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Abstract—The increasing performance needs in critical real-
time embedded systems (CRTES) can only be satisfied with the
use of high-performance manycore processors. While NoC-based
manycore systems are popular in the high-performance domain
due to their high average performance, they challenge deriving
tight Worst-Case Execution Time (WCET) estimates, as needed in
CRTES. Weighted meshes have been proposed to alleviate NoCs
pathological behavior – caused by large bandwidth imbalance
– by making locally unbalanced arbitration decisions to reach
globally balanced bandwidth. In this paper we show that existing
weighted mesh solutions do not completely remove unwanted
imbalance, in particular for nodes subject to high congestion.
We propose EOmesh, an approach that combines heterogeneous
predictable routing and weight allocations that delivers near-
optimal bandwidth allocation across cores without increasing
NoC complexity. EOmesh, which can be implemented either by
hardware means or by software means on top of regular weighted
meshes, improves the average performance and WCET results
of the reference weighted mesh design.

Index Terms—NoC, Weighted Mesh, Bandwidth, Latency.

I. INTRODUCTION

The relentless need for increasing levels of computing
performance in critical real-time embedded systems (CRTES),
such as automotive [2], calls for the adoption of high-
performance hardware as the only effective way to deliver such
performance. However, complex hardware designs confronts
with CRTES need to undergo strict validation and verification
processes in accordance with functional safety regulations such
as ISO26262 in the automotive domain [6] and DO178B/C
in the avionics domain [24]. In particular, complex hardware
designs hampers deriving evidence on the timely execution of
critical real-time tasks, typically in the form of Worst-Case
Execution Time (WCET) estimates.

Deriving WCET estimates (bounds) requires the use of
hardware/software platforms on which execution time can be
upper-bounded. Further, those bounds must be low enough
so that they are useful (e.g. guaranteeing that the braking
system of a car would take no more than 5 seconds to react
is useless in practice). In general, this translates into using
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only a subset of the existing performance-improving hardware
designs and configurations, despite the negative impact on
average performance of this constraint.

NoC-connected manycores have already been deployed in
high-performance (mainstream) processors [22], [30], and
have been shown to allow – under some restrictions, e.g.
deterministic routing – the derivation of tasks’ WCET es-
timates as needed for CRTES [16], [20]. However, WCET
estimates vary drastically across cores in mesh NoCs due
to the different bandwidth effectively allocated to each core
and, to a lower extent, the diverse latencies caused by non-
homogeneous distances from cores to their target node (e.g.
the one where main memory is attached) [15]. Local homoge-
neous bandwidth allocation (e.g. as provided by fair policies
like round-robin) might cause unwanted heterogeneous global
bandwidth distribution across cores (i.e. cores further away
from memory have lower bandwidth than those closer to
it). As a result, tasks running in cores with lower allocated
bandwidth can be severely penalized. Parallel applications,
despite less widespread than in the mainstream market, are
now considered in CRTES for computing intensive functions
related to autonomous driving and unmanned navigation. For
those applications, unwanted bandwidth imbalance may result
in poor WCET estimates since all threads may have to
synchronize with the slowest one (i.e. normally the thread that
runs in the farthest core from memory).

Weighted meshes, widely used in high-performance routers
for off-chip wormhole networks [3], have been proposed
as a solution in CRTES to allow heterogeneous bandwidth
allocation across ports to homogenize overall bandwidth across
cores [15]. Unfortunately, weighted meshes suffer from a
key limitation: efficiently-sized resources in NoCs may create
bubbles in some links, so that nodes are unable to send packets
sustainedly. For scenarios with highly unbalanced bandwidth
distribution in some routers, bubbles may prevent from reach-
ing the desired bandwidth allocation in those routers, leading
to unwanted globally unbalanced bandwidth allocations.

In this paper we tackle this challenge by proposing EOmesh,
a new weighted mesh design that effectively achieves near-
optimal (homogeneous) bandwidth allocation across cores.
EOmesh builds on the observation that globally-fair bandwidth
allocation can only be practically achieved by combining the
use of weights in the arbiters and balancing the amount of
flows served at each output port. In particular, our contribu-
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tions are as follows:
1) We analyze the behavior of weighted meshes, showing

that, by construction, they cannot achieve homogeneous
bandwidth allocation across cores as long as one port
needs to serve above 2/3 of the incoming requests,
which necessarily occurs for square meshes with 4x4
nodes and beyond.

