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Abstract  

Mixed-model-assembly-lines (MMAL) are widely used in modern industries. There are 
two principal kinds of industrial organization patterns, which called the United States 
Pattern and the Japan Patter. The Japan (Toyota) Pattern will be studied in this article 
and the objective of this pattern is minimizing the stoppage and the idle time. Genetic 
algorithm is been used for solving the problem and more than 5000 examples have been 
designed. The results will shown the better parameters for the assembly line and the 
genetic algorithm. 
  
 
Keywords: Mixed-model-assembly-lines (MMAL), the Japan (Toyota) Pattern,  
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1. Introduction  
The concept of Autonomation in the Toyota production system gives “autonomy”, or 
responsibility, to the workers, allowing them to stop the conveyor whenever they fail to 
complete the operations within their work stations in a mixed-model-assembly-line. It 
supports JIT by never allowing defective units from the preceding process to flow into 
and disrupt a subsequent process [Zhao, X. B et al. 2000]. This is quite different from 
the industrial organization pattern of the USA, which employs utility workers to 
complete operations left undone by the primary workers [Tsai, L.1995]. Consequently, 
in the Toyota production system, the conveyor stoppage becomes a crucial criterion in 
the sequencing problems for these mixed-model assembly lines. In the paper of Zhao, 
X. B. et al [1996, 1999], they consider the goal of minimizing total conveyor stoppage 
time, but not the walking times of the workers. The paper of Zhao, X. B. et al [2000] 
considers both the goal of minimizing a total conveyor stoppage time and the walking 
times of the workers and a heuristic algorithm is presented, but this algorithm is not 
efficient enough for large range problems.  

Since conveyor stoppages are frequent in many mixed model assembly lines, the goal of 
minimizing the total conveyor stoppage time will become more and more important. A 
better planned sequence for mixed models to be assembled on the conveyor can help to 

 

* This research is supposed by the project of investigation of the Ministry of Science          
and Technology DPI2004 -03472 ¨Design and Equivalent of Assembly Line with 
Real Condition ¨, Spain. 
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improve the performance of the assembly line. With the consideration of the walking 
times of the workers, this paper uses the Genetic Algorithm for solving the sequencing 
problem.  
 
The objective of this paper is to minimize the stoppage time of the assembly line 
whenever the operators can’t finish their work within their stations. The mathematical 

formula is Min ST =Min
1 1

K M
k
n

k n
st

= =
∑∑ , where ST is the total stoppage time of the conveyor, 

K and M are the number of stations and the work-piece models respectively; k
nt  is the 

operation time of worker k for model n.  
 
According to the classification of assembly line [Niu, H.  et al 2005],  the Japan 
(Toyota) Pattern assembly line problem discussed in this paper can be classified as 
follows:  

 
About the products:  
 
In this paper, the type of the products corresponds to the mixed-model-assembly-line; 
the launching interval discipline is fixed rate; and the position of the products is fixed. 
 
About the assembly line: 
 
In this paper, the layout of time is serial; the line is paced; the type of the station in this 
paper is left-side closed and right side open (except the last one); the length of the line is 
deterministic; this pattern is the Japan (Toyota) Pattern without consideration of the 
set-up time.  
 
About the operator: 
 
In this paper, the velocity of the operator is considered and can vary from operator to 
operator; idle time exists, but there is no utility time; the operation time is deterministic; 
the operator schedule is later start and the operator only works at one station.  
 
About the objectives: 
 
The objective of the pattern is to minimize the idle time.  
 
The above considerations can be seen in Fig. 1. 
 
2. Conditions of the Assembly Line  
 
The condition of the assembly is: the assembly line moves from left to right, every 
station has two boundaries, and the two sides of each station are closed.  
        
We also have the following conditions:  
 
The assembly line consists of K stations, and the line moves with velocity of Vc . 
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There are M kinds of different models which are manufactured from the first station to 
the last on this assembly line.  
 
There is only one operator at every station.  
 
Whenever one operator can’t finish his work within his station, he stops the assembly 
line and continues to work on this work-piece until he finishes it, and then he restarts 
the assembly line. 
 
The cycle time or the launch interval time tc is less than the maximum assembly time of 
the work-piece of the conveyor.  
 
When one operator finishes his work-piece within his workstation, he walks upstream to 
the left boundary of his station with the velocity of Vo. 
 

 
 
           Fig 1 Japan (Toyota) Pattern Assembly Line Problem Classification  
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3. Preliminaries and Notation 
 
For discussing the Japan (Toyota) Pattern, the following notations are used: 
 

k
mt            Operation time by worker k for model m (1,…, M) 

 
( )nπ       The nth unit in sequence π = {π (1),…, π (n)} 

 
Lk            Length of work station k 
 

k
np          Starting position from the upstream boundary of work station k for the nth unit  

               in the sequence 
 

k
nf           Completing position from the upstream boundary of work station k for the nth  

               unit in the sequence 
 

k
nst          Assembly line stoppage time caused by worker k for the nth units in the  

               sequence. 
 

k
nit           Idle time of worker k reaching the upstream boundary of work station after  

               completing the operation for the nth unit in the sequence.  
 
t_ k

np        Time the worker k begins the nth unit in the sequence. 
 
t_ k

nf        Time the worker k finishes the nth unit in the sequence. 
 
t_ k

nfw      Time the operator meets the (n+1)th when he has finished the nth  unit or    the  
  time when he arrives at the left bounder of the station k even though the    
(n+1)th  
  hasn’t yet arrived.  
 
