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Abstract

In this short note we consider a recent modification of the Green-Lindsay thermoe-
lastic theory proposed at [10]. We consider a functional defined on the solutions of
the problem. It allows us to obtain the continuous dependence of the solutions with
respect to the initial conditions and to the supply terms, the time exponential decay
of solutions and an alternative of Phragmén-Lindelöf type for the spatial behaviour.

keywords: Modified Green-Lindsay thermoelasticity, Continuous dependence, Unique-
ness, Exponential decay, Spatial behaviour

1 Introduction

It is known that the classical formulation of the Fourier law combined with the classical
energy equation1

cE θ̇ = −qi,i,

brings to the paradox of the infinite speed of propagation. For this reason many people
has been interested to overcome this difficulty and to propose alternative theories
which were free of this paradox. In this sense we can cite the hyperbolic proposition
of Cattaneo for the heat conduction [2] or the alternative propositions of Green and
Naghdi [6, 7]. We can recall two extensions of the Cattaneo law to the thermoelasticity.
One corresponds to the theory of Lord and Shulman [14] and the second is the theory
of Green and Lindsay [5]. This last one is based in a generalized dissipation inequality
by considering a scalar function depending upon the temperature and its rate. In
this short note we are going to be involved with a recent modification of this theory
proposed in [10]. In that paper the authors introduce a second order tensor depending
on the strain and its rate and a generalized Clausius-Duhem inequality. They propose
an alternative system of equations (see (2.1), (2.2)).

In this note we are interested in the study of the qualitative behavior of the solu-
tions of this new system of equations. To avoid technical difficulties we are going to

1Here θ is the relative temperature and qi is the heat flux vector
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assume the existence of solutions and we center our attention to several qualitative
properties. We want to propose a functional defined on the solutions which is very
useful in the study of the system. We believe that this is the main contribution of this
paper. With the help of this functional we can use the energy methods and we can seen
the continuous dependence of the solutions with respect to the initial data and to the
supply terms. Later we also prove the exponential decay of solutions and we continue
by giving a description of the spatial behaviour of the solutions2. It is worth recalling
that continuous dependence, uniqueness, exponential decay and spatial stability are
basic properties deserving to be studied for every thermoelastic theory. In this sense,
it is natural to find results of this kind for several thermoelastic theories. We can cite
several papers devoted to this kind of studies [1, 3, 8, 9, 11, 12, 15, 16, 17, 18].

In the next section we recall the system of equations with we are going to work
and the initial and boundary conditions for the problem. Later in Section 3 we prove
a result on the continuous dependence of the solutions with respect to the initial
conditions and to the supply terms. In Section 4 we show the exponential stability
of the solutions with respect to the time in the case where the supply terms vanish.
We finish in Section 5 by proving a Phragmén-Lindelöf alternative for the spatial
behaviour of the solutions.

2 Equations and assumptions

We now propose the initial-boundary-value problem to be studied in the next two
sections. We consider a bounded domain B in the three-dimensional Euclidean space
such that the boundary is smooth enough to apply the divergence theorem.

We recall that the system of field equations was obtained in [10]. We have

ρüi = (Cijkl(uk,l + τ1u̇k,l)− γij(θ + τ1θ̇)),j + bi (2.1)

γijθ0(u̇i,j + τ0üi,j) + ρcE(θ̇ + τ0θ̈) = (kijθ,i),j + r (2.2)

Here ρ is the mass density, Cijkl is the elasticity tensor that satisfies the symmetry

Cijkl = Cklij , (2.3)

γij is the thermal expansion tensor, cE is the thermal capacity, kij is the thermal
conductivity tensor which it is also symmetric

kij = kji, (2.4)

θ0 is the uniform absolute temperature in the reference configuration, bi and r are the
supply terms, (ui) is the displacement vector, θ is the relative temperature and τ0, τ1
are two parameters that satisfy (see [10], eq. 22)

τ1 > τ0 > 0. (2.5)

In the system of equations and from now on the notation “,i” means derivation with
respect to the direction xi, a superposed dot means the time derivative and the repe-
tition in the indices means summation on the corresponding index.