2) We provide a smart combination of time-predictable
routing policies (XY and YX) that allows reducing the
imbalance across ports so that bubbles do not prevent
from reaching the desired homogeneous bandwidth al-
location. The combination of multiple routing policies
with statically allocated virtual channels makes the mesh
NoC deadlock-free.

3) We use appropriate weight allocations that achieve ho-
mogeneous bandwidth allocation across cores, in com-
bination with the new routing scheme. Hence, fairness
across cores in terms of bandwidth is achieved despite
bubbles in the NoC.

A key characteristic of EOmesh is that it departs from real-
time specific NoCs that, for instance, add new signals among
routers and nodes, different flow-control, and global clocks.
Instead, EOmesh targets high-performance COTS wormhole
NoCs (wNoCs). Hence, EOmesh achieves reduced WCETs
by leveraging an optimal configuration of wNoCs parameters,
e.g. arbitration and routing that are already configurable by
software in existing real NoCs. Interestingly, while weight
allocation is not in commercial NoCs, its low implementation
costs, just requiring arbiter-local changes, makes it a candidate
for future NoCs.

In terms of evaluation, we provide implementation details
of our design, EOmesh, showing that it only requires changes
in the routing choices and weight allocation, both of which
can, in general, be programmed by software. We also assess
the performance of EOmesh showing that it outperforms
non-weighted and weighted mesh designs in terms of both,
average performance and WCET. WCET gains come from the
fact that EOmesh routing scheme prevents some flows from
colliding in many routers by construction. Moreover, as part
of our evaluation, we assess, for the first time, the impact of
these NoC designs in the context of critical real-time parallel
applications.

The rest of the paper is organized as follows. Section II
provides some background on timing analysis and NoCs.
Section III presents a detailed model of weighted meshes
and analyzes their limitations. Section IV introduces our
new design, the EOmesh. Section V provides implementation
details of the weighted meshes in general and the EOmesh
in particular. Evaluation results are provided in Section VI.
Some related work and conclusions are given in Sections VII
and VIII respectively.

II. BACKGROUND

This section provides some background on timing analysis
practice, and the properties required from the platform used.
It also presents the NoC designs considered in this work and
the weighted mesh upon which we build our contributions.

A. Timing Analysis

Timing analysis contributes to the timing validation and
verification process, mandatory in CRTES. Timing analysis
derives evidence on how timing budgets assigned to each
task suffice to guarantee the execution of those tasks. To that
end, a WCET estimate for each task is derived. Different
methods exist for WCET estimation, spanning from static
timing analysis (STA) to measurement-based timing analysis
(MBTA) [33]. Each paradigm is used based on practical
and economical viability for the target application and hard-
ware/software platform considered.

Due to economical reasons, WCET estimates are required
early in the design process so that potential budget violations
are detected and fixed at a low cost. Leaving such verification
for late design stages may cause expensive recalls and jeop-
ardize time-to-market. In this line, it is desirable that WCET
estimates are time-composable, so that they hold valid across
incremental integration of the different software components.
Finally, another desirable property of WCET estimates is
tightness, so as to enable an efficient use of resources by
allowing the consolidation of as much software as possible
onto a single hardware platform.

The estimation of time-composable WCET bounds requires
accounting for the worst potential congestion that can occur
upon integration of other tasks in multicores. In the context
of STA and NoCs, this requires computing the worst (the-
oretical) contention that requests can experience to traverse
the NoC from their source to their destination [4], [11]. Then,
contention bounds are added to the intrinsic latency of requests
in a contention-free scenario.

Two main approaches exist to estimate such worst con-
tention: Worst-Case Traversal Time (WCTT) [20] and Worst-
case Contention Delay (WCD) [16]. The former accounts
for the worst overall contention that a request can experi-
ence, which may be caused (at least partially) by previous
requests of the same task. Thus, an event causing contention
on multiple requests of the same task would be accounted
multiple times. In particular, one request experiences such
contention and the other ones get stalled due to backpres-
sure of the other request. The latter, WCD, accounts for
the contention caused by requests of other tasks only, thus
not accounting for backpressure caused by requests of the
same task. This avoids accounting multiple times for the
same contention, thus delivering tighter (yet reliable) WCET
estimates. In fact, measurement-based analysis of worst-case
contention scenarios reveal that WCD tightly upper-bounds
maximum contention [16]. Hence, we build on WCD for
WCET estimation in this paper. In particular, we estimate the
WCD, which can be added to requests latency in the context
of STA, or can be factored in WCET estimates obtained with
MBTA by adding WCD cycles per request to the WCET
estimate obtained in a contention-free scenario.

