
One-dimensional three-boson problem with two- and three-body interactions

G. Guijarro,1 A. Pricoupenko,2, 3 G. E. Astrakharchik,1 J. Boronat,1 and D. S. Petrov2

1Departament de F́ısica, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain
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We solve the three-boson problem with contact two- and three-body interactions in one dimension
and analytically calculate the ground and excited trimer-state energies. Then, by using the diffusion
Monte Carlo technique we calculate the binding energy of three dimers formed in a one-dimensional
Bose-Bose or Fermi-Bose mixture with attractive interspecies and repulsive intraspecies interactions.
Combining these results with our three-body analytics, we extract the three-dimer scattering length
close to the dimer-dimer zero crossing. In both considered cases the three-dimer interaction turns
out to be repulsive. Our results constitute a concrete proposal for obtaining a one-dimensional gas
with a pure three-body repulsion.

PACS numbers:

The one-dimensional N -boson problem with the two-
body contact interaction g2δ(x) is exactly solvable. Lieb
and Liniger [1] have shown that for g2 > 0 the system is
in the gas phase with positive compressibility. McGuire
[2] has demonstrated that for g2 < 0 the ground state
is a soliton with the chemical potential diverging with
N . In the case N = ∞ the limits g2 → +0 and g2 →
−0 are manifestly different: The former corresponds to
an ideal gas whereas the latter corresponds to collapse.
Accordingly, the behavior of a realistic one- or quasi-one-
dimensional system close to the two-body zero crossing
strongly depends on higher-order terms not included in
the Lieb-Liniger or McGuire zero-range models. Sekino
and Nishida [3] have considered one-dimensional bosons
with a pure zero-range three-body attraction and found
that the ground state of the system is a droplet with the
binding energy exponentially increasing with N , which
also means collapse in the thermodynamic limit. Two of
us [4] have argued that in a sufficiently dilute regime the
three-body interaction is effectively repulsive, providing
a mechanical stabilization against collapse for g2 < 0.
The competition between the two-body attraction and
three-body repulsion leads to a dilute liquid state similar
to the one discussed by Bulgac [5] in three dimensions.

The three-body scattering in one dimension is kinemat-
ically equivalent to a two-dimensional two-body scatter-
ing [3, 6]. Therefore, the corresponding interaction shift
depends logarithmically on the product of the scattering
momentum and three-body scattering length a3. An im-
portant consequence of this fact is that, in contrast to
higher dimensions, the one-dimensional three-body in-
teraction can become noticeable even if a3 is exponen-
tially small compared to the mean interparticle distance.
Therefore, three-body effects can be studied in the uni-
versal dilute regime essentially in any one-dimensional
system that preserves a finite residual three-body inter-
action close to a two-body zero crossing. Universality
means that the effective-range effects are exponentially
small and the relevant interaction parameters are the

two- and three-body scattering lengths a2 and a3.

In this Rapid Communication we solve the problem
of three point-like bosons and analytically relate the
ground and excited trimer energies with the scattering
lengths. In particular, we follow the evolution of these
states as the ratio a3/a2 is changed. We then con-
sider a two-component Bose-Bose mixture with attrac-
tive interspecies and repulsive intraspecies interactions.
In this system, the interspecies attraction binds atoms
into dimers while the dimer-dimer interaction is tunable
by changing the intraspecies repulsion [4]. Our analyt-
ical predictions are complemented by diffusion Monte
Carlo calculation of the hexamer energy permitting to
determine the three-dimer scattering length close to the
dimer-dimer zero crossing. We perform this procedure
for equal intraspecies coupling constants and in the case
where their ratio is infinite. In the latter limit one of
the components is in the Tonks-Girardeau regime and
the system is equivalent to a Fermi-Bose mixture. We
find that the three-dimer interaction is repulsive in both
cases.

Consider three bosons of mass m interacting via con-
tact two- and three-body forces characterized by the
scattering lengths a2 and a3, respectively. The cor-
rect boundary condition for the wave function at the
two-body coincidences is ensured by the two-body pseu-
dopotential g2δ(xij) with g2 = −2/ma2, where xij =
xi − xj is the distance between particles i and j and
we set ~ = 1. The three-body boundary condi-
tion implies that in the limit of vanishing hyperradius
ρ =

√
2/3

√
x212 + x213 + x223 the three-body wave func-

tion should be proportional to ln(ρ/a3). This small-
hyperradius asymptote holds for all finite g2 since at
ρ � |a2| the two-body interaction can be neglected
and the three-body kinematics corresponds to the two-
dimensional scattering on a zero-range potential. The
logarithmic scaling does not hold only in the case of im-
penetrable particles (g2 = ∞), where a3 is ill defined.
However, this case is trivial since the contact three-body
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interaction is completely screened by the two-body one
and plays no role. The applicability conditions for the
zero-range model that we use here requires, as usual, that
the de Broglie wavelengths of particles be much larger
than the ranges of the potentials.

