of n(k,m) above for which the statement of Theorem 1.5 holds. This
upper bound for n(k,m) is not tight but we make no attempt to optimize its value
in this paper.

Example 1.2 shows that the initial segment in the colex order of length
(
m+2
m

)
can fail to be an optimal set in J(n,m) if n = 3(m + 1)/2. In the last section we
describe another infinite family of examples for which the initial segment in the
colex order fails again to be an optimal set in J(n,m) for every fixed m and all n
large enough.
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Proposition 1.6. Let m be a positive integer. For each integer k of the form

k =

(
t

m

)
+ 3

(
t

m− 1

)
with t sufficiently large with respect to m there is a set S with cardinality k such
that

|B(S)| < f(k, n,m)

for all n ≥ t+ 3.

When n = t+ 3 the set S in Proposition 1.6 can be easily described as the ball

in J(n,m) of
(

[t]
m

)
, the family of m–subsets of the first t symbols. Such sets are

clear candidates to be optimal sets. The examples described in Proposition 1.6 are
closely related to the non–unicity of solutions to the Shadow Minimization Problem
in the Boolean lattice (see Theorem 1.7 below.)

Standard compression techniques are used to prove the above results. These
tools fall short to solve the isoperimetric problem of Johnson graphs in full mainly
because, as pointed out in [14], for instance, optimal sets in Johnson graphs do
not have the nested property (the ball of an optimal set is not optimal.) However
these techniques are still useful to show that the colex order provides a sequence of
extremal sets for small cardinalities.

The paper is organized as follows. Section 2 recalls the shifting techniques and
compression of sets. The proofs of theorems 1.3, 1.4 and 1.5 are given in sections
3, 4 and 5 respectively. In the proof of Theorem 1.5 we use a result by Füredi and
Griggs [17] which characterizes the cardinalities for which the Shadow Minimization
Problem for the Boolean lattice has unique solution. The statement below is a
rewriting of a combination of Proposition 2.3 and Theorem 2.6 in [17].

Theorem 1.7 ([17]). Let

k =

(
k0

m

)
+

(
k1

m− 1

)
+ · · ·+

(
kr

m− r

)
, k0 > · · · > kr ≥ m− r > 0,

be the m–binomial representation of k.
The initial segment in the colex order is the unique (up to automorphisms) so-

lution to the Shadow Minimization Problem in the Boolean lattice if and only if
r < m− 1.

Finally in Section 6 we prove Proposition 1.6. The result describes an infinite
family of examples which show that the initial segments in colex order may fail to
be optimal sets. The nature of this example shows that the isoperimetric problem
in Johnson graphs still has many intriguing open questions to be solved.

2. Shifting techniques

Shifting techniques are one of the key tools in the study of set systems. They
were initially introduced in the original proof of the Erdős–Ko–Rado theorem [15]
and have been particularly used in the solution by Frankl and Füredi [16] of the
isoperimetric problem for hypercubes.

In what follows we identify subsets of [n] with their characteristic vectors x =
(x1, . . . , xn) ∈ {0, 1}n where xi = 1 if i is in the corresponding set and xi = 0
otherwise. We denote the support of x by

x = {i : xi = 1}.
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and the `1-norm of x by

|x| =
∑
i

xi.

The support S of S ⊂ {0, 1}n is the union of the supports of its vectors. We often

identify a set S ⊂ {0, 1}n with the subset in {0, 1}n′ , n′ > n, obtained by adding
zeros to the right in the coordinates of its vectors. Thus, the initial segment of
length k is considered to be a subset of {0, 1}n for each sufficiently large n.

The sum x + y = (x1 + y1 (mod 2), . . . , xn + yn (mod 2)), of characteristic
vectors is meant to be performed in the field Fn2 and it corresponds to the symmetric
difference of the corresponding sets. We also denote by e1, . . . , en the unit vectors
with 1 in the i–th coordinate and zero everywhere else.

With the above notation, the set of vertices of the Johnson graph J(n,m) are all
vectors of {0, 1}n with norm m, and the neighbors of x in J(n,m) are the vectors

x + ei + ej ,

for each pair i, j such that xi + xj = 1.
We next recall the definition of the shifting transformation.

Definition 2.1. Let i, j ∈ [n]. For a set S ⊂ {0, 1}n define

Sij = {x ∈ S : xi = 1 and xj = 0},

and

Tij(x, S) =

{
x + ei + ej , if x ∈ Sij and x + ei + ej 6∈ S
x otherwise

The ij–shift of S is defined as

Tij(S) = {Tij(x, S) : x ∈ S}.

