
How Can Quality Awareness Support Rapid Software

Development?

Liliana Guzmán1, Marc Oriol2, Pilar Rodríguez3, Xavier Franch2, Andreas Je-

dlitschka1, Markku Oivo3

1 Fraunhofer IESE, Kaiserslautern, Germany

{liliana.guzman, andreas.jedlitschka}@iese.fraunhofer.de
2 Universitat Politècnica de Catalunya, Barcelona, Spain

{moriol, franch}@essi.upc.edu
3 University of Oulu, Oulu, Finland

{pilar.rodriguez, markku.oivo}@oulu.fi

Abstract. Context: Rapid software development (RSD) refers to the organiza-

tional capability to develop, release, and learn from software in rapid cycles with-

out compromising its quality. To achieve RSD, it is essential to understand and

manage software quality along the software lifecycle. Problem: Despite the nu-

merous information sources related to product quality, there is a lack of mecha-

nisms for supporting continuous quality management throughout the whole RSD

process. Principal ideas/results: We propose Q-Rapids, a data-driven, quality-

aware RSD methodology in which quality and functional requirements are man-

aged together. Quality Requirements are incrementally elicited and refined based

on data gathered at both development time and runtime. Project, development,

and runtime data is aggregated into quality-related key indicators to support de-

cision makers in steering future development cycles. Contributions: Q-Rapids

aims to increase software quality through continuous data gathering and analysis,

as well as continuous management of quality requirements.

Keywords: software quality, quality requirements, rapid software development

1 Introduction

Agile software development enables organizations to adapt to business dynamics by

facilitating more flexible development through iterative methods that rely on extensive

collaboration. Nowadays, agile is the winning development strategy to reduce release

times in the software industry [1]. A recent evolutionary step from agile software de-

velopment is rapid and continuous software engineering, which refers to the organiza-

tional capability to develop, release, and learn from software in rapid cycles [2]. This

capability is known as Rapid Software Development (RSD) [3].

In RSD, faster and more frequent release cycles should not compromise software

quality. Thus, understanding and managing software quality is essential to ensure that

new releases will lead to progressive improvement. But despite the numerous sources

of information related to product quality that RSD provides, there is a lack of methods

to support continuous quality management throughout the whole RSD process [4]. Re-

cent empirical studies found the deficient management of quality requirements (QRs)

[5] to be the main reason for rework in RSD [1].

In this research preview, we summarize the state of the art and challenges related to

continuously managing software quality along the RSD process (Section 2). Then we

introduce Q-Rapids as a data-driven, quality-aware RSD methodology that jointly man-

ages quality and functional requirements (FRs) throughout the RSD process (Section

3). Finally, we summarize our contributions and discuss future research (Section 4).

2 Challenges in Managing Quality Requirements

Quality Requirements and their Management. QRs are “characteristics that make

the product attractive, usable, fast or reliable” [6]. Thus, optimal management of soft-

ware quality demands proper consideration of QRs in the software lifecycle. However,

QRs have not received the same degree of attention as FRs [6]. Neglecting QRs is one

of the top ten risks of requirements engineering [7], and errors in considering QRs are

the most expensive and difficult to correct [8].

Another problem is the elicitation and specification of QRs. Modern approaches to

elicit QRs rely on explicit user feedback [9]. However, explicit feedback may be in-

complete, biased, or ambiguous. Implicit feedback (usage data) is a promising alterna-

tive to elicit QRs [10]. Current approaches neither derive QRs automatically nor com-

bine usage data with other data sources (e.g., software repositories). Furthermore,

whereas FRs have clear-cut satisfaction criteria, QRs are initially elicited as “soft goals”

[8] and need to be elaborated into measurable conditions. Finally, current tools for man-

aging QRs do not manage them throughout the entire software lifecycle [11].

Thus, there is a need for (1) data-driven QR elicitation and specification; and (2)

data-driven understanding of the strategic impact of QRs on management and business.

