
Universitat Politècnica de Catalunya

Master’s degree in

Automatic Control and Robotics

Master’s Thesis

Hierarchical Task Control

through Lexicographic SemiDefinite Programming

Application to Unmanned Aerial Manipulators

Josep Mart́ı Saumell

Director: Dr. Angel Santamaria-Navarro

Rapporteur: Prof. Carlos Ocampo-Martinez

Academic Course 2017/18

September 2018

Abstract

In this thesis, we present a new method to simultaneously fulfill several tasks with a robot.
We take advantage of redundant robots, in terms of degrees-of-freedom, and we are able
to prioritize between tasks by expressing the control law as a lexicographic semidefinite
programming, which consists on a hierarchized group of optimal problems. These opti-
mal problems are formulated through linear matrix inequalities, enabling the definition of
equality tasks (commonly done in the literature) and also inequality tasks. With this for-
mulation, we describe the problem in a compact form that eases its extension. Moreover,
this structure using linear matrix inequalities allows us to use common linear algebra
tools, hence to use fast specialized solvers, making feasible a real-time solution of the
problem for highly redundant robots. We express the tasks in the acceleration domain,
obtaining smooth joint references. The proposed approach is applied to autonomously
drive aerial manipulators, providing the analysis of simulations and real case studies in
the second part of this work. For the sake of completeness, we also include in the ap-
pendices complete descriptions of general formulation procedures as well as a complete
and didactic practical example. The code produced within this work is made publicly
available for the benefit of the community.

i

Hierarchical task control through Lexicographic SemiDefinite Programming

ii

Acknowledgements

A la meva companya Montse, les meves germanes Núria i Aleth i també a la meva mare
Lurdes i al meu pare Pere.

Als meus tutors Àngel i Carlos.

També a l’Institut de Robòtica Industrial on he realitzat aquesta tesi.

This work has been partially supported by the EU H2020 project AEROARMS (H2020-ICT-

2014-1-644271) and by the Spanish State Research Agency through the Maŕıa de Maeztu Seal

of Excellence to IRI (MDM-2016-0656).

iii

Hierarchical task control through Lexicographic SemiDefinite Programming

iv

Contents

Abstract i

Acknowledgements iii

Acronyms ix

List of Figures xi

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Notation . 4

1.4 Outline . 5

2 Background 7

2.1 State of the art . 7

2.2 Redundancy concepts . 10

2.3 Generic task formulation . 11

2.3.1 Task Jacobian . 12

2.4 Task resolution . 14

v

Hierarchical task control through Lexicographic SemiDefinite Programming

2.4.1 Traditional least squares approach 14

2.4.2 Quadratic programming approach 19

2.5 Closed-loop inverse kinematics . 27

2.5.1 Task stability . 28

2.5.2 Task expression in the acceleration domain 29

2.5.3 Discrete implementation . 31

2.6 Summary . 32

3 Hierarchical task control through lexicographic SDP 35

3.1 Task resolution through semidefinite programming 35

3.2 Hierarchical task control through lexicographic SDP 38

3.3 Summary . 43

4 Application to UAMs 45

4.1 UAM tasks . 45

4.1.1 Obstacle avoidance . 46

4.1.2 Joint limits . 47

4.1.3 Pose tracking . 49

4.1.4 Center of gravity alignment . 51

4.1.5 Acceleration minimization . 53

4.2 Experiment setup . 53

4.2.1 Robot description - Kinton UAM 53

vi

CONTENTS

4.2.2 Priority manager . 56

4.3 Experiments results . 57

4.4 Summary . 61

Concluding Remarks 63

References 65

A Theoretical notes A1

A.1 Slack Variables . A1

A.2 Epigraph form . A5

A.3 Schur Complement . A6

B 4-link planar manipulator B1

vii

Hierarchical task control through Lexicographic SemiDefinite Programming

viii

Acronyms

CLIK Closed-loop inverse kinematics

DoF Degrees of freedom

IK Inverse kinematics

IMU Inertial measurement unit

IRI Institut de Robòtica i Informàtica Industrial de Barcelona (CSIC-UPC)

LMI Linear matrix inequalities

LQP Lexicographic quadratic programming

LP Linear programming

LS Least squares

QP Quadratic programming

ROS Robotic Operating System

SDP Semi-definite programming

UAM Unmanned aerial manipulator

UAV Unmanned aerial vehicle

ix

Hierarchical task control through Lexicographic SemiDefinite Programming

x

List of Figures

1 Two-link planar manipulator example. 13

2 Graphical representation of LS problem . 15

3 Spaces and subspaces involved in the LS solution 17

4 Equality and inequality tasks representation for a 2-dimensional space. . . 20

5 Feasible set with 3 inequality constraints 24

6 Feasible set with three inequality and one equality constraints 25

7 Feasible set when the equality task has priority over the inequalities. 27

8 Distances related to the obstacle avoidance task 47

9 Upper (ub) and lower (lb) bounds for a manipulator’s joint. 48

10 UAM frames involved in pose the tracking task. 49

11 Top view of arm’s CoG misalignment . 52

12 Kinton Robot . 54

13 Experiment samples . 55

14 Real robot experiment: Obstacle avoidance task 58

15 Real robot experiment: Joints limits position task. 59

16 Real robot experiment: Joint limits velocity task. 59

17 Real robot experiment: Arm’s CoG alignment task. 60

18 Real robot experiment: End-effector pose tracking task 61

19 Slack variables. Feasibile region for the first task. A3

xi

Hierarchical task control through Lexicographic SemiDefinite Programming

20 Inequality constraints for priority 2 . A3

21 Slack variables. Problem representation . A4

22 Slack variables. Optimal solution changing an inequality task A5

23 Epigraph of a sample function f(x) . A6

24 4-link planar manipulator. Position over orientation. B2

25 4-link planar manipulator. Orientation over position. B3

xii

1. Introduction

In early designs, robots were created for specific purposes that required the execution of
simplistic movements in well-controlled environments. Nowadays, technology is mature
enough to allow more complex robotic designs. As a consequence, the complexity of the
actions expected for the robots has also increased: we now ask robots to accomplish several
tasks simultaneously and often some of them can even be contradictory. Thus, it has
emerged the need for frameworks to describe qualitatively how the robot’s behavior should
be and to let the robotic system decide by itself, i.e., multiple task control. Precisely, this
work aims at offering one of these frameworks.

If we understand a robot as a chain of rigid bodies (links) connected by means of ar-
ticulations (joints), we refer to the number of degrees of freedom (DoF) as the amount
of independent variables required to define the situation of every joint. The number of
free DoFs at a particular configuration defines the ability of a robot to perform certain
tasks, called maneuverability. Hence robots with higher number of DoFs will be able to
accomplish more complex tasks. For example, the task of positioning and orientating a
body in the space requires 6 DoFs (3 for position and 3 for orientation). In those cases
where the number of robot DoFs is higher than the required by the task, we can talk
about a redundant robot. Thanks to their high maneuverability, redundant robots are
able to perform multiple tasks at the same time. This thesis is about controlling a highly
redundant robot in order to perform some pre-defined tasks simultaneously.

In robotics, solving the inverse kinematics (IK) problem means to find the joint values of
the kinematic chain that reaches a specific robot end effector pose. When talking about
robots and tasks, solving the IK problem entails finding the joint values over time to
accomplish a specific task. If we operate with redundant robots, there is not a single IK
solution but a set of possible joint value combinations, hence we can reach the same robot
configurations with different joint values. This DoF overdetermination can be exploited
in order to accomplish other tasks at the same time. However, there exist situations in
which even with a redundant robot it is not possible to solve all required tasks at the
same time, and one should find ways to enforce that at least the critical ones are fulfilled.
Thus, it is interesting to find solutions to apply task hierarchies in order to prioritize the
accomplishment of these tasks depending on chosen criterias.

Although there exist in the literature different approximations to solve the IK problem for
several hierarchized tasks using redundant robots (reviewed in Section 2.1), in this thesis
the IK problem is tackled by solving a Lexicographic semi-definite programming (SDP)

1

Hierarchical task control through Lexicographic SemiDefinite Programming

problem, where the term lexicographic stands for solving a sequence of single-objective
optimization problems. We also provide simple examples, to help the reader understand-
ing. Moreover, we provide a series of appendices with related material, including a simple
but complete example using the main mathematical formulations of the thesis. Moreover,
for the benefit of the community, we made the code available.

1.1 Motivation

For those not familiarized with this kind of robots, UAMs are composed by 2 robotic
parts: one is a flying platform -generally a multicopter- while the other is a robotic arm
manipulator attached to the platform. Since we are considering two robots as a whole
part, there is a considerable amount of DoFs to be controlled. Having a framework that
eases the control of its DoFs by specifying tasks in a natural sense, allowing to add or
remove tasks modularly is crucial. The computation of the joint references enabling this
control framework is commonly known as trajectory generation.

Trajectory generation for highly redundant robots is an area that has been investigated
since the late 80’s of the past century. It tries to find methods for harnessing all the DoFs of
a robot while accomplishing one or several tasks. This trajectory generation is desirebale
to be performed on-line, i.e., at every time step the implemented algorithm must provide
the low-level joint controller with new reference values that ensure the accomplishment of
the tasks. Notice how on-line computation requires light algorithms and a considerable
computational burden.

A common approach to trajectory generation is by means of mathematical optimization.
There are several algorithms to analytically solve the optimization problem developed
for generating the trajectory. However, these methods hinder the fulfillment of some
specific tasks and, when introduced, these tasks make the formulation substantially more
complicated. In recent years, thanks to the improvement on computational capacity
of computers, together with the appearance of fast and efficient numerical solvers, the
application of numerical optimization on-line has become a hot topic.

This master’s thesis arises within the mobile robotics research group and, more specifi-
cally, from the work conducted during the last years by Dr. Angel Santamaria-Navarro.
During this period, UAMs have been introduced to Institut de Robòtica i Informàtica
Industrial de Barcelona (IRI) mobile robots laboratory, encouraging the appearance of
several research works, such as analitical hierarchical control laws for equality tasks, or a
trajectory generation algorithm through quadratic programming, where the tasks priori-
ties are combined as a weighted sum of cost functions. The challenge and motivation for

2

CHAPTER 1 1.2 Objectives

conducting this master’s thesis is to provide a trajectory generation method able to han-
dle several hierarchical tasks, considering inequality constraints, and specified in compact
way.

In this thesis, we propose a method to hierarchically solve the IK problem for different
tasks by means of lexicographic semi-definite programming problems, which imply the
use of linear matrix inequalities (LMI).

The main advantages of this formulation with respect to those already reported in the
literature for UAMs are the following:

• We are able to describe the problem in a compact form.

• We can solve tasks hierarchically by means of optimization procedures, which allow
us to introduce inequality tasks in the hierarchical structure of the problem.

• The LMI expression allows for a fast optimization using specialized solvers. Through
the LMI structure, these solvers can use common linear algebra tools to efficiently
solve SDP problems, which makes feasible a real-time solution for robots with a
high number of DoFs.

• The lexicographic structure, i.e., a nested group of single-objective optimizations,
allow us to create a task priority manager to manage and exchange priorities of tasks
online, without the dependence of weights or the need for control reference smoothers
(e.g., in the case of analytical solutions using the projection of subtasks into the null
space of the tasks higher in the hierarchy, the control reference computed has to be
smoothed when the tasks change their priorities [1] or [2]). This is of high interest
considering the reduction of parameters (weights) to be tunned for each particular
application.

1.2 Objectives

The main objectives of this master’s thesis are:

• Review the solutions for trajectory generation available in the literature.

• Develop an algorithm to impose strict hierarchy between tasks.

• Consider either equality and/or inequality tasks expressed in the acceleration do-
main.

3

Hierarchical task control through Lexicographic SemiDefinite Programming

• Formulate the problem as an LMI-based optimization problem, i.e., an SDP problem
in order to use the algorithm on-line.

• Implement the algorithm using LMI dedicated numerical solvers.

• Validate the approach through partial (i.e., singular tasks with simplified robot
models) and complete simulation case studies.

• Perform real robot experiments using Robot Operating System (ROS) compatible
code within a real UAM, performing several tasks in a single mission.

1.3 Notation

Within this thesis, we take advantage of two main notations, for the following reasons.

When describing mathematical tools, e.g., least squares (LS) approach, we use a generic
notation. This notation is helpful to describe generic problem formulations with com-
monly used variable names. Thus, we expect the reader to quickly identify the involved
mathematical agents as the namings are quite standard in the literature. As an example,
here we have generic variable names such as x, A or b.

Another notation is used for the generic variable names to the target field of this thesis:
robotics. We believe that using identifiable variable names in the resulting formula devel-
opments would help the reader, not only to better picture the formulation impact but also
to better implement the methods here presented. In this case we use variable names such
as q, J or σ to describe robot joint positions, Jacobians or task variables, respectively.

In those chapters of the thesis where important mathematical tools are required, we start
defining them with the generic notation. Then, we specialize that notation and move to
the robotics definitions depending on the particularities of the developments considered.
In this way, even though the robotics developments can be complex, the user is always
able to indetify the elements of the original mathematical tools and keep track of its
rules. Moreover, we can take advantage of variable substitutions to be concise in the
developments.

In Section 2.5.3, we describe the procedure to convert our formulation, expressed in the
continuous-time domain, into a discrete-time domain one. During the whole document,
dots on top of letters are used to indicate continuous time-derivatives. For example, if
q is used to express joint positions, q̇ and q̈ would indicate joint velocities and joint
accelerations, respectively. For the sake of the fluidity in the reading of the work, to

4

CHAPTER 1 1.4 Outline

express velocity or acceleration in the discrete-time domain, we have added a subscript k
in the continuous-time domain variables. Therefore, a expression in discrete-time domain
like q̈k should be interpreted as: joint accelerations evaluated at instant k.

During the thesis the symbols ≺, �, � and � are widely used. When used with vectors
they stand for component-wise inequalities, e.g., , � stands for component-wise smaller
or equal than (6). However, when used with matrices they stand for negative definite,
negative semidefinite, positive definite and positive semidefinite respectively.

1.4 Outline

This thesis is structured with the following chapters:

Chapter 2: Background This chapter starts presenting the state-of-the-art related
with the main topics developed in this work. Besides, it also describes how this thesis is
positioned with respect to this state-of-the-art. This is followed by theoretical concepts
that will be used as a base in the following Chapter 3. Within these concepts, we explain
the redundancy in robotics, we continue with a common and general way of formulating
tasks by means of their task Jacobians. We also describe the different approaches to
solve the IK problem, either using an analytical solution or by means of mathematical
optimization. At the end of the chapter the closed loop inverse kinematics (CLIK) is
defined with some considerations about its implementation using acceleration. As we
implement the presented algorithm in digital robot controllers, the last section of this
chapter is devoted to explain how to express the equations within the discrete domain.

Chapter 3: Hierarchical task control through Lexicographic SDP This chapter
is the core of this work as it presents the value proposition of the thesis. We start by detail-
ing how to transform the state-of-the-art quadratic programming (QP) problem equations
so they can be solved by means of an SDP problem. The last section encompasses the
task resolution using SDP with the algorithm used in further experiments.

Chapter 4: Application to UAMs This chapter encompasses the application to
UAMs of the theory explained in Chapter 3. We begin with a detailed description and
formulation of the tasks implemented in the UAM. Afterwards, we offer a technical de-
scription of the robot used: the Kinton UAM. In the last part of the chapter, we present
the experiment set, the priority manager and the validation of the proposed approach

5

Hierarchical task control through Lexicographic SemiDefinite Programming

through real robot experiments. For the sake of conciseness, the results of the complete
UAM simulations are not included in this document beacuse the real experiments are
better to analize and extract the conclusions of this work.

Concluding remarks In this final chapter, conclusions and final remarks are drawn.
We also point out the possible future work within the field of UAMs and trajectory
generation.

Appendices Although being in the appendices, it is worth to mention its content. In
the first appendix one can find an explanation about some mathematical tools, which
have been used for developing the trajectory generation in an SDP framework. Moreover,
to better introduce the reader to this master’s thesis, Appendix B presents a guided
application to a 4-link planar manipulator of the algorithm developed here. The reference
to the code used in this chapter is also given for the sake of completeness.

6

2. Background

The content of this chapter is related with the work done in the fields of IK and trajectory
generation existing in the literature. It is divided in two main parts: first, we detail,
qualitatively, the state-of-the-art related with the main topics developed in this work;
second, we describe the common analytical tools used in this field. In the latter, we
introduce the concept of redundancy in the field of robotics, followed by the task notion
with a mention on how to obtain the task Jacobian. Considering the purpose of this
thesis, in the last part of this chapter we define several task control laws to solve the IK
problem preserving a certain hierarchy between tasks, with a sequential explanation of
the different methods explored. We start from the traditional LS analytical solution and
we end up presenting two different approaches that use optimization problems with a QP
structure.