S             Conveyor stoppage time. 
 
tfs            Time when the conveyor stops. 
 

k
labsf         Right boundary position of station k, based on the left boundary of the first   

               station.  
 

n
sabsf        Position of the nth unit from the left boundary of the first station when the  

               conveyor is stopped. 
 

k
labsL :    Right side position of station k from the left boundary of the first station.  

 
n
sabsL : Position of the nth unit from the left boundary of the first station when the   

               conveyor stoppage happens. 
 



 6

ST(π )     Total conveyor stoppage time of the sequence π . 
 
IT(π )     Total idle time of  sequence of π . 
 
For all the notations above, K, tc, Vc, Vo, M, Lk,  ( )nπ , k

nt  are the input variables.  
 
4.  Algorithm and Process of the Japan (Toyota) Pattern 
 
Fig. 2 shows an example of the movement of workers on a conveyor. The light lines 
with arrowheads represent the flows of the work-piece, while the heavy and dotted lines 
with arrowheads represent the movement of the workers. In the figure, the Vctc means 
the flowing distance of every work-piece on the conveyor in one cycle, which is the 
launch interval distance. In this example, conveyor stoppage occurs with a time interval 
of length S when the second worker is operating for the 9th work-piece, and the third 
worker becomes idle upon reaching the upstream boundary of the work station after 
completing the operations for the 3rd work-piece.  
 
4.1 Calculated Equation (one part of the equations are adopted from Zhao, X. B. et al 
[2000]) 
 

 
                      
 Fig. 2. One Conveyor and Worker Movement Diagram (Adopted from Zhao, X. B. et al   
               [2000]) 
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Before the first conveyor stoppage occurs, the assembly line moves according to the 
following equations:  
 
     k

nf  = k
np + Vc ⋅ ( )

k
ntπ                                                                                                    (1) 

 
Where ( )

k
ntπ  denotes the operation time by worker k for the nth unit in the sequenceπ .  

 
         k

nst = 0                                                                                                                    (2) 
 

         k
nit = ( 1 1

c kv v
+ ) * max (dk- k

nf , 0)                                                                           (3) 

 
         1 max( ,0)k k

n n kp f d+ = −                                                                                           (4) 
 
          t_ k

nf   = t_ k
np   + ( )

k
ntπ                                                                                            (5) 

 
On the condition that idle time exists, that is k

nf - dk < 0, the equations of the assembly 
line are as follows: 
 

         _ _
k

k k n
n n

k

ft fw t f
v

= +                                                                                          (6) 

 
         1_ _k k k

n n nt p t fw it+ = +                                                                                          (7) 
 
On the condition that idle time does not exist, that is 0k

n kf d− ≥ , the equations are as 
follows:  
 

         _ _k k k
n n

k

dt fw t f
v

= +                                                                     (8) 

  
         1_ _k k

n nt p t fw+ =                                                                                           (9) 
 
For the equations above, dk is the walking distance of the worker k from a completing 
position to the next starting position when neither idle time nor conveyor stoppage 
occurs.   
 
The cycle time is tc, and the conveyor speed Vc, so the distance between the two work-
pieces is tc ⋅Vc . If the worker’s upstream speed is Vo, the time required to access the 

approaching work-piece is k

k

d
v

. Similarly, the time for a work-piece moving downstream 

to meet the operator is c c k

c

t v d
v

⋅ − . Therefore we have k

k

d
v

= c c k

c

t v d
v

⋅ −  or c k
k c

c k

v vd t
v v

⋅
=

+
.  
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4.2 The station at where the worker stops the assembly line 
 
Suppose that the first conveyor stoppage is caused by worker l when he is operating on 
the nth unit, that is ( )

l l l
n c np v t Lπ+ > . When the whole conveyor is stopped, the unit flow 

and the worker movement diagram is influenced. It is assumed that the conveyor 
stoppage lasts for a time interval of length S. For k=l, we have the following equations: 
 
         k k

nf L=                                                                                                     (10) 
      

         ( )( )
1k k k k

n n c n
c

st p v t L S
v π= + ⋅ − =                                                       (11)  

   
         0k

nit =                                                           (12)  
   
         1

k k
n kp L d+ = −                                                          (13) 

 
    
         _ k

n fst f t S= +                                                                     (14) 
    

         _ _k k k
n n

k

dt fw t f
v

= +                                                         (15) 

 
         1_ _k k

n nt p t fw+ =                                                                                         (16) 
                
 
4.3 The Stations which are Not Stopped  
 
For K≠ l, the starting position, the completing position and the idle time of worker k are 
determined accordingly for the following cases of worker k at the moment of the 
conveyor stoppage.   
 