It follows from the definition that the shifting Tij of a set preserves its cardinality
and the norm of its elements. Moreover, it sends every vertex to a vertex at distance
at most 1. The main property of the shifting transformation is that it does not
increase the cardinality of the ball of a set. This property follows from the analogous
ones for upper and lower shadows. We include a direct proof here for completeness.

Lemma 2.2. Let i, j ∈ [n] and write T = Tij. For each set S of vertices in the
Johnson graph J(n,m) we have

(4) B(T (S)) ⊆ T (B(S)).

In particular,

(5) |B(T (S))| ≤ |T (B(S))| = |B(S)|.

Proof. We will show that,

(6) for each y ∈ T (S), we have B(y) ⊆ T (B(S)),

which is equivalent to (4). We observe that then (5) follows since |B(X)| = |X|+
|∂X| for every subset X and

|∂(T (S))| = |B(T (S))| − |T (S)| ≤ |T (B(S))| − |T (S)| = |B(S)| − |S| = |∂S|.

Let x be the element in S such that y = T (x, S). We consider two cases.
Case 1. (xi, xj) 6= (1, 0). In this case we certainly have y = x. Moreover, if

z ∈ ∂x such that (zi, zj) = (1, 0) then it is readily checked that z + ei + ej ∈ B(x).
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Therefore the transformation T (·, B(S)) leaves B(x) invariant. Hence, B(x) ⊆
T (B(S)).

Case 2. (xi, xj) = (1, 0). Then z = x + ei + ej is the only neighbour of x with
(zi, zj) = (0, 1).

Case 2.1 y = x. Then, by the definition of T (·, S), we have z ∈ S and T (z, S) =
z. Observe that every neighbour z′ of x is left invariant by T (·, B(S)). This is
clearly the case if (z′i, z

′
j) 6= (1, 0) and, if (zi, zj) = (1, 0), because we then have

z′′ = z′ + ei + ej ∈ B(z) ⊂ B(S). Hence

B(y) = B(x) = ∪z∈B(x)T (z, B(S)) ⊆ T (B(S)).

Case 2.2 y 6= x. Then y 6∈ S but y ∈ B(x) ⊆ B(S). Each neighbour z of y
distinct from x is of the form z = z′ + ei + ej for some neighbour z′ of x and
therefore it belongs to T (B(S)). For x itself we have T (x, B(S)) = x because
y = x + ei + ej ∈ B(S). Thus we again have B(y) ⊂ T (B(S)). This completes the
proof of (6). � �

The weight of a vector x ∈ {0, 1}n is

w(x) =

n∑
i=1

ixi,

and the weight of a set S is

w(S) =
∑
x∈S

w(x).

We note that, if i > j then w(Tij(S)) ≤ w(S). Moreover, equality holds if and only
if Tij(S) = S. Thus, successive application of transformations Tij using pairs i, j
with i > j eventually produces a set which is stable by any of such transformations.
This fact leads to the following definition.

Definition 2.3. We say that a set S is compressed if Tij(S) = S for each pair
i, j ∈ [n] with i > j.

Every set can be compressed by keeping its cardinality and without increasing its
boundary. Therefore, in what follows we can restrict our attention to compressed
sets in our study of optimal sets.

3. The case m = 2

Theorem 1.3 follows from the following proposition which characterizes com-
pressed optimal sets in J(n, 2).

Proposition 3.1. A set S of vertices of the graph J(n, 2) with cardinality
(
t−1

2

)
<

|S| ≤
(
t
2

)
is optimal if and only if, up to isomorphism, S ⊆

(
[t]
2

)
.

Proof. Write V (J(n, 2)) as the disjoint union

V (J(n, 2)) = S ∪ ∂S ∪ S̃,

where S̃ is the set of vertices at distance two from S. Let t =
∣∣S∣∣ be the number

of elements of [n] in the support S of S. The only vectors in S̃ are the ones which
have both nonzero coordinates in [n] \ S. Therefore

|S̃| =
(
n− t

2

)
,
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and

|∂S| =
(
n

2

)
− |S| −

(
n− t

2

)
.

Hence, for a given cardinality |S|, |∂S| is an increasing function of t alone. The
optimal value is therefore obtained when t is smallest possible, which is the smallest

t such that |S| ≤
(
t
2

)
. This is achieved for any subset S ⊂

(
[t]
2

)
if |S| >

(
t−1

2

)
. � �

As a consequence of the above proposition, we can see that the solution to the
isoperimetric problem in J(n, 2) is unique (up to isomorphism) for sets of cardinality(
t
2

)
(and also for sets of cardinality

(
t
2

)
− 1).