2.1 State of the art

In the field of robot manipulators, finding effective methods to solve the IK problem has
always been a fundamental topic of research. In a basic manner, that is finding which
values should the joints have to position the manipulator end-effector in a desired pose.
Theoretically, only 6 DoFs are required to achieve any end-effector position and orien-
tation: a solution in the 3-dimensional Special Euclidean group, SE(3). When talking
about common robot manipulators, nevertheless, this assertion only holds for a certain
regions of the robot’s workspace. Due to its constructive geometry, there are some config-
urations (i.e., a specific combination of values for every robot’s joint) where the robot’s
functionality is reduced. These problematic configurations mostly occur when the robot
has aligned two or more rotation axis. This phenomena is commonly known as singularity.
This is an undesired situation in the vast majority of applications, and a possible solution
is found by adding extra links and joints to the robot. This strategy is explained in [3].

As in the case of positioning the robot end-effector, a task can be understood as a portion
of the robot’s function, aimed to accomplish a specific dynamic or kinematic goal. In [4]
and [5], the authors introduce this concept of task and discuss the use of extra DoFs to
perform not only one task but many. For example, the robot’s main function could be to
move the end-effector from one point to an other, aiming at some object manipulation,
and in order to accomplished this target it would require the achievement of several tasks
simultaneously. We might want the robot end-effector to accomplish with a pose task.

7

Hierarchical task control through Lexicographic SemiDefinite Programming

That is to follow a specific trajectory (positioning task) it with a specific orientation (ori-
entating task). Besides, we could also specify other tasks such as low energy consumption,
an obstacle avoidance task, etc. Since then, these task concepts have been adopted by
the research community working on the IK problem.

In [4] the IK problem is solved as a LS optimization problem. It uses its analytical solution
using the Jacobian’s pseudo-inverse to project an error computed in the task space to the
joint space. It also discusses the procedure to prioritize among tasks using the same
technique, i.e., in case of running out of DoFs the method ensures that the tasks with
higher priority will be firstly accomplished over those with lower priority. This priorization
method is based on projecting the resulting joint velocities of a secondary task onto the
null space of the Jacobians of those tasks with higher priority. This framework is now a
reference in the robotics field and it is explained in several generalist books like [6] or [7].

In order to fulfill a task, we must ensure that the variables describing this task take
specific values. Depending on the nature of the task, these values could be either unique
or form a set of values. The first case would be an equality task, e.g., a positioning task,
while the latter case would be an inequality task like keeping safety distances to obstacles
(obstacle avoidance) or to the joint limits. The treatment of inequality tasks is of special
importance due to the fact that there is no method to find an analytical solution to this
kind of tasks. For that reason, alternative methods were found to introduce them as
equality tasks. In [8] and [4] is proposed to convert the inequality task into a potential
field that is minimized as a secondary task. Minimizing these potential fields would move
solutions away from obstacles (to avoid obstacles [4]) or from conflicting configurations (to
avoid singularities [5]), whilst ensuring the accomplishment of the primary task, i.e., pose
tracking.

All the methods described so far have the nature of mathematical optimization programs.
The improvement in computational power has stimulated the appearance of methods that,
instead of trying to solve these LS problems analytically, make use of numerical solvers
specially created to solve QP problems. This allows a more natural expression of the
inequality tasks as they can be added as inequality constraints to the optimal problem.
This is the case of [9] and [10] where, besides of introducing the inequality tasks in a
more natural form, a hierarchy among them is also given. They consider a hierarchical
QP problem also known as a lexicographic quadratic programming (LQP) problem. In
this case, to achieve the following point in the trajectory of every joint, several nested QP
problems must be solved (one for every level of the hierarchy). To preserve the hierarchy
among tasks, solutions of the QP problems of tasks higher in the hierarchy are added as
constraints to the lower priority QP problems. This way of proceeding and interacting
with later optimizations is known as lexicographic optimization ([11], [12]). All these
approaches add slack variables to every inequality task in order to avoid unfeasibility
issues and to relax the constraints when they cannot be fulfilled.

8

CHAPTER 2 2.1 State of the art

There are several facts that can increase considerably the computational burden, e.g., the
number of tasks to be solved (linked with the number of hierarchy levels) or the number
of robot DoFs. Reducing this computational burden has always been a field of interest. In
[13], the authors use a pseudo-inverse analytical solution to solve one single optimization
problem with all the tasks already hierarchized inside the objective function. However,
they require the calculation of the task Jacobian pseudo-inverse. They also explain a
method to deal with hierarchized inequality tasks based on the active set strategy [14].

The active set strategy is an iterative procedure that begins by choosing some inequality
tasks and converting them into equalities, assuming that they are all active (an inequality
is said to be active when it is fulfilled by an equality). Then, the optimization problem
with only equality constraints is solved (nowadays, there exist dedicated numerical solvers
that uses this strategy [14]). The iteration ends checking all inequality tasks as follows:
if the task was included in the set of converted tasks (inequalities to equalities) but the
minimum can be reached without violating it, then this task is removed; on the other
hand, if the task was not included but is being violated by the achieved solution, this
task is added. If none of these situations happen, the algorithm comes to the end. This
method is further explained in [15].

Another close approach is [16], where the number of optimization problem solutions is
reduced to one. In this work, a weighted sum of all equality tasks is set as cost function
of a QP problem. All inequality tasks are set as problem constraints. A drawback of
this approach resides in the hierarchy of tasks, which is only given to equality tasks by
means of assigned weights, requiring also a fine tuning work. Moreover, no hierarchy
neither strict nor by means of weights is given to inequality tasks. A different point
of [16] is the method to express any task in the acceleration domain. Notice that all
previously reviewed works describe the tasks in the velocity domain. However, there are
several advantages of considering the accelerations when solving the IK problem. There
is an explicit implication of the acceleration of the joints in the dynamic equations of the
robot. Therefore, if one wants to consider the dynamics, it makes sense to express tasks in
the acceleration domain (e.g., [4]). Even though in our case we perform kinematic control,
by doing it using the accelerations we will also contribute in a better performance of the
robot dynamics with smooth trajectories in the position domain [17].

The hierarchical task-based framework for solving the IK problem makes sense when the
robot is redundant. The vast majority of papers cited in this section apply their algorithms
to either human-like robot arms or fully humanoid robots. However, during the last years
it appeared a new field of robotics called aerial manipulation where Unmanned Aerial
Vehicles (UAVs) equipped with a robotic arm are used to manipulate objects, namely
unmanned aerial manipulators (UAMs). This is the case of [18], where a hierarchical
task control is performed considering equality tasks, and solving the IK problem using
the analytical solution with the Jacobian projection method. Similarly, [1] uses the same

9

Hierarchical task control through Lexicographic SemiDefinite Programming

approach, but this time highlighting a secondary task to drive the end-effector by means
of an uncalibrated image-based visual servo strategy.

The pure IK problem assumes the robot and its operation to be ideal. That is to assume
that the geometry is perfect (no misalignment or deviations in its dimensions) and that
no perturbation affects the robot (i.e., the robot is considered able to accomplish with
the computed joint references within the time steps used for those computations). These
assumptions are not actually true and, therefore, it makes sense to compute a task error
comparing the desired value of a specific task with its real value. This is known as the
closed-loop inverse kinematics (CLIK) problem. The framework stated above for the
IK problem (and the reviewed works) can be easily extended to consider a CLIK scheme,
slightly modifying the tasks expressions. This was already done in [4]. Afterwards, several
studies regarding the stability of these closed loop tasks have been carried out, e.g., in
[19] or [20] by means of Lyapunov theory, or estimating the region of attraction in [21].
The controllers with a CLIK scheme also deal with numerical and sampling issues when
implementing discrete versions of these algorithms in micro-controllers ([21], [22]).

Given the overviewed state-of-the-art, we present in this thesis an approach to solve the
CLIK problem, considering not only equality tasks but also inequalities. As UAMs have
become a reality, it seems interesting to bring the state-of-the-art of trajectory generation
for highly redundant robots to the field of aerial manipulation and, to demonstrate the
viability of the presented approach for real applications, a particular case study is shown to
control a real UAM robot. We do not compute the analytical solution for the hierarchical
control (which projects the solution of a task into the null space of an other task with a
higher hierarchy) beacuse it considers only equality tasks and includes a lot of parameters
(weights) to be tunned for each application. For similar reasons, we are not interested in
solving the problem with a QP approach which can be difficult to tune (e.g., [16]). Instead,
the method presented in this thesis is defined with LMIs, bringing compact expressions
that do not require much parameters to set the tasks and hierarchies. Moreover, we solve
the problem as an SDP, allowing the use of very fast specialized and dedicated solvers.

2.2 Redundancy concepts

A robot is kinematically redundant when it is composed of a number of DoFs greater
than the number of variables necessary to perform a specific task. Hence, let us define
the following space dimensions:

• m: Dimension of the operational space (e.g., a robot moving in 2D space has m = 3,
2 for the plane cartesian coordinates and 1 for the orientation).

10

CHAPTER 2 2.3 Generic task formulation

• j: Dimension of the joint space (i.e., DoFs of the robot).

• r: Dimension of the task to be performed by the robot (e.g., positioning a robot
without orienting it in the 2D space has r = 2).

As a complete example, consider a robot with 4 joints (rotational joints), moving in 2D
space and trying to perform a positioning task, then m = 3, j = 4 and r = 2. Note how in
this example we have a redundant robot with 2 extra DoFs that could be used to perform
another task.

Talking about redundancies, according to the previous definitions we consider the follow-
ing typologies:

• Kinematic redundancy: j > m (e.g., a human arm is kinematically redundant
since it has 7 DOFs).

• Functional redundancy: j > r. This situation exists when the robot and the
operational space have the same dimensions (m = j), thus the robot is not kinemat-
ically redundant. However, the task to be performed does not require that amount
of DoFs (j > r), hence the robot has a functional redundancy. For example, let us
consider a planar manipulator with three (rotational) joints. If we want to position
and orientate the end-effector in the plane, there will be no redundancy of any kind
(m = j = r). However, if we only want to position that end-effector, we will have a
functional redundancy (m = j > r).

These redundancy concepts are here described for the sake of clarity and completeness,
and to familiarize the reader with space, task and robot dimension concepts. However
their differentiations are not highlighted in the rest of this work.

2.3 Generic task formulation

Our goal is to solve several tasks taking advantage of the robot redundancy. To do so, for
each single task we will compute the result of a cost function, namely σ, and then obtain
the robot joint values q. This can be generically expressed with

σ = f(q) , (1)

where σ ∈ Rr are the values of the task variables (e.g., if we want to position and orient
the arm end-effector, σ is the resulting pose of the end-effector). q ∈ Rj are the joint

11

Hierarchical task control through Lexicographic SemiDefinite Programming

values defining the robot configuration, which makes the robot accomplish with the task
values σ (i.e., q are the joint values).

Differentiating (1) with respect to time, we obtain first-order differential kinematics
(e.g., in the case of just positioning the end-effector, it corresponds to the end-effector
velocities, ve = σ̇), which can be expressed as

σ̇ =
∂f
∂q q̇ = J(q)q̇ , (2)

where we find the so called task Jacobian matrix J(q). Notice how in (2) the previous
dimensions hold, therefore σ̇ ∈ Rr, q̇ ∈ Rj and J ∈ Rr×j.

In summary, a robot joint’s trajectory can be generated subject to the accomplishment
of several tasks, such as following a specific predefined path or avoiding collisions, and
each of these tasks will have a task Jacobian (2). Although these tasks can consider both
robot kinematics and dynamics, in this thesis we focus on the formulation to effectively
combine them and the ones presented here are based on robot kinematics.

2.3.1 Task Jacobian

Here we explain the process of obtaining the Jacobian matrix of a specific task. For the
sake of simplicity, we use a simple and easy to follow task example: positioning the end-
effector of a 2-link planar manipulator. This robot is the same as the one defined in [23],
and its simple design is shown in Figure 1.

The 2-link manipulator has a coordinate frame {2} attached to its end-effector, which
moves along with the second link. We consider a base fixed frame {0} with its origin
on the center of the fixed articulation, its first horizontal coordinate X̄ pointing to the
right of the picture and the second vertical coordinate Ȳ pointing upwards. Then, the
homogeneous transformation matrix from the base frame {0} to the frame attached at
the end-effector {2} is

0
2T =

c12 −s12 l2c12 + l1c1
s12 c12 l2s12 + l1s1
0 0 1

 , (3)

being
c12 = cos(q1 + q2) = cos(q1)cos(q2)− sin(q1)sin(q2) ,
s12 = sin(q1 + q2) = sin(q1)cos(q2) + cos(q1)sin(q2) .

(4)

The position of the end-effector (σe) is the origin of the frame {3}, hence, 3σe = [0, 0, 0]>.

12

CHAPTER 2 2.3 Generic task formulation

{2}

{0}
l1

l2

q̇2

q̇1

Ȳ0

X̄0

X̄2

Ȳ2

Figure 1: Two-link planar manipulator used in the example to show the computation of

a task Jacobian.

Notice the nomenclature used in this part to specify the coordinate frame where a variable
is expressed, namely X, as upper left superscript, e.g., Xa.

If we want the origin in terms of the fixed frame {0}, we have to transform the frame
using the homogenous transformation matrix (3), such as

[
0σe
1

]>
= 2

0T

[
2σe
1

]>
=

 l2c12 + l1c1
l2s12 + l1s1

1

 . (5)

The robot Jacobian matrix relates the joint velocities (in this case q̇1 and q̇2) with the
end-effector velocities (σ̇e) expressed in {2}. Therefore, it can be written as

σ̇e =

[
ve
ωe

]
= J(q)q̇ =

[
Jv
Jω

]
q̇ , (6)

where ve and ωe are the linear and angular velocities of the end-effector, respectively.
Besides, Jv and Jω are the elements (rows) of the robot Jacobian that relate joint veloc-
ities with linear and angular velocities of the end-effector. Joint states are expressed as
q = [q1 q2]

>. Hereafter, we omit the superscript indicating the coordinate frame for the
sake of clarity and conciseness.

If we differentiate the position with respect to time, using the chain rule, we get the

13

Hierarchical task control through Lexicographic SemiDefinite Programming

following expression:

ve = ∂σe

∂q
∂q
∂t

=

[
∂σ1

e

∂q1

∂σ1
e

∂q2
∂σ2

e

∂q1

∂σ2
e

∂q2

] [
q̇1
q̇2

]
, (7)

where the 2 × 2 matrix formed by partial derivatives of the position with respect to the
joint variables is Jv, which is computed differentiating (5), we get

Jv =

[
−l2s12 − l1s1 −l2s12
l2c12 + l1c1 l2c12

]
. (8)

And the part of the Jacobian related to the rotation variable is the scalar

ωe = θ̇1 + θ̇2, and hence Jω =
[
1 1

]
. (9)

Now, we can express the full Jacobian as a 3× 2 matrix with (6) as the following:

J(q) =

−l2s12 − l1s1 −l2s12l2c12 + l1c1 l2c12
1 1

 . (10)

2.4 Task resolution

Generally speaking, as the task cost σ(t) is usually provided, the inverse kinematic prob-
lem consists in determining a joint trajectory q(t) which satisfies (1) at each time step
t. This problem can be solved at the differential level using (2). Therefore, the solution
will be given in terms of joint velocities. Finding an exact solution for this problem is not
always possible. This leads us to think in an optimization problem that finds the closest
solution. Minimizing the squared 2-norm, we can state the following LS problem:

min
q̇
. ||J(q) q̇ − σ̇||22 . (11)

2.4.1 Traditional least squares approach

In this section, we describe how to find the analytical solution to LS problem considering
also the possibility to prioritize among tasks (task hierarchy). For the sake of clarity and
consistency, we will use in this section the standard mathematical notation for a least
squares problem, denoted as

min
x
||Ax− b||22 , (12)

14

CHAPTER 2 2.4 Task resolution

b
rx = b−Ax

Ax

R(A)

Figure 2: Graphical representation of the least-squares problem, with the manifold R(A)

defined by the range of A. The vector rx is the residual between Ax and b, which must

be orthogonal to R(A) (rx ⊥ R(A)).

where the least squares solution can be understood as the values of x that multiplied by
the matrix A give the closest values to b, i.e., the residual Ax − b is close to 0. This
residual is squared to ensure convergence when minimizing it (i.e., concave function with
a global minima) and continuity in its derivative.