4.3.1 The Operator is in Walking State 
 
In the following two cases the worker is walking upstream to the left boundary of his 
station after finishing the work-piece. 
 
Case 1: 
 
Worker k is in walking state after finishing the operations for the n1th unit and the 
(n1+1) th unit hasn’t yet entered the work station. In our example there are two cases of 
this happening. Case 1 corresponds to the state at work station 7 in Fig. 2.    
 
•  Case 1a:  
 
Worker k has to wait for the (n1+1) th unit at the left boundary of his station.  
The equations are: 
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         ( )11
1 1 ·k k

n k n
c k

it d f S
v v
 

= + − + 
 

                       (17) 

 
         

1 1 0k
np + =                                     (18) 

 

         1

1 1
_ _

k
nk k

n n
k

f
t fw t f

v
= +                                              (19) 

 
         

1 1 11_ _k k k
n n nt p t fw it+ = +                                                                                         (20) 

 
•  Case 1b:  
 
Worker k does not need to wait for the (n1+1) th unit at the left boundary of his station.  
The equations are: 
 
         

1
0k

nit =                                                (21) 

         ( ) ( ){ }4

1 1 1

11 1
1

1 _ nk k k k k
n c k n fs c labs n k sabs labs

k c

p v v t f t S v L f v L L
v v

+− −
+ = ⋅ ⋅ − − + ⋅ + + ⋅ −

+
       (22) 

         ( ){ }1 1 4

1 11_ _k k k n k
n v n c fs labs sabs n

k c

t fw v t f v t s L L f
v v

− += + ⋅ + + − +
+

                             (23)                     

 
         

1 11_ _k k
n nt p t fw+ =                                                          (24) 

 
The equation (22) and (23) can be deduced from the following methods and diagrams:  
 

 
 
 
 
 
 
 

  
 
 
 
 

Fig 3 Explanation One of the Deduction of the Equation of Case1b. 
 
 
The equation of the line above is:  
 
         y-y0=a ⋅ (x-x0)                                                                                         (25) 
 
In Fig 4, line A:   
 

Slope: a 

y 

y0 

x0 
x 

Line  
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         x=t,     
         y=y,    
         x0= St fs + ,   

         y0= 1+n
sabsL ,    

         a=Vc.    
 
So line A:  
 
         ( ){ }SttvLy fsc

n
sabs +−=− +1                                                                                     (26) 

 
 In Line B, 
 
         x=t,    
         y=y,    
         x0= k

nft _ ,    
         y0= k

n
k
labs fL +−1 ,     

         a=-Vo.     
 
So line B:  
 

( ) ( )1 _k k k
labs n k ny L f v t t f−− + = − ⋅ − .                                                                             (27) 

 

                                Fig 4. Explanation Two 
 
In the Fig.4, the coordinate of point P is:  
 
         ( k

nPt 1_ + , k
nP 1+ )=( _ k

nt fw , k
nP 1+ )= ( t , 1−− k

labsLy ). 
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According to equation 27, there is  
   
         y = cv { t � ( fst + S )}+ 1+n

sabsL                                                                              (28)
  
 
Take (28) to (27), there is   
   
         cv { t �( fst + S )}+ 1+n

sabsL ( ) ( )1 _k k k
labs n k nL f v t t f−− + = − ⋅ −    

 
So  
 

         ( ){ }1 11 _ k k n k
k n c fs labs sabs n

k c

t v t f v t S L L f
v v

− += + ⋅ + + − +
+

  

         ( ) ( ){ }1 11 _ k k k n
c k n fs c labs n k sabs

k c

y v v t f t S v L f v L
v v

− += ⋅ − − + ⋅ + + ⋅
+

 

 
Therefore the coordinate of point P is found by the following equations and also the 
equations of (22) and (23). 
 

             ( ) ( ){ }1 1 1
1

1 _k k k k n k
n c k n fs c labs n k sabs labs

k c

p v v t f t S v L f v L L
v v

− + −
+ = ⋅ ⋅ ⋅ − − + ⋅ + + ⋅ −

+
       (29) 

 

            ( ){ }1 1
1

1_ _ _k k k k n k
n n k n c fs labs sabs n

k c

t fw t p v t f v t S L L f
v v

− +
+= = ⋅ + ⋅ + + − +

+
              (30) 

 
Case 2:  
 
Worker k is in walking state after finishing the operations for the n2th unit with the 
remaining walking time to be

2( )
k

ntπ% , and the (n2+1) th unit has entered the work station. 
Also there are two different cases. Case 2 corresponds to the state at work station 4 in 
Fig. 2.  
 
•  Case 2a:  
 
Worker k begins to operate on the (n2+1) th unit before the conveyor stoppage time 
ends.  
 
The equations are: 
 
         

2
0k

nit =                                                (31)  

         
2 2 21 ( )

k k kc k
n n k n

c k

v vp f d t
v v π+

⋅
= − − ⋅

+
%                                             (32)  
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( )2 2 2( 1) ( 1) ( )
k k k

n n nt t S tπ π π+ +← − − %                                             (33)                                   

2 2

2 2

1_ _
k k

n nk k
n n

k

f p
t fw t f

v
+−

= +                                             (34) 

   
         

2 1_ k
n fst p t S+ = +                                                                                                    (35) 

 
•  Case 2b:  
 
Worker k begins to operate on the (n2+1) th unit after the conveyor stoppage time ends.  
 
