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Abstract—The remarkable advances in sensing and communi-
cation technologies have introduced increasingly low-cost, smart
and portable sensors that can be embedded everywhere and play
an important role in environmental sensing applications such
as air quality monitoring. These user-friendly wireless sensor
platforms enable assessment of human exposure to air pollution
through observations at high spatial resolution in near-real-
time, thus providing new opportunities to simultaneously enhance
existing monitoring systems, as well as engage citizens in active
environmental monitoring. However, data quality from such
platforms is a concern since sensing hardware of such devices
is generally characterized by a reduced accuracy, precision,
and reliability. Achieving good data quality and maintaining
error free measurements during the whole system lifetime is
challenging. Over time, sensors become subject to several sources
of unknown and uncontrollable faulty data which comprise the
accuracy of the measurements and yield observations far from
the expected values. This paper investigates calibration of low-
cost air quality sensors in a real sensor network deployment.
The approach leverages on the availability of sensor arrays
in a wireless node to estimate parameters that minimize the
calibration error using fusion of data from multiple sensors. The
obtained results were encouraging and show the effectiveness of
the approach compared to a single sensor calibration.

Index Terms—Sensor networks, Ozone sensors, Calibration;
Data fusion; Array of sensors; Multivariate estimation.

I. INTRODUCTION

Nowadays, urban air quality represents a major concern
to the environment, the public health, and ultimately, the
economy of all countries as air pollution impairs citizens
health and quality of life. Currently air pollution concentra-
tions are monitored using static monitoring stations equipped
with certified reference instruments which are relatively large,
heavy and expensive. With the growing progress in sensor
technology, many sensor manufacturers are selling low-cost
sensors with a wide range of sensing applications such as
air pollution. This unique class of air monitoring sensor
devices such as O3, CO, NOx, CO2, etc. when integrated
into a wireless sensor network (WSN) provides for continuous
air quality measurements and for more ubiquitous pollutant
monitoring systems. Sensor nodes can be deployed as dense
networks or mounted on vehicles, facilitating the elaboration
of high-resolution air quality maps [1], [2]. Furthermore,
mobile platforms permit to track changes in exposure due
to changes in human location and activities and provide new
capabilities to evaluate health risk from air pollution [3], [4].

Several research projects are exploring the possibility of
deploying low-cost sensor platforms to collect air quality data.
H2020 CAPTOR (https://www.captor-project.eu/en/) project
is one of them and it is based on the assumption that the
combination of citizen science, collaborative networks and en-
vironmental grassroots social activism helps to raise awareness
and find solutions to the air pollution problem, having a high
potential impact on fields such as education, social innovation,
science, environment, politics and industry. For that purpose
three testbeds with around 170 sensor devices have been
deployed in Spain, Austria and Italy with low-cost ozone
(O3) and nitrogen dioxide (NO2) sensors mounted on wireless
nodes. However, one key concern about these technologies is
the uncertainty of their data. In fact, data quality in low cost
based sensor networks is associated with several challenges [5]
since data can be subject to many different types of faults.
In a real sensor network deployment, Buonadonna et al. [6]
observed that failures can occur in unexpected ways which
provide inaccurate data.

Sensor calibration, [7], in low-cost based WSN is an in-
evitable requirement due to the natural process of device
imperfection and noises in the massive data collected. Manual
and automatic sensor calibration/re-calibration is essential, yet
challenging for different reasons. One key reason is that often
no direct means of sensor calibration was being provided by
the sensor manufacturer. Second, even if sensors are calibrated
before deployment, it is not possible to prevent sensor drift af-
ter deployment, especially when the lifetime of sensor systems
can be as long as years. Thus, it is necessary to automatically
calibrate sensors against drifts to correct sensor measurements
after deployment to ensure the trustworthiness of long-term
WSNs. Sensor calibration along this paper is considered herein
when the data from array of sensors are fused to estimate
calibration parameters of the low-cost sensor devices.

In this paper we calibrate more than 100 air pollution metal-
oxide ozone sensors in a real network deployment. There
are few papers in which i) commercial sensors are calibrated
in a real deployment, and ii) a large amount of sensors are
calibrated. Moreover, few is known on whether the sensors
of the same manufacturer behave equally. In our work, we
show that sensors of the same family behave quite different,
showing a high variability in terms of Root Mean-Squared
Error (RMSE). Knowing this variability, we mounted four
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metal-oxide ozone sensors at each node and a temperature and
relative humidity sensors, adding redundancy with the ozone
sensors and correcting the ozone concentration by taking into
account other parameters by using an array of sensors. In this
way, it is possible to reduce the amount of uncertainty in
choosing the sensor that better reduces the RMSE. A second
scenario is to fuse the data from all sensors in the same node.
We compare three data fusion techniques: multivariate linear
regression (MLR) fusion, average of data and median of data.

