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Abstract 
 

A new approach for detecting security attacks on real-time embedded applications by 
using performance signatures is introduced in the thesis. Assuming that the behavior of 
real-time embedded applications is quite stable i.e suffers from little variability, using 
performance signatures, or in other words key performance metric estimations of the 
applications, arises as a good option to detect the potential malfunctioning of the system 
caused by the presence of malware or by the simple existence of bugs escaping the 
verification process. In our approach we also take into account that slight modifications 
in the memory layout can lead to high deviations in the performance of the applications 
for CPUs using standard cache designs implementing modulo placement and LRU 
replacement. This performance variability may jeopardize the utilization of performance 
signatures on top of these processors. Therefore, we will also analyze the suitability of 
performance signatures in the context of time-randomized processors since these 
processors have been shown to provide higher performance stability.  

The underlying assumption of this work is that significant performance deviations from 
well-behaved systems can be used to trigger alerts about the presence of security 
attacks. In order to be able to study the behavior of the CPU performance in different 
cases, we will use a SPARC simulator resembling the NGMP (Next Generation 
Microprocessor) processor, a source-to-source compiler called TASA to mimic the 
variability due to modifications in the cache layout. We also use the EEBMC Autobench 
benchmarks as representative workloads of the automotive industry. From these 
benchmarks we have generated randomized variants with TASA to simulate the cache 
layout variability. We have observed that most of the cases performance signatures 
suffices to detect the presence of malware since intrinsic cache variability is reduced.  
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1 Introduction 
 

This project is a TFG (Treball de Final de Grau) developed in FIB (Facultat d’Informatica 
de Barcelona) in collaboration with the BSC (Barcelona Supercomputing Center). This 
project aims to study to what extent using CPU performance signatures for applications 
executed in the processor can be used to detect the presence of malware or Security 
Attacks. In particular, in this TFG we focus on the utilization of performance signatures 
in the context of real-time safety-related applications like those employed in cars.   

Nowadays, the CPUs are ubiquitous in electronic systems and most of the technological 
products include a CPU. We can find CPUs in a wide range of devices from 
supercomputers, to satellites and airplanes, and smart transportation systems in general. 
When CPUs control critical applications the security of the systems becomes of 
paramount importance forcing system designers to consider security aspects as a 
primary design concern. While safety-critical systems are subject to a thorough 
verification process to validate the behavior and correctness of these systems there are 
a number of aspects that challenge the security of these systems. First, safety-critical 
software is often developed by third parties companies and it is the responsibility of the 
system integrator to validate the correctness of the final system. While the third parties 
are expected to be trustable the fact that the software development process is not fully 
controlled by the system integrator forces system designers to minimize the existence of 
potential security flaws. Second, with the advent of new applications like autonomous 
driving systems the need for having access to the internet of these devices grows as a 
way to be able to receive software updates. Interconnecting safety-critical systems either 
to private or public networks opens the door to potential security attacks to those 
systems.  

In the context of real-time systems, the performance of the applications running in CPUs 
is well optimized and normally average performance of applications running on top of 
general purpose processors is a good metric to understand the behavior of the system. 
This is so because CPUs are adapted to take advantage of programs properties like 
temporal and spatial locality and include hardware features like caches and branch 
predictors able to exploit such properties. In the context, of embedded systems the 
behavior of applications is even easier to predict since programs are generally small (fit 
in cache) and processors are generally very simple [1]. 

Assuming that the behavior of real-time embedded applications is quite stable i.e suffers 
from little variability using performance signatures, or in other words key performance 
metric estimations of the applications, arises as a good option to detect the potential 
malfunctioning of the system caused by the presence of malware or by the simple 
existence of bugs escaping the verification process.  

However, in spite of embedded CPUs today are able to run most of the programs at very 
good and so predictable performance, there are cases where program runs have a very 
bad performance (a.k.a pathological cases). Performance deviations can occur in 
embedded systems when executing cache sensitive software after slight memory layout 
modifications. Memory layout changes can occur when any piece of software in the 
system is modified which can be caused by a software update of the system software.  

What we are looking for in this project is to be able to understand up to which extent we 
can use performance signatures to distinguish between expected CPU performance 
variability caused by changes in the memory layout, as one of the main factors affecting 
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performance predictability in real-time embedded systems, and the performance of the 
CPU in the presence of malicious software by using CPU performance signatures. As 
mentioned before, memory layout modifications can introduce significant performance 
deviations in the performance of applications and thus, it is difficult to understand 
whether performance variability is harmful (due to malicious software or the presence of 
bugs) or innocuous. Our hypothesis is that slight modifications in the memory layout can 
lead to high deviations in the performance of the applications for CPUs using standard 
cache designs implementing modulo placement and LRU replacement. This may 
jeopardize the utilization of performance signatures on top of these processors. 
Therefore, we will also analyze the suitability of performance signatures in the context of 
time-randomized processors [2] since these processors have been shown to provide 
higher performance stability. 

In order to be able to study the behavior of the CPU performance in different cases, we 
will use a SPARC simulator resembling the NGMP (Next Generation Microprocessor) 
processor [3] that was developed by Cobham Gaisler and European Space Agency, a 
source-to-source compiler called TASA [4] and the EEBMC Autobench benchmarks [5] 
as representative workloads of the automotive industry. 
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1.1 Summary of the contents 
 

In Section 2 we review the background of this thesis.  

Section 3 describes how to build a mechanism to detect malware based on the utilization 
of performance signatures.  

Section 4 describes the methodology how to get a performance signature from some 
workloads. 

Section 5 presents the evaluation and the obtained results.  

Finally, Section 6 shows the conclusions obtained from the evaluation of the obtained 
results. 
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2 Background 
 

This project analyzes the suitability of using CPU performance signatures for Security 
Attacks detection. Due to the short time we have to develop the project, we only will be 
able to perform the study for a family of CPUs based on the SPARC ISA. In particular 
we will use the NGMP [3] as the reference CPU in this work.  

There are several studies that have analyzed the problem of analyzing the presence of 
malware in computers. For instance, in [6] authors characterize the performance 
deviations caused by the presence of malware to understand if these deviations offer 
some special behavior. A hardware assisted mechanism for the detection of malware 
and software vulnerabilities was proposed in [7]. 

From a different perspective many works have tried to characterize memory-layout 
induced performance variability. Authors in [8] proposed the Stabilizer tool that performs 
memory layout randomization dynamically at runtime, to be able to characterize 
performance of applications without the performance noise introduced in a system. 
Similarly, the use of randomization techniques has been proposed in [9] to understand 
worst-case impact of cache variability in the execution time of applications. To do so, 
authors proposed a source-to-source compiler to implement layout randomization at the 
source code level. 

 

2.1 Cache variability 
 

In this project we will take into account the impact of caches in performance variability in 
order to be able to create performance signatures to detect security attacks in real time. 
Understanding cache variability consists on knowing the normal behavior of the CPU. 
Characterizing regular cache variability requires collecting different statistics from the 
execution of the same program. In particular, we will obtain a different number of 
accesses to cache, number of misses, hit/miss ratio, etc.  

This project aims to study which will be the normal working of a cache for some EEMBC 
Autobench benchmarks and take into account all the small variabilities that are given in 
cache for good executions of a program (adding the pathological cases), in order to be 
able to differentiate them from the major number of variabilities that will produce a 
program that contains malicious code. 

 

2.2 Cache implementations 
 

In this thesis we will consider two different implementations of cache defined by the 
placement and replacement polices: 

• Commercial off-the-shelf (COTS): we will be using LRU as a placement policy 
and modulo as replacement policy. 

• Time-randomized cache: we will be using random eviction as a replacement 
policy and enhanced random modulo as placement policy. 
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COTS cache implementation are the traditional implementations for caches. In this 
implementation we can use different replacement and placement algorithms but we 
have chosen modulo and LRU as the most used implementations for placement and 
replacement, respectively. One of the advantages of this cache policies is that in 
optimal cases they have a very good performance. The other side of the coin is that 
for some particular cases (a.k.a pathological cases) these policies provide very bad 
performance.  

 

 

 

Time-randomized cache implementation have been proposed to be able to characterize 
the cache conflicts probabilistically [10]. They consists on placing and replacing the data 
in the cache using randomized algorithms from memory direction, in this way we make 
sure that in bad optimized cases the accesses to cache are the different for each 
execution. One of its advantages will be that in all cases we will have a very similar 
performance so in bad cases we will have “normal” performance, but in optimal cases 
we will have worst performance than COTS implementation. In this project we will call 
the refer to randomized caches as the one implemented in Time randomized processor 
[1]. 

 

 
Illustration 2: Example of the behavior of a cache with MBPTA implementation 

Illustration 1: Example of the behavior of a cache with COTS implementation 
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2.3 Placement and replacement polices 
 

The placement policies determine where a particular memory block can be placed when 
it goes into the cache while the replacement polices is the algorithm that must choose 
which items to discard to make room for the new ones when the cache is full. 