The equations are: 
 
         

2
0k

nit =                                                           (36) 
 

         ( ) ( ){ }5

2 2 2

11 1
1

1 _ nk k k k k
n c k n fs c labs n k sabs labs

k c

p v v t f t S v L f v L L
v v

+− −
+ = ⋅ ⋅ − − + ⋅ + + ⋅ −

+
                       (37) 

 

         ( ){ }2 2 5

1 11_ _k k k n k
n v n c fs labs sabs n

k c

t fw v t f v t s L L f
v v

− += ⋅ + ⋅ + + − +
+

                              (38) 

 
         

2 21_ _k k
n nt p t fw+ =                                                          (39) 

 
 
4.3.2 The Worker is in Operating State 
 
Case 3: 
 
Worker k is in operating state for the n3rd unit with the remaining operating time to 
be

3( )
k

nt Sπ ≥% . This case occurs at work station 3 in Fig. 2. 
 
The equations are:  
 
         ( )3 3 3 3( ) ( )

ˆk k k k
n n c n np p v t tπ π= + ⋅ −                                             (40)  

  
         

3 3( ) ( )
ˆk k

n nt t Sπ π= −                                                          (41)  
 
         

3
_ k

n fst p t S= +                                                                                                      (42) 
 
Case 4: 
 
Worker k is in operating state for the n4th unit with the remaining operating time to 
be

4( )
k

nt Sπ <% , and the (n4+1) th unit hasn’t yet entered the work station. There are case 4a 
and case 4b. Case 4 occurs at work station 5 in Fig. 2. 
The equations are: 



 13

           ( )4 4 4 4( ) ( )
ˆk k k k

n n c n nf p v t tπ π= + ⋅ −                                                        (43) 
  
         

4
0k

nst =                                                                                 (44)
     

         ( )4 4 4( )
1 1 ˆ·max ,0k k kc k

n k n n
c k c k

v vit d f S t
v v v v π

   ⋅
= + − + ⋅ −   +   

                              (45)  

 

         ( )4 4 41 ( )
ˆmax ,0k k kc k

n n n k
c k

v vp f S t d
v v π+

 ⋅
= − ⋅ − − + 

                               (46) 

         
4 4( )

ˆ_ k k
n fs nt f t tπ= +                                                                                         (47) 

 
   •  Case 4a:  
 
Worker k has to wait for the (n4+1) th unit at the left boundary, that is:

4 1 0k
np + = . 

The equations are:  

         4

4 4
_ _

k
nk k

n n
k

f
t fw t f

v
= +                                   (48)  

 
         

4 4 41_ _k k k
n n nt p t fw it+ = +                                                         (49) 

 
  •  Case 4b: 
 
Worker k can begin to operate on the (n4+1) th unit before arriving at the left boundary, 
that is: 

4 1 0k
np + > .  

 
The equations are: 

         4 4

4 4

1_ _
k k

n nk k
n n

k

f p
t fw t f

v
+−

= +                                             (50) 

 
         

4 4 41_ _k k k
n n nt p t fw it+ = +                                                                               (51) 

 
Case 5:   
 
Worker k is in operating state for the n5th unit with the remaining operating time to 
be

5( )
k

nt Sπ <% , and the (n5+1) th unit has entered the work station. There are two cases, 5a 
and 5b. Case 5 occurs at work station 1 in Fig. 2.  
 
The equations are: 
 
         ( )5 5 5 5( ) ( )

ˆk k k k
n n c n nf p v t tπ π= + ⋅ −                                  (52)  

 
         

5
0k

nst =                                                (53) 
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5

0k
nit =                                                (54)  

         { }5 5 51 ·max ,0k k kc k
n n c c n

c k

v vp f v t
v v

θ+

⋅
= − ⋅ +

+
                               (55)  

 
Where  
 
         { }5 5 5( 1) ( 1) max ,0k k k

n n nt tπ π θ+ += − −       

 
         

5 5( )
ˆ_ k k

n fs nt f t tπ= +    
     

         ( )5 5( )
ˆ·k kc

n c n
k

v t S t
v πθ = − −    

      
     •  Case 5a: 
 
Worker k can begin to operate on the (n5+1) th unit before the conveyor stoppage ends, 
that is

5 51
k k
n n c cp f v t+ = − .  

 
The equations are: 
 

         
5 5

_ _k k c c
n n

k

v tt fw t f
v

= +                                              (56) 

  
         

5
_ k

n fst p t S= +                                                                                                     (57) 
 
  
      •  Case 5b: 
 
Worker k begins to operate on the (n5+1)th unit after the conveyor stoppage ends, that 
is

5 51
k k
n n c cp f v t+ > − .  