In order to construct the wave function ψ(x1, x2, x3),
let us for a moment think of it as Green’s function which
solves the equation

(Ĥ1 + V̂2 −mE)ψ(x1, x2, x3) = δ(x12)δ(x13), (1)

where Ĥ1 = −(∂2x1
+ ∂2x2

+ ∂2x3
)/2 and V̂2 = −2[δ(x12) +

δ(x13)+δ(x23)]/a2. In the limit ρ→ 0 one can neglect V̂2
and mE in Eq. (1) which then acquires the Poisson form
−∇2

ρψ = 2δ(ρ)/
√

3, where ρ = {x12, (x13 + x23)/
√

3}.
For small ρ, we thus have ψ = − ln(ρ/ξ)/

√
3π, where ξ

depends on details of the full Eq. (1) and is, therefore, a
function of mE and a2. Note that if ξ(mE, a2) were equal
to a3, ψ would satisfy the correct two- and three-body
boundary conditions, thus solving our original problem.
Therefore, the logic of our approach is to solve Eq. (1),
extract ξ(mE, a2), and find E from the implicit equation
ξ(mE, a2) = a3.

The solution of Eq. (1) exists for any energy E and is
unique, if mE does not belong to the spectrum of the
operator Ĥ1 + V̂2. Here, we will be interested in three-
body bound states and will assume E below the three-
atom (for a2 < 0) or atom-dimer (for a2 > 0) scattering
thresholds. Since Ĥ1 + V̂2 can be diagonalized by the
Bethe ansatz, one could, in principle, expand ψ in terms
of Bethe-ansatz states. This, however, involves the sum-
mation over a two-dimensional parameter space of free-
atom states. Here we will use a different approach which
allows us to work only with the trimer and atom-dimer
scattering states.

Assuming zero center-of-mass momentum, we define
F (x) = 2ψ(2x/3,−x/3,−x/3)/a2 and move V̂2 to the
right-hand side of Eq. (1) arriving at

(Ĥ1−mE)ψ =

3∑
i=1

F (xi−xj)δ(xjk) + δ(x12)δ(x13), (2)

where j and k are different from each other and from
i. We now solve Eq. (2) with respect to ψ by switching
to momentum representation where the operator (Ĥ1 −
mE)−1 is a number. Expressing ψ in terms of F and
using the definition of F , we obtain the closed equation
for F̃ (p) =

∫
F (x)e−ipxdx,

(L̂− a2/2)F̃ (p) = −1/
√

3p2 − 4mE, (3)

where

L̂F̃ (p) =
F̃ (p)√

3p2 − 4mE
+

∫
2F̃ (q)

p2 + pq + q2 −mE
dq

2π
. (4)

The three-body contact boundary condition is taken
into account by noting that ψ is the sum of two func-
tions corresponding, respectively, to the first and second

terms on the right-hand side of Eq. (2). The former is
nonsingular and equals 3

∫
F̃ (p)(3p2 − 4mE)−1/2dp/2π

at ρ = 0. The latter equals K0(
√
−mEρ)/

√
3π ≈

− ln(
√
−mEρeγ/2)/

√
3π, where K0 is the decaying

Bessel function and γ = 0.577 is Euler’s constant. The
condition ψ ∝ ln(ρ/a3) then gives

ln

√
−mEa3eγ

2
= 3
√

3π

∫
F̃ (q)√

3q2 − 4mE

dq

2π
. (5)
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Figure 1: The trimer energy in units of |E2| = 1/ma2
2 versus

ln(a3/|a2|) for positive a2 (solid black). The red filling in-
dicates the atom-dimer scattering continuum, the blue dash-
dotted lines correspond to E3 = 4E2 valid in the absence
of the three-body force, and the red dotted line shows the
asymptote E3 = −4e−2γ/ma2

3 valid in the absence of the two-
body force. The black dashed curve is the trimer energy for
a2 < 0. The repulsive two-body interaction in this case pushes
the trimer into the three-atom continuum at a finite value of
ln(a3/|a2|) (see text).