Quality Requirements in Rapid Software Development. Current RSD approaches

are mostly driven by FRs. For example, in Scrum [12] requirements are specified as

user stories stored in the product backlog. User stories are prioritized in each develop-

ment cycle from a customer value perspective. Although QRs are usually included as

acceptance criteria for user stories [13], mainly focusing on customer value when pri-

oritizing requirements is problematic because other important factors (e.g. security, per-

formance, and scalability) tend to be underestimated [1].

More recently, mechanisms such as automation, integration of R&D with operations

and maintenance teams (also referred to as DevOps), and post-deployment customer-

data monitoring [4] have been introduced to further ensure quality and quick delivery

in RSD. However, using mechanisms such as post-deployment data is not free from

challenges. The growing size of data is a challenge, and systematic approaches for col-

lecting, analyzing, and integrating data into the product development process are miss-

ing [14]. Moreover, there is a lack of methods and tools for integrating, analyzing, and

visualizing collected data to make QRs transparent and support real-time decision-mak-

ing on QRs [15], and to jointly manage QRs and FRs along the RSD process [4].

We conclude that there is a need for (1) seamless integration of QRs and FRs; (2)

methods and tools for real-time monitoring of QRs; and (3) flexible, iterative, and dy-

namic generation and management of QRs in RSD.

Data-driven Quality Decision Making. As systems scale and their complexity in-

creases, data generated and used during the software lifecycle is becoming increasingly

important. Source code repositories, bug reports, and runtime logs contain a lot of hid-

den information about software quality. Applying analytics to extract this information

can help decision makers to identify and monitor quality issues and to steer develop-

ment activities in order to improve the overall quality in RSD.

However, integrating software analytics research results into tools established in

practice is still challenging [17]. Regarding the analysis of historical data, Mining Soft-

ware Repositories is an important research area to uncover information about software

systems. An overview is given in [16]. Still, there are only a few reports (e.g., [23]) on

the practical impact of data mining analytics on the development process. Regarding

the analysis of runtime data, several approaches exist. For example, profiling and auto-

mated instrumentation techniques are usually used to study the runtime behavior of

software systems [18]. Such techniques impose high overhead and slow down the exe-

cution. They also lead to a large volume of results that are impractical to interpret. Fi-

nally, analyzing heterogeneous and time-evolving streaming data can get very complex

and lead to poor performance of analysis techniques. MapReduce [19], the Lambda

Architecture [20], and modern analytics like Spark can help to address this problem.

We found there is a need for (1) in-time, scalable, and efficient QR-driven data anal-

ysis to support decision making; and (2) scalable and efficient gathering and monitoring

of heterogeneous data at development time and runtime.

3 The Q-Rapids Framework

We identified that the software industry needs methods and tools for handling software

quality in the RSD context. To achieve this, we propose the Q-Rapids framework (cf.

Figure 1). Q-Rapids relies on a data-driven, quality-aware, rapid development process

characterized by integrated management of QRs and FRs. Q-Rapids aims to increase

awareness of critical QRs and to ensure the overall software quality.

Effective and seamless data gathering and analysis techniques. Q-Rapids will sys-

tematically and continuously track software quality based on quality-related metrics. It

will combine different types of data sources to gather relevant metrics: project manage-

ment tools, software repositories, and runtime data about quality of service and system

usage by end users. This information will be selectively collected and pre-processed,

and analyzed to support different decisions makers (e.g., product owners, developers,

and testers). Q-Rapids will propose quality-critical key indicators on the basis of a prod-

uct-specific quality model based on the QUAMOCO approach [21].

Fig. 1. The Q-Rapids framework.

Data gathering will be seamlessly integrated into the software lifecycle and later

system usage. Q-Rapids will integrate different data collection instruments. Deploy-

ment should be as easy as providing the URLs or directories for the software project

repositories and a specification of the quality attributes that are of interest for the par-

ticular project in order to deploy only the needed monitors. Monitoring instruments will

be deployed in different contexts considering the lifecycle phase in which they apply

[22] and the architecture type (e.g., service-based architectures or cloud deployments).