 
The equations are: 
 

         5 5

5 5

1_ _
k k

n nk k
n n

k

f p
t fw t f

v
+−

= +                                  (58) 

 
         

5 51_ _k k
n nt p t fw+ =                                                                               (59) 

 
4.3.3  The Worker is in Idle State  
 
Case 6:  
Worker k is in idle state upon reaching the upstream boundary of the work station after 
completing the operations for the n6th unit. This case occurs at work station 6 in Fig.2. 
The equations are: 
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6 6

k k
n nit it S= +                         (70) 

 
         

6 6 61_ _k k k
n n nt p t fw it+ = +                                   (71) 

 
4.4 Discussion and Some Special Situations 
 
After the first conveyor stoppage ends, the equations which correspond to the relevant 
case will be used. If a second conveyor stoppage occurs, then the cases and the 
equations above are repeated, and so on.  
 
This paper explains six different situations for when conveyor stoppage happens. 
Although other cases exist theoretically, they rarely actually take place. For example, a 
worker has just finished his operation, the conveyor is stopped, and when he walks 
upstream to the left boundary of his station, the stoppage time ends; another special case 
is when a worker is in walking state, and the stoppage ends during the remaining 
walking time.  
 
Another special situation is when more than one worker causes a conveyor stoppage at 
the same time. This case seldom happens and will not be discussed in this paper.  
 
4.5 About the Program 
 
The program of this paper also includes two parts; the first is the calculation part, which 
calculates the six cases of the conveyor. On the basis of the results of the first part, the 
second part uses the genetic algorithm to obtain the optimal selection. These two parts 
were carried out in Visual Basic 6.0 on a Pentium 200 MHz computer. The diagram of 
this two-part program is shown in Fig. 5:  
 
4.5.1 Calculation part   
 
The diagram in Fig. 6 shows the processes of the calculation.  
 
The processes of the calculation are as follows:  
 

a). Input the data of K, ct , cv , kv , kL , M and k
nt . 

 
b). Input the data of ( )nπ . 

 
c). Initiation.  

 
d). Calculate k

labsf . 
 

e). Calculate dk. 
 

f). Begin to calculate the stoppage time of every station.  
 
g). Calculate every station when the conveyor stoppage happens.  
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h). If there isn’t conveyor stoppage, then move on to the process m. 
 

i). Find the number of station, number and time duration of the recent conveyor    
     stoppage.  

           
            j). Calculate the station which causes the conveyor stoppage, that is the station     

     which k=l.  
 

k). Calculate n
sabsf . 

 
            l). Calculate the stations which don’t cause the conveyor stoppage, stations   
                  which  k≠ l. 
 

m). Calculate ( )ST π and ( )IT π . 
 



 17

                        
                          Fig.5 Diagram of the Process of the Calculation and GA  
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k=1 

t_stop[k] ←The time when the        
                    conveyor stoppage        
                     happens. 
n_stop[k] ←The unit of the station   
                     where the conveyor   
                     stoppage happens 
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t_stop[k] =-1? 

(k=1,…, K) 

no 

n_BeginLoop[k] =1 
 (k=1,…, K)
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( )ST π , ( )IT π  

T1 

END
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tfs=t_stop[l]=min{t_stop[k] / t_stop[k] ≠ -
1 con 1 k K≤ ≤  } y n_FirstStop Number 
of work-piece which causes the first 
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no 

no 

no 

_ _k k
n fs nt f t t fw< ≤ ? 
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n fs nt fw t t p +< ≤ ? 

n= n +1 

M=n? no 

k=k+1 

K=k? no 

Case3, n_BeginLoop[k] =n1+1. 
Case4, n_BeginLoop[k] =n2+1. 
Case5, n_BeginLoop[k] =n3. 

Case1, n_BeginLoop[k] =n4+1. 
Case2, n BeginLoop[k] =n5+1.

Case6, n BeginLoop[k] =n6+1.

T1 

T3 

Fig.6 Diagram of the Process of L of the Calculation Part  

yes 

yes 

yes 

yes 

yes 

yes 

yes 
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4.5.2 Genetic Algorithm Part 
 
The method which used in this paper for the selection process is the roulette wheel 
method; crossover utilizes order crossover method and mutation uses the traditional 
method.   
 
5. Design experiments  
 
The objective of this paper is to find the best sequence for the work-pieces with the least 
amount of idle time and stoppage time of the conveyor. Based on the different 
parameters of the assembly line—number of units, number of models, number of 
stations, the minimal part set, and the different parameters of the genetic algorithm are 
the population size, maximum generation, crossover ratio and mutation ratio; they will 
be changed randomly from small, medium to large quantity. Table 1 show the 
parameters utilized in the design experiment 
 

Name Description Range Value 
Unit Total number of the work-piece needed 

to fabricate 
1)Medium 
2)Large 

1) 20 
2) 50 

Model Total kinds of the work-piece needed to 
fabricate 

1)Medium 
2)Large 

1) 6 
2) 12 

Station Total number of the station in the 
conveyor 

1)Medium 
2)Large 

1) 5 
2) 15 

Minimal part 
set 

A smallest possible set of product type 
quantities, to be called the 
multiplicities, in which the numbers of 
assembled products of the various types 
are in the desired ratios. 