2It is worth recalling that the spatial stability of solutions for partial differential equations is related
with the well-known Saint-Venant’s principle in thermomechanics [19, 20]
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For what follows it is useful to have the system of equations in terms of dimen-
sionless quantities. We introduce the variables:

u′i =
ui
L
, x′i =

xi
L
, t′ =

t

t0
, θ′ =

θ

K
, θ′0 =

θ0
K
, ρ′ =

ρL3

m0
, τ ′0,1 =

τ0,1
t0
,

where L, t0,m0 and K be four constants with dimensions of length, time, mass and
temperature respectively. Furthermore, we introduce the following notations

C ′ijkl =
t20L

m0
Cijkl, γ′ij =

t20KL

m0
γij , c′E =

t20K

L2
cE , k′ij =

Kt30
Lm0

kij .

A similar thing can be done for bi and r. We can write our system in the new variables.
We will obtain the same equations, but in this case the variables are dimensionless. For
simplicity we omit the colon. Therefore, we will study our system in the convention
that we work with dimensionless variables.

To simplify the calculations, but without loss of generality we assume that the
uniform absolute temperature in the reference configuration is equal to 1.

To determine the initial-boundary-value problem we will study in Sections 3 and
4 we need to impose the initial and boundary conditions. We assume the initial
conditions

ui(x, 0) = u0i (x), u̇i(x, 0) = v0i (x), θ(x, 0) = θ0(x), θ̇(x, 0) = T 0(x), x ∈ B. (2.6)

We consider null Dirichlet boundary conditions

ui(x, t) = θ(x, t) = 0,x ∈ ∂B, t > 0. (2.7)

Apart that we assume that all the constitutive tensors are bounded in this note we
are going to suppose the following conditions:

(i) Mass density and heat capacity are strictly positive. That is

ρ(x) ≥ ρ1 > 0, cE(x) ≥ c > 0. (2.8)

(ii) There exists a positive constant C1 such that

Cijklξijξkl ≥ C1ξijξij , (2.9)

for every tensor (ξij).
(iii) There exists a positive constant k1 such that

kijξiξj ≥ k1ξiξi, (2.10)

for every vector ξi.
The meaning of the assumptions in (i) is clear. Condition (ii) can be understand in

terms of the elastic stability and condition (iii) is related with the well-known property
of a heat conductor (see also [10], eq. 19).
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3 Continuous dependence

The aim of this section is to give a continuous dependence result for the solutions
of the problem determined by (2.1), (2.2), (2.6), (2.7). It is worth remarking that
uniqueness of solutions will be a consequence of the continuous dependence in this
case.

We first multiply (2.1) by u̇i+τ0üi, integrate over B, apply the boundary conditions
and after the use of the divergence theorem we obtain that∫

B

ρüi(u̇i + τ0üi)dv = −
∫
B

Cijkl(u̇i,j + τ0üi,j)(uk,l + τ1u̇k,l)dv (3.1)

+

∫
B

γij(θ + τ1θ̇)(u̇i,j + τ0üi,j)dv +

∫
B

bi(u̇i + τ0üi)dv.

Now we multiply (2.2) by θ+ τ1θ̇ integrate over B, apply the boundary conditions
and after the use of the divergence theorem we get that∫

B

γij(θ + τ1θ̇)(u̇i,j + τ0üi,j)dv +

∫
B

ρcE(θ + τ1θ̇)(θ̇ + τ0θ̈)dv (3.2)

= −
∫
B

kijθ,i(θ,j + τ1θ̇,j)dv +

∫
B

r(θ + τ1θ̇)dv.