The outline of the paper is as follows. Section II enumerates
the related work. Section III describes the testbeds and data
sets used for the analysis. Section IV provides some prelimi-
naries on single sensor calibration using multiple regression
techniques for arrays of sensors. Section V presents data
analytics for calibration using multivariate regression applied
to sensor fusion for arrays of sensors. Finally, concluding
remarks are made in Section VI.

II. RELATED WORK

There exists a broad range of calibration techniques devel-
oped to correct measurement errors in sensor networks which
have been applied in different fields including air quality moni-
toring [8], [9], weather [10], localization [11], synchronization
[12], target discovery [13], and many others. Most of the
existing calibration approaches are built upon a number of
assumptions such as the availability of high-quality reference
measurements, prior knowledge on the true signal and/or the
error model, redundant measurements, spatial and/or temporal
correlation, mobility, and nodes interaction/cooperation. This
helps in providing some basic information required for estab-
lishing the calibration process.

Calibration techniques can take a number of attributes
[7] that define a calibration architecture. These attributes
depend on whether the calibration is done in a given point
or a given area (micro/macro or at device/system level), the
knowledge on the physical phenomena (blind/non-blind/semi-
blind calibration), the moment of calibration (pre-post-
deployment/periodic/opportunistic), the position of the sensor
with respect other already calibrated nodes (collocated/model-
based/multi-hop), how the information is processed (off-
line/on-line) and where (centralized/distributed), and finally
the number of sensors (single/fusion of sensors) used simul-
taneously in calibration. Depending on the application and on
the measured signal, the calibration architecture may have a
combination of these attributes.

In air quality monitoring, non-blind calibration is generally
employed in which gas and temperature sensors are calibrated
leveraging on ground-truth data from high-quality instru-
ments. Accordingly, the calibration parameters are adjusted
using these known data inputs. There are organizations in
many countries such as the European Environment Agency
(EEA, http://www.eea.europa.eu/data-and-maps/data/airbase-
the-european-air-quality-database-7) or United States Environ-
mental Protection Agency (EPA, https://www.epa.gov/outdoor-
air-quality-data) that openly publish data from high accurate

reference stations deployed in these countries by public orga-
nizations to measure air pollution. These reference stations are
not densely deployed due to their high costs, around 100Ke(in
dollars is around similar prices), but they can be used to
calibrate low-cost sensors located behind them.

On the other hand, sensor fusion or multi-sensor data fusion
is the technique that combines data from two or more sensors
into a single one that provides a more accurate description
than any of the individual sensors. Several approaches can be
considered for sensor fusion. Tan et al. [13] propose a two-
tier system-level calibration of a sensor network. In the first
step, each sensor learns and transmits its local sensing model
to a head node also called fusion-head. The received sensors’
measurements are fused in the second tier where a common
model is established and sensors are globally calibrated to
optimize the system wide performance. Similarly, Fabeck
and Mathar [14] propose a Bayes optimal fusion rule for a
network of nodes that send measured data to a centralized node
according to a binary hypothesis testing problem for detecting
the presence of a target. Gao et al. [15] used multi-sensor
fusion of four sensors attached to the waist, chest, thigh, and
side of the body for activity recognition.

However, the most common approach for air pollution
sensors is to reduce calibration errors by jointly considering
the measurements of multiple sensors. This technique is called
array of sensors and has as goal to reduce the uncertainty of
calibration parameters in the data model. Arrays of different
classes of gas sensors, [16], have proven quite useful to
qualitatively identify gas species using pattern recognition ap-
proaches and quantitatively determine gas composition based
on regression methods and for studying sensor devices from
different manufacturers, [9], [17].

Our paper analyses the calibration of ozone sensors in a real
Wireless Sensor Network deployment testbed. The approach
taken is in the line of [17] that uses arrays of sensors to
evaluate and compare the performance of gas sensor devices.