B. NoCs

NoCs comprise point-to-point links and routers to send
packets across nodes. NoC characteristics impact the latency
of requests to traverse them from source to destination. In
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Fig. 1: Router coordinates (a); and unfair bandwidth allocation
under wormhole (b).

this work we consider a mesh NoC, as it has been shown
to deliver high performance and are implemented in several
processors [30], [22]. Communication at the NoC level re-
quires sending individual packets from source to destination.
Those packets (payload and control information) may require
higher bandwidth than that allowed by NoC links. E.g., 500-
bit packets cannot be sent atomically through a 128-bit wide
link. Hence, packets are split into flits (short of FLow control
unITs), which can be sent atomically as they are not wider
than links.

In the context of NoCs, wormhole switching is the most
adopted approach due to its low buffering requirements. In
a wormhole NoC every core request translates into a packet,
which is the minimum arbitration unit. A packet can be split
into one or several flits. The header flit of a packet contains
the destination information required to forward the packet to
the corresponding router output port. Once the header flit is
granted access to a given output port, the remaining flits are
forwarded to this port without any further arbitration.

WCET estimation is easier to carry out on deterministic
routing policies. In particular, XY routing has been shown to
be very suitable for meshes as WCD (and WCTT) bounds
can be easily determined and its implementation complexity
is very low [16], [20]. XY routing builds upon forwarding
packets in the X direction first until reaching the column of the
destination node, and then forwarding them in the Y direction,
thus making routes to have minimal length (in terms of hops)
and making routing decisions to be fully deterministic in any
router (a single direction can be chosen for a given packet). In
order to choose the packet to be granted access to an output
port, we build upon round-robin arbitration, which has been
shown to be a (locally) fair and easy to implement arbitration
policy in NoCs [7]. However, for meshes, homogeneous round-
robin at router level delivers highly unbalanced bandwidth
across nodes since nodes closer to destination and those in
routes with fewer flows receive higher overall bandwidth than
the other cores [17].

C. Weighted Mesh

Weighted meshes [17] grant heterogeneous bandwidth in the
routers to the different flows to achieve a globally-fair (homo-
geneous) bandwidth allocation across cores. This is achieved
by using, for instance, a larger arbitration window in the case
of round-robin, so that a larger number of slots is given to
some ports so that the overall bandwidth allocated to each
core to the destination is homogenized. Conceptually, given a

TABLE I: Definitions used in this paper.

Acronym Description
R(x, y) Node with coordinates (x,y) in the NoC
Fi Flow i

P j
i Number of requests that might contend for the same Rj

output port as Fi under the worst-case contention scenario
ERj

i Rate at which flits of flow Fi can be ejected from router Rj

Dj
i Maximum time that a packet of Fi requires to go from the

input port of Rj to its destination node
fx{i} Index of the flow causing the worst possible blocking on Fi

PERwc Propagated worst-case ejection rate
PERi(R

j) Propagated worst-case ejection rate for flow Fi at router Rj

L Maximum packet size
Idir Number of flows traversing the dir input port
Odir Number of flows traversing the dir output port
Nports Number of ports per router

NoC with NxM nodes, weighted meshes reduce the bandwidth
for nodes whose bandwidth is above 1

N×M and increases it
for those whose bandwidth is below. Such an approach has
been shown doable and suitable for WCD estimation in the
context of critical real-time systems [15].

III. MODELING A WEIGHTED MESH

WCET estimation in manycores needs bounding access
times to shared hardware resources [14]. In the case of NoCs,
this translates into having a bounded WCD such that every
request sent to the NoC has a bounded service (traversal) time
at analysis time.

A. Baseline NoC

To better understand the performance guarantees provided
by weighted meshes, we model a canonical 2D wormhole
mesh router comprising five input ports that have queues to
store packet flits. The router arbiter grants an output port to
a given input flow. To allow deriving WCET estimates for
any task running in the system, no prioritization mechanism
is used in the router, and arbitration decisions to select the
flow accessing the requested output port are taken using a
time-analyzable arbitration policy, e.g. round-robin.