In the next step of the study it is suitable to take into account the following equalities:∫
B

Cijklüi,juk,ldv =
d

dt

∫
B

Cijklu̇i,juk,ldv −
∫
B

Cijklu̇i,j u̇k,ldv, (3.3)

and ∫
B

θ̈θdv =
d

dt

∫
B

θ̇θdv −
∫
B

|θ̇|2dv. (3.4)

Therefore from (3.1)-(3.4) we can see that if we consider the function

E(t) =
1

2

∫
B

(
ρu̇iu̇i + Cijklui,juk,l + τ0τ1Cijklu̇i,j u̇k,l + ρcEθ

2 (3.5)

+τ0τ1ρcE |θ̇|2 + τ1kijθ,iθ,j + 2τ0Cijklu̇i,juk,l + 2ρcEτ0θθ̇
)
dv,

we obtain that

Ė(t) = −
∫
B

(
τ0ρüiüi + (τ1 − τ0)Cijklu̇i,j u̇k,l (3.6)

+(τ1 − τ0)ρcE |θ̇|2 + kijθ,iθ,j − bi(u̇i + τ0üi)− r(θ + τ1θ̇)
)
dv.

It is worth noting that the matrix (
1 τ0
τ0 τ0τ1

)
, (3.7)

is positive definite because of the condition (2.5). Thus the function E(t) considered
at (3.5) defines a measure on the solutions of the problem.
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After the use of the arithmetic-geometric mean inequality it is easy to see the
existence of four constants Di, i = 1...4 (using the Poincaré inequality when it is
needed) such that∫

B

biu̇idv ≤ (τ1 − τ0)

∫
B

Cijklu̇i,j u̇k,ldv +D1

∫
B

bibidv (3.8)

τ0

∫
B

biüidv ≤ τ0
∫
B

ρüiüidv +D2

∫
B

bibidv (3.9)∫
B

rθdv ≤
∫
B

kijθ,iθ,jdv +D3

∫
B

r2dv (3.10)

τ1

∫
B

rθ̇dv ≤ (τ1 − τ0)

∫
B

ρcE |θ̇|2dv +D4

∫
B

r2dv (3.11)

In view of (3.6), (3.8)-(3.11) we see that

Ė(t) ≤ C
∫
B

(bibi + r2)dv (3.12)

where C = max(D1 +D2, D3 +D4).
After an integration in (3.12) we see that

E(t) ≤ E(0) + C

∫ t

0

∫
B

(bibi + r2)dvds. (3.13)

Therefore we have proved:

Theorem 3.1. Let (ui, θ) be a solution of the initial-boundary-value problem deter-
mined by the system (2.1), (2.2), the initial condition (2.6) and the boundary condi-
tions (2.7). Then, the solutions satisfy the estimate (3.13) where the function E(t) is
defined at (3.5).

Now we will see the uniqueness of solutions to our problem. It will be sufficient to
prove that the only solution for the problem determined by null initial solutions when
the supply terms vanish is the null solution. We note that in this case the estimate
(3.13) implies that

E(t) ≤ 0, (3.14)

for every t > 0. In view of the definition of the function E(t) we see that (3.14) implies
that (ui, θ) = (0, 0) for every t ≥ 0. Therefore we can conclude that:

Theorem 3.2. The initial-boundary-value problem determined by the system (2.1),
(2.2), the initial condition (2.6) and the boundary conditions (2.7) has uniqueness of
solutions.

We note that assumption (ii) is usual in the linearized thermoelasticity. The ar-
guments of this section can be adapted without difficulties to the linear elasticity by
virtue of the Korn inequality whenever we assume taht the elasticity tensor defines a
positive functions on the strains.
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4 Exponential decay of solutions

The aim of this section is to prove that the solutions of the problem determined by
(2.1), (2.2), (2.6) and (2.7), when the supply terms vanish, decay in an exponential
way. To be precise we are going to prove that there exist two positive constants M
and ω independent of the initial data such that

E(t) ≤ME(0) exp(−ωt). (4.1)