4. Small sets

In this section we prove Theorem 1.4. Recall that the lexicographic order of
vectors in {0, 1}n is defined by x <lex y if and only if min(x + y) ∈ x (while
x <colex y if and only if max(x + y) ∈ y.) We also recall that the upper shadow

∇(S) of a set S ⊂
(

[n]
m

)
consists of all the (m+ 1)–subsets of [n] obtained by adding

some new element to a subset in S. If C(S) denotes the family of complements
of S in [n] of the sets in S, we have C(∇(S)) = ∆(C(S)). It follows from the
Kruskal–Katona theorem that, among all families of the same cardinality, the up-
per shadow |∇(S)| is minimized when S contains the complements of an initial
segment in the colex order. We observe that, by reversing the order of the ele-
ments in [n], the set of complements of an initial segment in the colex order is
the initial segment of the lex order. For example the initial segment of length 4

in
(

[6]
3

)
is {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} and the set of their complements is

{{4, 5, 6}, {3, 5, 6}, {2, 5, 6}, {1, 5, 6}} which is isomorphic in the Boolean lattice to
the initial segment in the lex order {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}}.

The proof of Theorem 1.4 consists in showing that the initial segment in the
lex order is optimal in J(n,m) when n < 2m and use the above remarks. The
optimality of the lex order when n < 2m is proved by by induction by using
sections of J(n,m) and the following Lemma.

Lemma 4.1. Let S be a set of vertices in J(n,m). Let Si,0 = S ∩ {xi = 0} and
Si,1 = S ∩ {xi = 1}. If S is compressed then

(7) B(S) = B(Sn,0) and |B(S)| = |B′(S′n,0)|+ |∆(Sn,0)|,

where S′n,0 = {x ∈ {0, 1}n−1 : (x, 0) ∈ Sn,0} and B′ denotes the ball in J(n−1,m).
Moreover

(8) B(S) = B(S1,1) and |B(S)| = |B′′(S′1,1)|+ |∇(S1,1)|,

where S′1,1 = {x ∈ {0, 1}n−1 : (1,x) ∈ S1,1} and B′′ denotes the ball in J(n−1,m−
1).

Proof. Let x ∈ Sn,1 and i 6∈ x. Since S is compressed, we have

y = x + en + ei ∈ Sn,0,

which implies x = y + en + ei ∈ B(Sn,0). Hence, Sn,1 ⊂ B(Sn,0). Moreover, if
j ∈ x, then

x + ei + ej = (x + en + ei) + en + ej ∈ B(Sn,0),

so that B(x) ⊂ B(Sn,0). Hence B(S) = B(Sn,0). This proves the first part of (7).
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For the second part of (7) we just note that B(Sn,0) is the disjoint union
(B(Sn,0) ∩ {xn = 0}) ∪ (B(Sn,0) ∩ {xn = 1}). Since the subgraph induced by
the vectors with xn = 0 is isomorphic to J(n − 1,m), we have |B(Sn,0) ∩ {xn =
0}| = |B′(S′n,0)|. On the other hand, there is an edge in J(n,m) joining a vector
x = (x1, . . . , xn−1, 1) with y = (y1, . . . , yn−1, 0) if and only if x \ {n} ⊂ y and
|y| = |x|. It follows that B(Sn,0) ∩ Vn,1 = ∆(Sn,0).

The proof of (8) is analogous. Let x ∈ S1,0 and i ∈ x. Since S is compressed,
we have

y = x + e1 + ei ∈ S1,1,

which implies x = y + e1 + ei ∈ B(S1,1). Moreover, if j 6∈ x, then

x + ei + ej = (x + e1 + ei) + e1 + ej ∈ B(S1,1),

so that B(x) ⊂ B(S1,1). Hence B(S1,0) ⊂ B(S1,1) and B(S) = B(S1,1). Now, all
vectors in B(S1,1)∩{x1 = 1} can be expressed as neighbours of S′1,1 in J(n−1,m−1)
by adding a first coordinate 1, and all vectors in B(S1,1)∩{x1 = 0} can be expressed
as vectors in the upper shadow ∇S1,1 by exchanging the first coordinate from 1 to
0. This proves (8). � �

Lemma 4.2. Let m+ 1 ≤ n ≤ 2m. The initial segment of length k in the lex order
is an optimal set for each k ≤ n−m+ 1.