To better analyze the problem, let S be the set of solutions of the LS problem, defined as

S = {x ∈ Rj |Ax− b→ min} . (13)

Defining the residual rx = Ax− b, we can say that

x ∈ S ⇔ A>rx = 0⇔ rx ⊥ R(A) , (14)

where ⊥ implies orthogonality andR(A) is the manifold defined by the range ofA. Recall
that the range of a matrix (also called column space) is the set of all linear combinations
formed by its column vectors. Therefore, when we do Ax we are actually doing a linear
combination of the columns of A and thus, Ax ∈ R(A) .

We can see a scheme of the last implication of (14) in Figure 2. When b is not exactly on
R(A), there will exist a residual vector rx which will be minimum when it is orthogonal
to the manifold R(A).

To understand the implication A>rx = 0 in (14), we first consider each column vector of
A =

[
a1 · · · an

]
. This allow us to write the expression as the dot product (•) between

rx and every column vector of A

A>rx =
[
a1 • rx, · · · an • rx

]>
. (15)

15

Hierarchical task control through Lexicographic SemiDefinite Programming

If rx is orthogonal to R(A) implies that it is also orthogonal to every vector composing
R(A). Therefore, orthogonal to A, thus

A>rx =
[
a1 • rx, · · · an • rx

]>
= 0 . (16)

Following with (16) and expanding it, it leads us to the analytic solution for the least
squares problem

A>rx = A>(Ax− b) = 0→ A>Ax = A>b→ x = A+b , (17)

being A+ =
(
A>A

)−1
A> the left More-Penrose pseudoinverse. As x is minimum, this

right expression in (17) is called the minimum-norm solution.

Apart from the presented minimum-norm solution, there exists a general solution form
for this LS problem that includes all optimal solutions despite of being non-minimal. This
general solution form is described hereafter.

First, let us define the involved elements, i.e., manifold subspaces and their respective
subspace projectors, such as

• Subspaces:

– Range of A: R(A) = {y ∈ Rr|y = Ax,x ∈ Rj} (18)

– Null-space of A: N (A) = {x ∈ Rj|Ax = 0} (19)

• Projectors:

– Range of A: PR(A)
= AA+ (20)

– Null-space of A: PN (A)
= I −A+A (21)

For the sake of simplicity, from now on the reference to A is omitted and hence PR =
PR(A)

and PN = PN (A)
. With the aim of helping in the comprehension of these

concepts, some of the elements stated above are graphically represented in Figure 3. We
can see the x ∈ Rj is linearly mapped onto Rr by means of A. As the description above
says, R(A) is formed by the resulting set of mapping all x’s into Rj towards Rr using A.
Thus, y ∈ Rr will also be inside R(A). As it is shown in the image, PN is a linear map
from Rj to Rj and PR is a linear map from Rr to Rr.

As noted before, b will not be exactly on R(A), hence Ax ≈ b. However, if we project b
onto R(A) using the projector PR described in (20), we can say that

Ax = AA+b→ A
(
x−A+b

)
= 0 . (22)

16

CHAPTER 2 2.4 Task resolution

x ∈ Rj

y ∈ Rr

A

R(A)
N (A)

0

PR
PN

Figure 3: Spaces and subspaces involved in the general form of the LS solution.

From the null-space definition in (19), we see that the condition for a vector to belong to
the null-space N (A) is that it should be mapped to 0 whenever is pre-multiplied by A.
Therefore, from (22) we can deduce that

(
x−A+b

)
∈ N (A), and from this we derive

the general solution form for the LS problem(
x−A+b

)
=
(
I −A+A

)
ν → x = A+b+

(
I −A+A

)
ν , (23)

being ν an arbitrary vector. Notice how the form of (23) is the minimum-norm LS solution
with an additional vector projected to N (A), i.e., the second component modifies x but
it does not modify the cost function Ax− b since it is projected onto the null-space.

Moving back to the inverse kinematic notation used in previous sections, the solution for
(11) for a single task can be written as:

q̇ = J+σ̇1 +
(
I − J+J

)
q̇2 = J+σ̇1 + P 1 q̇2 , (24)

where P 1 is the null space projector onto the main task (1) and q̇2 is a vector of joint
velocities, which can be chosen wisely to perform a secondary task (2), without influencing
the resolution of the main task (1). This numbering of variables has been introduced in
(24) to help the reader identify the elements from each task.

17

Hierarchical task control through Lexicographic SemiDefinite Programming

LS with task hierarchy

Following with the concepts explained above, here we describe how to obtain the joint
velocities solution when we have two or more tasks involved. Let us begin with two tasks
which can be expressed in its differential form as:

task 1 with priority 1: σ̇1 = J1 q̇ , (25a)

task 2 with priority 2: σ̇2 = J2 q̇ , (25b)

where task 1 has a higher priority than task 2. In order to combine these two tasks, first
we recall (24), such as

q̇ = J+
1 σ̇1 + P 1q̇2 , (26)

where P 1 =
(
I − J+

1 J1

)
is the projector to the null-space of task 1 and q̇2 is the joint

configuration only devoted to accomplish with task 2. The resulting joint velocities q̇ of
(26) directly accomplish with task 1 (σ̇1), but here we have to find q̇2 so that task 2 can
also be fulfilled if there exist enough DoF redundancy.

Introducing (26) in (25b), we obtain

σ̇2 = J2

(
J+

1 σ̇1 + P 1q̇2
)
, (27)

where q̇2 can be isolated after few developments

q̇2 = (J2P 1)
+(σ̇2 − J2J

+
1 σ̇1) . (28)

If we substitute (28) back in (26), we get a final expression that hierarchically solves the
IK problem for the tasks 1 and 2 expressed in (25a) and (25b)

q̇ = J+
1 σ̇1 + P 1(J2P 1)

+(σ̇2 − J2J
+
1 σ̇1) . (29)

This formulation can be extended to incorporate extra tasks with lower priority. For
example, the incorporation of a third task into the general control law to obtain the joint
velocities results in

q̇ = J+
1 σ̇1 + P 1q̇2 + P 2q̇3 , (30)

where P 2 = P 1P
′

2, with P
′

2 = I − (J2P 1)
+(J2P 1) the projector to the null-space of

J2P 1 –see (28)–; and q̇3 is an arbitrary configuration that can be used for an eventual
third task.

With the third task defined as σ̇3 = J3q̇, and considering that the resulting joint velocities
in (30) should also satisfy this last task, now we can obtain, with a similar procedure as
to obtain (28) for the second task

q̇3 = (J3P 2)
+
(
σ̇3 − J3

(
J+

1 σ̇1 + P 1q̇2
))
. (31)

18

CHAPTER 2 2.4 Task resolution

Note how (30), combined with (28) and (31), has an iterative structure, exploited in [24]
or [15], which allows us to provide a generic expression for n levels of hierarchy as follows:

q̇ = q̇p =
n∑
i=1

P i−1(J iP i−1)
+(σ̇i − J iq̇i−1) , (32)

where P 0 = I, q̇0 = 0 and P i = P i−1P
′

i the projector into the null space of the task i
constrained by the preceeding tasks.

2.4.2 Quadratic programming approach

QP problems, when applied in solving the IK problem, can be described as the process of
solving a (linearly constrained) quadratic optimization problems for a set of tasks. That
is, the problem of optimizing with respect to the joint variables a quadratic objective
function of the tasks subject to some linear constraints.

As mentioned in Section 2.1, the LS approach has the advantage of providing an analytical
solution. When implementing algorithms that are running onboard on real robots, we have
to ensure that the algorithm burden allows for an online implementation. Computing
an analytical solution is faster than solving an optimization problem. However, recent
improvements on computer computation capacity and the existence of specific optimized
solvers let us implement algorithms based on optimization problems that do not have any
analytical solution.

The main reason to implement a QP approach (or generally implementing an optimization-
based approach without an analytical solution) is the possibility to include inequality
tasks as problem constraints. When dealing with equality tasks one must ensure that the
configuration found q̇ satisfies a task specific value Jq̇ = σ̇. However, with inequality
tasks it is enough to ensure that the solution q̇ remains in the subspace where the following
inequality is still accomplished:

Jq̇ S σ̇ . (33)

Similarly to Section 2.4.1, in this section we describe the fundamentals of QP problems
with a generic mathematical nomenclature, which will be re-adapted at the end of the
section.

Figure 4 shows a simple scheme with a 2D space (x =
[
x1 x2

]>
), where we can see how

the feasible set for an inequality task (green area) is wider than the one for an equality
task (over the brown line). The optimal solution for an inequality task belongs to a region

19

Hierarchical task control through Lexicographic SemiDefinite Programming

x2

x1

aix− bi = 0

aix− bi < 0

Figure 4: Equality and inequality tasks representation for a 2-dimensional space.

whose dimension is the same of its ambient space -in the case of Figure 4, this dimension
is 2-. This region is bounded by a hyperplane1(a line in 2D). In case the task is an equality
task, the optimal solution resides in a hyperplane. Some examples for inequality tasks
might be to add bounds to the joint values or even to perform obstacle avoidance tasks
by keeping safe collision distances.

Optimization problems with a QP form, consider quadratic objective functions with affine
constraints. These constraints are hardly imposed over the problem variables during the
iterative solution of the optimization problem. Although they can be set to limit or bound
the problem variables (i.e., task variables), hereafter we only specify those constraints
directly related with imposing the hierarchy between tasks. These bounds will be set
according to the experimental case studies in their respective sections.

This type of problems has the following generic form:

min
x

. 1
2
x>Hx+ l>x+ u

s.t. Cx � d
Ex = g ,

(34)

where H = 2A>A , l> = −2b>A and u = b>b from (34). The matrix form Cx � d
is a compact manner to express several inequality constraints (� states for component-
wise vector inequality and also equality constraints). The number of rows in C indicates
how many individual inequality constraints the problem has (an individual inequality
constraint is shown in Figure 4). Analogously, several equality constraints are expressed
in their matrix form with the expression Ex = g.

1A hyperplane is a subspace whose dimension is one less than that of its ambient space.

20

CHAPTER 2 2.4 Task resolution

Notice how the least squares formulation is, in fact, a specific case of quadratic program-
ming. Actually, sometimes we can refer to it as unbounded QP problem. Hence, the least
squares equation (11) can be easily expanded so it takes the form in (34)

||Ax− b||22 = (Ax− b)> (Ax− b)
= x>A>Ax− 2b>Ax+ b>b .

(35)

One of the challenges of using a QP approach is to find a way to specify task hierarchies.
In the following we describe 2 methods to impose this task hierarchy.

QP problem with task pseudo-hierarchy

The first approach to specify a hierarchy between cost functions (i.e., tasks) is actually
not considering a strict hierarchy but a weighted sum of all tasks. In this way, the weights
are set to determine the importance of each task, thus assigning a higher weight to those
tasks that we consider more important. Hence, the problem will look like the following:

min
x

.
n∑
i=1

wi

hi

(
x>H ix+ l>i x

)
s.t. Cx � d

Ex = g ,

(36)

where wi is the associated weight of the task i and hi is a normalization factor that ease
the choice of the weights. When a weighted sum is used, it is important to normalize
the objective functions, in order to effectively set the desired weights wi. Thus, we chose
the factors hi equal to the spectral norm of H i, which is equal to the square root of the
largest eigenvalue of the product matrix H>i H i [16]. Note that the scalar u of the cost
function has disappeared. This is because this factor is just a bias in the cost function
and its minimum does not depend on u. Therefore, the value of x that minimizes the
cost function is the same in both cases -with and without the scalar u-.

In order to show how to express (36) with the IK notation, we will consider two equality
tasks and two inequality tasks, i.e.,

σ̇i = J i(q) q̇, i = 1, 2 ,
σ̇i ≥ J i(q) q̇ i = 3, 4 .

(37)

The equivalent QP problem with pseudo-hierarchy would be of the form

min
q̇
.

2∑
i=1

wi

hi

(
q̇>J>i J iq̇ − 2σ̇>i J iq̇

)
s.t.

[
J3

J4

]
q̇ �

[
σ3

σ4

]
.

(38)

21

Hierarchical task control through Lexicographic SemiDefinite Programming

In the case that we want task 1 to have priority over task 2, we should set w1 > w2. The
solution for this problem, however, will lead in some cases to a trade off between task
configurations, i.e., when two task require antagonistic configurations we might not fulfill
completely any of the tasks. Besides, there is no way of saying which inequality task is
more important since all of them are implemented here as constraints in the quadratic
programming problem.

QP problem with strict task hierarchy

In Section 2.4.1, we explained how to find an analytical solution for the LS approach
imposing a strict hierarchy among tasks. Furthermore, we have seen that a LS problem
is a specific case of a QP problem. Thus, it seems reasonable that the LS problem with
strict hierarchy has also its equivalent QP hierarchical problem.

As this formulation will be the base of our work applied to robotics fields, the notation
of the following sections is expressed in terms of the IK notation instead of the generic
notation used so far.

Let us consider again two task-derivatives with their corresponding Jacobians, as in (25).
We want, if possible, to accomplish both tasks with the robot and, in case of impossibility,
to accomplish the task with a higher priority, i.e., task 1. Therefore, we first have to solve
the IK problem for the first task using the QP approach as the following optimization
problem:

min
q̇
. q̇>J>1J1q̇ − 2σ̇>1J1q̇ . (39)

Solving this minimization problem results in obtaining a vector of joint velocities that
guarantees the minimization of task 1 (i.e., accomplishment of task 1), namely q̇1. Notice
how the superscript q̇a specifies from which QP problem is solution the variable, e.g., q̇1

is the joint velocities vector obtained from the first optimization.

Now it is time to solve the problem for task 2 ensuring that the solution found still
accomplishes the task 1. This is done by running a second optimization procedure with
task 2, but this time adding the following equality constraint

J1q̇ = J1q̇
1 . (40)

Therefore, the final solution for the two-tasks-hierarchical problem comes up from solving

22

CHAPTER 2 2.4 Task resolution

also the following QP problem:

min
q̇
. q̇>J>2J2q̇ − 2σ̇>2J2q̇

s.t. J1q̇ = J1q̇
1 .

(41)

The procedure explained above with two tasks and two nested optimization problems
can be extended to a problem with n hierarchical tasks and n QP problems to get the
final value for q̇n (lexicographic approach). This is an equivalent procedure to the one
explained in 2.4.1. Although this scheme of nested optimizations has a clear drawback in
terms of computation time, it allows us to specify useful inequality tasks and constraints.

Adding inequality tasks

In the QP with pseudo-hierarchy approach, we have shown how to deal with inequality
tasks. There, the inequality tasks were added as hard constraints of the single QP problem.
These inequality tasks had no hierarchy among them and, furthermore, introducing more
than one inequality task could lead to an empty feasible set which results in an unfeasible
QP problem.

In the following, we present a method that will allow us to avoid the unfeasibility issue
and prioritize among inequality tasks [9]. This unfeasibility issue is solved by adding slack
variables into the inequalities and, similarly to the case of equality tasks, the hierarchy
among inequalities is performed solving nested QP problems.

To better explain the methodology, let us use an example. Consider the following three
inequality tasks with priority 1 (the highest) and one equality task with a lower priority:

σ̇i ≥ J i(q) q̇, i = 1, ..., 3 (priority 1) ,
σ̇4 = J4(q) q̇ (priority 2) .

(42)

A slack variable must be added for each inequality task defined as

wi ≥ J i(q) q̇ − σ̇i , (43)

being wi ∈ Rmi
+ the slack variable with m the dimension of the i-th task space. Notice

how the slack variable will always be positive definite (positive orthant), because if σ̇i ≥
J i(q) q̇ then the task i would already be accomplished and the minimization process
finished2.

In order to find a feasible solution accomplishing the three tasks, the QP problem is now

2Further details on slack variables are in Appendix A.1.

23

Hierarchical task control through Lexicographic SemiDefinite Programming

J1q̇ − ṗ1 ≤ 0

J2q̇ − ṗ2 ≤ 0

J3q̇ − ṗ3 ≤ 0

w = 0w1 > 0 w3 > 0

w2 > 0

w1,2 > 0 w2,3 > 0

Figure 5: Representation of a possible feasible region bounded by 3 inequality constraints.

A darker color indicates that mores inequalities are fulfilled.

expressed as

min
q̇,w

. 1
2
w>w

s.t. wi ≥ J i(q)q̇ − σ̇i, i = 1, ..., 3 ,
(44)

being w =
[
w1 w2 w3

]>
. Here we optimize the values of q̇ and w. From (43), we see

how the better the q̇ values to accomplish the tasks the minimal w. In case of having
perfectly feasible tasks (i.e., all tasks can be accomplished simultaneously), we will reach
w = 0. Thus in the optimal problem we look for the minimal values of w. However we
cannot let the optimization process minimize wi if the i-th tasks cannot be accomplised,
therefore we introduce the accomplishment of the task as a constraint in the optimization
process. In this way, the optimization results in values of q̇ that satisfy all task inequalities
eventhough some slack variables cannot be minimized to 0. Solving this first QP problem
will result in obtaining the optimal values w1 and q̇1 that satisfy the inequality tasks with
priority 1.