The spectrum and eigenfunctions of L̂ can be derived
analytically from the Bethe ansatz. One can thus solve
Eq. (3) for F̃ and substitute the result into Eq. (5) di-
rectly relating the trimer energy E = E3 with a2 and a3.
Although solving Eqs. (1) and Eq. (3) are conceptually
similar tasks, the latter involves a much smaller eigen-
function basis. Note that when passing from Eq. (1) to
Eq. (3) the roles of E and a2 get interchanged; E is now
a parameter and a2/2 plays the role of an eigenvalue.
Since we are dealing with E < 0, the spectrum of L̂
now contains only the trimer and atom-dimer scattering
states. The former is characterized by the eigenfunc-
tion F̃McG(p) = 2(−mE)−1/4/(1 − p2/mE) and eigen-
value λMcG = 1/

√
−mE consistent with the relation

E = −4/ma22 for the trimer state in the absence of
three-body interaction [2]. The continuum spectrum of
L̂ consists of atom-dimer scattering states parameterized
by the atom-dimer relative momentum k and character-
ized by eigenvalues λk = (3k2 − 4mE)−1/2. The explicit
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form of F̃k is obtained by Fourier transforming Fk(x) ex-
tracted from the Bethe-ansatz eigenstate of Ĥ1 + V̂2 with
a2 = 2λk. These manipulations result in

ln
a3κe

γ

a2
=

2

κ2 − 1

[
π

3
√

3
+

3κ2 − 1√
4κ2 − 1

arctan

√
2κ+ 1

2κ− 1

]
,

(6)
where κ =

√
−mEa2/2.

In Fig. 1, we plot E = E3 < 0 in units of the dimer
binding energy |E2| = 1/ma22 as a function of ln(a3/a2)
for positive a2 where E3/E2 = 4κ2. We find that there
are always two trimer states in this case. For a3 � a2
the ground trimer is bound by the dominant three-body
force and its energy tends to −4e−2γ/ma23 (red dotted
curve). In the opposite limit a3 � a2, the three-body
interaction is subleading and the ground-trimer energy
asymptotes to the McGuire result E3 = 4E2 [2] (blue
dot-dashed lines). The limits of large and small a3 corre-
spond to the weak three-body attraction and repulsion,
respectively. The trimer follows this transition adiabati-
cally and, in the zero-range approximation, becomes an
excited state, which remains bound for any a3/a2. In the
limit a3 → ∞, the energy of this excited trimer asymp-
totically approaches the atom-dimer scattering contin-
uum (red filled area in Fig. 1) following the threshold
law E3/E2 − 1 ≈ (π/3)2/ ln2(a3/a2).

For the case a2 < 0 (two-body repulsion), there is no
dimer and κ is negative. Equation (6) remains valid pro-
vided that its right-hand side is analytically continued
from κ > 0 to κ < 0 just above the real axis. This gives
a single trimer state, the energy of which (black dashed
curve in Fig. 1) tends to −4e−2γ/ma23 (red dotted curve)
for a3 � |a2|. With increasing the two-body repulsion
this trimer gets pushed above the three-atom threshold
at ln(a3/|a2|) = −γ−2π/3

√
3. That we know the energy

analytically makes it one of rare examples of a three-body
resonance where one can study the threshold behavior to
any desired order. In particular, one can show that the
branch-cut singularity in this case corresponds to a two-
dimensional resonance in the angular-momentum chan-
nel with l = 3, consistent with the observation that we
are dealing with a localized trimer coupled to the con-
tinuum of highly fermionized three-atom states (see the
Supplemental Material of Ref. [6]).

Returning to the two-body attraction (a2 > 0), we
note that the relative deviation of the trimer energy
from the McGuire asymptote amounts to about 30%
for a3/a2 = e±10, illustrating that even an extremely
weak three-body interaction is important in one dimen-
sion. Our results can be applied to three-dimensional
bosonic atoms in the quasi-one-dimensional geometry.
By integrating out the radial degrees of freedom this
system reduces to a pure one-dimensional model char-
acterized by effective two- and three-body coupling con-
stants. In the regime where the three-dimensional scat-
tering length a is much smaller than the oscillator length

l0 of the radial confinement, the two-body coupling con-
stant equals g2 = 2a/ml20 [7] and the three-body one
is g3 = −12 ln(4/3)a2/ml20 [8–10]. On the other hand,
with the logarithmic accuracy the latter can be written in
terms of a3 as g3 =

√
3π/[m ln(l0/a3)] [4]. We thus iden-

tify ln(a3/a2) ≈ π/[4
√

3 ln(4/3)]l20/a
2, which allows us

to relate the trimer energies with the three-dimensional
parameters a and l0 by using Eq. (6). Note that in
this model of quasi-one-dimensional point-like bosons the
two- and three-body coupling constants vanish simulta-
neously with the three-dimensional scattering length a.
Yet, three-body effects are visible and even lead to a qual-
itative change of the system behavior, particularly to the
excited trimer state not present in the McGuire model
[11].

