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Abstract. The main objective of this paper is to present a controller design based on the K-means clustering
theory. The controller is realized in such way that when the plant output is located outside of the designed
clustering set, the controller forces it to be in it. Moreover, and according to our real experiment applied
to stabilize an unstable integrator plant, our controller approach design is also robust against un-vanishing
perturbations and nonlinearity effects on the overall closed-loop system such as saturation, slew-rate limit, and
limit bandwidth frequency operation.

1 Introduction

Machine learning is the science to attain a computer to
continuously learn by itself from (time-varying) data, and
also named computer automatic learning based on data
analysis [1]. Nowadays, machine learning is a huge field
with many disciplines. Among them is the data clustering
technique. Data clustering is the task of grouping a set of
data in such a way that they share some similarities [2, 3].
Hence, while a computer is realizing a data clustering,
the machine is continuously learning important features
from the reading data and it may be performed on real
time operation. For instance, in a control scheme, the
clustering data may be employed as an efficient technique
to control a system due to data may be used to learn
how to properly navigate a system to fulfill a given
control objective. Hence, and due to automatic control
of systems is a fundamental key in many important
engineering innovations [4], and from the academic point
of view, it results interesting to propose a control design
based on data analysis as an application of a discipline
of the machine learning theory like the clustering theory is.

Therefore, the main objective of this work is to offer
a control design based on the clustering data theory
and by also proving the required stability-proof of the
obtained closed-loop system. Moreover, to support our
main contribution, a real experiment by using analog
electronic is designed carefully. This experiment is
armed by following the control regulation objective to the
equilibrium point of the closed-loop system and applied
to an open-loop integrator plant, which is in fact an
unstable system. According to the experimental results,
the proposed controller is also robust against external
non-vanish perturbations.
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The rest of this document is structured as follows. In
Section 2 we present the knowledge base of the K-means
clustering theory. Then, we propose a sub-optimal solu-
tion to its objective statement. In Section 3 we develop
our control design by invoking the result manifested in
Section 2. Section 4 presents our experiment results
carefully designed to support our main contribution.
Finally, the conclusions are written in Section 5.

2 K-means clustering theory: a review

Given a data set X = {x1, x2, . . . , xN} of N random D-
dimensional observations, the K-means clustering objec-
tive is to realize a partition of the data set into K clus-
ters. Hence, a cluster is a set of data points whose inter-
point distances are small in comparison to the distances
to points outside of the related cluster. Therefore, being
k = 1, 2, . . . ,K, the K-means clustering objective can be
also formulated as follows. Given the objective function
[5]:

J(r, µ) =
N∑
i

K∑
k

rik ||xi − µk ||22, (1)

where µk is a prototype associated to the kth cluster,
rik ∈ {0, 1} is a binary indicator that describes which of
the K cluster a data point xi is assigned to. So, if a data
point xi is assigned to the cluster k, then rik = 1, otherwise
rik = 0 for j � k, the called 1-of-K coding scheme. Then,
the K-means clustering objective consists to minimize the
cost function (1) by finding appropriate values for {rik}
and {µk}.

Usually, the above optimization problem can be realized
by following an iteration procedure. But, sometimes, it
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can be solved by giving a closed form solution [5]. In
other words, we have the following solution [5]:

rik =

{
1, if k = arg min j||xi − µ j||2
0, otherwise , (2)

and

µk =

∑
i rik xi∑

i rik
. (3)

In the special case when K = N = 1, we may infer the next
sub-optimal solution to our optimization objective:

r =
{

1, if ||x − µ||2 < β
0, otherwise , (4)

and

µ = rx, (5)

where β may be a given constant.

3 A proportional controller design based
on K-means clustering theory

In order to formalize a controller design based on the basic
clustering theory, let us consider the next SISO-system to
be controlled:

ẋ = Ax + Bu; x ∈ Rn; u, y ∈ R,

y = Cx, (6)

where A, B, and C are matrices on theirs corresponding di-
mensions. Then, based on the above clustering theory for
the stated special case, we propose the following controller
design:

u = g1y + g2r, (7)

where g1 and g2 are the controller gains, and by redefining
r as follows:

r =
{

1, if |y| < β
−1, otherwise . (8)

By combining equations (7) and (8), we arrive to the fol-
lowing compact expression to our controller approach:

u = g1y + g2sign(β − |y|), (9)

where sign(·) represents the signum function. Next is our
main result.