Figure 5 shows a simple example of a 2D space with all regions involved having 3 inequality
tasks. Here, there exists a region where all three tasks are fulfilled (darker green) and
therefore, inside this region w = 0 (no constraint is violated). Notice that any value for
q̇ that lies inside the darker green is an optimal solution for the problem stated at (44).

The task σ̇4 from (42), which has lower priority, will be solved as another QP problem
similarly to (39). In order to preserve the hierarchy of the first tasks (priority 1), we add
the inequality tasks of the first optimization as hard constraints, i.e., without the slack

24

CHAPTER 2 2.4 Task resolution

J4q̇ − σ̇4 = 0

Figure 6: Representation of the solution sets for all tasks. Inequality task spaces as in

Figure 5 together with the solution set for the fourth task represented with a blue line

(equality task with priority 2) in case of an unconstrained problem. The final constrained

solution that fulfills the hierarchy imposed is drawn as a red line, showing how the in-

equality tasks are imposed over the equality one, which cannot be fulfilled unless it crosses

the dark green area.

variables as shown in the following optimization problem:

min
q̇
. q̇>J>4J4q̇ − 2σ̇>4J4q̇

s.t. σ̇i ≥ J i(q)q̇, i = 1, ..., 3 ,
(45)

where we would obtain joint velocities q̇2 which are the best ones to try to accomplish the
task with priority 2 (σ̇4) respecting the accomplishment of the tasks with higher priority.
Later in this section, we describe the special case where an inequality constraint has been
violated, which can be trated as an equality in subsequent QP problems.

Figure 6 shows the solution sets over the same example space as in Figure 5, but this time
incorporating the optimal set for the second optimization problem, stated in (45). The
blue line represents the set of solutions for the fourth task in the event of an unconstrained
problem. However, in this problem statement we imposed a hierarchy among tasks, where
the inequalities have priority over the equality task. We can see that the intersection of
the dark green region and the blue line is a void set, meaning that all tasks cannot be
fulfilled at the same time. Therefore, the optimization problem (45) will minimize the
error for the fourth task ||J4q̇− σ̇4||2 considering only values inside the dark green region,

25

Hierarchical task control through Lexicographic SemiDefinite Programming

leading to the solution set represented by a red line in Figure 6.

In the previous lines, we explained how to proceed in the event of inequality tasks having
higher priority than equality task. Let us now consider a change in the priorization,
setting the equality task with the highest priority, as follows:

σ̇1 = J1(q) q̇ (priority 1) ,
σ̇i ≥ J i(q) q̇, i = 2, ..., 4 (priority 2) .

(46)

In this case, we would solve first an analogous problem to (39), getting an optimal solution
expressed as q̇1. In the second optimization problem, where the inequality tasks are
introduced, the slack variables would play a role again, with the following QP problem:

min
q̇,w

. 1
2
w>w

s.t. wi ≥ J i(q)q̇ − σ̇i, i = 2, ..., 4
J1q̇ = J1q̇

1 .

(47)

The solution for this second QP problem would result in w2 and the velocities of the joints
fulfillung the inequalitiy tasks with priority 2, q̇2. The graphical representation for this
problem example is shown in Figure 7. The final solution set is represented by the red
line. In contrast to the previous hierarchy situation, here the solution lies in the equality
task because it has a higher priority. Minimizing the slack variables in (47) ensures that
the solution fulfills the inequalities as much as possible, i.e., the red line in Figure 7
fulfills 2 out of the 3 existing inequality constraints. Thus, the slack variable associated
to inequality tasks 1 and 3, w1 and w3, will be 0 while the one associated with task 2,
w2, will be grater than 0 (strictly positive).

The addition of extra equality or inequality tasks will follow similar procedures as the
ones described above with nested optimization problems. For example, if we add yet
another task (σ̇5 S J5(q) q̇) with an eventual priority 3, we would run a third QP

problem proceeding depending if σ̇5 is an equality or inequality task, such as (39) or (44)
respectively, but this time incorporating as constraints the tasks higher in the hierarchy.
With the priorization of this last example, described in (46), neither the first task nor the
third are violated, then they must added as inequality tasks following the same procedure
as in (45). However, the second inequality is violated and therefore it can be directly
added as an equality constraint using the expression J2q̇ = J2q̇

2. In this way, we force
the solution to the third QP problem to still keep the minimum distance to the inequality
task 2.

26

CHAPTER 2 2.5 Closed-loop inverse kinematics

J4q̇ − σ̇4 = 0

J2q̇ − σ̇2 ≤ 0

J1q̇ − σ̇1 ≤ 0

J3q̇ − σ̇3 ≤ 0

Figure 7: Representation of the equality and inequalities task solution sets. Here the

equality task has priority over the inequalities, leading to a solution that fulfills the

hierarchy imposed over the red line.

2.5 Closed-loop inverse kinematics

In the formulation presented so far, we have assumed the operation of the robot to be
ideal. The IK assumes that the geometry is perfect and that no perturbation affects the
evolution of a task, which is known as the pure IK problem. However, this idealization
does not reflect the real situation where the robot geometry is not perfect and several
perturbations might not be mathematically considered.

In order to deal with this not predicted events and still accomplish with the required
tasks, the CLIK closes a control loop for the IK problem by comparing the current and
desired values of a task, obtaining an expression of the task error such as

ei(t) = σdi (t)− σi(t) , (48)

being ei(t) the task error for the i-th task at time t. σdi (t) and σi(t) are the desired
and current i-th task values, respectively. All these variables exist in Rr, being r the
dimension of the task-space. In the following developments we avoid the mention to time
t and task number i for the sake of clarity and conciseness.

Our objective is to reduce this error e towards 0, hence we can impose a dynamics on
this error to force this convergence with

ė = −λe , (49)

27

Hierarchical task control through Lexicographic SemiDefinite Programming

being ė ∈ Rr the time-derivative of the error and λ a weight respecting λ > 0. Notice
how λ is a scalar, therefore the same dynamics is assigned to every component of e. If we
want to apply different dynamics, we might consider the use of a diagonal matrix such
that

Λ = diag(λ1, ..., λr) � 0 , (50)

where ”�” stands for a positive definite matrix.

Expanding equation (49) and combining it with the generic task formulation from (1) and
(2), we get

Jq̇ −
(
σ̇d + λ(σd − σ)

)
= 0 . (51)

Solving the CLIK problem means to find the values of q̇ so (51) holds. This problem can
be solved with any method presented before as a mathematical optimization problem (LS
or QP). For example, assimilating (51) with the general form of a LS cost function as in
(12), we would have

min
q̇
||Jq̇ −

(
σ̇d + λ(σd − σ)

)
||22 . (52)

For the QP case, all concepts explained in section 2.4.2 hold. We just have to consider
the CLIK task to be

Jq̇ S ˜̇σ , (53)

where in this case, ˜̇σ =
(
σ̇d + λ(σd − σ)

)
.

2.5.1 Task stability

Closing the loop of the IK problem (i.e., CLIK) arises a basic question related to the error
performance: is this error stable (decreases with the time)? We consider this discussion
out of the thesis scope, however in this section we want to point a basic concept to proof
the stability of a task and therefore of the system. For further details, we refer the reader
to [19], [20] or [21].

In Section 2.5, we described how the dynamics of the error is imposed with (49). In
such a system, if we want the error to decrease towards 0, it is enough by setting λ > 0.
However, if we expand (49) to (51) we can see how the equality will be fulfilled depending
on the values of q̇.

Therefore, when solving a task by means of an optimization procedure, the error of this
task will tend to 0 only if the solution found makes (51) to hold. This means that we
assume that a global and exact solution of the problem for each task is possible in a
limited computational time (i.e., here feasibility implies stability [25]).

28

CHAPTER 2 2.5 Closed-loop inverse kinematics

When combining tasks within a hierarchical control law, the global system stability is
kept if the tasks are stable. Even though the errors of the tasks with lowest priority will
be more difficult to reduce (or could even not reach 0 values if the tasks higher in the
hierarchy do not leave enough free DoFs to accomplish them), their errors will still tend
to 0 or to the smallest possible values. It is important to consider the use of the robot
DoFs while designing the mission tasks, because the feasible set is reduced as constraints
(related with higher-priority tasks) are introduced in the optimization problem. Thus
the null-space of the main task becomes smaller, suggesting that even though the system
might be stable, not all tasks might be accomplished. Hence, it is interesting to choose a
strategy to set the tasks stack, prioritizing the tasks related with the platform integrity
and stability (e.g., collision avoidance).

2.5.2 Task expression in the acceleration domain

So far, we have defined the task control law working in the velocity domain, i.e., σ̇k as
in (2), (25), (37), (42), (46); leading to the error definition in (48) with the imposed
dynamics on the derivative for the CLIK problem. We kept these definitions for the
sake of comprehension as it is commonly done in the literature, however generating the
trajectory in the acceleration domain will give us some advantages.

Even though we are only performing a kinematic analysis, formulating the tasks consid-
ering accelerations will contribute in a better performance of the robot with smoother
trajectories in the position domain. Hence, we can choose a second order linear system
to model the closed-loop characteristics of the error. Therefore, the dynamics of the error
can be expressed as

ë+KDė+KPe = 0 , (54)

where ë ∈ Rr and ė ∈ Rr are acceleration and velocity errors respectively. KD ∈ Rr×r

and KP ∈ Rr×r are gain matrices, typically diagonal. Recall that in this case, r is the
dimension of the task space.

By choosing properly the values of the matrices KD and KP , we could ensure the asymp-
totic stability of the error, i.e., the error tends to 0 as time tends to infinity. In the
following we present a procedure to define those matrices by taking advantage of the
Gronwall’s inequality.

The Gronwall’s inequality is a sufficient condition which ensures that a function expressed
as f ≤ 0 is satisfied if ḟ ≤ −λf , where λ is a positive scalar gain. Here we apply the
Gronwall’s inequality to an equality task and, in order to ease the comprehension, we
consider a task with dimension 1 and, therefore, gain matrices in equation (54) will now

29

Hierarchical task control through Lexicographic SemiDefinite Programming

be scalars kp and kd.

First, we want to ensure the convergence of the first order system towards 0 by imposing

ė = −λ1e , (55)

being λ1 a scalar bigger than 0, which is equivalent as placing a pole at −λ1 of the
transfer function in traditional control. Now, the result in (55) is assigned to a new
function e = ė+ λ1e. Proceeding again as in (55) with this new function e we obtain

ė = −λ2e , (56)

which can be expanded as

ë+ (λ1 + λ2)ė+ λ1λ2e = 0 . (57)

Therefore, value kD = (λ1 +λ2) and kP = λ1λ2. We can express this second order system
in its state-space form as [

ė
ë

]
=

[
0 1

−λ1λ2 −(λ1 + λ2)

] [
e
ė

]
. (58)

Computing the eigenvalues of the state matrix in (58) we see that its eigenvalues are −λ1
and −λ2 with λ1 > 0 and λ2 > 0 by definition. Hence, we can conclude that the error
dynamics is asymptotically stable.

Now, we want to express this error in terms of joint variables, task variables and their
corresponding derivatives. Differentiating (2) with respect to time, we obtain

σ̈ = J̇ q̇ + Jq̈ , (59)

where σ̈ ∈ Rr are task accelerations, q̇ ∈ Rj and q̈ ∈ Rj are the joint velocities and
accelerations, respectively. J̇ ∈ Rr×j is the Jacobian time derivative (we omitted the
dependence of the Jacobian on q for the sake of conciseness).

Then, we can substitute (59) in (57), getting the expression

(σ̈d − σ̈) + (λ1 + λ2)(σ̇d − σ̇) + λ1λ2(σd − σ) = 0 ,

(σ̈d − J̇ q̇ − Jq̈) + (λ1 + λ2)(σ̇d − Jq̇) + λ1λ2(σd − σ) = 0 ,
(60)

where σ̈d ∈ Rr and σ̇d ∈ Rr are the desired task accelerations and velocities, respectively.
Note how with λi scalar variables, the same dynamics are assigned to each coordinate of
the task error, in case of preferring different dynamics we should consider gain diagonal
matrices instead of a scalar, as in (54).

30

CHAPTER 2 2.5 Closed-loop inverse kinematics

In oder introduce the tasks in an SDP problem, equation (60) must be rearranged to the

form of a QP cost function in the acceleration domain, min||Jq̈ − ˜̈σ||2. Hence, now the

optimization variable is q̈, and ˜̈σ can be extracted from the rest of (60), such as˜̈σ = (σ̈d − J̇ q̇) + (λ1 + λ2)(σ̇d − Jq̇) + λ1λ2(σd − σ) . (61)

To conclude this section, it is important to point out the importance of equations (60)
and (61). They are a general expression of any kind of task in the acceleration domain.
Furthermore, they allow us to specify, a part from the position reference, also references
for the task velocities and accelerations. The most common way to proceed is to set a
reference for the position while references for velocity and acceleration are zero. However,
we might want to specify an specific profile for the task. This will imply the reference
task position, velocity and acceleration to change with respect to the time and take values
different from 0.

2.5.3 Discrete implementation3

All concepts explained in this work are developed in the continuous domain as it offers an
easy to follow development of the formulation. However, all these concepts are related to
computer science fields where processor units are the center of decisions. Therefore, we
have to find the procedures to move the equations from continuous to discrete descriptions.
In this section we describe the procedure of moving our formulation from the continuous
domain to the discrete domain. This procedure has been used in order to implement the
proof of concept of our developments described in Appendix B and also to perform the
experiments with the real robot described in Chapter 4.

Considering a sufficiently small sampling time δt, (59) at time tk = kδt can be written as

σ̈k = J̇kq̇k + Jkq̈k , (62)

where k = 0, 1, . . . denotes the sampling of the corresponding measure.

The aim of all methods presented in this work is to solve the IK problem to find q̈k in
(62) to actuate our robot and accomplish the required task. q̈k can be integrated if our
robot is actuated through joint velocities or positions. Therefore, velocity and position
references would have the following expressions

q̇k = q̇k−1 + q̈kδt ,

qk = qk−1 + q̇k−1δt+ q̈k
δt2

2
.

(63)

3See the Section 1.3 for a discussion about the notation used in this section.

31

Hierarchical task control through Lexicographic SemiDefinite Programming

However, at every time step we still have to evaluate the other variables in (62). That
is the task acceleration, the task Jacobian and its derivative as well as the velocity of
the joints. Assuming we can take measurements up to the velocity level, the following
approximations for the task error can be done

σ̈k '
σ̇k − σ̇k−1

T
. (64)

The time-derivative of the task Jacobian can be approximated with

J̇k '
Jk − Jk−1

T
, (65)

where Jacobians depend only on the joints positions of the corresponing sample, i.e., qk
and qk−1. Regarding to the joint velocity we have two options. We can either use pre-
vious reference calculated using (63) or we could use current and previous joint position
measurements. According to this we would use any of the following:

q̇k ' q̇k−1 ,

q̇k '
qk − qk−1

T
.

(66)

These discretizations are approximations that, although being close to the real values,
they are not exact. However, as we are closing the loop (CLIK), the control law will
compensate these inaccuracies. When implementing discrete systems, things such as the
sampling period δt affect considerably to its stability. As pointed before, we consider
the exhaustive study of stability out of the scope of this work. Stability in these kind of
discrete systems has been the matter of study of several works such as [21].

2.6 Summary

In this chapter, we reviewed the stat-of-the-art on trajectory generation for highly redun-
dant robots. Afterwards, we distinguished among kinematic and functional redundancies,
based on the dimensions of the different spaces we are working on (i.e., operational, joints
and task spaces). That, led us to explain what a task is, with its formulation where the
task Jacobian matrix has a capital role.

With the task concept clear, we presented different methods for solving the IK problem,
including how to deal with different tasks simultaneously by applying a hierarchy among
them. To do so, first we presented an analytical solution by means of a LS approach, then
considering its limitations we moved to describe how to hierarchically combine tasks as
QP problems.

32

CHAPTER 2 2.6 Summary

The chapter ends with the explanation on how to use a CLIK strategy either in the
velocity and acceleration domain along with some dissertations regarding its stability and
its implementation in discrete time.

33

Hierarchical task control through Lexicographic SemiDefinite Programming

34

3. Hierarchical task control through

lexicographic SDP

In the previous chapter we recalled the theoretical knowledge upon which we base our ap-
proach. Here, we present the formulation that brace the core of this thesis by proposing an
algorithm to control a robot with prioritized tasks (hierarchy) through SDP lexicographic
optimization.