 

2.3.1 COTS Cache polices 
 

• LRU (Last Recently Used): is a replacement policy that discards the least 
recently used items first. This algorithm requires keeping track of what was used 
when, which is expensive if one wants to make sure the algorithm always 
discards the least recently used item. 
 

 
Illustration 3: Example of LRU replacement 

 
• Modulo (set-associate): This is the placement policy used in traditional cache 

architectures, we can find it illustrated in Figure 5. A memory line at address L is 
placed in, or mapped to, the cache set L mod S where there are S sets in the 
cache. The memory line may be placed within any cache line in the set, i.e., 
placement is fully associative within the set. We will refer to the memory lines 
mapped to a cache set as a conflict set and the preceding placement policy will 
be referred to as modulo placement. Thus, S contiguous lines in memory are 
mapped to S distinct sets in the cache and all conflict sets have equal cardinality. 
 

 
                 Illustration 4: Example of modulo placement 
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2.3.2 Time-randomized cache polices 
 

• Random eviction on miss: It randomly selects a candidate element and 
discards it to make room when it occurs a miss. This algorithm does not require 
maintaining any information about the access history. 
 

 
Illustration 5: Example of random replacement 

 
• Random on run: Random placement maps each cache line randomly in a cache 

set based on a random seed that is changed across program runs. While this 
allows to capture cache conflicts probabilistically, it may produce bad placements 
in terms of miss rates: even with programs accessing few cache lines, when 
those lines are randomly placed in the same cache set. Conversely, deterministic 
modulo placement maps consecutive memory lines into consecutive sets, thus 
avoiding this type of conflicts. However, conflicts across lines are not random and 
strictly depend on memory location.   
 

 

 

 
Illustration 6: Example of distribution for a 16-set cache with random on run 
design 
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• Enhanced random modulo: Enhanced random placement aims at obtaining the 
randomization properties of Hash-Based Random Placement (hRP) while 
exploiting spatial locality as the modulo placement function does. RM exploits 
spatial locality by removing conflicts among addresses belonging to the same 
cache segmentRM creates a randomization of the index bits such that (in every 
run) with a seed seedi, A is mapped to any (random) set lA = setseedi rm (A) and 
B to lB = setseedi rm (B) and lA and lB are necessarily different: setmod(A) 6= 
setmod(B) ∧ bA/CWbc = bB/CWbc → setseedi rm (A) 6= setseedi rm (B) ∀ seedi 
RM makes a random permutation of the address index bits that is driven by a 
combination of a random seed (changed across runs) and the upper bits of the 
address. This removes the dependence among memory mapping and cache 
layout, and further ensures that the index permutation covers probabilistically 
cache conflicts. Moreover, unlike hRP, RM exploits spatial locality, improving 
average performance and pWCET estimates w.r.t. hRP. 
 

 
Illustration 7: Random modulo implementation 

 

In the illustrations 13 and 14 we will be able to see the implementation differences 
between the random on run and the enhanced random modulo. 

 

 

 
Illustration 8: Schematic of the baseline implementation 
of a random modulo cache 

 
Illustration 9: Schematic of the enhanced 
implementation of a random modulo
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Pathological cases: In COTS cache implementations like LRU and modulo pathological 
cases leading to very bad performance can occur while the pathological cases of time-
randomized cache are less severe. For instance, in LRU with a 2-set associative cache 
where addresses A and B are mapped to the same set the sequence of access A, B, C, 
A, B, C, A, B, C. A, B, C will have a 100% miss rate. The reason for this is that LRU 
evicts the LRU cache line and for this particular sequence the evicted line matches the 
one that will be accessed next. The same sequence of access in the context of a time-
randomized cache will have a better hit rate since the line to be accessed next will not 
be systematically evicted before.  

 
2.4 Interconnected Devices and Software updates (e.g CARS) 
 

Studies on autonomous cars have been present since the year 1920. But it is not until 
2000 when cars start including software. The fact that cars are subject to constant 
development and improvement will make possible to have up-to-date cars if software 
updates are allowed. Software updates will bring not only the possibility to achieve higher 
driving efficiency but will also introduce a high risk for the security of cars since this will 
open the door to the introduction of malware. At the same, time these software updated 
will modify the memory layout and cause performance deviations that have to be 
considered to ensure the real-time operation of the system. 

 

Illustration 10: Autonomous car working 
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Given the risks of potential performance misbehavior it is very important to put some kind 
of prevention in order to detect the possible executions of the malware In this project we 
propose using performance signatures to distinguish between intrinsic (innocuous) and 
extrinsic (malicious) performance variations.  

By means of some counters that monitors some CPU variables the system can monitor 
if the values obtained match those of the performance signatures and if any value 
exceeds the "correct operation" stop the execution of the program. 

 

2.5 Impact of cache variability In Execution time  
 

Program accesses to memory directly affect the execution time of a program because 
the time we need to access to cache to get some data is shorter than searching and 
getting the data directly from memory. So as many Hits in cache we have faster we will 
execute a program. That is why, against more conflicts, we will need more time to run a 
program. 

CPUs usually include several levels of cache with the intention of minimize the impact of 
accessing main memory. First level caches are usually small to have reduced access 
time. However, to allocate more data additional cache space is required. This is why 
more cache levels are introduced. In this work, the CPU we use used two cache Levels 
L1 and L2. The second level cache is bigger than L1 but has a longer access time. Still, 
the time required to access the L2 is much shorter than the one required to access main 
memory. 

  
Illustration 11: Schema of cache accessing 
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3 Performance signatures for security attack detection 
 

Real-time computing (RTC) describes hardware and software systems subject to a "real-
time constraint", for example from event to system response. Real-time programs must 
guarantee response within specified time constraints, often referred to as "deadlines. 
Systems used for many mission critical applications must be real-time, such as for control 
of fly-by-wire aircraft, or anti-lock brakes on a vehicle.  

Critical applications in the real-time domain have generally a predictable behavior to be 
able to meet the strict timing deadlines. The determination of whether applications meet 
timing bounds or not can be studied by monitoring the behavior of the applications when 
running in the CPU and extracting some statistics and analyzing them. From this analysis 
phase we can derive performance signatures that we will have to guarantee during the 
execution. This can be done using performance monitoring counters in the CPU.  

The idea is that the performance monitoring unit allows to trigger interruptions based on 
when a given quota has been exceeded, so we will treat the performance signature as a 
mechanism to detect anomalous program behavior indicative of a hostile attack, and as 
a metric to potentially guide the automated development of a patch to correct the 
program flaws exploited in the attack. 

The process of performance monitoring and detecting anomalous behavior is analogous. 
Data commonly collected for performance monitoring purposes includes the number of 
references to particular memory locations, the time spent executing program, the 
frequency and quantity of communication among nodes of a multiprocessor system, and 
different resources usage. Performance analysis extracts observations of interest to 
programmers, and displays the conclusions in ways that clearly expose the performance 
impact of those observations.  

In this project we will try to create the performance signatures from these variables: 

• Execution time 
 

• Cycles executed 
 

• Executed instructions 
 

• Cache accesses (different levels of cache ICache, DCache & DCacheL2) 
 

• Cache misses (different levels of cache ICache, DCache & DCacheL2) 
 

• Cache hits (different levels of cache ICache, DCache & DCacheL2) 

Detecting and correcting anomalous program behavior triggered by an attack can be 
viewed as a similar process. While excessive or inefficient resource usage raises the red 
flag in performance tuning, it is deviation from "normal" patterns of operation which 
signals potential system misbehavior.  

Monitoring for anomalous behavior therefore requires defining the variables that might 
indicate an attack and continually observing these variables during system operation. 
The values of these variables during program execution constitute the performance 
signature of the program.  
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Analyzing this data entails issuing a warning when one or more monitored variables enter 
a "suspicious" range and aggregating anomaly reports from multiple systems. 

In the context of real-time systems we need to know if we are executing malicious code 
before the execution ends. Thus, we cannot use the execution time, cycles executed and 
executed instructions to create performance signatures, although we can use all the 
Cache statistics information. 

A performance signature is the set of performance counters that determine the behavior 
of my application. Given that we focus on single cores. We select cache metrics as the 
most important metrics to include in the signature. As said before, we exclude execution 
time since we will need to wait until the end of the “timing budget” or the complete 
execution to detect the malicious behavior. 

In illustration 13 we can see the process we can follow to create performance signatures 
is composed by 3 steps that are the monitoring of CPU from an execution to obtain some 
statistics, then the analyzing of this statistics and finally the generation of the CPU 
performance signatures that can be a threshold of some type of statistics. 