III. TESTBED AND DATA SET DESCRIPTION

Gas sensors (e.g., CO2, O3, NO2 gases) are sensors that
follow multiple linear responses. Tropospheric ozone, (O3),
formation occurs when nitrogen oxides (NOx), carbon monox-
ide (CO) and volatile organic compounds (VOCs), react in the
atmosphere in the presence of sunlight. In order to calibrate the
O3 sensors and depending on the type of sensor (metal-oxide
or electro-chemical), it is needed to measure O3, NO2, temper-
ature and relative humidity, [9], [17]. Experiments to measure
O3 have been performed in the H2020 CAPTOR project
testbeds in Spain, Italy and Austria during the 2017 summer
ozone campaign. The testbed consists of two types of nodes.
The first one called Captor and built by UPC, Barcelona,
Spain, following the DIY (Do It Yourself) philosophy, uses
Arduino technology with a sensor shield board that attaches
four SGX Sensortech MICS 2614 metal-oxide O3 sensors in
each Captor node, a temperature (Temp) sensor and a relative
humidity (RH) sensor, Figure 1. Each Captor node is powered
from an external power supply and it is connected to Internet



Fig. 1. Left) Captor node, Middle) Arduino Yun + sensoring shield, Right) Captor node box with its components.

using Wifi or 3G. The second type of node called Raptor and
built by Limos-UCA, France, uses Raspberry technology with
one αSense O3B4 electro-chemical O3 sensor, one αSense
NO2B4 electro-chemical NO2 sensor, a temperature sensor
and a relative humidity sensor. The Raptor outdoor node is
powered by a 9V 4000mAh battery for a lifetime of 3 months,
and connected using a IEEE802.15.4 (ZigBee) wireless access
medium to a indoor Raptor local server, powered from an
external power supply and connected to Internet using Wifi
or 3G. Three testbeds have been deployed from June to
September, 2017 in Spain, Austria and Italy, comprising 25
Captor nodes in Spain, 20 Raptors in Austria and 15 Raptors
and 10 Captors in Italy. There are in total 150 metal-oxide
O3 sensors and 35 electro-chemical O3 and NO2 sensors
deployed. In this paper, we will focus the research in the captor
nodes calibrated in the Spanish Testbed.

For calibration, nodes have been first locally tested in
reference stations nearby the places were the nodes were built,
and then in reference stations nearby the final deployment
location of the nodes. The calibration is considered to be
of type off-line, non-blind, centralized calibration, [7]. We
will select a Data Set considering Captor nodes located at
3 reference stations in Spain: i) 6 Captor nodes calibrated
at Palau Reial reference station in Barcelona town, Spain
(41◦23’14”N, 2◦6’56”E), operated by CSIC (Spanish National
Research Council) and the Regional Government of Catalonia
(Spain), ii) 7 Captor nodes calibrated at Manlleu reference
station (42◦0’6.966”N, 2◦17’13.7868”E) and, iii) 12 Captor
nodes calibrated at Tona reference station (41◦50’49.7796”N,
2◦13’14.7864’E), these operated by the Regional Government
of Catalonia (Spain).

The nodes have been placed from 3 to 4 weeks in the
reference stations and samples have been taken every hour.
Internally, every sample is the average of a set of multiple
consecutive samples taken during an interval of 5 minutes and
with outliers eliminated. When the final sample is obtained, it
is then sent via a wireless communication to a Database in a
repository where the sensor can be off-line calibrated. Finally,
the nodes are deployed in volunteer houses in the country-
side. The estimated coefficients are uploaded via the wireless
communication and from that moment, all O3 concentration
values measured in the volunteer houses are predicted in the

node and sent on real-time to a server that can be consulted
via a smart-phone app or using a browser in a tablet or PC.

IV. DATA ANALYTICS FOR CALIBRATING SENSORS USING
MULTIPLE ARRAY OF SENSORS

Let us consider an array of M sensors, a Multiple Linear
Regression (MLR) model accommodates M predictors, one for
each sensor, taking the form of [18]:

yk ∼ f(β, xk) = β0 +

M∑
j=1

βjxkj + εk k = 1 , ...,K (1)

where εk is a random error term, Gaussian distributed with
zero mean and variance σ2. The model assumes that y is
a vector of K samples with the ground-truth or calibrated
values, and xj (j=1,. . . ,M) are vectors of size K with the
data measured by each of the M sensors with the uncalibrated
values. The offset arises when the measured value Y differs
from its true value X by a constant amount β0 and can be
determined by measuring the sensed value when the ground-
truth value is zero. The gain refers to the rate or the amount
of change of the measured value with respect to the change
in the underlying ground-truth value, and it is represented by
coefficients βj with j=1,...,M. For commodity, we define a
vector of ones with size K and integrate the coefficient β0 in
the summation:

yk ∼ f(β, xk) =
M∑
j=0

βjxkj + εk k = 1 , ...,K (2)

and express the former equation in vectorial form as y =
Xβ+ε, where we denote the columns of the design matrix
X∈RK×(M+1) by x0,...,xM , where x0∈RK is a vector of
1’s that capture the offset, xj∈RK with (j=1,..., M) and
vector y∈RK is the ground-truth data. Then, the calibration
coefficients can be obtained by solving the least-squares min-
imization problem:

β̂LS = arg minβ ||Xβ − y||22 (3)

The calibration parameters β∗’s are the solution of the min-
imization problem. The error is non-negative except whenever
the function f(β,xk) pass exactly through each target point
yk in which case the error will be zero. Calling ŷk=f(β∗,xk),



Fig. 2. Calibration of 100 O3 sensors: Left) Train and Test RMSE, Right) RMSE for the whole data set.