First, we define the formulation and concepts to introduce a single task problem as an
SDP. We offer a detailed explanation about the necessary transformations that suffer
either the objective function (task) and its constraints. Then, we introduce the concept
of hierarchy with SDPs together with the presentation of the main trajectory generation
algorithm. Once again, we refer the reader to Appendix B for a didactic example of the
concepts explained in this chapter.

3.1 Task resolution through semidefinite programming

In this section we adapt the task equations stated previously. The proposed formulation by
means of Linear Matrix Inequalities (LMIs), allow us to state a mathematical optimization
problem that can be solved in real time using dedicated solvers. Once again, we start the
chapter with a generic mathematical notation and specialize it to the IK notation for the
particular developments at the end.

A Semidefinite Programming (SDP) problem is, like Quadratic Programming, a convex
optimization problem. In an SDP, the feasible set is a cone formed by positive semidefinite
matrices and it is expressed as an LMI. Hence, a main advantage is that it has a linear
objective function. The SDP form used in this work is the following:

min
x

. ρ>x

s.t. F (x) = F 0 + F 1x1 + ...+ F jxj � 0
Ex = g ,

(67)

where ρ ∈ Rj is a coefficient column vector, x ∈ Rj is the optimization variable and
F i ∈ Rn×n are symmetric matrices forming the LMI. j and n are the dimension of the

35

Hierarchical task control through Lexicographic SemiDefinite Programming

optimization variable and the symmetric matrix space respectively. The ”�” symbol
stands for negative semi-definiteness. Note that SDP problems can also handle equality
constraints.

Our target here is to express the QP problem in (34) as an SDP problem with the form of
(67). Overall, we see two main differences between these two problem formulations: the
objective functions (quadratic versus linear) and its constraints (linear inequalities versus
LMIs). The main actions to move from QP to SDP are:

• Objective function: We will express the problem in its epigraph form, i.e., upper-
bounding the quadratic objective function. This will lead us to an expression that,
by means of the Schur’s complement, can be converted to an LMI. Both epigraph
form and Schur’s complement are further detailed in Appendices A.2 and A.3, re-
spectively.

• Constraints: One can convert a linear inequality to an LMI forming several diag-
onal matrices with the vector d and every column of C in (34).

Further details on these actions are described hereafter.

Objective Function

To transform the objective function from quadratic to a linear form we use the epigraph
form. The underlying concept of this technique is to create an inequality by upper-
bounding the objective function with a new variable. This new inequality is introduced
as an LMI constraint of the SDP problem and now the optimization problem becomes a
minimization of the new variable subject to the created constraint. We refer the reader
to Appendix A.2 for further details on the epigraph form.

Following this procedure, we add a scalar upper-bound γ to the cost-function in (34),
obtaining

x>A>Ax+ l>x ≤ γ . (68)

Notice how here u has been also omitted as they are equivalent problems (see Section
2.4.2 for a detailed justification).

Using the Schur’s complement, (68) can be converted into the following LMI

M (x, γ) =

[
γ − l>x x>A>

Ax I

]
� 0. (69)

36

CHAPTER 3 3.1 Task resolution through semidefinite programming

Thus, the SDP equivalent to an unbounded QP problem would be

min
x,γ

. γ

s.t. −M (x, γ) � 0 .
(70)

This problem can be rewritten so that there is only one optimization variable, namely
x̃ = [x>, γ]>. Thus,

min
x̃

. ρ>x̃

s.t. −M(x̃) � 0 .
(71)

Recalling that x ∈ Rj, we can see in (69) that ρ ∈ Rj+1 is a column vector full of zeros
in exception of the last component which is a one. That is the coefficient multiplying the
variable γ. In order to gain insight into the dimensions of M (x̃) we will first look at the
dimensions of A. A is a linear mapping that maps x ∈ Rj towards Rr, thus A ∈ Rr×j.
Knowing this we can deduce that M(x̃) ∈ Rr+1×r+1. Assimilating M (x̃) to the LMI
F (x̃) ∈ Rn×n in (67), we see that n = r + 1.

Note that in (70), by using the Schur inequality, we have introduced a quadratic con-
straint to the SDP problem. Although in this case this constraint is closely related with
the objective function, we could introduce -in the same manner- a quadratic inequality
constraint independent of the cost function. Something not possible with QP problems.

We refer the reader to Appendix A.3 for further details on Schur’s complement.

Linear Inequality

To deal with the linear inequalities expressed as Cx � d, if we consider the rows of
C ∈ Rs×j (being s the number of individual inequalities in C) and the elements in d such
that

C =

c1...
cs

 ,

d =
[
d1, · · · , ds

]
,

(72)

the inequality can be expressed as the following LMI:

C̃(x) =

c
>
1 x− d1 0

. . .

0 c>s x− ds

 � 0. (73)

37

Hierarchical task control through Lexicographic SemiDefinite Programming

Now, our aim is to introduce this LMI in the problem stated at (71). In order to do so,

we have to express C̃(x) in terms of x̃. This is a simple procedure that consists only in

adding a zero column vector at the end of C. Doing this, the matrix C̃(x̃) would look
like

C̃(x̃) =

[c>1 , 0]x̃− d1 0
. . .

0 [c>s , 0]x̃− ds

 � 0. (74)

If we define now two positive semidefinite matrices R � 0 and S � 0. We can assert that
the block-diagonal matrix formed by these two matrices will also be positive semidefinite,
i.e., blkdiag (R,S) � 0. Using this property we can introduce the linear constraintCx−d
into the SDP problem in (71)

min
x̃

ρ>x̃

s.t. diag
(
−M (x̃), C̃(x̃)

)
� 0 .

(75)

In (75), ρ remains unchanged with respect to (71). However, we have now F (x̃) =

diag
(
−M (x̃), C̃(x̃)

)
, and its dimension has changed to n = r + s + 1. Note how

the dimension of C̃(x̃) has been added. Although this matrix grow considerably, the
vast majority of the elements in F (x̃) is 0. Specialized solvers in SDP problems, take
advantage of this sparsity to increase its performance.

With the tools above presented we are able to solve hierarchically any kind of task. In
the case of having an equality task it would be exactly the same case as (71). On the
other hand, if we have an inequality task we should mount an equivalent problem to (44).
With that aim, the optimization variable is augmented adding the slack variable. Then
we should introduce the quadratic function minimizing the slack variables analogously to
(71). The last step is to add the inequality constraints containing also the slack variables.

This can be done using the procedure where we have added the C̃(x̃) matrix to the SDP
problem. Inequality hard constraints due to higher priority optimizations can also be
added as done with C̃(x̃).

3.2 Hierarchical task control through lexicographic SDP

The SDP problem stated above can be tailored to compute robot trajectories to accom-
plish prioritized tasks (i.e., hierarchy). In this section, as a matter of example, we go
through a complete and detailed SDP iteration, specifying carefully all involved matrices.
Then, we present the main algorithm to solve the hierarchical task control through the
lexicographic SDP approach.

38

CHAPTER 3 3.2 Hierarchical task control through lexicographic SDP

Let us consider a robot with j DoFs. In this example, we want to control two tasks: one
inequality and one equality, having the inequality task higher priority than the latter.
Both tasks can be expressed in the acceleration domain as

J1q̈ − ˜̈σ1 � 0 ,

J2q̈ − ˜̈σ2 = 0 .
(76)

In the case of a CLIK problem expressed in the acceleration domain, as shown in Section
2.5.2,

˜̈σi = (σ̈d,i − J̇ iq̇i) + (λ1 + λ2)(σ̇d,i − J iq̇i) + λ1λ2(σd,i − σi) i = 1, 2 . (77)

In order to find the values of q̈ that drive our robot joints to accomplish the tasks, we
first solve an SDP optimization for the task with higher priority, i.e., the inequality task.

Now, we consider that we have already solved the SDP problem for the first task, being
q̈1 ∈ Rj its solution. For the sake of simplicity, in this example we consider that the
inequality task can be accomplished and therefore all slack variables are 0. To solve for
the second task, we formulate a second nested SDP problem (lexicographic approach [11]
and [12]), defined as

min
q̈,γ

. γ

s.t. diag(−M(q̈, γ), C̃(q̈, γ) � 0 ,
(78)

with M(q̇, γ) the following LMI:

M (q̈, γ) =

[
0 0
0 I

]
+

[
1 0
0 0

]
γ +

[
−m1 j>1,2
j1,2 0

]
q̈1 + · · · +

[
−mj j>j,2
jj,2 0

]
q̈j , (79)

being m>2 = [m1, ...,mj] = −2σ̇>2 J2 and ji,2 the i-th column of the matrix J2 such that
J2 = [j1,2, · · · , jj,2].

The LMI C̃(q̈, γ) � 0 contains the information coming from solving the first inequality
task and therefore, ensures the hierarchy among the two tasks. In this case,

C̃(q̈, γ) = −diag(σ̇1) +
[
0
]
γ + diag(j1,1)q̇1 + · · · + diag(jj,1)q̇j , (80)

where diag(a) stands for an all-zeros matrix in exception for the elements of its diagonal
which are the elements of the vector a vector, i.e., σ̇1 and the columns of the matrix
J1 = [j1,1, · · · , jj,1]. Note that C̃(q̈, γ) will be formed by squared symmetric matrices in
Rr×r, where r is the dimension os task 1. Since the slack variables in the first optimization
were all zeros, notice also how q̈1 does not play a role in the second SDP (equality
task)(78), similarly as in the QP problem we presented in (45).

39

Hierarchical task control through Lexicographic SemiDefinite Programming

Lexicographic SDP algorithm

Algorithm 1 shows how to solve the Lexicographic SDP problem in a practical way. This
algorithm has to be run at every time step and goes through all tasks in the hierarchy. The
problem we solve is the CLIK in the acceleration domain. Therefore, the input data are
the different tasks which are formed by the matrices J and ˜̈σ as in (76). As an example
of this input data, in Section 4, we define a series of tasks devoted to autonomously drive
a UAM. The outputs of the algorithm are acceleration references for the robot joints, to
drive the robot accomplishing the tasks.

The algorithm is an iteration procedure that goes through all priority levels, starting from
the higher one.

We start by storing all task in an input array, namely T . Those tasks with priority equal
to the one evaluated at the current iteration, pcurr, are taken; and their corresponding
matrices J and ˜̈σ are stored in the arrays Ecurr and gcurr if the evaluated task is equality,
or Ccurr and dcurr if it is an inequality.

Ccurr ∈ Rre×j, gcurr ∈ Rre , Ccurr ∈ Rri×j and dcurr ∈ Rri , with j the number of robot
joints and re and ri are the sum of dimensions of all equality or inequality tasks, respec-
tively, for the current priority level (in Algorithm 1, this procedure is represented by the
functions GetEqualityTasks(T , pcurr) and GetInequalityTasks(T , pcurr)).

Once the matrices J and ˜̈σ of all tasks are loaded, we are ready to mount the SDP problem
(MountObjFuncLMIs(Ccurr,dcurr,Ecurr, gcurr) and MountConstraintsLMIs(Ccurr,
dcurr,Ecurr, gcurr) in Algorithm 1).

In order to provide priority to inequality tasks as well as to avoid unfeasibility issues
(stability), slack variables are used as in Section 2.4.2. Hence, the decision variable will
vary in each priority level depending on the shape of Ccurr

z =
[
q̈> w> γ

]>
, (81)

where q̈ ∈ Rj are the accelerations of the joints, w ∈ Rri a vector of slack variables and
γ a scalar variable related with the epigraph form presented in (68).

In the Algorithm 1, we have distinguished two kinds of LMIs depending of its origin. On
one hand, there are the LMIs M(z) related to those constraints coming from tasks with
priorities equal to pcurr, defined by

M (z) = diag(M 1(z),M 2(z)) , (82)

40

CHAPTER 3 3.2 Hierarchical task control through lexicographic SDP

Algorithm 1: LMI lexicographic optimization algorithm

Input Data: T = {t1, . . . , tτ} an array of tasks, with τ the total number of

tasks. ti is a task with priority pi and is expressed in the form

J iq̈ − ˜̈σi ≤ 0 in case of inequality task, or in the form

J iq̈ − ˜̈σi = 0 in case of equality.

Result: An acceleration reference q̈ for the robot’s joints.

1 begin

2 pcurr ← GetMaxPriority(T)

3 C ← ∅; d← ∅

4 E ← ∅; g ← ∅

5 while pcurr >= 0 do

6 Ccurr,dcurr ← GetEqualityTasks(T , pcurr)

7 Ecurr, gcurr ← GetInequalityTasks(T , pcurr)

8 M ←MountObjFuncLMIs(Ccurr,dcurr,Ecurr, gcurr)

9 C̃ ←MountConstraintsLMIs(Ccurr,dcurr,Ecurr, gcurr)

10 q̈ ← SolveSDPProblem(M , C̃)

11 E, g ← AddMatrices(Ecurr,Ecurr · q̈)

12 if Ccurr · q̈ < dcurr then

13 C,d← AddMatrices(Ccurr,dcurr)

14 else

15 E, g ← AddMatrices(Ccurr,Ccurr · q̈)

16 pcurr ← pcurr − 1

41

Hierarchical task control through Lexicographic SemiDefinite Programming

where M 1(z) is an LMI with the form of (69)

M 1(z) =

[
M 1,11(z) M>

1,12(z)
M 1,12(z) M 1,22

]
� 0 , (83)

where

M 1,11(z) = [2g>currEcurr,0ri×1, 1]z ,
M 1,12(z) = diag(Ecurr, Iri , 0)z ,

M 1,22(z) = Ire+ri ,
(84)

with 0ri×1 an all-zeros row-vector of length ri. The subscript of the identity matrix
indicates its dimension.

M 2(z) is an LMI with the same form as (73) also considering the slack variables, such as

M 2(z) = [Ccurr,−Iri ,0ri×1] z − diag(dcurr) � 0. (85)

On the other hand, there are the LMIs C̃(z) related to solutions found at higher priority
levels, i.e., previous iterations. These are strict inequalities, having no slack variables,
therefore they can be expressed as

C̃(z) =
[
C,0ri×(ri+1)

]
z − diag(d) � 0. (86)

where 0ri×(ri+1) is an all-zero matrix with ri rows and ri + 1 columns. Notice matrices E
and g contain the constraints for past equality tasks or violated inequality tasks.

Both LMIs, M and C̃(z), are passed to the SDP solver which returns the resulting
vector zopt. From the optimizaed variables in zopt we are interested only in the joints
accelerations q̈.

The last step before running the procedure for the next priority level is to add current
tasks as constraints for future iterations. Equality and inequality tasks will be treated
slightly different. In case of equality tasks, Ecurr matrix will be stored directly in the
array for equality constraints E. A similar procedure will resume for inequality tasks
that are accomplished, Ãin matrix will be directly stored in the array for inequality
constraints Ain. However, those inequality constraints that have been violated have will
be considered equality constraints in further iterations, thus Ccurr matrix will be stored
in E. One thing to point out is that when checking whether the inequality constraints
have been violated (from line 12 to line 15), the comparison must be done one row of
Ccurr at a time (represented with the AddMatrices(·) functions in Algorithm 1).

42

CHAPTER 3 3.3 Summary

3.3 Summary

This chapter presents the core proposal of the thesis. It contains the proposed approach
to generate trajectories (i.e., joint accelerations) for redundant robots considering the
accomplishment of a prioritized task stack. This approach is based on a lexicographic
semidefinite programming, tailored to deal with a hierarchical task control.

In the first part of the chapter, we have given the tools to transform from QP to SDP
optimization problems. This requires two main transformations: the objective function
has to be transformed to a linear one; and the linear inequalities have to be expressed as
LMIs able to be plugged inside an SDP problem.

The chapter concludes with the detailed description of the procedure which allows us to
hierarchically control tasks through lexicographic SDP, supported by the related algorithm
shown in Algorithm 1.

43

Hierarchical task control through Lexicographic SemiDefinite Programming

44

4. Application to UAMs

In the previous chapter we explained the lexicographic SDP algorithm. It is a matter
of the current chapter to prove its feasibility and performance with a real robot. First,
we offer a description of the tasks that will be set for the robot. Then, we describe
briefly the robot particularities and present the experiment set. We used the same set
either in simulation or real case studies. However, we only include real robot experiments
because they better validate the proposed approach, having extra value, and for the sake
of conciseness. The chapter concludes with the analysis of these experiments.