 

 

 
Illustration 12: CPU performance signature creation process 

The process of using CPU performance signatures to security attack detections is 
composed by the next steps: 

• Execute a program in a computer (we assume we have the CPU performance 
signatures for the program) 
 

• Monitors the CPU during the execution of the program through CPU counters 
 

• Compare the counter with the CPU performance signatures. We can assume that 
the CPU performance signatures are a threshold that cannot be overcome by the 
counter values. 
 

• If counter value is less than the threshold we can continue executing the program. 
 

• If counter value overcome the threshold we have to launch a program interruption 
to stop the execution due to probably we are executing malware. 
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In Illustration 14 we will be able to see an example of how to use the CPU performance 
signatures for ICache misses to detect malware executions. 

 

 
Illustration 13: Process of Security attack detection through CPU performance signature 

 

To summarize we proposed the following methodology to implement the detection of 
security vulnerabilities using performance signatures:  

1. We have an analysis phase in which the applications are characterized and the 
most representative performance metrics are identified. A signature is a set of 
performance metrics like ICache miss, DCache miss etc. 
 

2. Program the quotas according to the performance signatures so that when the 
quota of a given performance metric is exceed an interruption is triggered. If the 
quota is too tight, then we will trigger interruptions (false positives) too frequently 
if the quota is too high it might be too late to prevent the attack to produce a 
damage in the system. 
 

3. We have a deployment phase in which the system is working in the real 
environment. During deployment the monitors check that quotas are never 
exceeded. Whener a quota is exceeded an interruption is triggered.   
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4 Methodology 
 

In this section we describe the methodology we have employed to derive performance 
signatures. 

 

4.1 Resources 
 

In this section we explain carefully all the resources used to derive performance 
signatures for the EEMB Autobench benchmarks. 

 

4.1.1 Simulator Platform 
 

In order to be able to study the behavior of the CPU performance in different cases, we 
will use a SPARC simulator resembling the NGMP (Next Generation Microprocessor) 
processor. 

The SPARC simulator simulates with a high accuracy the 4-core NGMP processor, 
expected to be the target multicore platform for the next European Space Agency 
missions. 

 

 

 

 

 

Illustration 14: SPARC architecture scheme 
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This platform allows us to fill in a sheet of parameters with many possibilities that we 
have used to execute the benchmarks with different placement and replacement policies 
of the 3 different caches we have in this the SPARC Simulator (ICache, DCache, 
UCacheL2).  

 

Illustration 15: Sun Ultra Sparc II 

We will use two configurations for the SPARC simulator defined in the parameter file, the 
COTS (commercial off-the-shelf) and the Time-randomized version [1] 

In this project due to the short time we have to perform the study, we will just run 
executions with 1 core and one benchmark for execution. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 COTS Randomized 

Core 
32 bit Sparc ISA 
7-stage pipeline 
FPU 

32 bit Sparc ISA 
7-stage pipeline 
Fixed latency FPU 

Caches 

L1 private 

4-way 16KB Instructions 
4-way 16KB Data 
LRU replacement 
Modulo placement 

4-way 16KB Instructions 
4-way 16KB Data 
Random replacement 
RM hRP placement 

L2 shared 

Unified 128K 4-way 
LRU 
Modulo placement 

Unified 128K 4-way 
Random replacement 
RM hRP placement 

Table 1: SPARC COTS & Randomized features 
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The process to execute a benchmark with this simulator consist of: 

./sim.exe  param_file  >  output_file 
 

• Sim.exe: is the executable of the SPARC simulator. 
 

• Param_file: is the parameter file where we define the total of CPU (in this study will 
be always 1), the binary we want to execute and the architecture features of the 
SPARC. 
 

• Output_file: is the file where we want to save all the statistics.  
 

 

4.1.2 SoCLib  
 

SoCLib is an open platform for virtual prototyping of multi-processors system on chip. 
This is an Ubuntu OS system given by the project directors that contains all the tools we 
need to generate the benchmarks, and execute them, including TASA and the SPARC 
Simulator. 

 

4.1.3 EEMBC Autobench Benchmarks 
 

AutoBench is a suite of 16 benchmarks from EEMBC (embedded microprocessors 
benchmarks) that allow users to predict the performance of microprocessors and 
microcontrollers in automotive, industrial, and general-purpose applications. This are the 
programs that we have used to generate all the statistics for the study. Especially this 
are the ten benchmarks we are going to use are: 

 

• Angle to Time Conversion (a2time): This EEMBC benchmark simulates an 
embedded automotive application where the CPU reads a counter which 
measures the real-time delay between pulses sensed from a toothed wheel 
(gear) on the crankshaft of an engine. 
 
 

• Finite Impulse Response (FIR) Filter (aifirf): This EEMBC benchmark 
algorithm simulates an embedded automotive/industrial application where the 
CPU performs a Finite Impulse Response (FIR) filtering sample on 16-bit or 32-
bit fixed-point values. Highland low-pass FIR filters simply process the input 
signal data. 
 

• Basic Integer and Floating Point (basefp): This EEMBC benchmark algorithm 
measures basic integer and floating point capabilities. 
 

• Bit Manipulation (bitmnp): This EEMBC benchmark simulates an embedded 
automotive/industrial application where large numbers of bits have to be 
manipulated. 
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• Cache “Buster” (cacheb): This EEMBC benchmark simulates an embedded 
automotive/industrial application without a cache. 
 

• CAN Remote Data Request (canrdr): This EEMBC benchmark simulates an 
embedded automotive application where a Controller Area Network (CAN) 
interface node exists for exchanging messages across the system. 
 

• Pointer Chasing (pntrch): This EEMBC benchmark simulates an embedded 
automotive/industrial application which performs a lot of pointer manipulation. 
 

• Pulse Width Modulation (puwmod): This EEMBC benchmark simulates an 
application in which an actuator is driven by a PWM signal proportional to some 
input. 
 

• Table Lookup and Interpolation (tblook): This EEMBC benchmark algorithm 
is used in engine controllers, anti-lock brake systems, and other applications to 
access constant data quicker than by raw calculation. 

 

• Tooth to Spark (ttsprk): This EEMBC benchmark simulates an automotive 
application where the CPU controls fuel injection and ignition in the engine 
combustion process. 

 

Figure 16 illustrates the typical execution flow of an EEMBC benchmarks. These 
benchmarks have an initial phased in which they collect the required inputs, an iterative 
process in which the actual computation is carried out, and a final phased in which the 
outputs are produced. 

 

 
     Illustration 16: Schema of all benchmark algorithm flowchart 
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4.1.4 TASA 
 

TASA (Toolchain-Agnostic Static Software Randomization for Critical Real -Time 
System) is a compiler given by the project directors that produces binaries of programs 
with randomized memory layout. That is, given a program (in C) it creates a new identical 
program, but randomizing the order of declaration of variables, functions, or even 
creating empty spaces in the stack with the objective of creating a different (random) 
memory layout in the generated binary. This directly affects the memory layout at 
program execution, after the binary is loaded in memory. In this way we will be able to 
run the same programs, but with different cache conflicts between executions. 

 
Illustration 17: Example of one type of TASA randomization 

The process to execute a benchmark with this simulator consist of: 

 
Illustration 18: Scheme of TASA working 

./tasa  –f  –v  –g  benchmark.c  >>  randomized_benchmark.c 
 

• Tasa: is the executable of Tasa (it exists for 32 or 64 bits). 
 

• –f –v –g: this are the flags that we are using to generate the new program.  
 

• Benchmark.c: is the original benchmark from which we want to generate more. 
 

• Randomized_benchmark.c: is the randomized benchmark generated after 
executing Tasa. 
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4.1.5 ARVEI Cluster 
 

This is a high-performance cluster from the UPC DAC (Architecture Computer 
Department). This cluster has as its function research tasks such as: 

• Simulations 
 

• Parallel works  
 

• Intensive calculation 
 

• Executions of a large number of virtual machines 
 

 

 

In this project we will use this cluster to perform parallel works that will be simulations of 
EEMBC Autobench benchmarks in a SPARC CPU.   

The maximum number of executions that we have performed in parallel have been 
around 150 because if we increased the number of jobs in parallel, the priority dropped 
and we did not acquire CPU time optimally. 

The user servers have access to the disc of the NAS (the disc scratch centralized of the 
clusters) and have the same system, which could be used for interactive works in these 
machines.  

The hardware of this cluster is constantly updated and it is composed by different nodes 
depending of the year in which they were added.  

 

Illustration 19: ARVEI cluster from DAC UPC 
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In table 2 we will be able to see the characteristics of the nodes of each year. 