1)A/B/C…/N 
A=B=C…N 
2)A/B/C…/N 
A=50% 
B=C…N 

For example: 
20 work-pieces 
5 stations: 
1)3/3/3/3/3/5 
2)10/2/2/2/2/2 

Population 
size 

Number of individuals in each 
generation of the GA 

1)Small 
2)Medium 
3)Large 

1) 25 
2) 50 
3) 70 

Maximum 
generation 

Maximum number of generation 1)Small 
2)Medium 
3)Large 

1) 30 
2) 75 
3) 100 

Crossover 
ratio 

Fraction of selected pairs undergo 
crossover 

1)Small 
2)Medium 
3)Large 

1) 20 
2) 45 
3) 80 

Mutation ratio Percentage of genes in the population 
which are replaced with random values 
each generation. 

1)Small 
2)Medium 
3)Large 

1) 10 
2) 40 
3) 60 

 
Table 1 Parameters Utilized in the Design Experiment 

 
From the table above it can shown that there are 20 parameters in this experiment, 6 of 
the assembly line, 12 of the genetic algorithm and 2 cases of the minimal part set. While 
one of them is fixed, other parameters change, so the numbers of experiments that will 
be done are 24 ⋅34=16 ⋅81=1296. The combinations of the parameters are: Table 2. 
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Unit-model-station Number of every model Number of every model 

20-6-5 A) 3/3/3/3/3/5 B) 10/2/2/2/2/2 
20-6-15 A) 3/3/3/3/3/5 B) 10/2/2/2/2/2 
20-12-5 A) 2/2/2/2/2/2/2/2/1/1/1/1 B) 9/1/1/1/1/1/1/1/1/1/1/1 
20-12-15 A) 2/2/2/2/2/2/2/2/1/1/1/1 B) 9/1/1/1/1/1/1/1/1/1/1/1 
50-6-5 A) 8/8/8/8/9/9 B) 25/5/5/5/5/5 
50-6-15 A) 8/8/8/8/9/9 B) 25/5/5/5/5/5 
50-12-5 A) 4/4/4/4/4/4/4/4/4/4/5/5 B) 25/3/3/3/2/2/2/2/2/2/2/2 
50-12-15 A) 4/4/4/4/4/4/4/4/4/4/5/5 B) 25/3/3/3/2/2/2/2/2/2/2/2 

 
                 Table 2 Combination of the Parameters in the Design Experiment  
 
One of the results of the design experiments is shown in Table 3; the other results will 
be shown in Appendix. (From Table A1—A14).  
 

• Table 3   20-6-5 in case A 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
∗  Medium V.G  V.G V.G 

P 

 Large  V.G   
 Small  V.G  G 
 Medium     

G 

∗  Large V.G  V.G G 

∗  Small G  G G 
 Medium  V.G  G 

C 

 Large G  G  
∗  Small G G V.G G 
 Medium    G 

M 

 Large G G   

 
From the table above, when the parameters of the assembly line are all in medium size 
and the minimal part set is case A, the optimal parameters of the genetic algorithm are 
medium size in population size, large size in maximum generation, small size in 
crossover ratio and in medium size mutation ratio respectively.  
 

• Table 2     20-6-5 in case B 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
 Medium     

P 

∗  Large V.G V.G V.G V.G 
∗  Small V.G G V.G V.G 
 Medium     

G 

 Large  G   
 Small   G G 
∗  Medium G V.G  G 

C 

 Large G  G G 
 Small G G G  
∗  Medium G  G V.G 

M 

 Large  G G  

 
From the table above, when the parameters of the assembly line are all in medium size 
and the minimal part set is case B, the optimal parameters of the genetic algorithm are 
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large size population size, small size maximum generation, medium size crossover ratio, 
and medium size mutation ratio respectively.  
 
From the table above, when the parameters of the assembly line are all in large size, and 
the minimal part set is case B, the optimal parameters of the genetic algorithm are all in 
medium size. 
 
6. Conclusions  
 
In this paper, we have looked at the Japan (Toyota) Pattern, which is if the task cannot 
be finished within the work stations of the assembly line; the conveyor is stopped and 
doesn’t move again until the unfinished task is completed. Here the objective is to 
minimize stoppage and idle time.  
 
The program is also based on the genetic algorithm, which works well and the 
calculation time for getting results is less than two minutes. 
 
As in paper 5, with different combinations of the parameters of the assembly line and 
genetic algorithm, more than 5,000 experiments have been done, and we have seen the 
results above. That is that with the Japan (Toyota) Pattern, with different scales of 
assembly line, and with the objective of minimizing the stoppage time and idle time, the 
optimal parameters of the genetic algorithm are summarized as follows (where unit 
means number of the work-piece, see Table 5-4):  
 
For the parameters of the assembly line: 
 

• if the unit is medium range (in this paper there are 20 units), the optimal 
parameters of the genetic algorithm are: population size, small; maximum 
generation, small; crossover ratio, small and mutation ratio, medium, 
respectively.  

 
• if the unit is large range (in this paper there are 50 units), the optimal parameters 

of the genetic algorithm are: population size, small; maximum generation, small; 
crossover ratio, small and mutation ratio, medium, respectively.  