4.1 UAM tasks

Usually, the main functionality of a robot can be summarized with few words: ”take this
object and leave it there” or ”go from this point to that other point”. However, these
few words entail complex issues derived from the robot’s surrounding, its geometry, etc.
For example, a robot’s main function could be ”to paint a car”. In order to paint a car,
we must follow a trajectory at a given velocity so that the paint is applied uniformly.
Furthermore, we should ensure that the end-effector of the robot moves perpendicular to
the surface being painted. We could also face the situation where the part to be painted
is inside the car, so there are some parts of the car’s body that have to be avoided. As
soon as we start detailing the robot’s objective, several tasks arise.

Our main objective in this chapter is to move efficiently the end effector of a UAM, provid-
ing the necessary tools to navigate or even precisely move the robot during manipulation
phases. If we detail the involved tasks, first we would like to avoid obstacles in order
to keep the platform integrity. We also want to avoid joints limits, so the platform does
not flies over some bounds (e.g., position, velocity or acceleration) and the arm joints
do not reach their limits (usually associated to singularity issues). Then we would move
the end effector (position and orientation tracking), while alleviating the effects of the
arm inertia by aligning the arm center of gravity (CoG) with the vertical vector of the
platform whenever it is possible.

With the previous description there is an implicit priority between tasks, here choosen
by common sense (i.e., if we do not keep the platform integrity we cannot use the robot
anymore; reaching the joints limits we would not finish the mission; and so on). However,
what happens if due to the geometrical limitations of the robot all the stated tasks cannot

45

Hierarchical task control through Lexicographic SemiDefinite Programming

be accomplished at the same time? Depending on our objective, or the mission phase, we
would like to discard one or another task, e.g., in some cases it might be more interesting
to keep position tracking, relaxing the orientation of the end effector, or, on the contrary,
orient the end effector loosing precise position tracking (i.e., pointing the tool always to
same point). That is why, it is common that this kind of hierarchical trajectory generators
-such as the one developed in this thesis- come along with priority planners. Taking into
account the current state of the robot, this planner changes the tasks priorities accordingly.

Although this is not the core of the thesis, in order to get better results in the real robot
experiments, we developed a simplistic version of a priority planner for our UAM. The
criteria used to change priorities is presented after the description of all involved tasks.
Note how with the lexicographic SDP problem defined in this work the task priorities can
be directly changed without provoking discontinuities in the resulting control refereces.
This priority change might become an issue when using analytical LS solutions (e.g., see
the time vanishing function required in [2]).

Technically speaking, a task can be defined as a kinematic or dynamic goal. Since this
work is about trajectory generation, here we only considered kinematic tasks, and assume
that the robot low-level controllers will be able to move the joints to the desired values
specified by the trajectory generator.

4.1.1 Obstacle avoidance

A simple approach to avoid an obstacle consists in defining a minimum Euclidean distance
dmin between the UAM and the obstacle that must be respected. This task can be defined
with the following squared form:

||eo||2 ≥ d2min → σo = d2min − ||eo||2 ≤ 0 , (87)

being eo the actual Euclidean distance between the UAM and the center of the obstacle
eo = puam − pobs.

To define the minimum distance between the UAM and the obstacle, we can set a robot
footprint (i.e., a sphere around the robot with radius ruam including the whole robot
inside it) and an obstacle safety region (i.e., a sphere around the obstacle with radius
robs including the parts of the obstacle that we want to avoid), then dmin = ruam + robs.
Figure 8 shows schematically these distances.

Now, to express this task in the acceleration domain we have to differentiate σ̇o = Joq̇

46

CHAPTER 4 4.1 UAM tasks

robs

rsph

pcog

pobs

UAM
Obstacle

Figure 8: Scheme of distances related to the obstacle avoidance task (top view).

twice with respect to the time and apply the Gronwall’s inequality, obtaining

σ̈o = J̇oq̇ + Joq̈ , (88)

where Jo = −2e>o Juamq̇, which belongs to ∈ R1×j, and J̇o its time derivative. Juam ∈
R3×j is the Jacobian of the UAM body. Then, the task is finally defined by:˜̈σo = −J̇oq̇ − (λ1 + λ2)Joq̇ + λ1λ2σo . (89)

Notice how the obstacle avoidance is here defined to avoid collisions with the aerial plat-
form. Hence, we must be aware that the columns of Jo corresponding to the arm joints
must be all zeros. Its interpretation is, effectively, that a movement in the arm will not
vary σo, i.e., it will not move the UAM.

A similar task can be set to avoid self-collisions with the arm, this time involving only
terms refered to the arm joints and setting the obstacle radius in the part of the robot
that we want to avoid. Its implementation is straight forward and its description is here
avoided for the sake of conciseness.

4.1.2 Joint limits

With this task we want to avoid the situation where a joint of our robot reaches its limits.
This task is of special interest as those limits can entail some issues such as configuration

47

Hierarchical task control through Lexicographic SemiDefinite Programming

ub

lb

q

Figure 9: Upper (ub) and lower (lb) bounds for a manipulator’s joint.

singularities. Due to their geometry, almost all open-link manipulators have joint limits.
That is that rather than turn uninterruptedly they are limited by its geometry having
upper and lower bounds (see Figure 9). Here we distinguish between two tasks related with
position and velocity bounds. Notice that we can also add acceleration bounds directly
(i.e., without further transformations) as constraints to the optimization problems as the
tasks are defined in the acceleration domain.

Position limits

This task must ensure that values given by the algorithm remain between the joint position
bounds,

lb ≤ q ≤ ub. (90)

being lb ∈ Rj and ub ∈ Rj the vectors with lower and upper bounds for all joints,
respectively. Notice that (90) entails two tasks that can be expressed as

σpl,l = lb − q ≤ 0 ,
σpl,u = q − ub ≤ 0 .

(91)

Once again, the Gronwall’s inequality is used to express this task in the acceleration
domain. Only the lower bound inequality will be developed here. The formulation for the
upper bound is straight forward with an analogous procedure. Applying two times the
Gronwall’s inequality we get the following expression:

− q̈ − (Λ2 + Λ1)q̇ + Λ2Λ1(lb − q) ≤ 0 , (92)

where Λ are diagonal gain matrices. Notice that here the task Jacobian has been omit-
ted since for this task J jl,l = −I ∈ Rj×j. Finally, the task to be introduced in the

48

CHAPTER 4 4.1 UAM tasks

T0

Tuav

Tee

Tdes

Figure 10: Scheme of UAM frames involved in the pose tracking task (top view).

lexicographic SDP problem is defined as:

˜̈σpl,l = (Λ2 + Λ1)q̇ −Λ2Λ1(lb − q) (93)

Joint velocity limits

Analogously to the previous task of joint position limits, we can define another task to
limit the velocity of the joints with

Jvl,l = −I ,˜̈σvl,l = −Λ1(vlb − q̇) ,
(94)

where Jvl,l ∈ Rj×j is the Jacobian of the task, and vlb ∈ Rj is the vector with the lower
bounds of the velocities. Similarly to the previous position limits task, we develop here
only the task for velocity lower bounds. The formulation for the task considering the
velocity upper bounds can be easily derived with an analogous procedure.

4.1.3 Pose tracking

A pose tracking task is the most common task in practically all kind of manipulators as
it is intrinsically linked with a manipulator’s function: to take objects from one place to
an other.

49

Hierarchical task control through Lexicographic SemiDefinite Programming

Within this task we consider the position and the orientation of the end effector with
respect to a global frame (Figure 10 shows all involved frames for this task). This implies
the pose of the platform with respect to the global frame and the robot arm kinematics.
The pose of the platform can be provided by any robot state estimation from other robotics
fields, e.g., odometry estimation or SLAM. Defining our robot arm through Denavit-
Hartenberg parameters, we are able to find the homogeneous transformation between the
base of the manipulator (attached to the UAM’s body) and the end effector.

Therefore, the end effector pose task can be defined as a column vector such as:

σeep =

[
pee

θee

]
, (95)

where σeep ∈ R6 is the end-effector pose, and pee(q) ∈ R3 and θee(q) ∈ R3 are the end-
effector position and RPY (roll-pitch-yaw Euler angles) orientation, respectively. Notice
how subindex p is used to indicate variables related with the pose (not position).

Here, we want to compute the task solving the CLIK problem, thus we must compare the
actual and desired values of the task variable, as explained in Section 2.5.2. Hence, the
task error and its derivatives are defined as:

ep = σdp − σp , (96)

ėp = σ̇dp − σ̇p = σ̇dp − Jpq̇ , (97)

ëp = σ̈dp − σ̈p = σ̈dp − J̇pq̇ − Jpq̈ . (98)

Notice how, for the sake of clarity, we removed the superscript •ee from all variables and the
•d express desired values. The pose Jacobian Jp ∈ R6×j and its time-derivative J̇p ∈ R6×j

can be computed from homogeneous transformations using different methods included in
several generalist books like [26].

Now, plugging (96)-(98) into the Gronwall’s inequality shown at (57) we have that

(σ̈dp − J̇pq̇ − Jpq̈) + (Λ1 + Λ2)(σ̇
d
p − Jpq̇) + Λ1Λ2(σ

d
p − σp) = 0 (99)

where Λ1,2 are diagonal matrices to assign the desired dynamics to the error. The last

thing to do is to assimilate this equation to Jq̈ − ˜̈σ so the task can be solved by means
of the lexicographic SDP. Hence,

˜̈σ = (σ̈dp − J̇pq̇) + (Λ1 + Λ2)(σ̇
d
p − Jpq̇) + Λ1Λ2(σ

d
p − σp) . (100)

50

CHAPTER 4 4.1 UAM tasks

Manipulating with a UAM

In a typical manipulator, such as a ”grounded” robotic arm, all joints can be used in
order to achieve a desired pose since all of them can be actuated with a similar precision.
This is not the case of a UAM. Due to physical differences, the joints of the platform can
be actuated with less precision than those placed at the arm (the main influences are the
bigger mass they move and the nature of their actuators). Thus, it seems reasonable to
separate the task of grasping an object (i.e., the pose tracking task) into two tasks.

In order to fulfill this behavior, we have tackled the pose tracking task in the following
manner. We define a zone around the manipulation target coincident with the UAM
manipulator workspace. Inside that zone, we will perform the end effector tracking only
with the manipulator to achieve precise movements, leaving the platform in a hovering
state. Outside that manipulation zone, we consider the mission phase as navigation, thus
we want to perform large robot displacements only with the robot platform. It would
have no sense trying to reach a target with the arm if this is outside the arm workspace.

With this consideration, we can split the pose tracking task into the following tasks

• UAM pose tracking
Jp = Juam (101)˜̈σp = (σ̈dp − J̇pq̇) + (Λ1 + Λ2)(σ̇

d
p − Jpq̇) + Λ1Λ2(σ

d
p − σp) . (102)

where σp ∈ R4 is the pose of the quadcopter (controlled using 4 DoF as we are not
directly controlling neither the roll or the pitch angles of the platform). σdp ∈ R4 is
the desired pose that has been offset from σdp the distance of the arm workspace.
Therefore, Jp ∈ R4×j, and the columns related with the joints in the arm will all be
0.

• End-effector pose tracking

The end-effector pose tracking will have the same form as in (100). The only dif-
ference will be at the Jacobian Jp, where the columns related with the joints of the
platform will be all 0. That will force the controller to use the arm joints to reach
the final end-effector desired pose.

4.1.4 Center of gravity alignment

When carrying a load suspended from an aerial platform, if the center of gravity of this
load is not properly aligned with the center of gravity of the body, rotating torques might

51

Hierarchical task control through Lexicographic SemiDefinite Programming

ecogpcog,b

pcog,a

Figure 11: Top view of arm’s CoG misalignment

appear in the platform base. This is an undesired situation since these torques have to be
compensated by the platform’s actuators, situation that leads, among other drawbacks,
to an unnecessary consume of energy.

To kinematically avoid this situation during the navigation phase, the joints in the arm
work in favor of this alignment. Recall that we only use the platform for large displace-
ments, thus the arm joints can remain free to accomplish secondary tasks. Hence, this
task should try to minimize the distance between the arm CoG and the platform vertical
vector (i.e., platform gravity vector). This results in reducing the distances between the
x and y components of the body CoG, namely pcog,b ∈ R2, and the arm’s CoG pcog,a ∈ R2.
Figure 11 shows schematically this situation.

Then, ideally we want

σcog = ||ecog||2 = 0 (103)

where ecog = pcog,b − pcog,a.

Analogously to the Section 4.1.1, this task is finally defined as:

J cog = −2e>cogJ cogq̇˜̈σcog = −J̇ cogq̇ − (λ1 + λ2)J cogq̇ + λ1λ2σcog
, (104)

where J cog ∈ R2×j is the Jacobian of the UAM body’s center of gravity, considering only
the horizontal coordinates.

52

CHAPTER 4 4.2 Experiment setup

4.1.5 Acceleration minimization

Once all the tasks described above have been solved we will get joint accelerations to
accomplish them. This solution is not necessarily unique, it can belong to a set of joints
accelerations that ensure the accomplishment of all tasks.

As we said before, we want to get a smoother behavior in the resulting trajectories. To do
so, we have created this acceleration minimization task that is added at the end the tasks
stack (i.e., it has the lowest priority). It ensures that, among all the possible accelerations,
the minimum norm acceleration will be taken.

This task can be expressed as:

σacc = q̈ = 0 , (105)

as it is already in the acceleration domain, its formulation is straightforward with

Jacc = Ij ,˜̈σacc = 0 .
(106)

4.2 Experiment setup

In this section, we describe the setting chosen for the experiments. First, we describe
the robot and its particularities. Then, we explain the procedure followed during the
real robot experiments. We also remark some notes about the priority planner, e.g., the
priorities chosen in respective missions.

4.2.1 Robot description - Kinton UAM

A UAM is a robot composed by an aerial platform, usually a multirotor, and one or
several serial manipulators. In this experiments we take advantage of the Kinton robot,
both in its simulated and real versions, a UAM from the Institut de Robòtica i Informàtica
Industrial formed by a quadrotor and a serial arm, shown in Figure 12.

This robot has a scheme of cascade controllers. At the lowest level of control, it has
proportional-integral-derivative (PID) controllers for the arm joints, actuated by joint
positions, and speed controllers (ESC) for the brushless motors of the platform. On
top of these platform ESCs, the quadrotor has its own attitude controller to keep its

53

Hierarchical task control through Lexicographic SemiDefinite Programming

T0
Tee

Tuav

ωz
ṗz

ṗx
ṗy

q1 q2q3 q4
q5q6

Figure 12: UAM used to perform the experiments - Kinton Robot.

horizontality (i.e., controlling internally the roll and pitch). On top of this attitude
controller the quadrotor has a position control scheme described hereafter. Our interest
is to send position references to our robot without acrobatic maneuvers, thus we leave the
platform roll and pitch as non-controllable DoFs and build the hierarchical task controller
on top of the robot positioning system and the arm PIDs. With this, at a high level
of control, our robot has a total amount of 10 DoFs, 4 DoFs to control the platform
(i.e., position and yaw or heading) and 6 DoFs to control the serial arm.

The flying platform is an ASCTEC Pelican quadrotor which comes with an off-the-shelf
attitude controller. By means of the on-board sensors (3-axis accelerometer and 3-axis
gyroscope 4), this controller gives low level commands to the motor drivers (ESCs) to
achieve a desired attitude. The drifting phenomena in the on-board sensors difficult the
quadrotor position control. Thus, the quadrotor position controller needs extra sensors
to localize the platform and close the control loop. In GNSS-denied environments, the
position can be obtained with different approaches from other robotics fields such as
visual-inertial odometry or SLAM. In this work, however, we are not interested in devel-
oping a platform localization method, thus we take advantage of a motion capture system
(i.e., Optitrack5), already installed at IRI’s facilities. This system gives high precision
pose measurements, enabling to close the quadrotor position control loop and allowing us
to directly send positions to it from our algorithm.

The platform described above is equipped with a 6 DoF robotic arm, which has been
specifically designed to be low-weight and to fit the payload of the ASCTEC Pelican
quadrotor. The Denavit-Hartenberg parameters that describe the geometry of the arm
are shown in Table 1.

The trajectory generation algorithm of this thesis outputs desired accelerations for the

4This kind of sensors are usually delivered within a single microchip that are known as 6 DoF inertial

measurement unit (IMU).
5https://www.optitrack.com

54

CHAPTER 4 4.2 Experiment setup

Joint θ (rad) d (m) α (rad) a (m)

1 q1 0 0 0

2 q2 − π/2 0 −π/2 0

3 q3 − π/2 0 −π/2 0

4 q4 0 0 0.065

5 q5 + π/2 0.065 0 0.065

6 q6 0 π/2 0

Table 1: Denavit-Hartenberg parameters of the 6DoF robot arm used.

(a) Rear view of the UAM during the navi-

gation mode.