To show this result we need to consider a new function

G(t) =
τ1
2

∫
B

Cijklui,juk,ldv. (4.2)

We note that

Ġ(t) = −
∫
B

ρüiuidv +

∫
B

γij(θ + τ1θ̇)ui,jdv −
∫
B

Cijklui,juk,ldv. (4.3)

After the use of the arithmetic-geometric mean inequality and the Poincaré inequality
we see that there exists a positive constant M1 such that

Ġ(t) ≤M1

∫
B

(ρüiüi + θ2 + |θ̇|2)dv − 1

2

∫
B

Cijklui,juk,ldv. (4.4)

We shall denote
Eε(t) = E(t) + εG(t). (4.5)

It is clear that whenever ε is positive, the following inequalities

α1Eε(t) ≤ E(t) ≤ α2Eε(t), (4.6)

hold, where α1, α2 are two calculable positive constants. Thus, the inequalities (4.6)
allow us to say that whenever ε is positive, the functions E(t) and Eε(t) define equiv-
alent measures.

In view of the equality (3.6) and the estimate (4.4) we see

Ėε(t) ≤ −
∫
B

(
(τ0 − εM1)ρüiüi + (τ1 − τ0)Cijklu̇i,j u̇k,l (4.7)

+((τ1 − τ0)ρcE − εM1)|θ̇|2 + kijθ,iθ,j − εM1θ
2 +

1

2
Cijklui,juk,l

)
dv.

From last estimate and after the use of the Poincaré inequality we may select ε > 0
small enough to conclude the existence of a positive constant M2 such that

Ėε(t) ≤ −M2E(t), (4.8)

whenever ε is small enough, but positive. Inequality (4.8) combined with the first
estimate of (4.6) imply that

Ėε(t) ≤ −M2α1Eε(t). (4.9)

This inequality implies that

Ėε(t) ≤ Eε(0) exp(−M2α1t). (4.10)

This bound combined with (4.6) imply the estimate (4.1). Therefore, we have proved:
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Theorem 4.1. Let (ui, θ) be a solution of the initial-boundary-value problem deter-
mined by the system (2.1), (2.2), the initial condition (2.6) and the boundary con-
ditions (2.7) with null supply terms (bi = r = 0). Then, the solutions satisfy the
estimate (4.1) where the function E(t) is defined at (3.5).

Again, the analysis of this section can be adapted directly to the linear thermoe-
lasticity.

5 Spatial Behavior

In this section we obtain a Phragmén-Lindelöf alternative for the solutions of the
homogeneous version of the system of equations (2.1), (2.2). To do that we are going
to change the domain where the problem is proposed. In this section B will be a semi-
infinite cylinderB = [0,∞)×D, whereD is a two dimensional bounded domain smooth
enough to apply the divergence theorem. We also consider appropriate boundary and
initial conditions. We assume that null initial conditions

ui(x, 0) = u̇i(x, 0) = θ(x, 0) = θ̇(x, 0) = 0, x ∈ B. (5.1)

We also suppose that

ui(x, t) = θ(x, t) = 0, x ∈ [0,∞)× ∂D, t > 0 (5.2)

and

ui(0, x2, x3, t) = fi(x2, x3, t) θ(x, t) = g(x2, x3, t), x ∈ {0} ×D, t > 0. (5.3)

In this case the analysis starts by considering the function

Hω(z, t) = −
∫ t

0

∫
D(z)

exp(−2ωt)Φdads, (5.4)

where D(z) = {x ∈ B, x1 = z},

Φ = (Ci1kl(uk,l + τ1u̇k,l)− γi1(θ + τ1θ̇))(u̇i + τ0üi) + ki1θ,i(θ + τ1θ̇). (5.5)

An use of the divergence theorem with the initial and boundary conditions shows that

Hω(z+h, t)−Hω(z, t) =
exp(−2ωt)

2

∫
B(z+h,z)