Systems where two- and three-body effective interac-
tions can be controlled more independently are difficult to
produce or engineer (see [6] and references therein). We
now discuss a model tunable to the regime of pure three-
body repulsion. Namely, we consider a mixture of one-
dimensional pointlike bosons ↑ and ↓ of unit mass char-
acterized by the coupling constants g↑↓ = −2/a↑↓ < 0
(interspecies attraction) and gσσ = −2/aσσ > 0 (in-
traspecies repulsions). The interspecies attraction leads
to the formation of ↑↓ dimers of size a↑↓ and energy E↑↓ =
−1/a2↑↓. One can show [4] that the two-dimer interac-
tion changes from attractive to repulsive with increasing
gσσ. In particular, the two-dimer zero crossing is pre-
dicted to take place for g↑↑ = g↓↓ = 2.2|g↑↓| [Bose-Bose
(BB) case] and for g↓↓ = 0.575|g↑↓| if g↑↑ = ∞ [Fermi-
Bose (FB) case]. Here we consider three such dimers and
characterize their three-dimer interaction by calculating
the hexamer energy E↑↑↑↓↓↓ and by comparing it with
the tetramer energy E↑↑↓↓ on the attractive side of the
two-dimer zero crossing where the tetramer exists. The
idea is that sufficiently close to this crossing the dimers
behave as pointlike particles weakly bound to each other.
One can then extract the three-dimer scattering length
a3 from our zero-range three-boson formalism [Eq. (6)]
with m = 2, E2 = E↑↑↓↓ − 2E↑↓, E3 = E↑↑↑↓↓↓ − 3E↑↓,
and using the asymptotic expression for the dimer-dimer
scattering length a2 = 1/

√
2|E2|.

In order to calculate E2 and E3, we resort to the dif-
fusion Monte Carlo (DMC) technique, which is a projec-
tion method based on solving the Schrödinger equation
in imaginary time [12]. The importance sampling is used
to reduce the statistical noise and also to impose the
Bethe-Peierls boundary conditions stemming from the
δ-function interactions. We construct the guiding wave
function ψT in the pair-product form

ψT =
∏
i<j

f↑↑(x↑↑ij )
∏
i<j

f↓↓(x↓↓ij )
∏
i,j

f↑↓(x↑↓ij ) , (7)

where xσσ
′

ij = xσi − xσ
′

j is the distance between parti-
cles i and j of components σ and σ′, respectively. The
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intercomponent correlations are governed by the dimer
wave function f↑↓(x) = exp(−|x|/a↑↓) and the intracom-
ponent terms are fσσ(x) = sinh(|x|/a↑↓ − |x|/2add) −
(aσσ/a↑↓ − aσσ/2add). These functions satisfy the

Bethe-Peierls boundary conditions, ∂fσσ
′
(x)/∂x|x=+0 =

−fσσ′
(0)/aσσ′ , which, because of the product form, also

ensures the correct behavior of the total guiding function
ψT at any two-body coincidence. At the same time, the
long-distance behavior of fσσ(x) is chosen such that ψT
allows dimers to be at distances larger than their size.
When the distance x between pairs {x↑1, x

↓
1} and {x↑2, x

↓
2}

is much larger than the dimer size a↑↓, Eq. (7) reduces

to ψT ∝ f↑↓(x↑↓11)f↑↓(x↑↓22) exp(−|x|/add). For add � a↑↓,
this wave function describes two dimers weakly-bound to
each other. While aσσ′ are fixed by the Hamiltonian, we
treat add as a free parameter in Eq. (7). Close to the
dimer-dimer zero crossing add ≈ a2 and this parameter
is related self-consistently to the tetramer energy while
far from the crossing its value is optimized according to
the variational principle. It is useful to mention that in
case FB, where a↑↑ = 0, the ↑ component is in the Tonks-
Girardeau limit and can be mapped to ideal fermions by
Girardeau’s mapping [13]. Replacing |x| by x in the defi-
nition of f↑↑(x) makes ψT antisymmetric with respect to
permutations of ↑ coordinates.