(b) Lateral view of the UAM in the manipu-

lation mode.

Figure 13: Samples of real experiments.

joints of the robot that allow to fulfill the desired tasks. These, can be integrated using
(63) to obtain desired positions for the arm and quadrotor DoFs, which are the actual
inputs of the robot described above. The lexicographic SDP algorithm is programmed
with C++ and uses the SDP specialized solver SDPA [27]. All algorithms are running
on board, online, using an Intel Atom CPU (@ 1.6GHz) with Ubuntu 16.04LTS and ROS
Kinetic.

Figure 13 show two samples of the experiments, during navigation and manipulation
modes as described in the following section.

55

Hierarchical task control through Lexicographic SemiDefinite Programming

Tasks

Obs. Av. JL Pos. JL Vel. arm CoG alig. Platform pose EE pose

A
ct

io
n

s

Navigation 1 2 3 4 5 6

Manipulation 1 2 3 6 5 4

Table 2: Priorities set according to the action being performed by the UAM during the

Task control phase.

4.2.2 Priority manager

The experiments will consist on a mission where the target is to move the end-effector
of the UAM to a specific position and orientation, with the purpose of emulating the
navigation and manipulation maneuvers typical of these types of robots. We divide each
mission on 3 main phases, all of them carried out autonomously by the UAM. First, the
Take-off phase. Then, we execute the phase where the task control algorithm runs and
moves the UAM to accomplish with the tasks. We call this phase Task control phase.
We consider that this phase has been successfully accomplished when the norm of the
error between the current and desired end-effector poses is smaller than a threshold.
Within simulation case studies we set this threshold as 0.05m and 0.1rad. In the real
robot experiments we set the values to 0.1m and 0.2rad. In both cases, the position
and orientation thresholds are set taking into account the errors in the mechanical design
(i.e., the serial arm has been build with rapid prototyping techniques and has some
flexibility); the precision of the low-level controllers (i.e., both quadrotor position control
and arm PIDs have a small error that cannot be easily reduced); and to finish the missions
in a reasonable time once demostrated and proofed the main developments of this thesis.
All experiments finish with the Landing phase.

From now on, we focus on the important phase, the Task control phase where our algo-
rithm runs. During that phase we might want to change the task stack priorities, which is
done by the priority manager. The manager is also capable to disable a task if required.

In the manager, we distinguish two priorizations that depend on the distance between
the actual and desired end-effector poses: navigation and manipulation. This distance
threshold to switch between priorizations is related with the arm workspace, as mentioned
previously in this document, we want to perform large displacements with the platform
and precise and small movements with the arm. Considering the tasks detailed in Section
4.1, Table 2 shows the priorities set by the manager.

Notice how we always prioritize the platform integrity and then to respect the joint limits.

56

CHAPTER 4 4.3 Experiments results

During the navigation phase it is important to maintain the arm CoG aligned with the
vertical axis of the platform, so the quadrotor motors do not have to counteract torques
created by the arm. This means that the arm joints are ”locked” by the CoG task during
the navigation phase. When the robot is in its manipulation mode, however, we release
the arm by setting the arm CoG alignment task at the lowest priority.

4.3 Experiments results

In this section, we present the results of real robot experiments to validate the proposed
approach. Simulation case studies are here avoided for the sake of conciseness.

To demonstrate the viability of the lexicographic SDP algorithm, we present here the
results of a single mission, analizing the effect of each task. Although there exist other
hierarchical task control algorithms in the literature, we believe that we cannot directly
compare performances with them. By setting equality and also inequality tasks (most of
the current methods can only solve equality cost functions); expressing the system through
LMIs; using dedicated solvers to this SDP problems (different solvers can produce different
results, difficulting the comparison); and with the facilities of our method to exchange
priorities between tasks (other methods may require time-vanishing functions to switch
priorities); we believe a comparison with others methods could not be fair.

In all experiments, we have set acceleration bounds for the joints as constraints in the
optimization processes. In all the following plots we remark with a black dashed vertical
line the point in time where the priority manager changes from navigation to manipulation
modes, thus producing a change in the task stack by modifying the priorities according
to Table 2.

Obstacle avoidance

To clearly see how the obstacle avoidance works, we show in Figure 14 the trajectory
done by the UAM during the navigation phase with an obstacle in the middle of the
direct trajectory. Without the presence of the obstacle the robot trajectory would result
in a direct line between the starting point and the target. However, when an obstacle
appears (defined by the red circle) the trajectory is modified to avoid it (red continuous
line), mostly satisfying the inflation radius constraint (yellow area plotted, in this case,
around the obstacle). In Figure 14 we show a particular result where the inflation radius
is violated some centimiters, this case happens when the acceleration bounds set to the

57

Hierarchical task control through Lexicographic SemiDefinite Programming

Figure 14: Obstacle avoidance task within a real robot experiment.

problem are not sufficient to let the optimization produce references to make the robot
react in time. Although in this case the obstacle is avoided without any collision, one has
to consider this when designing the mission. The obstacle avoidance is also evident in the
first part of the Figure 18a, where the motion of the platform is prevented for the x axis
(continuous blue line). Once the obstacle has been avoided, the trajectory is resumed
(i.e., the blue line is exponentially decreased).

Joint limits - Position

In order to see how the joints are kept within their limits we compute the distance to their
respective bounds. Here we show the task set to respect the position bounds. Specifically,
Figure 15a shows the joint distances to the upper bounds, defined with q−ub. Similarly,
Figure 15b depicts the error between the joints current values and their respective lower-
bounds, i.e., lb − q. As any error of both figures is above 0, we can tell that the position
arm joint limits are respected.

Joint limits - Velocity

The same interpretation as for the task limiting the joints positions can be done for the
velocity joint limits task. In this case we differentiate between the translational and
rotational joints, that is, Figures 16a and 16b are the plots related to the upper and lower

58

CHAPTER 4 4.3 Experiments results

(a) Upper bound (b) Lower bound

Figure 15: Error between current joints positions and their respective bounds during a

real experiment.

(a) Upper bound. UAV linear velocities. (b) Lower bound. UAV linear velocities.

(c) Upper bound. Yaw and arm joints. (d) Lower bound. Yaw and arm joints.

Figure 16: Error between current joints velocities and their respective bounds during a

real experiment.

bounds of the linear velocities of the quadrotor, respectively. Figures 16c and 16d are
related with the angular velocities (quadrotor yaw and arm joints). Once again, all values
are below 0, thus all velocity joint limits are respected.

59

Hierarchical task control through Lexicographic SemiDefinite Programming

Figure 17: Arm’s CoG alignment task during a real robot experiment.

Arm’s CoG alignment

The serial arm has been designed to have the workspace in front of the quadrotor. Altough
it has 6 DoFs, its main movements usually include forward-backward (i.e., platform x axis)
and up-down (i.e., platform z axis) maneuvers because it has to avoid collisions with the
platform legs (the arm operates between the platform frontal legs). This behaviour can
be seen in Figure 17 where we show the planar 2D distance error between the arm CoG
and the gravitational vector of the platform (x and y dimensions). Although this distance
is reduced in both x and y axis of the platform frame, the reduction is heavier in the x
direction as the y dimension is already aligned by design.

End-effector pose tracking

The results of applying the end-effector tracking task are shown in Figure 18 by means of
the error between the current and desired end-effector poses (translation and orientation).
Once again, we show the navigation (left) and manipulation (right) phases separated by
a dashed line.

Figure 18a clearly shows that the positioning error ||epos|| descends towards 0 either in
the navigation phase or the grasping phase. Notice how, the error decrease is delayed
for the x axis and, in minor measure, for y axis during the initial part of the navigation
phase. This behaviour occurs because the aerial vehicle is avoiding an obstacle (see Figure
14) as its task has higher priority. When the obstacle is avoided, the end-effector pose
tracking task resumes as expected. As previously mentioned, the task control phase of the
mission finishes when the end-effector reaches a certain error with respect to its desired
pose, i.e., ||epos|| < 0.1m and ||eori|| < 0.2rad.

Figure 18b shows the error related with the end-effector attitude, i.e., ||eori||. Notice
that we deactivate on purpose the use of the serial arm during navigation phases, in

60

CHAPTER 4 4.4 Summary

(a) Position (b) Attitude

Figure 18: End-effector pose tracking error during a real robot experiment.

order to leave the large displacements to the aerial platform and the precise movements
to the serial arm during manipulation phases. This behaviour can be identified as the
end-effector orientation errors are not decreased towards 0 during the navigation phase
(left part of 18b) because the platform has not enough DoFs to do it. Instead, the full 6
DoF error of the end-effector is reduced in the manipulation phase as the serial arm plays
a role here with its 6 DoFs.

4.4 Summary

In this chapter, we described a particular real robot application of the method presented
in Chapter 3.

First, we defined the tasks implemented, specially designed considering the type of robot,
i.e., a UAM. More precisely, the tasks include obstacle avoidance with the highest impor-
tance to keep the robot integrity. Then, we avoid the limitis of the robot joints to discard
joint issues related to singularities. We improve the flight behaviour by aligning the arm
CoG with the gravitational vector of the platform, to reduce the torques produced in the
base by its misalignment. Finally, we set our main task to move the arm end-effector
towards a desired pose target.

The first section is followed by an explanation of the experiment set, i.e., the facilities,
equipment used and the procedure followed to proceed with the experiments. Finally,
the chapter ends by showing results of a real robot experiment with plots showing the
viability of the proposed approach and the tasks definitions.

61

Hierarchical task control through Lexicographic SemiDefinite Programming

62

Concluding Remarks

Conclusions

Nowadays, complex robots with high number of DoFs are a reality. Their working spaces
have high dimensionalities, making complex the control of the joints to perform desired
tasks, i.e., to create joint trajectories fulfilling them. In that sense, in this work we tackle
this problem by analizing the trajectory generation peculiarities and presenting a task
control law. Although the main contributions can be generically applied to redundant
robots, we include a particular application to unmanned aerial manipulators to demon-
strate its viability.

This work starts with an accurate review of the existing literature on trajectory gener-
ation algorithms. In order to place the reader to the specific problem, we describe the
formulation of the most relevant methods in detail, giving a solid background and in-
troducing the main contribution of this thesis: a trajectory generation algorithm based
on semi-definite programing. In this background chapter, we start describing the well-
known least squares formulation, we move to a quadratic problem description and finally
to semi-definite programming, with a clear progression for the sake of readibility and
comprehension.

The presented approach, in contrast to most existing methods, is able to handle not
only tasks defined by an equality cost function but also for inequality tasks. It allows
to set a strict hierarchy among all tasks defined in the task stack and to define a task
priority manager, able to directly exchange priorities between tasks online. In the event
that these tasks are expressed in position or velocity domains, we have provided a pro-
cedure to express them and solve the optimal problem in the acceleration domain, thus
producing smooth joint trajectories in position domain. The optimal problem formula-
tion in the main core of the thesis is based on linear matrix inequalities, allowing an
easy-to-understand formulation and the use of fast and dedicated solvers. All presented
formulation developments are accurately explained step by step with simple examples and
proofs, with extended explanations in the appendix sections, including a full example in
Matlab to play with the different concepts.

In the last part of this thesis, we have demonstrated the viability of the proposed approach
with a particular application to unmanned aerial manipulators, describing their particu-
larities and specific tasks. We show the method performance and analize the effect of the

63

Hierarchical task control through Lexicographic SemiDefinite Programming

different blocks (mission phases, tasks, priorities, etc.) through real robot experiments.

All code produced within this work will be made available through the IRI gitlab code
repository for the benefit of the community.

Future Work

In this thesis we have reached the main proposed objectives, however, during its develop-
ment we discovered new research paths that we think they are interesting to investigate.

Altough the presented algorithm solves for the tasks successfully, we have been able to
corroborate some facts regarding its performance during the experiments. The robot
design is highly correlated with the task definitions. When designing the tasks, we have
to consider if the robot DoFs will be available to move the joints and solve them. In other
words, if we set tasks requiring DoFs not available in the robot, they will not be fulfilled.
In this work we carefully designed tasks that can be accomplished within our particular
application, but it would be interesting to define a procedure to study the task spaces in
advance, to determine if our robot will have the correct DoFs.

Furthermore, it is highly important how a task is formulated so the robot behaves as we
expect. For example, the end-effector orientation within the end-effector tracking task
is now computed as a difference of angles. We believe that a better way to express this
error is by computing it through Lie Algebra in the Special Orthogonal Group SO3. We
considered this development out of the thesis scope and it is here avoided for the sake of
simplicity.

Besides, regarding the performance of the algorithm, it would be interesting to implement
changes that could reduce the computation time of a single solver iteration. Works such
as [15] could be of high interest for that aim.

Finally, in this work we focused on the control law and we implemented a simple task
priority manager in the particular application, hence a smarter version of the priority
planner can be designed.

64

References

[1] A. Santamaria-Navarro, P. Grosch, V. Lippiello, J. Sola, and J. Andrade-Cetto, “Un-
calibrated Visual Servo for Unmanned Aerial Manipulation,” IEEE/ASME Transac-
tions on Mechatronics, vol. 22, pp. 1610–1621, Aug. 2017.

[2] V. Lippiello, J. Cacace, A. Santamaria-Navarro, J. Andrade-Cetto, M. A. Trujillo,
Y. R. Esteves, and A. Viguria, “Hybrid Visual Servoing With Hierarchical Task Com-
position for Aerial Manipulation,” IEEE Robotics and Automation Letters, vol. 1,
pp. 259–266, Jan. 2016.

[3] D. E. Whitney, “The Mathematics of Coordinated Control of Prosthetic Arms and
Manipulators,” Journal of Dynamic Systems, Measurement, and Control, vol. 94,
pp. 303–309, Dec. 1972.

[4] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-Priority Based Redundancy
Control of Robot Manipulators,” The International Journal of Robotics Research,
vol. 6, pp. 3–15, June 1987.

[5] Y. Nakamura, Advanced Robotics: Redundancy and Optimization. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1st ed., 1990.

[6] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning
and Control. Springer Science & Business Media, Aug. 2010.

[7] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin, Heidelberg:
Springer-Verlag, 2007.

[8] A. Liegeois, “Automatic Supervisory Control of the Configuration and Behavior of
Multibody Mechanisms,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 7, pp. 868–871, Dec. 1977.

[9] O. Kanoun, F. Lamiraux, and P. B. Wieber, “Kinematic Control of Redundant Ma-
nipulators: Generalizing the Task-Priority Framework to Inequality Task,” IEEE
Transactions on Robotics, vol. 27, pp. 785–792, Aug. 2011.

[10] E. Lutscher and G. Cheng, “Hierarchical inequality task specification for indirect
force controlled robots using quadratic programming,” in 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, (Chicago, IL, USA), pp. 4722–
4727, Sept. 2014.

65

Hierarchical task control through Lexicographic SemiDefinite Programming

[11] C. Ocampo-Martinez, A. Ingimundarson, V. Puig, and J. Quevedo, “Objective Prior-
itization Using Lexicographic Minimizers for MPC of Sewer Networks,” IEEE Trans-
actions on Control Systems Technology, vol. 16, pp. 113–121, Jan. 2008.

[12] S. Siniscalchi-Minna, F. D. Bianchi, and C. Ocampo-Martinez, “Predictive control
of wind farms based on lexicographic minimizers for power reserve maximization,”
in 2018 Annual American Control Conference (ACC), pp. 701–706, June 2018.

[13] A. Escande, N. Mansard, and P. B. Wieber, “Fast resolution of hierarchized inverse
kinematics with inequality constraints,” in 2010 IEEE International Conference on
Robotics and Automation, (Anchorage, AK, USA), pp. 3733–3738, May 2010.

[14] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “qpOASES: a para-
metric active-set algorithm for quadratic programming,” Mathematical Programming
Computation, vol. 6, pp. 327–363, Dec. 2014.

[15] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic program-
ming: Fast online humanoid-robot motion generation,” The International Journal
of Robotics Research, vol. 33, pp. 1006–1028, June 2014.

[16] R. Rossi, A. Santamaria-Navarro, J. Andrade-Cetto, and P. Rocco, “Trajectory Gen-
eration for Unmanned Aerial Manipulators Through Quadratic Programming,” IEEE
Robotics and Automation Letters, vol. 2, pp. 389–396, Apr. 2017.

[17] A. De Luca, G. Oriolo, and B. Siciliano, “Robot redundancy resolution at the accel-
eration level,” Laboratory Robotics and Automation, vol. 4, pp. 97–106, Jan. 1992.

[18] A. Santamaria-Navarro, V. Lippiello, and J. Andrade-Cetto, “Task priority control
for aerial manipulation,” in 2014 IEEE International Symposium on Safety, Security,
and Rescue Robotics (2014), (Hokkaido, Japan), pp. 1–6, Oct. 2014.