Through the application of data analytics, elicited data will be analyzed, making it

possible to support the comprehension of quality issues that will steer subsequent de-

velopment activities, thus improving the overall software quality in a timely manner.

An essential part of the analysis will be to find correlations. For instance, the correlation

analysis between bug rate and QR types may help to understand which QR types are

more error-prone and require more effort allocation when planning releases.

Quality-aware rapid software development process. Q-Rapids will extend the RSD

process with the comprehensive integration of QRs and FRs. It will also consider busi-

ness-related constraints and domain-specific requirements and regulations. It will ad-

dress questions like “How should QRs be processed in RSD so that the result will be

high-quality products?” A quality-aware RSD process will be defined including prac-

tices, tools, and methods to be used in rapid development cycles and complex scenarios.

Q-Rapids will focus on success factors for software companies and help managers to

balance such issues as time to market and product quality.

Q-Rapids pursues the proper consideration of QRs and a RSD process that it is still

lightweight, flexible, and adaptable to market fluctuations and customer changes. It will

be based on key characteristics of agile methods and RSD, including the management

of FRs and QRs using a holistic management of product backlogs, continuous integra-

tion, and short release cycles [1, 4, 13]. The quality-aware RSD process will provide

the means needed to elicit, derive, and manage QRs.

Q-Rapids will provide a novel requirements engineering approach that will elicit

QRs using a data-driven approach, followed by the implementation and assessment of

such requirements in rapid cycles. It will provide a generic quality-aware RSD process

that can be customized based on the specific characteristics on the software company

and their quality demands.

Quality-aware decision making dashboard. Q-rapids will extend these tools for

measuring and analyzing software quality (e.g., SonarQubeTM) by providing decisions

makers with a highly informative dashboard to help them make data-driven strategic

decisions related to QRs. The Q-Rapids dashboard will aggregate the collected data

into key strategic indicators related to, e.g., time to market, development costs, and

overall quality. It will also comprise the product and iteration backlogs that contain the

project requirements. Thus, the dashboard will help decision makers to analyze, e.g.,

the impact on time to market of selecting, leaving out, or discarding a QR. In addition,

the dashboard will allow defining project-specific decision rules (e.g., how to handle

conflicts between time and quality levels) as well as external and internal constraints.

External constraints are conditions beyond the control of decision makers, e.g., a fixed

budget. Internal constraints are development and organizational conditions influencing

decision making, e.g., a maximum number of tasks per developer per week.

Moreover, the Q-Rapids dashboard will provide models and advanced capabilities

to (1) analyze and evaluate alternative solutions to current QR management decisions;

(2) predict and analyze the impact of violations related to key strategic indicators; and

(3) suggest mitigation actions when violations are identified. The underlying rationale

of previous analyses will be transparent to decision makers.

4 Conclusions

In this paper, we identified the challenges that need to be overcome to support decision

makers in managing QRs throughout the whole RSD process. We introduced the Q-

Rapids framework as a response to these challenges. The framework will be developed

as part of the H2020 European Project Q-Rapids. This project will follow an iterative

and incremental approach applying RSD principles itself. A full 3-year validation plan

has been designed, including a first phase of formative evaluation and, later on, a sum-

mative evaluation involving four European companies participating in the consortium,

which will provide real projects that will allow scaling initial small-scale results pro-

duced in lab-like environments to ready-to-transfer solutions.