Year Type of nodes RAM Memory Network cards 

2006 73 USP 2x Xeon 
Dual-Core 5148 12 GB 320 GB 

SATA-2 
2 x Intel Pro/1000 
Gigabit Ethernet 

2010 40 USP 2x Xeon 
L5630 Dual 24 GB 640 GB 

SATA-2 
2 x Intel Gigabit 

Ethernet 

2012 
40 nodes USP 2x 

Xeon E5-2630L a 2 
GHz 

64 GB 1 TB 
SATA-3 

4 x Intel Gigabit 
Ethernet 

2014 
40 nodes 2x Intel 

Xeon E5-2630L v2 a 
2.40 GHz 

128 GB 1 TB 
SATA-3 

4 x Intel Gigabit 
Ethernet 

2016 
5 nodes 2x Intel Xeon 
E5-2630L v3 a 1.80 

GHz 
128 GB 1 TB 

SATA-3 
2 x Intel Gigabit 

Ethernet 

2017 
3 nodes 2x Intel Xeon 

E5-2630L v4 a 
2.20GHz 

128 GB 12 TB 
SATA 

2x Intel Gigabit 
Ethernet 

Total 201 484 GB 16 TB 14 
Table 2: ARVEI hardware characteristics 

 

The ARVEI cluster is composed of several types of nodes according to the function they 
have.  

• Access nodes: these nodes have been used to access to the cluster via SSH 
and for programing and executing scripts. 

o They allow SSH access to the cluster. 
o From these nodes you can queue jobs. 
o They have access to the centralized user disk and the cluster shared 

scratch (NAS). 
o They allow to make small developments and smaller tests, but they are 

not designed for heavy processes. 
• Queue execution nodes: these nodes have been used to perform the 

benchmark simulations on SPARC CPU. 
o It can only be accessed remotely through the input nodes. 
o They are part of a private network with access to the outside via Network 

Address Translation (NAT). 
o They start up and turn off automatically based on their use. 

• Restricted access nodes: they have not been used 
o The use of these nodes is restricted to a certain group of authorized users. 
o Access is made through a dedicated and restricted queue, which has no 

limits. 
• Interactive nodes: they have not been used 

o They have no limitations. 
o The processes that do not fit in the other nodes can be executed. 
o They have the interactive.q queue to access it. 
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This cluster uses several queues according to the time required by the work we want to 
execute. In table 3 we can see these queues with their characteristics and their process 
time limits. 

Queue 
name 

Characteristics Process limit 

Slot/node Year nodes CPU time Real time 
all.q 2 --- 3 hours 4 hours 

medium.q 
1 2006 

8 hours 12 hours 
2 2010, 2012, 2014, 2016 & 

2017 

big.q 

1 2006 

48 hours 60 hours 6 2010 

10 2012, 2014, 2016 & 2017 

huge.q 

1 2006 

15 days 16 days 8 2010 

12 2012, 2014, 2016 & 2017 

interactive.q 20 arvei-69 to arvei-73 No limits 
Table 3: Schema of ARVEI queues 

 
To perform the EEMBC Autobench benchmarks executions in SPARC simulator, we 
have used the all.q queue since no execution lasts more than 3 hours and it is the queue 
with more nodes so we will be able to execute more parallel works and we will have more 
priority to use a node. 

 

4.1.6 BSC CAOS Remote Machine 
 

This is a remote machine from the Computer Architecture Operating Systems 
Department (CAOS) from Barcelona Supercomputing Center (BSC). A remote machine 
user was ceded by the project directors.  

These are the characteristics of this remote machine: 

• 8 CPU Quad-Core AMD Opteron(tm) Processor 2376 (512 KB as cache size) 
 

• 14 GB of RAM memory 
 

• 62 GB SATA-2 of physical memory  
 

• Intel Corporation 82574L Gigabit Network Connection as network card 
 

• Directly connected with ARVEI cluster 

Since this remote machine is shared with other users, the maximum number of CPUs 
that have been used at the same time are 6, for generating and compiling the 
benchmarks (explained in 4.2 section) thanks to its direct connection with ARVEI cluster. 



30 
 

4.2 Generation and execution of benchmarks 
 

In this section we describe how we have generated the randomized benchmarks from 
the original EEMBC Autobench benchmarks, how we have compiled them and finally the 
process that we have followed to execute them. 

 

4.2.1 Generation and compilation of randomized benchmarks 
 

From the original EEMBC benchmarks provided by the project managers, we have 
generated N randomized benchmarks have been generated using TASA.  

a2time aifirf basefp bitmnp cacheb canrdr pntrch puwmod tblook ttsprk 

21500 3000 4000 4000 4000 4000 4000 4000 4800 14500 
Table 4: Number of benchmarks generated with TASA 

Different number of randomized benchmarks have been created depending on the 
benchmark in such a way that we can get a minimum of 1000 correct executions from 
each benchmark. 

The correct executions are those which have the same number or very similar of 
instructions executed than the original benchmark. On the other hand, we have the 
wrong executions where the number of executed instructions is less than the original 
benchmark. These wrong executions happen because of the randomization of TASA that 
does not take into account the fact that you have to initialize a variable before calling it, 
and some other similar errors. 

After all the randomized benchmarks have been generated, they had to be compiled to 
be able to execute in the SPARC simulator.  

To minimize the time of this process two C++ script has been created, one for the 
generation the randomized benchmarks with TASA and the other for generating the 
binaries for a SPARC architecture.  

The generation script it takes 1.2 seconds for every benchmark generated, although it 
allows to generate all the ten benchmarks in parallel. 

The compiling script it takes 1 second for every three benchmarks, but it not allows to 
generate all the ten benchmarks in parallel.  

During this process it had to face two problems: 

• The time needed to compile all the benchmarks 
 

• The upload time of all the binaries to the cluster used to execute them 

The founded solution consisted on using a remote BSC machine to perform this process, 
because this remote machine had 6 useful CPU and I had been able to compile all the 
benchmarks in parallel in such a way to divide by 6 the compiling time. Furthermore, this 
remote machine is directly connected with the cluster that was used to execute the 
benchmarks, in such a way that to pass all the binaries from the remote machine to the 
cluster is much faster than from the personal computer to the cluster via internet. 
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In table 5 we will be able to see the time (seconds) needed to generate and compile all 
the benchmarks for a version, in this case is for the normal version. 

Process Generation 
(parallel) 

Compilation 
(no parallel) Total 

a2time 25800 7167 32967 

aifirf 3600 1000 4600 

basefp 4800 1333 6133 

bitmnp 4800 1333 6133 

cacheb 4800 1333 6133 

canrdr 4800 1333 6133 

pntrch 4800 1333 6133 

puwmod 4800 1333 6133 

tblook 5760 1600 7360 

ttsprk 17400 4833 22233 

Total 25800 22598 48398 

Table 5: Generation and compilation time (in seconds) of the benchmarks 

 

4.2.2 Execution of the benchmarks 
 

Once all the binaries had been generated, they had to be executed with the SPARC 
simulator. The necessary resources to carry out executions with the simulator are: 

• SPARC simulator executable: provided by the project directors within the OS 
SoCLib. 
 

• Benchmark binary: generated in the process previously explained. 
 

• Parameter file: this is a file that contains all the information needed to execute 
something in the simulator in addition to many architecture features. Two 
versions of parameter file had been created changing the placement and 
replacement polices. 
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In table 6 we will be able to see the placement and replacement policies (explained in 
2.3 section) that we are using to execute the benchmarks with COTS and Time 
randomized processor implementation. 

Type COTS Time randomized processor 

Replacement 
policy 

ICache LRU random eviction on miss 

DCache LRU random eviction on miss 

ICacheL2 LRU random eviction on miss 

DCacheL2 LRU random eviction on miss 

Placement 
policy 

ICache modulo random on run 

DCache modulo enhanced random modulo 

ICacheL2 modulo random on run 

DCacheL2 modulo random on run 
Table 6: Placement and replacement policies of SPARC 

Caches 

The biggest problem that it has to face in this process has been the long time needed to 
be able to execute all the benchmarks. The solution applied was performing this process 
in ARVEI cluster that had lot of CPUs and has allowed us to perform about 150 parallel 
benchmarks executions. A python script has been created to automate the process of 
executing the benchmarks. 

In table 7 we can see the execution times (mean in seconds and totals in hours) that we 
have needed to execute all the benchmarks.  

Type of 
execution 

COTS Time randomized 
processor 

TOTAL 
Mean Total Mean Total 

a2time 1081,920 300,533 1137,974 316,104 616,637 

aifirf 1512,517 420,144 1477,423 410,395 830,539 

basefp 2539,630 705,453 2441,275 678,132 1383,585 

bitmnp 6393,301 1775,917 7598,990 2110,831 3886,748 

cacheb 550,936 153,038 625,004 173,612 326,650 

canrdr 1001,260 278,128 1198,374 332,882 611,009 

pntrch 2887,026 801,952 2387,878 663,299 1465,251 

puwmod 969,151 269,209 845,100 234,750 503,959 

tblook 1647,692 457,692 1328,828 369,119 826,811 

ttsprk 1721,719 478,255 1458,295 405,082 883,337 

Total CPU time 20305,152 5640,320 20499,141 5694,206 11334,526 

Table 7: Execution times of all benchmarks (in seconds & hours) 
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In table 8 we can see the mean of the computational time in cycle that we have needed 
to execute every benchmark the benchmarks, we also can see in the last column the 
total of cycles needed to execute all the benchmarks.  