We consider a NxM mesh NoC in which each node can
be identified using (x,y) coordinates, see Figure 1(a). The
router located at coordinates (x,y) is referred to as R(x, y),
see Table I for the definitions used in this paper. Each node
comprises the router that communicates the node to the mesh
and a PME (Processor/Memory element). The PME can be
either a processor core, a cache memory, main memory, I/O,
etc. In the network several traffic flows may exist. A traffic-
flow (Fi) is a packet stream that traverses the same H-node
route from a source to a destination node and requires the
same grade of service along the path.

For the characterization we use deterministic XY routing but
any other deterministic routing can be used too. Deterministic
routing allows identifying routers in a given path as Rj where
j is the hop number of the path (e.g. R1 is the source node).
With XY routing, packets are forced to use the X dimension
first. In the X dimension the position of the target node with
respect to the source node determines whether to go right (X+)
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or left (X-) direction. The same approach is used for the Y
dimension. Once packets are routed using the Y dimension
they cannot be forwarded to the X dimension. Note that
the opposite port is represented as Ȳ and X̄ . For instance,
the opposite port of Y + is Y−. Routing restrictions help
determining the exact number of requests (P j

i ) that might
contend at router Rj for the same output port as Fi in
the worst-case situation. For instance, P j

i values for a mesh
with XY routing and assuming all-to-all communication are
determined as follows:

P j
i =

{
2 if destination is X+ or X−
4 if destination is Y+, Y − or PME

B. Deriving Worst-Contention Delay

In this section, we provide expressions to compute worst-
contention delay (WCD) bounds that are also suitable for
NoCs using weighted round-robin arbitration. Expressions
given in this section are based on the concept of worst-case
ejection rate (ERj

i ). We define ERj
i as the rate at which flits

of flow Fi can be ejected from router Rj to the corresponding
port when the next router (Rj+1) is accepting incoming
packets (i.e. it is not stalling Rj packet transmission). We
also extend the concept of worst-case network ejection rate to
model the rate at which flits can be ejected from a given router
port when the network is fully congested. To do so, we define
propagated worst-case ejection rate PERwc as the minimum
rate at which flits of Fi can be ejected from Rj in the worst-
case situation. ERj

i values can be computed by considering
the maximum number of flows P j

i contending at Rj
i for the

same output port as Fi, see Equation 1.

ERj
i =

1

P j
i

(1)

PERi(R
j) is computed by multiplying ERj

i values from
the current router Rj

i to the target router RH
i as presented

next:

PERj
i =

H∏
k=j

1

P k
i

(2)

Let Dj
i be the time that a packet of flow Fi requires to

go from the input port of Rj to its target node. Dj
i can

be computed recursively by considering the time required to
reach Rj+1 as 1/PERj

fx{i} plus the time required to reach
its destination once at Rj+1. fx{i} represents the index of
the flow that causes the worst possible blocking in Fi. Note
that a Ffx{i} packet stalled in a subsequent router of the path
followed by Fi might cause Fi to suffer worst contention
than one following exactly the same path. In the same way,
PERj

fx{i} represents the worst ejection rate for Fi packets.
To determine the flow causing the worst contention, PER
values for all routers and all flows are computed in advance,
and for any particular flow and router we choose the worst
PERj

fx{i}. Equation 3 shows the recursive definition of Dj
i .

TABLE II: WCD values for L-flit packets
Round-Robin Weighted

F1 F2 F3 F4 F1 F2 F3 F4

D3
i 3L - - - 2L - - -

D2
i 9L 3L 3L - 6L 2L 4L -

D1
i (WCD) 15L 9L 6L 3L 10L 6L 8L 4L

Dj
i =

1

PERj
fx{i}

+ Dj+1
i (3)

The WCD for flow Fi, given by D1
i , is the time required

to reach its destination (j = H) from the source node.