References

1. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.A.: Systematic Literature

Review on Agile Requirements Engineering Practices and Challenges. Computers in Human

Behavior, 51(B), pp. 915-929 (2014)

2. Fitzgerald, B., Stol, K.J.: Continuous Software Engineering: A Roadmap and Agenda. Jour-

nal of Systems and Software, in press (2015)

3. Mäntylä, M.V., Adams, B., Khomh, F., Engström, E., Petersen, K.: On Rapid Releases and

Software Testing: A Case Study and a Semi-Systematic Literature Review. Empirical Soft-

ware Engineering, 25(2), 1384-1425 (2015)

4. Rodríguez, P., Haghighatkhah, A., Lwakatare, L. E., Teppola, S., Suomalainen, ... & Oivo,

M: Continuous Deployment of Software Intensive Products and Services: A Systematic

Mapping Study. Journal of Systems and Software, in press (2016)

5. Ramesh, B., Baskerville, R., Cao, L.: Agile Requirements Engineering Practices and Chal-

lenges: An Empirical Study. Information Systems Journal, 20(5), 449–480 (2010)

6. Wagner, S.: Software Product Quality Control. Springer (2013)

7. Lawrence, B., Wiegers, K., Ebert, C.: The Top Ten Risks of Requirements Engineering.

IEEE Software 18(6), 62-63 (2001)

8. Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software

Engineering, (Vol. 5). Springer Science & Business Media (2000)

9. Dalpiaz, F., Korenko, M. Salay, R., Chechik, M.: Using the Crowds to Satisfy Unbounded

Requirements. In Crowd-Based Requirements Engineering (CrowdRE), 2015 IEEE 1st In-

ternational Workshop on (pp. 19-24). IEEE. (2015)

10. Maalej, M., Nayebi, M., Johann, T., Ruhe, G.: Toward Data-Driven Requirements Engineer-

ing. IEEE Software 33(1), 48-54 (2016)

11. Caracciolo, A., Lungu, L.F., Nierstrasz, O.: How Do Software Architects Specify and Vali-

date Quality Requirements? In European Conference on Software Architecture (pp. 374-

389). Springer International Publishing (2014)

12. Schwaber, K:. Agile project management with Scrum. Microsoft Press. (2004)

13. Leffingwell, D.: Agile software requirements: Lean requirements practices for teams, pro-

grams, and the enterprise. Addison-Wesley Professional (2010)

14. Sauvola, T., Lwakatare, L.E., Karvonen,T., Kuvaja, P., Olsson, … & Oivo, M.: Towards

Customer-centric Software Development: A Multiple-case Study. In Proceedings of Eu-

romicro Conference on Software Engineering and Advanced Applications, pp. 9-17 (2015)

15. Yaman, S.G., Sauvola, T., Riungu-Kalliosaari, L., Hokkanen, L., Kuvaja, P., … & Männistö,

T.: Customer Involvement in Continuous Deployment: A Systematic Literature Review. In:

Proceedings of RE2016: Foundation for software quality (REFSQ), pp. 249-265 (2016)

16. Kwan, I., Damian, D.: A Survey of Techniques in Software Repository Mining. In: Tech-

nical Report DCS-340-IR, University of Victoria. (2011)

17. Zhang, D.: Software Analytics in Practice – Approaches and Experiences. Microsoft Re-

search. In: Keynote PROMISE 11th International Conference on Predictive Models and

Data Analytics in Software Engineering (2015)

18. Thomas, S.W., Hassan, A.E., Blostein, D.: Mining Unstructured Software Repositories. In:

Evolving Software Systems, pp. 139-162 (2014).

19. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:

Communications of the ACM, 51(1), 107-113. (2008).

20. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Real Time Data

Systems. In: Manning Publications Co. (2015)

21. Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C., ... & Trendowicz, A.: Op-

erationalised product quality models and assessment: The Quamoco approach. Information

and Software Technology, 62, pp. 101-123 (2015)

22. Oriol, M., Franch, X., Marco, J.: Monitoring the Service-Based System Lifecycle with

SALMon. Expert Systems with Applications 42(19), pp. 6507-6521 (2015)

23. Shihab, E., Hassan, A. E., Adams, B., Jiang, Z.M.: An Industrial Study on the Risk of Soft-

ware Changes. In: Proceedings of the Symposium on the Foundations of Software Engineer-

ing, p. 62 (2012).