 

Type of 
execution 

COTS 
(mean) 

Time 
randomized 
processor 

(mean) 

TOTAL 

a2time 211452326,4 223533773,6 434986100000 

aifirf 233742784,7 234461433,5 468204218200 

basefp 469475839,1 472469024,7 941944863800 

bitmnp 1244832893 1269665045 2514497938000 

cacheb 100102196,6 100502531,5 200604728100 

canrdr 186196520 186627837,8 372824357800 

pntrch 375111018,7 375171365,8 750282384500 

puwmod 132193921,3 133032506 265226427300 

tblook 228483853,7 235954945 464438798700 

ttsprk 237720206,1 241492129,7 479212335800 

Total CPU 
time 3419311559,6 3472910592,6 6892222152200 

Table 8: Computation requirements (in cycles) 

 

Through this table we will be able to know the amount of CPU time that we have required 
from the high-performance ARVEI cluster. 

 

 

 

 

 

 

 

 



34 
 

4.3 Treat of the stats 
 

In this section it will be explained the process of treating the statistics from the output of 
the simulator to the generation of the different Excel plots and tables. 

 

4.3.1 Output to stats 
 

The output obtained from the simulator after the execution of a benchmark is very long 
and contains lot of information that we are not going to use for this project. In order to 
treat and filter in an easier way the statistics we needed the important data to Excel. 

The data that we wanted for this project from the outputs was:

• Execution time 
 

• Cycles executed 
 

• Executed Instructions 
 

• ICache: 
o Read Accesses 
o Read Hits 
o Read Misses 

 
• DCache:  

o Write & Read Accesses 
o Write & Read Hits 
o Write & Read Misses  

 
• DCacheL2:  

o Write & Read Accesses 
o Write & Read Hits 
o Write & Read Misses

We don’t take into account the ICache Write because the accesses are always 0. 

In the first instance, to convert this data to an XLS spreadsheet a C++ script, with some 
functions from an external library called LibXL, was used. At first it worked fine, but as 
you worked with a higher amount of data it took too time to generate the spreadsheet.  

For that reason, the solution that was applied consist on generating a CSV document, 
given its ease of generation and the short time it takes.  

Finally, we will manually copy and paste the CSV data into an Excel with an own 
customized template to make it easier to see the data (since there are lot of data around 
18000 values for every benchmark). 
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4.3.2 Filtered of stats 
 

Once we have all the statistics on an Excel document a filtered of them was needed to 
be able to analyze them in an easier way.  

To perform this process some C++ scripts have been created:

• Filter between good and wrong executions: this script generates a CSV file 
with all the stats but just from the executions where the number of instructions 
executed is very similar to the original benchmark. 
 

• Generator of IPC (instructions per cycle): this script generates a CSV file with 
the IPC of all the executions (we can get the IPC dividing the number of executed 
instructions by the number of cycles) and it also allows you to filter the executions 
between good and wrong. 
 

• Generator of Hit/Miss ratio: this script generates a CSV file with the Hit/Miss 
ratio on percentage of ICache reads, DCache reads & writes, DCacheL2 reads 
& writes of every execution. It also allows you to filter the executions between 
good and wrong. 
 

• Generator of Miss/1000 inst.: this script generates a CSV file with the Misses 
per 1000 instructions of ICache reads misses, DCache reads & writes misses, 
DCacheL2 reads & writes misses of every execution. It also allows you to filter 
the executions between good and wrong. 
 

• Generator of Minimum, Maximum, Mean, Median, Mode, Typical deviation, 
Mean Absolut deviation, Variance: this script generates these variables for all 
columns from a CSV that we have to pass as a parameter. 
 

4.3.3 Generation of plots  
 

When all the stats were well filtered in an Excel document, it was time to generate all the 
plots to study the behavior of the CPU depending on the execution. These plots have 
been made using Excel due to the ease with which you can generate and manage the 
plots with this program. The plots that were generated are:  

• IPC plots 
 

• ICache plots (Misses/kinst.) 
 

• DCache plots (Misses/kinst.) 
 

• DcacheL2 plots (Misses/kinst.) 
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4.4 Schema of all process 
 

In table 9 we will be able to see a summary of the process we have followed to collect 
and treat all the necessary statistics to carry out this project. 

 

Benchmarks 
generation 

 

• Generate normal randomized benchmarks for the two 
versions with TASA from EEMBC Autobench benchmarks (in 
BSC remote machine) 
 

Binaries 
generation 

 

• Compile normal randomized benchmarks for SPARC 
architecture  
(in BSC remote machine) 
 

Benchmarks 
execution 

 

• Execute normal benchmarks for COTS cache implementation 
in SPARC simulator (in ARVEI cluster) 

• Execute normal benchmarks for Time randomized processor 
cache implementation in SPARC simulator (in ARVEI cluster) 
 

Output 
to  

Stats 

 

• Generate CSV with the important data from normal 
benchmarks for COTS cache implementation executions 
outputs (in ARVEI cluster) 

• Generate CSV with the important data from normal 
benchmarks for Time randomized processor cache 
implementation executions outputs (in ARVEI cluster) 
 

Stats 
 filtering 

 

• Generate Excel file for good executions from CSV of COTS 
normal benchmarks 

• Generate Excel file for bad executions from CSV of COTS 
normal benchmarks 

• Generate Excel file for good executions from CSV of Time 
randomized processor normal benchmarks 

• Generate Excel file for bad executions from CSV of Time 
randomized processor normal benchmarks 
 

Treat of Stats 

 

• Generation of IPC for all Excel 
• Generation of Hit/Miss ratio for every cache of every Excel 
• Generation Miss/kinst ratio for every cache of every Excel 
• Generate the minimum, maximum, mean, median, mode, 

typical deviation, mean Absolut deviation, variance, quartile 
(3), percentile (0,9) of every Excel 
 

Generation 
of 

Plots 

 

• Generation of IPC plots from IPC Excel 
• Generation of ICache plots (Misses/kinst.) from Miss/Kinst 

Excel 
• Generation of DCache plots (Misses/kinst.) from Miss/Kinst 

Excel 
• Generation of DCacheL2 plots (Misses/kinst.) from Miss/Kinst 

Excel 
 

Table 9: Schema of collecting stats process 
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5 Evaluation 
 

In this section it is describe the behavior of SPARC with the EEMBC Autobench 
benchmarks by means of the extracted statistics. 

 

5.1 Executions of EEMBC in SPARC with COTS implementation 
 

This section explains the statistics obtained by executing the workloads in SPARC 
simulator with COTS implementation. 

 

5.1.1 Character of EEMBC in COTS 
 

This section describes the character of the SPARC simulator with COTS implementation 
when executing the different workloads. 

 

5.1.1.1 IPC analysis 
 

In plot 1 we can see the mode, mean, maximum and minimum IPC of 1000 good 
executions of every benchmark for COTS implementation.  

 
Plot 1: IPC of all benchmarks for COTS (1000 executions) 

All the values are really similar for the same benchmark so it shows that the good 
execution of this benchmarks will have little variabilities for IPC, subtracting some 
concrete cases as the minimum of a2time or tblook that are very low and it could be 
considerate as a pathological cases. 
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5.1.1.2 Execution time analysis 
 

In plot 2 we can see the mode, mean, maximum and minimum of execution times of 1000 
good executions of every benchmark for COTS implementation.  

 

 
Plot 2: Time in seconds of all benchmarks for COTS (1000 executions) 

 

In one hand, in this plot unlike the previous we can see that the maximums and the 
minimums have values very different from the mode, because of this we can assume 
that it will be more pathological cases than in IPC plot 1. 

In the other hand, we can see little variabilities between the mean and mode, this will 
shows that most of the execution times are very similar and that the pathological cases 
are really far from expected execution times. 
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5.1.2 ICache Misses  
 

To create the performance signatures, we have focused on the ICache that is the more 
important cache due to that is the one which is accessed by the instructions. 

We have also chosen the ICache because we want to know if we are executing a 
malicious program before it finishes so we can create performance signatures with the 
number of misses and when the number of misses overcome the threshold we could 
stop the execution through throwing an interruption.  

In table 11 it will be able to see the statistics that summarize the set of raw misses for all 
the executions with a COTS architecture for each benchmark. 