Proof. The proof is by induction on m. For m = 2, J(3, 2) is a triangle and J(4, 2)
is the complete graph K6 minus a perfect matching, for which the statement can
be easily checked.

Let m > 2. For n = m+ 1, the graph J(m+ 1,m) is the complete graph and all
sets are optimal.

Let m + 2 ≤ n ≤ 2m and let S be an optimal compressed set in J(n,m) with
cardinality k ≤ n −m + 1. Let Ln,m(k) denote the initial segment of length k in

the lex order in
(

[n]
m

)
. We consider two cases.

Case 1: n ≤ 2m− 1.
Since S is compressed, m+ 2 ≤ n ≤ 2m and k ≤ n−m+ 1 ≤ m, we have

S1,1 = S and |S′1,1| = k.

Indeed, if there is a vector x ∈ S such that x does not contain 1 then S must
contain the m vectors obtained by shifting each element in x with 1, contradicting
that k ≤ m. By (8) in Lemma 4.1, we have

|B(S)| = |B′′(S′1,1)|+ |∇(S1,1)|.
We have k ≤ (n− 1)− (m− 1) + 1 and n− 1 ≤ 2(m− 1).

If n−1 ≤ 2(m−1)−1 then, by the induction hypothesis, |B′′(S′1,1)| is minimized
when S′1,1 is L′n−1,m−1(k), where L′n−1,m−1(k) denotes the initial segment of length

k in the lex order in
(

[n]\{1}
m

)
. By adding 1 to all vectors in L′n−1,m−1(k) we obtain

Ln,m(k) with the same boundary in J(n,m). Moreover, Ln,m(k) also minimizes
|∇(S1,1)| by the Kruskal–Katona theorem. It follows that |B(S)| = |B(Ln,m(k))|
and Ln,m(k) is an optimal set.

If n− 1 ≤ 2(m− 1) then we are led to Case 2.
Case 2: n = 2m. We first observe that B(Ln,m(m)) = B(Ln,m(m− 1)) because

B({1, 2, . . . ,m − 1, 2m}) ⊂ B(Ln,m(m − 1)). Therefore we may assume that k ≤
m−1. By a pigeonhole argument as in Case 1, in a compressed set S with cardinality
k ≤ m − 1, the support of all vectors in S contain 1 and they all miss 2m. By
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deleting the last coordinate in all vectors in S we obtain a set S′′′ with |B(S′′′)| =
|B(S)|+ |S|, where the first ball is computed in J(n− 1,m). We therefore reduce
our optimization problem to J(n − 1,m) which satisfies n′ ≤ 2m − 1, n′ = n − 1,
and we are led to Case 1. � �

We are now ready to prove Theorem 1.4.

of Theorem 1.4. Assume that n > 2m. The graph J(n,m) is isomorphic (by com-
plementation) to J(n, n −m). Since n ≤ 2(n −m) − 1, by Lemma 4.2, the initial
segment of length k ≤ m+1 in the lex order is an optimal set. By complementation
this initial segment corresponds to the initial segment in J(n,m) in the colex order,
which is therefore an optimal set in this graph. � �

5. Optimal sets for large n

In this Section we give the proof of Theorem 1.5. In what follows we call a
positive integer k critical if its m–binomial representation has length m (namely, it
has r = m− 1).

of Theorem 1.5. Let S be an optimal set with cardinality k in J(n,m). We may
assume that S is compressed. Let n0 be such that the support of every element in
S is contained in [n0]. Since S is compressed, if the support of x ∈ S contains n0

then we have Tn0i(x) ∈ S for each i ∈ [n0 − 1] \ x. It follows that n0 ≤ m+ k + 1.
For each n ≥ n0 every element in ∆(S) gives rise to n − n0 distinct vectors in ∂S
which have a coordinate in [n0 +1, n] and therefore are disjoint from the ball B0(S)
in J(n0,m). Moreover every two such vectors which only differ in their coordinate
from [n0 + 1, n] come from a unique element in ∆(S). Therefore, we have

|B(S)| = |B0(S)|+ (n− n0)|∆S|,

where B0 denotes the ball of S in J(n0,m) and B denotes the ball of S in J(n,m).
Similarly, for I be the initial segment of length k in the colex order. We have

|B(I)| = |B0(I)|+ (n− n0)|∆I|

Hence,

(9) |B(S)| = |B(I)|+ (|B0(S)| − |B0(I)|) + (n− n0)(|∆(S)| − |∆(I)|).