[19] F. Caccavale, S. Chiaverini, and B. Siciliano, “Second-order kinematic control of
robot manipulators with Jacobian damped least-squares inverse: theory and experi-
ments,” IEEE/ASME Transactions on Mechatronics, vol. 2, pp. 188–194, Sept. 1997.

[20] G. Antonelli, “Stability Analysis for Prioritized Closed-Loop Inverse Kinematic Al-
gorithms for Redundant Robotic Systems,” IEEE Transactions on Robotics, vol. 25,
pp. 985–994, Oct. 2009.

[21] P. Falco and C. Natale, “On the Stability of Closed-Loop Inverse Kinematics Algo-
rithms for Redundant Robots,” IEEE Transactions on Robotics, vol. 27, pp. 780–784,
Aug. 2011.

[22] F. Flacco and A. De Luca, “Discrete-time redundancy resolution at the velocity
level with acceleration/torque optimization properties,” Robotics and Autonomous
Systems, vol. 70, pp. 191–201, Aug. 2015.

66

REFERENCES

[23] J. J. Craig, Introduction to Robotics: Mechanics and Control. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2nd ed., 1989.

[24] B. Siciliano and J. J. E. Slotine, “A general framework for managing multiple tasks
in highly redundant robotic systems,” in , Fifth International Conference on Ad-
vanced Robotics, 1991. ’Robots in Unstructured Environments’, 91 ICAR, (Pisa,
Italy), pp. 1211–1216 vol.2, June 1991.

[25] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings, “Suboptimal model predic-
tive control (feasibility implies stability),” IEEE Transactions on Automatic Control,
vol. 44, pp. 648–654, Mar. 1999.

[26] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control, vol. 3.
Wiley New York, 2006.

[27] M. Yamashita, K. Fujisawa, K. Nakata, M. Nakata, M. Fukuda, K. Kobayashi, and
K. Goto, A high-performance software package for semidefinite programs: SDPA 7.
2010.

[28] J. Marti-Saumell, “SDPTrajectoryGeneration: MATLAB code to hierarchically gen-
erate trajectories using semidefinite programming.,” Aug. 2018. original-date: 2018-
07-16T10:51:34Z.

[29] P. Corke, Robotics, Vision and Control: Fundamental Algorithms In MATLAB R©
Second, Completely Revised, Extended And Updated Edition. Springer Tracts in Ad-
vanced Robotics, Springer International Publishing, 2 ed., 2017.

67

Hierarchical task control through Lexicographic SemiDefinite Programming

68

A. Theoretical notes

In the development of the thesis formulation there are theoretical concepts that are not
directly related with the field of trajectory generation for redundant robots. However, we
include the most important ones in this section for the sake of completeness.

The notation used in the sections of this appendix is not directly the one used in the
thesis development, but it is a simplified notation to ease the reading.

A.1 Slack Variables

Typically, a slack variable is used in optimization problems to convert from an inequality
to an equality constraint. More precisely, it is used in linear programming (LP) problems.

The standard LP is a minimization of a problem with the following form:

min
x

. f>x

s.t. Cx = d
x � 0 ,

(107)

where the cost function is a linear expression with f ∈ Rn a coefficient column vector
multiplying the decision variable x ∈ Rn, being n the dimension of our ambient space. The
LP problem should be solved considering the equality constraints expressed as Cx = d,
with C ∈ Rm×n and d ∈ Rm. The number of columns in the matrix C, represented by
the variable m, indicates the number of equality constraints present in the LP problem.
Therefore, a single equality constraint placed at the i-th row of C, can be expressed as
cix = di.

According to (107), in the LP standard-form all constraints must be expressed as equality
constraints and all variables must be positively defined. However, there could be the case
where we want to add an inequality constraint such as ax−b ≤ 0. In order to express this
as an equality constraint we must introduce a slack variable w and modify the constraint
as:

ax− b+ w = 0 , (108)

with w ≥ 0. In the case of the inequality constraint (108) is active (ax − b = 0), the
slack variable w will be 0. On the other hand, if the constraint is inactive, the slack

A1

Hierarchical task control through Lexicographic SemiDefinite Programming

variable w will take the needed value in order to make (108) hold. The resulting LP
problem including the inequality constraint expressed as an equality constraint would be
as follows:

min
x̃

. f>x̃

s.t. C̃x̃ = d̃
x̃ � 0 .

(109)

Being x̃ = [x, w]> the augmented decision variable including the slack variable w. Simi-

larly, C̃ and d̃ have been augmented as follows:

C̃ =

[
C 0
a 1

]
, d̃ =

[
d
b

]
. (110)

In the event that we would like to introduce more than one inequality constraint we would
follow a similar process to the one recently described. First, we could express them with
the following matrix-form expression: Ax− b � 0. In order to include all the inequality
constraints in the standard LP problem, we should consider one slack variable for each
inequality, i.e., a vector of slack variables w with the same length as b. Finally, in (110),

the a in C̃ would be the matrix A, the 1 would be an identity matrix and the b in d̃
would be the vector b.

When slack variables are introduced in a trajectory generation algorithm in order to
deal with inequality tasks (see section 2.4.2), we are not trying to express an inequality
constraint as an equality one. Instead, we are guaranteeing a solution even though some
constraints can not be fulfilled.

In the following, we will try to use a simple 1-variable numerical example to show the
importance of adding slack variables into the algorithm.

Let us assume that we have 4 tasks with 2 hierarchy levels (2 priorities). For example the
following ones:

x− 3 ≤ 0 (priority 1) ,
0.5x− 2 = 0 (priority 2) ,
−x+ 5 ≤ 0 (priority 2) ,
x− 3.5 ≤ 0 (priority 2) .

(111)

Solving for the first priority is straightforward. Since it is an inequality task, the opti-
mization problem ends-up being a feasibility problem resulting with a feasible set x ≤ 3
(shown in blue at Figure 19).

Then, we want to solve for 3 tasks with priority 2: 1 equality task and 2 inequalities.
Inequality constraints for the second priority are represented in Figure 20. We can see

A2

APPENDIX - A A.1 Slack Variables

x− 3 ≤ 0

Figure 19: Feasibility region for the first task described in (111).

−x+ 5 ≤ 0x− 3.5 ≤ 0

Figure 20: Feasibility region for inequality tasks in the second priority level.

that there is no region where the two tasks are fulfilled. This fact could lead to an
unfeasibility issues unless we consider slack variables. Besides, we also have to consider
the task with priority 1 as a hard constraint.

Having said that, we may state a QP problem considering two slack variables, each one
related with the respective constraints shown at Figure 20: w1 and w2. Therefore, the
decision variable should be augmented accordingly: x = [x,w1, w2]

>. For the sake of
clarity, we want now to state the cost function, which should minimize the slack variables
as well as the equality task. Both requirements can be expressed as the following quadratic
function:

min
x,w1,w2

. ||0.5x− 2||22 + ||w||22 . (112)

Now, we are in disposition of stating a final QP problem with x as the decision variable.
In order to do so we may expand the cost function in (112). We should also consider the
two constraints with priority 2 and the hard constraint with priority 1 as follows:

min
x

. 1
2
x>Hx+ f>x

s.t. Ax− b � 0
, (113)

A3

Hierarchical task control through Lexicographic SemiDefinite Programming

x
−

3.
5
≤

0

x
−

3
≤

0

−x+ 5 ≤ 0
||0
.5
x
− 2||

2
2

Figure 21: Representation for the tasks in (111). Optimal x marked with a red dot.

where

H =

2 · 0.52 0 0
0 1 0
0 0 1

 ,

f> = [2 · 0.5 · 2, 0, 0] ,

A =

 1 0 0
−1 −1 0
1 0 −1

 ,

b> = [−3, 5,−3.5] .

(114)

Notice that in the matrix A the first row, related with the inequality task with priority
1, the columns related with the slack variables are 0 (it is a hard constraint). Now, the
cost function aims at minimizing the equality task and the slack variables.

A graphical representation of (113) can be seen in Figure 21. Constraints are indicated
with shaded colors and their corresponding equations. The convex curve is the quadratic
function related to the equality task ||0.5x− 2 = 0||22. Recall that constraints of priority
2 can be violated with the drawback of increasing the cost-function value.

The solution for the problem in (113) is x∗ = [3, 2, 0]> (marked with a red dot in Figure
21). The solution must fulfill the constraint x − 3 ≤ 0 because it is a hard constraint.
We know that the constraint (−x + 5 ≤ 0) will be violated (since its intersection with
the hard constraint x− 3 ≤ 0 is a void set), i.e., w1 > 0. Thus, the optimal solution will
be a compromise between minimizing the equality task and the slack variable w1. In the
case of the tasks defined in (111), x will be placed at the rightest possible position, i.e., ,
x = 3.

In the given example with tasks defined in (111), the best solution for the second priority
is reached keeping w1 = 0. However, it could happen that the cost function minimum is

A4

APPENDIX - A A.2 Epigraph form

||0
.5
x
− 2||

2
2

−x+ 5 ≤ 0

x
≤

0

x
−

3
≤

0
Figure 22: Representation of the QP problem when the inequality task x − 3.5 ≤ 0 has

been replaced by x ≤ 0. Optimal x marked with a red dot.

reached violating both inequality tasks and, therefore, making w1 > 0 and w2 > 0. This
situation can be seen considering the constraint x ≤ 0 instead of x− 3.5 ≤ 0 (see Figure
22). Notice that the stated change modifies the optimal solution to x∗ = [2.8, 2.2, 2.8]>

where both inequality constraints are violated.

A.2 Epigraph form

The epigraph of a function f : Rn → R is the set of points lying above its graph.

Mathematically, this set is expressed as

epi(f) = {(x, γ)|x ∈ domf, f(x) < γ} ⊆ Rn+1 , (115)

where domf states for domain of the function f . Notice how the epigraph is a set with
one dimension more than the dimension of the variable x. This is formed by the values
of x ∈ Rn belonging to the domain of f adding an extra dimension with those values of
a variable γ that are bigger than f(x).

Figure 23 shows a graphical representation of the epigraph of a sample function. A
function is said to be convex if its epigraph is a convex set.

Some of the typical optimization problems assume linear objective functions. We can use
the epigraph definition to express any optimization problem as a problem with a linear

A5

Hierarchical task control through Lexicographic SemiDefinite Programming

f(x)

x

epi(f)

Figure 23: Epigraph of a sample function f(x), shown as the shaded orange area lower-

bounded by f(x).

objective function. Therefore, min.f(x) is equivalent to

min
x,γ

. γ

s.t. f(x)− γ ≤ 0
. (116)

where x and γ are now the optimization variables. This problem formulation is known as
the epigraph form.

A.3 Schur Complement

The Schur complement is a useful techinique to convert nonlinear constraints into LMI
constraints. Let us assume we have a matrix X that can be decomposed into 4 matrices
such as

X =

[
A B>

B C

]
, (117)

being A invertible. Then, the matrix S , C −B>A−1B is the Schur complement of X
and has the following property

• If A � 0, then X � 0 if and only if S � 0.

Where � and � stand for positive definite and positive semi-definite respectively.

Schur complement is of interest in this work since, together with the epigraph form, allow
us to express a quadratic function as an LMI.

A6

APPENDIX - A A.3 Schur Complement

In this work, when we want to solve an equality task, we solve a problem expressed as
min
x

.||Cx− d||2. Using the epigraph form we can express it as

min
x,γ

. γ

s.t. ||Cx− d||2 − γ ≤ 0
. (118)

Now, we can now modify the constraint ||Cx − d||2 − γ ≤ 0, assigning S to be S =
γ − (Cx − d)>(Cx − d) ≥ 0. Notice how here S is an scalar and, therefore, we can
change the positive semidefinite symbol ”�” by ”≥”. According to Schur complement,
the constraint S ≥ 0 will only hold if[

I (Cx− d)>

(Cx− d) γ

]
� 0 , (119)

which is an LMI and can be used as a constraint in the SDP problem.

A7

Hierarchical task control through Lexicographic SemiDefinite Programming

A8

B. 4-link planar manipulator

When researching and implementing new algorithms in robotics, it is crucial to provide
a framework that permits to test the on-going developments in a fast and easy manner.
This is the reason behind the creation of the work presented in this appendix. We have
developed a Matlab based environment that allows you to test the Hierarchical task con-
trol through Lexicographic SDP presented in this work. It uses a simple 4-link planar
manipulator to gain insight into tasks and how the hierarchy among them affects the
general behavior of a robot.

The code has been made public in the repository at [28]. In order to simulate the kine-
matics of a planar manipulator it uses the Peter Corke Robotics Toolbox [29].

The aim of this appendix it is neither to explain the algorithm (detailed at Chapter 3) nor
to detail the structure of the code, but to let know the reader its existence and possible
uses. The algorithm generates a joint trajectory considering the following tasks: position
tracking task, orientation tracking task, joint limits task as well as an obstacle avoidance
task. We used the Matlab wrapper of the dedicated C++ solver used in the experiments
with the real robot [27]. The code also contains the task plot functions that ease the
comprehension of every task deployment. Implementing this kind of algorithm in such
a simple robot can help in the comprehension of the tasks as well as to detect possible
issues to be improved.

Even though it is in an early development stage, we tried to make a modular code so
it can be useful for anyone who aims to broaden its functionalities. It offers a simple
way to change task priorities, something useful to understand how hierarchical trajectory
generator algorithms work. Number of links of the planar manipulator as well as dimension
of every link can also be changed easily. Besides, tasks can be added easily typing the
essential code. The last feature that is worth to mention is a desired path generator
that is used along with the position and orientation tracking task. It generates uniformly
accelerated trajectories between n given points.

As a matter of example, we show in Figures 24 and 25 a set of images about two different
simulations performed with the Matlab code. In both simulations the same tasks have
been set. We have considered a position tracking task. In this case we try to follow a
straight line with the end-effector (the green line in Figures 24 and 25). Besides, we want
to follow this line keeping the fourth link aligned with the green line (orientation tracking
task). As it can be seen in the representations, in the middle of the trajectory there is an

B1

Hierarchical task control through Lexicographic SemiDefinite Programming

Obs. Avo. JL Pos. Pos. Track. Ori. Track.

Simulation 1 1 1 2 3

Simulation 2 1 1 3 2

Table 3: Priorities set depending on the simulations shown at Figures 24 and 25

(a) Giving up orientation tracking task. (b) Giving up orientation and position

tracking task.

Figure 24: Simulation 1: 4-link planar manipulator with the position tracking task having

higher priority than the orientation tracking task.

obstacle that should be avoided using an obstacle avoidance task. Last, we have also set
a joint limits task. The difference between simulations are the priorities of the orientation
tracking task and the position tracking task. These priorities are shown at Table 3.

As said before, this kind of implementations can be of use to check the usability of the
algorithms developed. This can be used in order to get a less painful implementation
in low-level programming languages for real robots. In Figure 24, the position tracking
task has a higher priority than the orientation task. We can see that from the beginning
(Figure 24a), the algorithm gives up the lowest priority task (orientation) due to the
obstacle avoidance task. Instead, the position tracking task is kept. However, when the
end-effector encounters the obstacle (Figure 24b), the position tracking task is also given
up.

B2

APPENDIX - B

(a) Giving up position tracking task. (b) Accomplishing with orientation and po-

sition tracking task.

Figure 25: Simulation 2: 4-link planar manipulator with the orientation tracking task

having higher priority than the position tracking task.

Something different happens with the Simulation 2, shown at Figure 25. Here, the ori-
entation can be kept during the whole trajectory sacrificing the position tracking task.
This, can only be accomplished at the end of the trajectory (Figure 25b).

B3

Hierarchical task control through Lexicographic SemiDefinite Programming

B4

	Abstract
	Acknowledgements
	Acronyms
	List of Figures
	Introduction
	Motivation
	Objectives
	Notation
	Outline
	Background
	State of the art
	Redundancy concepts
	Generic task formulation
	Task Jacobian

	Task resolution
	Traditional least squares approach
	Quadratic programming approach

	Closed-loop inverse kinematics
	Task stability
	Task expression in the acceleration domain
	Discrete implementation

	Summary

	Hierarchical task control through lexicographic SDP
	Task resolution through semidefinite programming
	Hierarchical task control through lexicographic SDP
	Summary

	Application to UAMs
	UAM tasks
	Obstacle avoidance
	Joint limits
	Pose tracking
	Center of gravity alignment
	Acceleration minimization

	Experiment setup
	Robot description - Kinton UAM
	Priority manager

	Experiments results
	Summary

	Concluding Remarks
	References
	Theoretical notes
	Slack Variables
	Epigraph form
	Schur Complement
	4-link planar manipulator