- 0 . 3 0 - 0 . 2 5 - 0 . 2 0 - 0 . 1 5 - 0 . 1 0 - 0 . 0 5 0 . 0 0
- 4 . 5

- 4 . 0

- 3 . 5

- 3 . 0
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1   /  l n  [ ( 2 | E 2 | ) 1 / 2
a 3 ]
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 B o s e  B o s e  
 F e r m i  B o s e

E
3 / |E
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Figure 2: E3/|E2| vs 1/ ln(
√

2|E2|a3) (same as Fig. 1 ex-
cept for the inverse of the horizontal axis) for one-dimensional
dimers. Here E2 and E3 are the tetramer and hexamer en-
ergies measured relative to the two- and three-dimer thresh-
olds, respectively. The solid curve is the prediction of Eq. (6)
and the dashed curve is a fit, which includes finite-dimer-size
effects into account (see text). The dash-dotted line is the
McGuire result E3 = 4E2 for three pointlike bosons with no
three-body interaction. The red squares are the DMC data
for case BB plotted using a3 = 0.01a↑↓ and the blue circles
stand for case FB with a3 = 0.03a↑↓. The error bars are
larger in the latter case because of the larger statistical noise
induced by the nodal surface imposed by the Fermi statistics.

In Fig. 2, we show E3/|E2| for cases BB (red squares)
FB (blue circles) as a function of δ = 1/ ln(

√
2|E2|a3)

along with the prediction of Eq. (6) (solid black). The
quantity a3 is a fitting parameter to the DMC results;
changing it essentially shifts the data horizontally. We
clearly see that in both cases the three-dimer interaction
is repulsive since E3/|E2| is above the McGuire trimer
limit [2] (dash-dotted line). For rightmost data points
the hexamer is about ten times larger than the dimer
and the data align with the universal zero-range analyt-
ics. For the other points we observe significant effective
range effects related to the finite size of the dimer. In
the universal limit a↑↓ � a2, the leading effective-range
correction to the ratio E3/|E2| is expected to be pro-
portional to a↑↓/a2 ∝ e1/δ [4]. Indeed, adding the term
Ce1/δ to the zero-range prediction well explains devia-
tions of our results from the universal curve and we have
checked that other exponents do not work that well. We
thus treat a3 and C as fitting parameters; in case BB we
obtain a3 = 0.01a↑↓ and in case FB a3 = 0.03a↑↓. Both
cases are fit with C = −100 (dashed curve in Fig. 2). We
emphasize that we are dealing with the true ground state
of three dimers. The lower “attractive” state formally
existing for these values of a2 and a3 in the zero-range
model is an artifact since it does not satisfy the zero-
range applicability condition. The three-dimer interac-
tion is an effective finite-range repulsion which supports
no bound states.

In conclusion, we obtain an analytical expression
for the ground and excited trimer energies for one-
dimensional bosons interacting via zero-range two- and
three-body forces. We argue that since in one dimen-
sion the three-body energy correction scales logarithmi-
cally with the three-body scattering length a3, three-
body effects are observable even for exponentially small
a3, which significantly simplifies the task of engineering
three-body-interacting systems in one dimension. We
demonstrate that Bose-Bose or Fermi-Bose dimers, previ-
ously shown to be tunable to the dimer-dimer zero cross-
ing, exhibit a noticeable three-dimer repulsion. We can
now be certain that the ground state of many such dimers
slightly below the dimer-dimer zero crossing is a liquid
in which the two-body attraction is compensated by the
three-body repulsion [4, 5].

Our results have implications for quasi-one-
dimensional mixtures. We mention particularly the
40K-41K Fermi-Bose mixture which emerges as a suit-
able candidate for exploring the liquid state of fermionic
dimers. Here the intraspecies 41K-41K background
interaction is weakly repulsive (the triplet 41K-41K
scattering length equals 3.2nm [14]) and the interspecies
one features a wide Feshbach resonance at 540G [15].
Let us identify ↑ with 40K, ↓ with 41K, and assume the
radial oscillator length l0 = 56nm, which corresponds
to the confinement frequency 2π × 80kHz. Under
these conditions the effective coupling constants equal
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gσσ′ ≈ 2a
(3D)
σσ′ /l20 [7] and the dimer-dimer zero crossing

at g↓↓ = 0.575|g↑↓| is realized for the three-dimensional

scattering lengths a
(3D)
↓↓ ≈ 3.2nm and a

(3D)
↑↓ ≈ −5.6nm.

The dimer size is then ≈ 560nm and dimer binding
energy corresponds to ≈ 2π × 800Hz placing the system
in the one-dimensional regime. For the rightmost (next
to rightmost) blue circle in Fig. 2, the tetramer is
approximately 20 (10) times larger than the dimer and
800 (200) times less bound. Moving left in this figure
is realized by increasing |a3D↑↓ | and thus getting deeper
in the region g↓↓ < 0.575|g↑↓|. Note, however, that
this also pushes the system out of the one-dimensional
regime and effects of transversal modes [8–10] become
important.

While completing this paper, we became aware of a re-
lated work [16] reporting the solution of the three-boson
problem with zero-range interactions.
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