The Root Mean-Squared error (RMSE) [18] allows to compare
different sizes of data sets in the same scale than the target
value yk:

RMSE =

√√√√ 1

K

K∑
k=1

(ŷk − yk)2 (4)

Finally, the R2 (Coefficient of Determination) measures the
proportion of variability in Y that can be explained using X
and it is bounded between 0 and 1. When R2 is close to
1 indicates that a large proportion of the variability in the
response has been explained by the regression.

It is well known, that the calibration of O3 depends of O3,
temperature and relative humidity, [17], [19]. Thus, M=3 and
y ∼ β0 + β1O3 + β2Temp + β3RH . We have taken the 25
nodes deployed in the 3 reference stations in Spain, and we
have calibrated the 100 sensors. For each sensor, the data set
has been split in two parts: the training set formed by 65%
of the data set has been used for estimating the coefficients,
while the test set formed by the other 35% has been used for
validating or predicting the data.

Fig. 3. Sensor RMSE per node, the largest circle indicates the sensor with
lowest RMSE among the 4 sensors at each node.

Figure 2 shows the RMSE for each sensor device. Red dots
in Figure 2.Left) represent the training RMSE (in µgr/m3) for
each sensor device. Sensors are ordered from highest training
RMSE to lowest training RMSE. The blue dots represent the
test RMSE. The test RMSE is obtained over the test data set

using the estimated coefficients calculated over the training
set. Figure 2.Right) shows the overall RMSE over the whole
data set. We may observe several issues:

• There is a large variability between the whole set of
sensors. The average amount of O3 in the three areas
considered is of 60 µgr/m3 in Palau Reial reference sta-
tion, 88 µgr/m3 in Tona reference station and 65 µgr/m3

in Manlleu reference station, with peaks in summer that
can range between 180-200 µgr/m3. The largest RMSE
is of around 26 µgr/m3 while the lowest is around 7-8
µgr/m3 depending on the sensor device, all from the same
manufacturer. That means that installing one or other
sensor device from the same family impacts the quality of
the data obtained irrespectively of the calibration process.

• The difference between the training and test RMSE
remains almost constant, few units, for all sensors. That
means that when an improvement is obtained in the
training set, the test RMSE can be at most a couple of
units below or above the training RMSE.

Each captor node mounts 4 O3 sensor devices, chosen ran-
domly from the set of sensors bought to the manufacturer.
One of the objectives was to add redundancy due to the high
RMSE variability. Figure 3 shows the RMSE classifying them
at each node, it is to say, each captor node is labeled from 1
to 25 and in the y-coordinates, the RMSE for the whole data
set is shown for each of the 4 sensors, labeled as s1, s2, s3
and s4. We can observe that:

• For each node, the RMSE variability is high. However,
having 4 sensors installed, allows us to choose as rep-
resentative of that node the sensor with lowest RMSE,
marked with a largest circle in the figure. Moreover,
in case of failure, there is a second choice and so
on, although giving worst data predicted quality. As an
example, captor node labeled 14 has sensors s4 and s2
with RMSEs larger than 20 µgr/m3 while sensors s1 and
s3 are very close to each other with RMSEs between 11
and 12 µgr/m3.

Figure 4.Left) and 4.Right) show the calibrated data for two
sensors in the same node called captor C-17012 located in
Tona Reference Station. The majority of tropospheric ozone
formation occurs when nitrogen oxides (NOx), and volatile



Fig. 4. Calibrated Ozone for captor node number 17012, Left) sensor s1, with RMSE 9.60 µgr/m3, Right) sensor s4, with RMSE 18.17 µgr/m3

organic compounds (VOCs) such as carbon monoxide (CO),
react in the atmosphere in the presence of solar radiation. It is
well known that ozone increases during the day due to solar
radiation and NO2, that produces O3 and NOx while reduces at
night when combining O3 with NOx in the absence of solar
radiation. This causes that the calibrated values cycle every
24 hours (samples) from high values at day to low values at
night, Figure 4.Left,Right). The plots show the best sensor, s1
in this case, and the worst sensor, s4 in the case of the four
O3 sensors mounted in the same captor node. There are 450
samples, each sample representing a tic of 1 hour, giving a
total of 450 hours of measures. We can observe that:

• The calibration using an array of sensors and multivariate
regression allows to calibrate O3 metal-oxide sensor
devices. However, the results are quite dependent on the
sensor device technology. Some sensors are not able to
reach the whole dynamic range of the true concentrations
of ozone as can be observed in Figure 4.Right). In this
figure, it is observed, and this was observed in other
sensor devices of the same family, that the sensor device
s4 does not reach large concentrations of ozone, e.g.,
larger than 150 µgr/m3 while sensor s1 is able to reach
such large concentrations.

V. DATA ANALYTICS FOR CALIBRATING SENSORS USING
DATA FUSION

Given that each captor node has mounted 4 metal-oxide
sensor devices, we can question whether a fusion of the four
sensors can improve the estimation of the true concentration
of the physical phenomena. Defining as M=4 the number of
Ozone sensors, sensor M+1 as the temperature sensor and
sensor M+2 as the relative humidity sensor, a multiple linear
regression (MLR) fusion can be expressed in vector form as:

y ∼ f(β, x) = β0+

M∑
j=1

βjO3sj+β(M+1)Temp+β(M+2)HR+ε

(5)

The idea is that instead of choosing the best sensor as
representative of the captor node, there is a virtual value that
represents the node and gets contributions of each of the 4
O3 sensors that measure the physical phenomena. As in the
previous case, sensors for temperature and relative humidity
are added in the array of mounted sensors since the physical
phenomena depends on temperature and relative humidity.
Finally, we include two other fusion mechanisms typically
used in sensor fusion literature: i) the virtual calibrated value
for each sample is the average of the four sensor calibrated
values, ii) the virtual calibrated value for each sample is the
median of the four sensor calibrated values.

Fig. 5. Sensor RMSE per node, the magenta indicates the RMSE for the
best sensor without fusion, the black indicates the RMSE for the fusion of 4
sensors for each captor node.

Figure 4.Left,Right) shows RMSEs for sensor s1 and s4
of 9.60 µgr/m3 and 18.17 µgr/m3 (best and worst sensors of



Captor node 17012). With the MLR fusion of sensors, the
RMSE goes down to 8.85 µgr/m3, showing and improvement
with respect the best sensor. In order to observe if this trend
is common to all the nodes, Figure 5 shows the RMSE for
the best sensor for each captor node and the RMSE for the
fusion of sensors for each of the 25 captor nodes. As it can be
observed in all of the captor nodes there is an improvement in
the RMSE using the MLR fusion of sensors in comparison to
the best of the 4 O3 sensors. There are some cases in which this
improvement is almost negligible, on the other hand, in other
cases the difference reached 5-6 µgr/m3 units. MLR fusion is
much better than using the average to the median. The reason
is that the worst sensors penalize the average and median. On
the other hand, the MLR fusion regression obtains the best
calibration coefficients for all the sensors. In any case, we
can conclude that having an array of sensors that measure the
same physical phenomena has several advantages. In case of
failure of the sensor device, there are back-up sensors able to
still measure the physical phenomena. Moreover, fusing the
O3 we were able to decrease the RMSE even further below
the best sensor of the same family.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we have investigated the performance of
commercial low-cost Ozone sensors mounted in a WSN for
air quality monitoring through sensor calibration. First, the
wireless sensor testbed has been described, including the
hardware used for having an array of Ozone, temperature
and relative humidity sensors. A study of the calibration of
Ozone concentrations using these array of sensors shows that
using multivariate estimation techniques allows to calibrate
the Ozone sensor devices. However, these devices show a
high variability, meaning that the RMSE is quite different
for the same family of manufacturer devices. Having also an
array of Ozone sensors allows to increase the reliability by
choosing the sensor in the set of Ozone sensors with best
RMSE. On the other hand, using the whole set of Ozone,
temperature and relative humidity sensors and producing a
fusion of data it is possible to further reduce the RMSE and
then improve the predicted Ozone concentrations. We have not
seen other papers that use more than one sensor in the same
node to measure a physical phenomena, adding redundancy
to the sensing subsystem. As future work, we believe that
instead of using multivariate frequentist regression, there are
other techniques to improve the RMSE, as can be hierarchical
Bayes regression. Moreover, the scatter-plots show certain
non-linearities, which make us think that probably non-linear
estimating models can also improve the calibration.
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