Benchmark mode median mean quartile (3) percentile 
(0.9) maximum 

a2time 447 1349 30751,874 21148 123863,2 1040962 

aifirf 445 417 394,702 444 447 452 

basefp 472 453 5464,595 472 476 160292 

bitmnp 2244605 2247332 2246274,717 2264831,75 2280171 2319040 

cacheb 481 366,5 337,999 471,25 481 488 

canrdr 361 345,5 322,34 361 363 367 

pntrch 549 517 450,241 548 551 557 

puwmod 438 410,5 388,713 437 439,2 445 

tblook 31205 78124 91987,944 123421,25 183725,6 553484 

ttsprk 934 95354 114901,049 171633 248510 432323 
Table 10: ICache Raw misses for every benchmark for COTS 

In the next 10 plots we will see the number of ICache Raw misses from all benchmarks, 
we could see that most of them have very similar shape. 

• a2time 

 
Plot 3: ICache raw misses of a2time for COTS 
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• aifirf 

 

 
Plot 4: ICache raw misses of aifirf for COTS 

 

• basefp 

 

 
Plot 5: ICache raw misses of basefp for COTS 
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• bitmnp 

 

 
Plot 6: ICache raw misses of bitmnp for COTS 

 

• cacheb 

 

 
Plot 7:  ICache raw misses of cacheb for COTS 
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• canrdr 

 

 
Plot 8: ICache raw misses of canrdr for COTS 

 

• pntrch 

 

 
Plot 9: ICache raw misses of pntrch for COTS 
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• puwmod 

 

 
Plot 10: ICache raw misses of puwmod for COTS 

 

• tblook 

 

 
Plot 11: ICache raw misses of tblook for COTS 
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• ttsprk 
 

 
Plot 12: ICache raw misses of ttsprk for COTS 

To summarize the last plots, we can tell that six of them have normal COTS shapes and 
for that reason it will be easy to generate the performance signatures. On the other hand 
we have the a2time, basefp, tblook and ttsprk that have very different from the normal 
COTS shapes and that is because we have very separated maximums and minimums, 
for that reason we will have less precision on our performance signatures. 

In table 11 we can see the coefficient of variation (%) for ICache misses for all the 
benchmarks tested with a COTS architecture. In this table we can see that the bigger 
Coefficient of variation are from the benchmarks with no normal plot shapes. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 11: Coefficients of variation (%)  ICache miss for COTS 
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Benchmark Coefficient of variation (%) 

a2time 224,0562386 

aifirf 14,753806 

basefp 391,1250336 

bitmnp 1,2128514 

cacheb 39,3491999 

canrdr 14,8687537 

pntrch 26,1894014 

puwmod 14,1445448 

tblook 76,8111995 

ttsprk 81,9354015 
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5.1.3 Evaluating performance signatures 
 

In this section it will be evaluate the performance signatures from the statistics showed 
in the previous section. 

 

5.1.3.1 Signature definition 
 

After analyzing all the collected stats and as we have explained before, we will create 
the performance signature from the ICache raw misses.  

In table 12 we can see the number of pathological cases that we can find depending on 
the number of misses for every benchmark with COTS implementation. For example 2X 
while tell the number of executions that overcome twice or more the mode, and the same 
for the fifth, tenth and hundredth. 

benchmark 2X 5X 10X 100X 

a2time 537 466 329 214 
aifirf 0 0 0 0 

basefp 77 76 72 45 
bitmnp 0 0 0 0 
cacheb 0 0 0 0 
canrdr 0 0 0 0 
pntrch 0 0 0 0 

puwmod 0 0 0 0 
tblook 602 162 9 0 
ttsprk 898 864 844 520 

Table 12: Pathological cases compared with mode of ICache Raw misses for COTS 

In table 13 we can see the same as in table 12, but instead of using mode to filter we will 
be using the mean. 

benchmark 2X 5X 10X 100X 

a2time 210 14 7 0 
Aifirf 0 0 0 0 

Basefp 69 59 42 0 
Bitmnp 0 0 0 0 
Cacheb 0 0 0 0 
Canrdr 0 0 0 0 
Pntrch 0 0 0 0 

Puwmod 0 0 0 0 
Tblook 100 2 0 0 
Ttsprk 136 0 0 0 

Table 13: Pathological cases compared with mean of ICache Raw misses for COTS 
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In tables 14 and 15, we can see the average of interruptions triggered for the false 
positives with mode and mean as a reference. 

 

benchmark 2X 5X 10X 100X 

a2time 0,924838102 0,424883604 0,296527891 0,043160446 

Aifirf 0 0 0 0 

basefp 6,02781726 2,442121638 1,285891492 0,17624516 

bitmnp 0 0 0 0 

cacheb 0 0 0 0 
canrdr 0 0 0 0 
Pntrch 0 0 0 0 

puwmod 0 0 0 0 

Tblook 0,715712203 0,464780249 0,458664207 0 

Ttsprk 0,556345703 0,231084874 0,118139344 0,01615867 
 

Table 14: Average of interruptions triggered for false positives with mode as a reference for COTS 

 

 

benchmark 2X 5X 10X 100X 

a2time 150,2284116 168,6053052 119,1912752 0 

Aifirf 0 0 0 0 

basefp 77,38220032 34,69046969 21,10756659 0 

bitmnp 0 0 0 0 

cacheb 0 0 0 0 

canrdr 0 0 0 0 

Pntrch 0 0 0 0 

puwmod 0 0 0 0 

Tblook 3,873990226 3,428607595 0 0 

Ttsprk 154,6655789 0 0 0 
 

Table 16: Average of interruptions triggered for false positives with mean as a reference for COTS 
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5.2 Executions of EEMBC in SPARC with Time randomized 
processor implementation 

 

This section explains the statistics obtained by executing the workloads in SPARC 
simulator with Time randomized processor implementation. 

 

5.2.1 Character of EEMBC in Time randomized processor 
 

This section describes the character of the SPARC simulator with Time randomized 
processor implementation when executing the different workloads. 

 

5.2.1.1 IPC analysis 
 

 In plot 13 we can see the mode, mean, maximum and minimum IPC of 1000 good 
executions of every benchmark for Time randomized processor implementation. 

All the values are really similar for the same benchmark, even so the values are more 
variant than COTS IPC plot (plot 1) due to for this benchmarks randomized caches are 
not favorable.  

We can see from the plot that good executions of this benchmarks will have little 
variabilities for IPC. 

On one hand, we find some benchmarks we can considerate some pathological cases 
in concrete cases where the minimum and the maximum are very different from the 
mode.  

On the other hand we have some benchmarks like pntrch that don’t have any variability 
between the mode, mean, maximum and minimum. 
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Plot 13: IPC of all benchmarks for MBPTA (1000 executions) 
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5.2.1.2 Execution time analysis 
 

In plot 14 we can see the mode, mean, maximum and minimum of execution times of 
1000 good executions of every benchmark for Time randomized processor 
implementation.  

 

In one hand, in this plot unlike the IPC plot we can see that the maximums and the 
minimums have values very different from the mode, because of this we can assume 
that it will be more pathological cases than in IPC plot 14. 

In the other hand, we can see little variabilities between the mean and mode, this will 
shows that most of the execution times are very similar and that the pathological cases 
are really far from expected execution times. 

Comparing this plot with the COTS execution time plots we can see that most of the 
benchmarks have a bigger mean value so it is slower to execute with Time randomized 
processor than with COTS, but it is less difference between pathological cases (very 
different maximums and minimums) for Time randomized processor than for COTS. 
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Plot 14: Time in seconds of all benchmarks for MBPTA (1000 executions) 
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5.2.2 ICache Misses 
 

In table 12 it will be able to see the statistics that summarize the set of raw misses for all 
the executions with a Time randomized processor architecture for each benchmark. 

Benchmark mode median mean quartile (3) percentile 
(0.9) maximum 

a2time 1242208 1182610 1283042,023 1645731 2035035 3775651 

aifirf 452 61981 75637,187 104951 161788,4 398988 

basefp 207356 285205,5 323928,322 399335,5 553234,3 1648835 

bitmnp 3833322 4518100,5 4787291,072 5398464,25 6551016 14858991 

cacheb 57770 89160,5 99263,669 127816,75 173136,5 425229 

canrdr 401 8039 21798,114 24034,25 55104,8 641340 

pntrch 639 681,5 5557,538 6876,5 16746,5 55661 

puwmod 28132 30820 40744,97 52715,5 80072,8 587044 

tblook 842587 856623 880300,077 1011055,5 1155527,6 1826010 

ttsprk 508552 513043 529938,263 591282,5 683120,6 1356484 
Table 14: ICache Raw misses for every benchmark for Time randomized processor 

In the next plots we will see the number of ICache Raw misses from all benchmarks 
executed with Time randomized processor, we will be able to see the difference between 
them and compare them with the COTS. 