 
• if the model is medium range (in this paper there are 6 models), the optimal 

parameters of the genetic algorithm are in small sizes.  
 
• if the model is large range (in this paper there are 12 models), the optimal 

parameters of the genetic algorithm are: population size, small; maximum 
generation, small; crossover ratio, small and mutation ratio, medium, 
respectively.  

 
• if the station is medium range (in this paper there are 5 stations), the optimal 

parameters of the genetic algorithm are in small sizes.  
 

• if the station is large range (in this paper there are 15 units), the optimal 
parameters of the genetic algorithm are: population size, small; maximum 
generation, small; crossover ratio, small and mutation ratio, medium, 
respectively.  
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• if the minimal part sets is in case A (in this paper means that all the models of 
the work-pieces have the same number), the optimal parameters of the genetic 
algorithm are all in small sizes. 

 
• if the minimal part sets is in case B (in this paper means that one kind of the 

model has 50% of all the number of the work-pieces, and the other models have 
the same number), the optimal parameters of the genetic algorithm are: 
population size, small; maximum generation, small; crossover ratio, small and 
mutation ratio, medium, respectively.  

 
From the resume above, it can be seen that in the Japan (Toyota) pattern, for the 
different parameters of the assembly line, most of the optimal parameters of the genetic 
algorithm are in small sizes while cases of large sizes are very few. 
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Appendix 
 
Here, the results of the design experiment will be shown form Table A1—A14.  
 

• Table A1     20-6-15 in case A 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small V.G V.G  G 
 Medium    G 

P 

 Large   V.G  
∗  Small  V.G V.G  G 
 Medium G   G 
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  Large G   G 
 Small     
 Medium    V.G 

C 

∗  Large V.G V.G V.G  

∗  Small V.G   V.G 
 Medium  V.G V.G  

M 

 Large     

 
From the table above, when the parameters of the assembly line are medium size units, 
medium size models and large size stations respectively, and the minimal part set is case 
A, the optimal parameters of the genetic algorithm are small size population size, small 
size maximum generation, large size crossover ratio, and small size mutation ratio 
respectively.  
 

• Table A2     20-6-15 in case B 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small G G G G 
 Medium G G G  

P 

 Large    G 
 Small    G 
 Medium     

G 

∗  Large V.G V.G V.G G 
 Small G    
 Medium  G G G 

C 

∗  Large G G G G 
 Small V.G    
∗  Medium  G V.G V.G 

M 

 Large  G   

 
From the table above, when the parameters of the assembly line are medium size in 
units and model, large size in station, the minimal part set is case B, the optimal 
parameters of the genetic algorithm are small size population size, large size in 
maximum generation and crossover ratio respectively, medium size mutation ratio.  

 
• Table A3   20-12-5 in case A 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small G G G G 
 Medium     

P 

 Large G G G G 
∗  Small V.G G G V.G 
 Medium     

G 

 Large  G G  
∗  Small V.G G V.G V.G 
 Medium     

C 

 Large  G   
∗  Small G G G G 
 Medium G G G  

M 

 Large    G 

 
From the table above, when the parameters of the assembly line are medium size units, 
large size models and medium size stations respectively, and the minimal part set is case 
A, the optimal parameters of the genetic algorithm are small size in population size, 
small size in maximum generation, small size in crossover ratio, and small size in 
mutation ratio respectively. 
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• Table A4     20-12-5 in case B 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small G G  G 
 Medium   G  

P 

 Large G G G G 
 Small G  G G 
∗  Medium G V.G  G 

G 
 

 Large   G  
∗  Small G   V.G 
 Medium  G G  

C 

 Large G G G  
 Small   G G 
 Medium   G G 

M 

∗  Large V.G V.G  G 

 
From the table above, when the parameters of the assembly line are medium size units, 
large size models and medium size stations respectively, and the minimal part set is case 
B, the optimal parameters of the genetic algorithm are small size in population size, 
medium size in maximum generation, small size in crossover ratio, and large size in 
mutation ratio respectively. 
 

• Table A5    20-12-15 in case A 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small G G V.G V.G 
 Medium     

P 

 Large G G   
 Small G G G  
∗  Medium G  G V.G 

G 

 Large G G G  
∗  Small V.G G V.G V.G 
 Medium     

C 

 Large  G   
 Small V.G G   
∗  Medium  G V.G V.G 

M 

 Large  G   

 
From the table above, when the parameters of the assembly line are medium size units, 
large size models and stations respectively, and the minimal part set is case A, the 
optimal parameters of the genetic algorithm are small size in population size, medium 
size in maximum generation, small size in crossover ratio, and medium size in mutation 
ratio respectively. 

• Table A6   20-12-15 in case B 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small V.G V.G V.G V.G 
 Medium     

P 

 Large     
∗  Small V.G V.G V.G V.G 
 Medium     

G 

 Large     
∗  Small V.G V.G V.G V.G 
 Medium     

C 

 Large     
 Small  V.G   
∗  Medium V.G  V.G V.G 

M 

 Large     
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From the table above, when the parameters of the assembly line are medium size units, 
large size models and stations respectively, and the minimal part set is case B, the 
optimal parameters of the genetic algorithm are small size in population size, maximum 
generation and crossover ratio respectively, medium size in mutation ratio. 
 