Theorem1.- Given g1 such that (A + g1BC) is a Hurwitz
matrix, and g2 ∈ R, then the closed-loop system (6) and
(9) is BIBO-stable.

Proof.- The closed-loop system (6) and (9) can be straight-
forwardly represented as:

ẋ = (A + g1BC)x + g2Bsign(β − |y|), (10)

and because of the Hurwitz condition to (A + g1BC)
and the boundedness of the second term in (10), BIBO-
stability of the closed-loop system (10) is then concluded.

Remark 1.- Obviously, a state-observer such as the
Luenberger one can be also invoked in our control design.

Remark 2.- A special case deserves to highlight. This
corresponds to the scenario when our plant to be con-
trolled is an integrator system. This special scenario is
addressed in the experimental validation section of our
approach.

Remark 3.- Due to we are dealing with the regulation con-
trol objective of the origin of the closed-loop system, we
set the cluster mass center at this location; that is, we set
µ = 0.

4 Experimental validation

To begin with, consider a SISO-integrator plant (an unsta-
ble system) stated as:

ẋ = −au,

y = x, (11)

where a is the system gain. Because of the studied system,
let us employ the next particular controller realized from
(9):

u = g1sign(β − |y|). (12)

To conclude stability of the closed-loop system, this
yields:

ẋ = −ag1sign(β − |y|), (13)

Surprisingly, if β = 0 we arrive to a well-known dynamic
system which is asymptotically stable [6].

In order to describe our system based on analog elec-
tronic, the closed-loop model, the plant process and the
proposed controller, is shown in Figure 1. Therefore, our
overall system realization is granted in Figure 2. This
electronic system was carried out by utilizing operational
amplifiers in LM358N integrated circuits and supplied by
±12 volts. The value of β is the conduction voltage of
the related diode, about 0.7 volts. Moreover, to simulate
an external perturbation, we use Leds polarization such
that the induced noisy values belong to the set {−0.7, 0.7}
approximately by intensionally selecting the supplied
voltage 12volts or -12volts (see Figure 2). Observe that
because of a constant perturbation, the plant output will
saturate (integral action) to its related voltage saturation.
Finally, we activated and deactivate the control action
by manipulating the switch SW1. Lately, and due to the
operational amplifiers, the plant and controller have the
main following nonlinearities [7]: slew-rate behavior,
limit bandwidth frequency operation, and saturation effect.
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Figure 1. Block diagram of the proposed controller.

Figure 2. Analog electronic realization of our plant and con-
troller.

Figure 3. A photo of the experimental platform.

Figure 3 shows a photograph of the overall closed-loop
system. Finally, Figure 4 gives the experimental results.
This picture depicts the moment when the controller
is activated and deactivated. In each time, the external
perturbation was commanded to 0.7 volts or -0.7 volts
producing plant output voltage saturation, negative or pos-
itive, according to its related value and clearly observed
on the experiment results. The related perturbation was
kept on all the corresponding time when the controller
is actuated, and commuted when the controller was
deactivated. This was done manually. Finally, from our
experiment, the controller action is able to stabilize the
system around the closed-loop equilibrium point even

when a non-vanishing perturbation is affecting our system.

5 Conclusions

In this paper, we have developed a controller based on
K-means clustering theory. In our philosophy design,
the controller continuously observes the plant output and
when the data measurement is located outside of the
desired cluster size located around the closed-loop system
equilibrium point, it is forced to be in it. Moreover, the
obtained controller is robust against un-vanishing pertur-
bation and nonlinearity effects on the overall closed-loop
system such as saturation, slew-rate limit, limit bandwidth
frequency operation, and so on. Finally, and from the
academic point of view, the employed base to reach our
controller approach seems interesting.
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