C. Computing WCD with Weighted arbitration

We illustrate how to compute WCD using equations above
with the example presented in Figure 1(b) and considering
round-robin arbitration first. We aim at computing F1 WCD,
i.e. the WCD of packets with source node in (x,y) router
and destination in (x+1,y+1). First, we compute PERj

i as the
product of the ERj

i coefficients (shown in brackets in Figure
1(b)) of all the routers that Fi (i = 1) traverses. Later, we start
from the last hop (j = 3) and compute all Dj

i values;

D3
1 = 1

1/3 = 3 D2
1 = 1

1/6 + D3
1 = 9

D1
1 = 1

1/6 + D2
1 = 15

Figure 1(b) shows WCD values for the 2x2 NoC for both
round-robin and weighted round-robin arbitration. In partic-
ular, we compute the WCD of F1, F2, F3 and F4. WCD
for F3 is given by D1

3 = D(x, y + 1). Table II shows the
Dj

i and WCD values for F1, F2, F3 and F4 for both round-
robin and weighted arbitrations. F4 comes directly from one
of the router (x+1,y+1) ports. As shown in the table, weighted
arbitration makes the WCD of the packets to be reduced for
those flows that are located in the farthest positions, and this
comes at the expense of penalizing the WCD of the nodes
closer to the destination. It is also important to mention that
despite weighted arbitration has the potential to fairly share
the bandwidth, the WCD of each core is not fully equalized.

D. Limitations of Weighted Meshes

Weighted meshes have been proposed jointly with XY
routing1. Figure 2(a) shows an example of XY routing in
which for a typical 4x4 mesh with the target node (e.g. a
shared cache or main memory) connected to a port in a router
in one corner (e.g. (3,0)) and all nodes attempting to send
packets to that node.

As shown, under XY routing the router at the corner has
to arbitrate among three input ports with highly unbalanced
traffic: (1) the X+ port receives requests from 3 out of 16
cores, (2) the local port (not shown in the picture) receives
requests from 1 out of 16 cores, and (3) the Y+ port receives
requests from the remaining 12 cores. Overall, the Y+ port
needs to absorb 75% of the traffic if bandwidth across cores
is homogeneously balanced.

1Note that the reasoning that follows applies identically with YX routing.
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(a) XY mesh (b) XY YX mesh

Fig. 2: Routes to router (3,0).

Let us consider an arbitration window implemented as
an extended round-robin vector with 16 entries, so that
bandwidth can be weighted as needed for homogeneous
bandwidth allocation. The arbitration window for the router
in the corner is composed of 16 elements (1 PME, 3 X+,
12 Y+). The only way to arrange those port grants in a
window so that, inside the window and across windows,
the maximum number of consecutive arbitrations granted to
the same port is minimized is using the following pattern:
PME, Y +, Y +, Y +, X+, Y +, Y +, Y +, X+, Y +, Y +, Y +,
X+, Y +, Y +, Y +. Note that swapping PME and X+
grants or moving Y + grants to the beginning would lead to
equivalent patterns with Y +, Y +, Y + sequences interleaved
with other (individual) grants over time.

The effectiveness of the weighted arbitration is decreased
in the presence of bubbles. In regular wormhole mesh NoC
designs, bubbles can occur due to local and global control-
flow effects.

Canonical routers in a 2D mesh are pipelined into several
stages. First, the incoming packet is stored in the correspond-
ing input buffer. Then, routing and switching occur in one ore
more stages, and finally the packet is sent through the link.
However, since no packet-loss is allowed in wormhole, before
the packet is sent to the next router, the stall/go signal coming
from the next router is checked to ensure there is enough buffer
space to store the packet. This stall/go signal is used to ensure
the link-level (or local) flow control and requires Cf cycles
to travel from the destination router (Rx+1) to the current one
(Rx), and the round trip time (RTT) is equal to 2× Cf . The
RTT determines the amount of buffering required at the input
buffers to avoid having bubbles in the transmission.

Let us consider the example in Figure 3, where we show the
main stages of three consecutive routers (Rx, Rx−1, Rx−2),
being packets ejected through router Rx. Let us also consider
three packets (P1, P2, P3), and an initial state where P1 is in
an input buffer in Rx, P2 in an input buffer of Rx−1, and P3

in an input buffer of Rx−2. If Rx did not allow these packets
to make any progress in the previous cycle, but Rx−1 and
Rx−2 allowed them to progress, P1 could not be switched
and ejected. Instead, P2 and P3 where switched but could
not be transmitted to the following router due to backpressure
of the input buffers. This is illustrated in the chronogram in
Figure 3 as the state in cycle 0. Eventually, in cycle 1 P1

is ejected, P2 reaches the input buffer of Rx, and P3 the
input buffer of Rx−1. In cycle 2 P2 is ejected, and P3 is
switched in Rx−1. In cycle 3, P3 reaches the input buffer of

Fig. 3: Example of bubbles when sending continuously packets
from one port.