If |∆(S)| > |∆(I)| then we have |B(S)| > |B(I)| for each sufficiently large n.
By Theorem 1.7, if the m–binomial representation of k has less than m terms
then the initial segment in the colex order is the unique solution to the Shadow
Minimization Problem. It follows that, if S 6= I then |B(S)| > |B(I)| for all
n > n0 + |B0(S)| − |B0(I)|. This proves the first part of Theorem 1.5 and gives the
estimate

n(k,m) ≤ m+ k + 1 + µm+k+1,m(k)− f(k,m+ k + 1,m).

On the other hand, we have µn,m(k) ≤ µn,m(k+1)+1, since otherwise an optimal
set X with cardinality k + 1 satisfies |∂(X \ {x})| < µn,m(k) for every x ∈ X, a
contradiction with the definition of µn,m. Suppose that k is a critical integer and let
k, k− 1, . . . , k− `+ 1 be the longest decreasing sequence of critical integers. By the
above remark we have µn,m(k) ≥ µn,m(k− `)− ` and µn,m(k− `) = f(k− `, n,m),
the cardinality of the boundary of an initial segment in colex order with length k−`.
The value of ` is clearly kr+1. This proves the second part of the statement. � �
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6. Initial segments which are not optimal

We conclude the paper by proving Proposition 1.6, which shows that there are
values of k for which the initial segment of length k in the colex order fails to be
an optimal set of J(n,m) for all sufficiently large n.

We prove first that, for each m and each integer t sufficently large with respect
to m,

g(t,m) =

(
t

m

)
+ 3

(
t

m− 1

)
is a critical cardinality, namely, the m-binomial expansion of g(t,m) has m terms.
This means that the solution of the Minimal Shadow Problem is not unique for
k = g(t,m). This fact is used in the proof of Proposition 1.6.

Lemma 6.1. There is an infinite strictly increasing integer sequence {λi}i≥0, λi+
1 < λi+1 such that, for each t and each m ≥ 1,

(10) g(t,m) =

m−1∑
i=0

(
t− λi
m− i

)
+ 1.

Proof. By induction on m. For m = 1 we have

(11) g(t, 1) = t+ 3 =

(
t+ 2

1

)
+ 1,

and for m = 2,

(12) g(t, 2) =

(
t+ 2

2

)
+

(
t− 2

1

)
+ 1,

giving λ0 = −2 and λ1 = 2. By using
(
n
m

)
=
∑n−1
j=0

(
j

m−1

)
and induction, for m ≥ 3

we have

g(t,m) =

(
t

m

)
+ 3

(
t

m− 1

)
=

t−1∑
j=0

(
j

m− 1

)
+ 3

t−1∑
j=0

(
j

m− 2

)

=

t−1∑
j=0

g(j,m− 1)

=

t−1∑
j=0

(
m−2∑
i=0

(
j − λi

m− 1− i

)
+ 1

)

=

m−2∑
i=0

t−1∑
j=0

(
j − λi

m− 1− i

)
+ t.

By using λ0 = −2 and λi > 0 for i ∈ [1,m− 2], we can write

g(t,m) =

t−1∑
j=0

(
j − λ0

m− 1

)
+

m−2∑
i=1

 t−1∑
j=λi

(
j − λi

m− 1− i

)
+

λi−1∑
j=0

(
j − λi

m− 1− i

)+ t

=

(
t− λ0

m

)
+

m−2∑
i=1

(
t− λi
m− i

)
+ t+

m−2∑
i=1

λi−1∑
j=0

(
j − λi

m− 1− i

)
,
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which shows that (10) holds with

λm−1 =−
m−2∑
i=1

λi−1∑
j=0

(
j − λi

m− 1− i

)
+ 1

=−
m−2∑
i=1

λi∑
`=1

(
−`

m− i− 1

)
+ 1

=−
m−2∑
i=1

λi∑
`=1

(−1)m−i−1

(
m− i− 2 + `

m− i− 1

)
+ 1

=

m−2∑
i=1

(−1)m−i
(
m− i− 1 + λi

m− i

)
+ 1

=

m−1∑
j=2

(−1)j
(
λm−j + j − 1

j

)
+ 1(13)

We observe that the sequence is uniquely determined once λ1 is fixed. The first
values of the sequence are

−2, 2, 4, 7, 14, 51, 928, 409625, . . .