Υ1dv+

∫ t

0

∫
B(z+h,z)

exp(−2ωs)Υ2dvds,

(5.6)
where B(z + h, z) = {x ∈ B, z < x1 < z + h}, and

Υ1 = ρu̇iu̇i + Cijklui,juk,l + τ0τ1Cijklu̇i,j u̇k,l + ρcEθ
2 + τ0τ1ρcE |θ̇|2 (5.7)

+τ1kijθ,iθ,j + 2τ0Cijklu̇i,juk,l + 2ρcEτ0θθ̇

and
Υ2 = ωΥ1 + τ0ρüiüi + (τ1 − τ0)Cijklu̇i,j u̇k,l (5.8)

+(τ1 − τ0)ρcE |θ̇|2 + kijθ,iθ,j .
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In particular, when
lim
z→∞

Hω(z, t) = 0, (5.9)

we see that

−Hω(z, t) =
exp(−2ωt)

2

∫
B(∞,z)

Υ1dv +

∫ t

0

∫
B(∞,z)

exp(−2ωs)Υ2dvds. (5.10)

From (5.6), it follows that

∂Hω

∂z
=

exp(−2ωt)

2

∫
D(z)

Υ1dv +

∫ t

0

∫
D(z)

exp(−2ωs)Υ2dvds. (5.11)

Our next step consists to evaluate the absolute value of the function Hω in terms of
its spatial derivative.

Because of the use of the arithmetic geometric mean inequality we see that there
exists a positive constant Kω such that3

|Φ| ≤ KωΥ2. (5.12)

Therefore we obtain that

|Hω| ≤ Kω
∂Hω

∂z
. (5.13)

This inequality is classical in the studies on the spatial stability and yields a Phragmén-
Lindelöf alternative (see [4]). More precisely, if there exists z0 ≥ 0 such thatHω(z0, t) >
0, then the solution satisfies the estimate

Hω(z, t) ≥ Hω(z0, t) exp(K−1ω (z − z0)), z ≥ z0. (5.14)

This estimate gives information in terms of the measure defined in the cylinder. In-
deed, it follows that

exp(−2ωt)

2

∫
B(z+h,z)

Υ1dv +

∫ t

0

∫
B(z+h,z)

exp(−2ωs)Υ2dvds (5.15)

tends to infinity exponentially fast when h is increasing. On the contrary, when
Hω(z, t) ≤ 0, for every z ≥ 0, it follows that the solution decays and we can obtain an
estimate of the form

−Hω(z, t) ≤ −Hω(0, t) exp(−K−1ω z), z ≥ 0. (5.16)

This inequality implies that Hω(z, t) tends to zero as z goes to infinity. Furthermore
in view of this estimate, it is clear that

Eω(z, t) ≤ Eω(0, t) exp(−K−1ω z), z ≥ 0. (5.17)

where

Eω(z, t) =
exp(−2ωt)

2

∫
B(∞,z)

Υ1dv +

∫ t

0

∫
B(∞,z)

exp(−2ωs)Υ2dvds, z ≥ 0. (5.18)

Finally we can state:

3It is worth noting that the best value for the Kω involves the study of a very cumbersome system of
nonlinear equations.
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Theorem 5.1. Let (ui, θ) be a solution of the initial-boundary-value problem deter-
mined by the system (2.1), (2.2), the initial condition (5.1) and the boundary con-
ditions (5.2), (5.3) with null supply terms (bi = r = 0). Then, either this solution
satisfies the growth estimate (5.14) or it satisfies the decay estimate

E∗ω(z, t) ≤ Eω(0, t) exp(2ωt−K−1ω z), z ≥ 0. (5.19)

where

E∗ω(z, t) =
1

2

∫
B(∞,z)

Υ1dv +

∫ t

0

∫
B(∞,z)

Υ2dvds, z ≥ 0. (5.20)

This kind of behaviour is typical in several thermoelastical problems [13].
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