Rx, but cannot be ejected until cycle 4. Overall, Rx can eject
up to 2 packets consecutively coming from the same input port.
Hence, a weighted mesh where more than 2 packets need to be
transmitted in consecutive cycles cannot serve those packets
at a sufficient speed and causes some imbalance.

In this example, if buffers are large enough potentially all
packets can reach Rx faster. However, buffers are the most
expensive resource in routers, so their size is kept as low as
reasonably possible.

Global Effects. In current CRTES, packets in the NoC
usually correspond to memory transactions going from the
cores to the memory devices and the other way around. The
maximum speed at which cores issue requests to memory is
determined by the amount of cycles the requests going to
memory need to be processed. In the context of a NoCs, this
time is usually in the order tens of cycles and avoids having
always requests to be served by the router during operation.
However, WCD estimation cannot make any assumption on the
actual load, so worst congestion must be assumed for WCET
estimation.

Thus, even allocating bandwidth as in [15] (that theoreti-
cally allows achieving homogeneous arbitration using weights
that consider the amount of flows using each input port), global
fairness cannot be achieved in practice if the amount of traffic
flows traversing each port is not balanced as well.

IV. EOMESH: A FAIR WEIGHTED MESH

As we have seen in previous section, although regular
weighted NoCs with XY routing are theoretically able to
achieve a perfect balancing of the available bandwidth, this
balancing is not achieved in reality due to the presence of
bubbles. To solve this problem, we propose a new mesh design
intended to achieve near-optimal weighted arbitration. The
idea behind Even/Odd mesh (EOmesh) is that the even allo-
cation of bandwidth cannot be practically achieved by simply
playing with the arbitration but it also requires balancing the
amount of flows served at each output port. EOmesh combines
both concepts and it balances both (1) the bandwidth each flow
is assigned using a weighted arbitration and (2) the amount
of flows each port has to serve. In the following sections we
describe how EOmesh implements these concepts.

A. Combined Flow Balancing & XY-YX routing

In order to balance the amount of flows each output port
serves, we change the routing algorithm. With XY routing, the
default routing policy in the weighted mesh proposed in [17],
ports in the Y direction serve high number of flows that makes
not possible to achieve a fair distribution of the bandwidth due
to the presence of bubbles. To avoid the high concentration of
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flows in a given port we propose a different routing algorithm
that combines both XY and YX to achieve a better balancing
of the flows traversing each port. The proposed algorithm uses
XY for packets originated at the source nodes with an even
identifier, and YX for the packets from source nodes with
an odd identifier. The proposed mechanism is illustrated in
Figure 2(b): combining XY and YX algorithms for even and
odd sources allows improving the balancing in the number of
flows each port has to serve. For the particular example in the
plot, we see how the output port arbitration of the memory
controller attached to node 3 serves 6, 9, and 1 flows through
the X, Y, and PME input ports while in the case of the XY
routing (Figure 2) the distribution of flows is 3, 12, 1, for the
X, Y, and PME input ports.

Virtual channel allocation. The main reasons why XY
routing is heavily utilized are its simplicity (low complexity)
and its deadlock freedom properties. However, as we have
analyzed previously, XY routing does not balance traffic
flows efficiently. With EOmesh routing approach, the amount
of flows traversing each port is more balanced but on the
other side combining XY and YX allows creating deadlock
situations for specific communication flows. In that respect, in
order to avoid deadlock situations, EOmesh assigns a specific
virtual channel to each of the two routing policies employed
(XY and YX). Performing a static virtual channel allocation to
isolate flows from the different routing policies XY and YX
also allows reducing the worst contention that the different
flows can have since the amount of contender packets that
each flow finds in each hop is reduced.

Given that dynamic virtual channel allocation policies have
a very negative impact in WCD – since the number of potential
contenders is increased in a router with virtual channels [16]
– the static allocation of VCs performed by EOmesh does not
degrade the best guaranteed performance achievable by the
network.

B. Adapting arbitration weights

Weights in the weighted round-robin mesh design proposed
in [17] can be computed using the following expression:

w(Idir, Odir) = Idir/Odir (4)

where Idir represents the number of communication flows
traversing the diri input port of a given router being dir any
of the possible mesh router port directions. Similarly, Odir is
the number of flows traversing the dir output port of the same
router.