 

• a2time 

 
Plot 15: ICache raw misses of a2time for Time randomized processor 
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• aifirf 
 

 
Plot 16: ICache raw misses of aifirf for Time randomized processor 

 
• basefp 

 

 
Plot 17: ICache raw misses of basefp for Time randomized processor 
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• bitmnp 
 

 
Plot 18: ICache raw misses of bitmnp for Time randomized processor 

 
• cacheb 

 

 
Plot 19: ICache raw misses of cacheb for Time randomized processor 

 
 

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951



52 
 

• canrdr 
 

 
Plot 20: ICache raw misses of canrdr for Time randomized processor 

 
• pntrch 

 

 
Plot 21: ICache raw misses of pntrch for Time randomized processor 
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• puwmod 
 

 
Plot 22: ICache raw misses of puwmod for Time randomized processor 

 
• tblook 

 

 
Plot 23: ICache raw misses of tblook for Time randomized processor 
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• ttsprk 

 
Plot 24: ICache raw misses of ttsprk for Time randomized processor 

To summarize the last plots, we can tell that all of them are more similar between them 
than the COTS plots mentioned before. On the other hand the shapes of all the Time 
randomized processors are very different from the normal plot except the tblook and 
ttsprk, and for that reason this two benchmarks will be easier for generating the 
performance signatures. So comparing with COTS implementation, most of the 
benchmarks will be easier for generating a performance signature with a COTS 
implementation but few of them like tblook and ttsprk are easier for generating 
performance signatures with Time randomized processors. 

In table 13 we can see the coefficient of variation (%) for ICache misses for all the 
benchmarks tested with a Time randomized processor architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 15: Coefficients of variation (%) ICache miss for Time randomized processor 
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Benchmark Coefficient of variation (%) 

a2time 0,462292508 

aifirf 0,882816819 

basefp 0,585893442 

bitmnp 0,292120271 

cacheb 0,592935916 

canrdr 2,017133148 

pntrch 1,465496714 

puwmod 1,133303028 

tblook 0,248526292 

ttsprk 0,23753235 
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5.2.3 Evaluating performance signatures 
 

In this section it will be evaluate the performance signatures from the statistics showed 
in the previous section. 

5.2.3.1 Signature definition 
 

After analyzing all the collected stats and as we have explained before, we will create 
the performance signature from the ICache raw misses.  

In table 17 we can see the number of pathological cases that we can find depending on 
the number of misses for every benchmark with Time randomized processor 
implementation. For example 2X while tell the number of executions that overcome twice 
or more the mode, and the same for the fifth, tenth and hundredth. 

benchmark 2X 5X 10X 100X 

a2time 11 0 0 0 
aifirf 882 880 880 573 

basefp 221 7 0 0 
bitmnp 39 0 0 0 
cacheb 319 11 0 0 
canrdr 632 631 597 154 
pntrch 430 430 289 0 

puwmod 223 21 7 0 
tblook 3 0 0 0 
ttsprk 5 0 0 0 

Table 167: Pathological cases compared with mode of ICache Raw misses for Time randomized processor 

In table 18 we can see the same as in table 17, but instead of using mode to filter we will 
be using the mean. 

benchmark 2X 5X 10X 100X 

a2time 10 0 0 0 

aifirf 121 2 0 0 

basefp 61 1 0 0 

bitmnp 9 0 0 0 

cacheb 56 0 0 0 

canrdr 137 38 6 0 

pntrch 180 25 1 0 

puwmod 93 12 3 0 

tblook 3 0 0 0 

ttsprk 3 0 0 0 
Table 17: Pathological cases compared with mean of ICache Raw misses for Time randomized processor 
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In the next two tables we can see the average of interruptions triggered for the false 
positives with mean and mode as point reference. 

benchmark 2X 5X 10X 100X 

a2time 1,21244857 0 0 0 

aifirf 94,7938251 38,0016699 19,0008349 2,54385952 

basefp 1,43704535 1,25937105 0 0 

bitmnp 1,18436371 0 0 0 

cacheb 1,43538803 1,21490897 0 0 

canrdr 42,7337688 17,1193648 9,00322393 2,28823704 

pntrch 9,54889362 3,81955745 2,40266366 0 

puwmod 1,70989909 1,87747456 1,44321159 0 

tblook 1,07323616 0 0 0 

ttsprk 1,17933368 0 0 0 

Table 18: Average of interruptions triggered for false positives with mode as a reference for Time randomized processor 

 

 

benchmark 2X 5X 10X 100X 

a2time 1,191382752 0 0 0 

aifirf 1,409350358 1,04366646 0 0 

basefp 1,29990305 1,018022468 0 0 

bitmnp 1,19569138 0 0 0 

cacheb 1,290891227 0 0 0 

canrdr 2,247231926 1,686080723 1,803461933 0 

pntrch 1,784796689 1,353203311 1,001457359 0 

puwmod 1,675914454 1,676245347 1,275941424 0 

tblook 1,027256397 0 0 0 

ttsprk 1,237296808 0 0 0 

Table 19: Average of interruptions triggered for false positives with mean as a reference for Time randomized processor 
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6 Conclusions 
 

The main conclusions we draw from this work is that despite real-time workloads show 
little variability in IPC, execution time and even in cache accesses, misses and hits using 
performance signatures is not always a good option since sometimes we cannot 
discriminate the intrinsic innocuous variability from the performance variability caused by 
malicious software. However, in general the fact that real-time benchmarks have little 
variability is good to derive performance signatures. 

However, some pathological cases can still occur and thus, causing some false positives 
to be triggered, this means that using this performance signatures there will be some 
good executions will be treated as a malicious which can be problematic since this can 
prevent real-time applications from completing executions in time. 

We can choose a precision with our performance signatures that has the best relation 
between good executions treated as bad executions and vice versa. 

On one hand we have create performance signatures using the mode of ICache misses 
as a reference in top of COTS processors. The pathological cases (false positives) in 
average for 2X are 20%, even so we can decrease this percentage using bigger 
performance signatures like 100X where the percentage is 7%. But we have to take into 
account that the false positives do only occur in 4 benchmarks only, for the other ones 
the false positives are 0 which means that for these benchmarks performance signatures 
are able to detect malicious attacks with a perfect match. 

On the other hand we have used the mean as a reference to generate performance 
signatures. In this case we can see that the false positives are less than using mode, for 
example for a precision of 2X we have 5% of false positive. 

 

We have also analyzed the suitability of Randomized platforms. The first problem we see 
is that for this type of workloads we again little variability due to cache conflicts in IPC 
but at the same time the amount of conflicts have increased significantly. The reason for 
having increased miss rates is the worse temporal and spatial locality properties of time-
randomized caches.  The good point is that the relative variability in this platforms is 
lower (Coefficient of variation). 

The first difference we can see comparing the pathological cases tables between COTS 
and Time randomized processor is that in COTS we just have 4 benchmarks with 
pathological cases and for Time randomized processors we have pathological cases for 
all of them (regardless of the reference point that has been used). 

Even so if we analyze more, we can see that the pathological cases in average that are 
false positives are more or less the same, for 2X (mode as a reference) the percentage 
will be around 30 % and for the 100X it will be around 7% (the same as COTS). 

Also we can see that with mean as a reference we have less false positives (like in COTS 
implementation), for example for 2X is around 7%. 

So, what we conclude that thought Time randomized processors offer more performance 
stability the loss of locality properties clashes with the good properties they offer being 
COTS platforms a better choice for performance signatures when using applications with 
little performance variability.  
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7 Glossary 
 

 

COTS 

Means Commercial off-the-shelf, and is the traditional implementation for a 
cache. In this implementation we can use different placement algorithms like 
FIFO. 

  

Time-randomized    

Random implementation for a cache. It consists on placing and replacing the data 
in the cache using randomized algorithms from memory direction, in this way we 
make sure that in bad optimized cases the accesses to cache are the different 
for each execution. 

 

SPARC Simulator 

Is a simulator that simulates with a high accuracy the 4-core NGMP processor, 
expected to be the target multicore platform for the next European Space Agency 
missions. 

 

Workload 

Quantitative amount of work that which carries out the execution of a benchmark. 

 

EEMBC 

Means Embedded Microprocessor Benchmark Consortium, is a non-profit, 
member-funded organization formed in 1997, focused on the creation of standard 
benchmarks for the hardware and software used in embedded systems. The goal 
of its members is to make EEMBC benchmarks an industry standard for 
evaluating the capabilities of embedded processors, compilers, and the 
associated embedded system implementations, according to objective, clearly 
defined, application-based criteria. EEMBC members may contribute to the 
development of benchmarks, vote at various stages before public distribution, 
and accelerate testing of their platforms through early access to benchmarks and 
associated specifications. 

 

SoCLib 

Is an open platform for virtual prototyping of multi-processors system on chip 
(MP-SoC). 
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ARVEI 

Is a high-performance cluster from the UPC DAC (Architecture Computer 
Department). This cluster is used for research works as simulations, parallel 
works, intensive calculation, executions of a large number of virtual machines, 
etc. 