It remains to show that the sequence is increasing. We will in fact show that
λm ≥ max{λm−1 + 2, λ2

m−1/4} for all m ≥ 2. The above inequality holds for m ≤ 7
as shown by the first values of the sequence. By using (13) (with λm instead of
λm−1), we have,

λm ≥
2bm/2c−1∑
j=2,j even

((
λm−j+1 + j − 1

j

)
−
(
λm−j + j

j + 1

))
.

For j = 2 we have(
λm−1 + 1

2

)
−
(
λm−2 + 2

3

)
=
λ2
m−1

4
+
λm−1(λm−1 + 2)

4
−
(
λm−2 + 2

3

)
≥
λ2
m−1

4
+
λ4
m−2

64
+

2λ2
m−2

16
−
(
λm−2 + 2

3

)
>
λ2
m−1

4

where the last inequality holds (for m ≥ 4) because the largest root of the polyno-
mial x4/64 + x2/8−

(
x+2

3

)
is smaller than λ4 = 14.

On the other hand, for j ≥ 4,(
λm−j+1 + j − 1

j

)
−
(
λm−j + j

j + 1

)
=

1

j!

(
j−1∏
t=0

(λm−j+1 + t)−
∏j
t=0(λm−j + t)

j + 1

)
λm−j+1>λm−j+1

>
1

j!

j∏
t=2

(λm−j + t)

(
λm−j+1 −

λm−j(λm−j + 1)

j + 1

)
λm−j+1≥λ2

m−j/4

≥ 1

j!

j∏
t=2

(λm−j + t)

(
λ2
m−j

4
− λm−j(λm−j + 1)

j + 1

)
.
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The right-hand side is nonnegative if m − j ≥ 2, as then λm−j ≥ 4. If m − j = 1
then it follows by induction on j ≥ 1 that(

λ2 + j − 1

j

)
−
(
λ1 + j

j + 1

)
=

(
3 + j

j

)
−
(

2 + j

j + 1

)
> 0.

This completes the proof. � �

For t larger than λm−1 the equality (10) in Lemma 6.1 provides the m–binomial
expansion of g(t,m). Hence this binomial expansion has length m and, by Theorem
1.7, g(t,m) is a critical cardinality. The proof of Proposition 1.6 uses this fact
by choosing two distinct optimal sets for the SMP problem which have different
boundaries in the Johnson graph.

Proof. of Proposition 1.6 Let S = B0(
(

[t]
m

)
), the ball of

(
[t]
m

)
in the Johnson graph

J(n0,m), n0 = t+ 3. The cardinality of S is

k =

(
t

m

)
+ 3

(
t

m− 1

)
= g(t,m).

Let I(k) denote the initial segment of length k in the colex order.
By Lemma 6.1 the m-binomial expansion of k has m terms and can be written

as

(14)

(
t

m

)
+ 3

(
t

m− 1

)
=

(
t− λ0

m

)
+

(
t− λ1

m− 1

)
+ . . .+

(
t− λm−1

1

)
.

We note that the shadows of S and of I(k) have the same cardinality:

|∆S| =
(

t

m− 1

)
+ 3

(
t

m− 2

)
=

(
t− λ0

m− 1

)
+

(
t− λ1

m− 2

)
+ . . .+

(
t− λm−2

1

)
+

(
t− λm−1

0

)
= |∆(I(k))|.

It can be readily checked that the boundary of S in J(n0,m) has cardinality

|∂S| =
∣∣∣∣∂2

(
[t]

m

)∣∣∣∣ = 3

(
t

m− 2

)
,

On the other hand, the boundary in J(n0,m) of the initial interval I(k) as given
by the function f(k, n0,m) in (3) is

|∂I(k)| =
(
t− λ0

m− 1

)
+

m−1∑
i=1

((
t− λi

m− i− 1

)
(n− t+ λ0 − 1)−

(
t− λi
m− i

))

=

(
t+ 2

m− 1

)
−
m−1∑
i=1

(
ai

m− i

)
=

(
t+ 2

m− 1

)
+

(
t+ 2

m

)
−
(
t

m

)
− 3

(
t

m− 1

)
=

(
t+ 1

m− 2

)
+ 2

(
t

m− 2

)
,

which is strictly larger than 3
(

t
m−2

)
. Thus |B0(I(k))| > |B0(S)|. Moreover, by (9),

for all n ≥ n0, we have

|B(I(k))| = |B(S)|+ (|B0(I(k))| − |B0(S)|) > |B(I(k)|.
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Therefore the intial segment in colex order I fails to be an optimal set for all
n ≥ t+ 3. � �
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