• Table A7   50-6-5 in case A 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small  G  G 
∗  Medium V.G G G G 

P 

 Large  G G  
 Small G V.G   
∗  Medium G  V.G G 

G 

 Large G   G 
∗  Small G G  V.G 
 Medium G    

C 

 Large G G V.G  
∗  Small V.G G   
 Medium  G G G 

M 

 Large  G G G 

 
From the table above, when the parameters of the assembly line are large size in units, 
medium size in model and station, and the minimal part set is case A, the optimal 
parameters of the genetic algorithm are medium size in population size and maximum 
generation, small size in crossover ratio and mutation ratio respectively.  
 

• Table A8    50-6-5 in case B 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small G G G G 
 Medium G G G G 

P 

 Large     
∗  Small G G G G 
 Medium   G G 

G 

 Large G G   
∗  Small G V.G V.G G 
 Medium G   G 

C 

 Large     
∗  Small G V.G V.G G 
 Medium G   G 

M 

 Large     

 
From the table above, when the parameters of the assembly line are large size units; 
medium size models and stations respectively, and the minimal part set is case B, the 
optimal parameters of the genetic algorithm are small sizes.  
 

• Table A9    50-6-15 in case A 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small G G G G 
 Medium     

P 

 Large G G G G 
∗  Small V.G V.G V.G G 
 Medium     

G 

 Large    G 
C ∗  Small G G G G 
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 Medium      
 Large G G G G 
 Small   G G 
∗  Medium V.G V.G G G 

M 

 Large   G  

 
From the table above, when the parameters of the assembly line are large size units, 
medium size models and large size stations respectively, and the minimal part set is case 
A, the optimal parameters of the genetic algorithm are small size in population size, 
small size in maximum generation, small size in crossover ratio, and medium size in 
mutation ratio respectively. 
 

• Table A10    50-6-15 in case B 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small G G G G 
 Medium G   G 

P 

 Large G G G  
∗  Small G G G G 
 Medium  G G  

G 

 Large G G G G 
 Small G G  G 
∗  Medium G G V.G G 

C 

 Large     
∗  Small V.G V.G V.G V.G 
 Medium     

M 

 Large     

 
From the table above, when the parameters of the assembly line are medium size units, 
large size models and medium size stations respectively, and the minimal part set is case 
B, the optimal parameters of the genetic algorithm are small size in population size, 
small size in maximum generation, medium size in crossover ratio, and small size in 
mutation ratio respectively 
 

• Table A11   50-12-5 in case A 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small G G G  
 Medium    G 

P 

 Large G G G G 
 Small     
∗  Medium V.G V.G V.G V.G 

G 

 Large     
 Small G    
 Medium    G 

C 

∗  Large G V.G V.G G 
 Small     
 Medium    G 

M 

∗  Large V.G V.G V.G G 

 
From the table above, when the parameters of the assembly line are large sizes units and 
models and medium size stations respectively, and the minimal part set is case A, the 
optimal parameters of the genetic algorithm are small size population size, medium size 
maximum generation, large size crossover ratio, and large size mutation ratio 
respectively.  
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• Table A12   50-12-5 in case B 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small     
 Medium     

P 

∗  Large V.G V.G V.G V.G 

∗  Small G V.G V.G V.G 
 Medium     

G 

 Large G    
∗  Small G  G G 
 Medium  V.G   

C 

 Large G  G G 
 Small    G 
∗  Medium G G G G 

M 

 Large G G G  

 
From the table above, when the parameters of the assembly line are large size in units 
and model, medium size in station, and the minimal part set is case B, the optimal 
parameters of the genetic algorithm are large size in population size, small size in 
maximum generation and crossover ratio, medium size mutation ratio.  
 

• Table A13   50-12-15 in case A 
 

Item Best Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

∗  Small V.G V.G V.G V.G 
 Medium     

P 

 Large     
∗  Small V.G V.G V.G V.G 
 Medium     

G 

 Large     
∗  Small V.G  G G 
 Medium  V.G   

C 

 Large G  G G 
 Small     
∗  Medium V.G G G V.G 

M 

 Large  G G  

 
From the table above, when the parameters of the assembly line are all in large size, and 
the minimal part set is case A, the optimal parameters of the genetic algorithm are in 
small size in population size, maximum generation and crossover ratio respectively, in 
medium size in mutation ratio.  
 

• Table A14     50-12-15 in case B 
 

Item Bes
t 

Range First 
running 

Second 
running 

Third 
running 

Fourth 
running 

 Small G   V.G 
∗  Medium G V.G V.G  

P 

 Large G    
 Small G   V.G 
∗  Medium G V.G V.G  

G 

 Large     
 Small V.G   G 
∗  Medium  V.G V.G G 

C 

 Large    G 
 Small     
∗  Medium V.G V.G V.G V.G 

M 

 Large     

 