 

NGMP 

Means Next Generation Microprocessor, is a quad-core processor to be used in 
the future space missions of the ESA (European Space Agency). 

 

TASA 

Means Toolchain-Agnostic Static Software Randomization for Critical Real -Time 
System, and is a compiler given by the project directors that produces binaries of 
programs with randomized memory layout. 

 

Performance signatures 

 Consist on the normal standards in form of variables or threshold that defines the 
correct behavior of a program. 

 

Critical applications 

Is any application, program or software that is essential to business operation or to 
an organization. Some examples can be the autonomous car systems, nuclear 
reactor safety system software, etc. 

 

Coefficient of variation  

Is a standardized measure of dispersion of a probability distribution or frequency 
distribution. It is often expressed as a percentage, and is defined as the ratio of 
the standard deviation σ to the mean µ. 

 

Performance monitoring counters 

Counters that can show real-time CPU variables like the cycle executed, 
hit/misses in cache, etc. and can be used to control all the aspects of a program 
execution. 

 

ICache 

 Is the instructions cache that use the SPARC CPU. 
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DCache 

 Is the Data cache that use the SPARC CPU. 

 

UCacheL2 

Is a second level Cache that is accessed when we have miss in ICache or 
DCache. 
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Appendix A 
 

Project planning 
 

The estimated Project duration is about 4 months, from the end of January 2018 until the 
start of June 2018. As a disclaimer, since it is a project that depends in large extent on 
the analysis of unpredictable results, it must be pointed out that the initial planning could 
be updated during the evolution of the project.  

 

Project analysis and design 
 

The main objective of this phase is to make an accurate analysis of the project and 
develop the consequent design. On the one hand, in the project analysis it will be 
necessary to define and set the objectives, requirements, features and the use cases of 
our application. Furthermore, the state of art will be expanded and it is provided an 
analysis and evaluation of the different technologies used to the development. On the 
other hand, project design consists on creating the architecture of the software, i.e. 
sequence diagrams, database design, etc. That implies using all the knowledge acquired 
during the Bachelor Degree in Computer Engineering in order to make a high quality 
software. 

 

Task description 
 

In this section, we will try to describe the different tasks that make up this project ordered 
chronologically.  

 

Project management 

 

This task consists of the work that is developed for the GEP (Project Management) 
subject of the FIB. It will be constituted of 7 deliverables (subtasks), each of them will 
require a different time of dedication. In addition, every deliverable is divided in two parts, 
the documentation and the rubric. The deliverables are: 

 

• Context and scope of the project (12.00 hours of dedication) 
• Project planning (7.00 hours of dedication) 
• Budget and sustainability (10.00 hours of dedication) 
• Preliminary presentation (3.00 hours of dedication) 
• Fold of conditions (12.50 hours of dedication) 
• Final document (15.00 hours of dedication) 
• Oral presentation PowerPoint (3.00 hours of dedication) 
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The resources needed to carry out these tasks are a computer (with internet access), 
Microsoft Office (Word and PowerPoint), Gantter, Racó of FIB and Atenea of UPC 
access and Google Drive. 

 

Knowledge and understanding of the testing environment 

 

The first step and essential task that we must perform before starting with the collection 
and analysis of data, will be to familiarize with the work environment and understand the 
operation of the tools we need use. 

 

Environment familiarization 

 

Ubuntu is the OS distribution that will be used to perform the entire workload of the 
project except for the first task mentioned above (this task will be performed using a 
Windows OS distribution). Thanks to the different subjects attended in the FIB in which 
study and use of Ubuntu OS has been done, I have not needed to spend too much time. 
The environment is provided in a virtual machine with the basic tools installed, to facilitate 
the project’s bootstrap time. 

 

Understanding of the operation of the tools 

 

TASA is the source-to-source compiler that we will be used to generate equal binaries 
but with different type of code randomized modifications, depending of the flags used. 

SPARC simulator is the program that will be used to realize the first CPU behaviour 
study. Since there have to make lot of executions with this simulator it is needed a 
knowledge of it to try to perform the maximum number of executions in the shortest 
possible time, due to the limited deadline to finish the project as mentioned before. 

 

Implementation of automation scripts 

 

Since this is a project to study the performance of a CPU, it requires to collect lot of 
statistics. For that reason, it will be needed to generate lot of randomized benchmarks 
and make lot of executions (around 100.000 executions for every CPU type) and collect 
the statistics of all of them.  
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Due to the limited time we have, it’s a must to create optimized scripts to automatize this 
process.  It has been implemented 4 scripts: 

• Randomized benchmarks generator:  this script is very interactive and it is in 
charge of generate the randomized benchmarks from each benchmarks. The 
parameters that you can set are the benchmark (one or all), the flags, and the 
number of randomized benchmark. Run this script it takes 1.2 seconds per 
number of randomized benchmark. 

• Binary generator: this script it’s also very interactive and it is in charge of 
compile the benchmarks for SPARC architecture and generate the 
correspondent binary. The parameter you can set is the benchmarks from 
which you want to generate the binary. Run this script it takes 0.1 seconds 
per benchmark 

• Statistics generator: this script is in charge of generate all the statistics from 
the execution of one benchmark and his equal randomized benchmarks. The 
parameter is the benchmarks that you want to execute. Run this script it takes 
6 seconds per execution. 

• XLS generator: this script is in charge of convert all the statistics of one 
execution to an XLS document. The parameter is the statistics you want to 
convert to XLS document. 

Analysis of statistics 

 

 Once we have all the statistics in an XLS spreadsheet, we will generate some plots to 
see which the behaviour of the CPU is and we will compare the results using different 
flags in cache. We will focus on several statistics: 

• Execution time 
• Used memory 
• CPU usage 
• LR1 cache missed 
• LR2 cache missed 

 

In this task we will have to take into consideration feedback from the directors. To perform 
this task frequent communication with the directors it will be needed, because I don’t 
have enough knowledge about the usual CPU performance. 

BENCHMARK TASA 
RANDOMIZED 

BENCHMARK 

GENERATE 

BINARY 
EXECUTION STATISTICS 

TO EXCEL 
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Resources 
 

To develop correctly this project, it will be used the next resources. 

Hardaware: 

 Personal computer (Own design and build) 
 Remote BSC machine (6 CPUs) 
 Remote BSC Cluster (100 CPUs) 

Software: 

 Linux Virtual Machine 
 VirtualBox 
 EEMBC Benchmarks 
 NGMP simulator 
 MobaXterm 
 TASA 
 XSL library 
 OpenOffice 
 Microsoft Office 365 
 Windows 10 professional 

 

Schedule 
 

In the next illustration we will be able to see the initial Gantt diagram of the task designed 
for this thesis. This diagram has changed several as the project progressed 

 

Illustration 20: Initial Gantt diagram 
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Appendix B 
 

Sustainability 
 

In this section we are going to evaluate the sustainability of our project in three different 
areas: economic area, social area and environmental area.  

 

Economic sustainability 
 

In this document we already can find an assessment of the costs of our project, taking 
into account hardware, software and human resources.  

The cost stated in the Total budget section of this document could be the only spent in 
the project, since our project is a study that can be realized using OpenSource 
applications. However, we can also use non OpenSource applications with more features 
and with a best easy-use.  

It would be difficult to do a similar project with a lower cost. Due to the most of the costs 
are from human resources. Despite this, we could reduce the hardware budget by using 
a cheaper computer and without using the remotes cluster and machine, but this can 
affect directly to the computation times, and we will need more time to develop the 
project. Furthermore, we can also decrease the software budget just using cheaper 
Office and Windows versions, but given the fact that we already have these versions we 
did not buy previous versions. 

 

Social sustainability 
 

The study that we are going to develop in this project is going to be used for the CPU 
builders or for cybersecurity of CPU companies, since our goal is use CPU Performance 
Signatures for Security Attacks Detection.  

This study can help in the improvements of antivirus. In addition, it we can be very helpful 
for all the companies to detect cybersecurity attacks easily and while a malicious 
application without producing damage in the CPU. 

 

Environment sustainability 
 

The resources used in the project have been detailed in the Budget estimation section. 

 

Product Power Use Consumed 
energy Total estimated CO2 

Personal 
computer 500 W 600 h 300 kWh 115,50 Kg of CO2 

Total estimated 500 W 600 h 300 kWh 115,50 Kg of CO2 

Table 20: Energy estimated costs 
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In Table 5, an estimation of project energy cost is provided. 

The only resources that can affect to environment and we use in this project will be the 
Personal computer (use), the energy spent and the paper used to print the 
documentation.  Knowing that, we can estimate the energy spent developing the project. 

It is in fact a high amount of energy, but since we need to make extensive use of a 
computer there is no way to reduce it.  

 

Sustainability Matrix 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type Project Development Exploitation 

Environmental 10 0 

Economic 7 5 

Social 10 8 

Table 21: Sustainability Matrix 
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