Given a fixed number of communication flows, the actual
flows traversing the input/output ports of each router can be
determined considering the particular route used by each flow.
Figure 4 shows the EOmesh weights required to arbitrate the
flows originated at each router that target the shared resource
attached to Router (3,0)).

V. IMPLEMENTATION

The baseline weighted mesh can be implemented in two
main different ways: (1) as a programmable NoC or (2) as a
hardwired NoC.

Fig. 4: EOmesh arbitration weights to access a shared resource
attached to router (3,0). Router internal port (PME) weights
are not shown in the picture.

A. Programmable NoCs

In a programmable NoC, routing and arbitration decisions
can be interfaced and modified by means of software com-
mands, thus with no hardware modification.

Programmable routing. Making routing programmable
requires, for instance, the use of routing tables in each port.
Hence, for each port of each router, we need a table with
as many entries as potential different flows (e.g. 16 entries
for a 4x4 mesh) where each entry contains the identifier of a
destination port, which can be {X+, X−, Y +, Y−, PME}.
Although 5 different values are possible across all ports, for a
given port only 4 of them are possible since a port cannot be
its own target. For instance, valid values for the X+ port are
{X−, Y +, Y−, PME}. Thus, this table needs 2-bit entries to
encode the destination port for each flow in each input port.
Overall, given a NxM mesh, the (distributed) storage required
to make routing programmable is:

RoutCost = (NxM) ·Nports · (NxM) · bits/entry (5)

Where the first NxM factor is the number of routers, Nports

stands for the number of ports per router (up to 5 ignoring the
fact that routers at the boundaries do not have all ports), the
second NxM factor corresponds to the number of entries per
routing table, and the last factor, bits/entry is 2 as indicated
before. For instance, in a 4x4 mesh, routing tables require less
than 16 · 5 · 16 · 2 = 2560 bits, so 320 bytes, which is a rather
small cost. This design is sketched in Figure 5 (left).

Programmable arbitration. Two main alternative imple-
mentations can be used to have programmable arbitration. One
of them requires an arbitration window per port and per router,
with an arbitrary number of entries Narb, and 2 bits per entry
indicating the input port that is granted access to the particular
output port. Narb must be sufficiently large so that 1/Narb

provides sufficient granularity to allocate weights as needed.
Moreover, Narb may change across ports and routers. For
the sake of illustration, we assume that arbitration windows
have NxM entries. Then, each arbiter also needs a log2Narb

counter pointing to the next entry in the window along with
an incrementer for that counter. Alternatively, one could use
shift registers with wrap-up for the window and use always
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Fig. 5: Routing and arbitration implementation of a pro-
grammable NoC.

the value at a given position (e.g. first position) to determine
what port is granted access next. In this work we build on
the solution using the counter. Hence, the storage cost for a
programmable arbitration is:

ArbCost = (NxM)·Nports·((NxM) · bits/entry + log2(NxM))
(6)

For instance, in a 4x4 mesh, arbitration would require 16 ·
5 · (16 · 2 + 4) = 2880 bits, so 360 bytes only. This design is
sketched in Figure 5 (right).

A second alternative implementation of the arbitration can
be built upon counters, where 4 counters are set per port, so
that each one tracks how many times a given input port must
be granted access to a given output port in each window.
In general, this approach allows a finer-grain allocation of
weights, but does not allow controlling with precision the order
in which grants are given. For instance, it may grant access
to the port with the highest count, or in a round-robin fashion
across ports with non-zero counters.

VI. EVALUATION

A. Hardwired NoCs

Some NoC implementations favor efficiency over flexibility,
and routing and arbitration choices are hardwired. Adapting
such a NoC to implement the EOmesh would require, at
most, duplicating (simple) routing logic in some routers to
implement XY and YX policies for different flows. In practice,
since a packet can be forwarded in any direction depending
on its destination at a given router, the practical cost of an
additional check will have lower cost.

Regarding arbitration, using different weights for a weighted
mesh would require hardwiring different choices in the arbi-
tration windows, thus not increasing hardware cost.

Overall, hardware modifications would have limited impact
on the overall cost of the NoC, which is mostly dominated by
the buffering required at input ports.

B. Evaluation Framework

We evaluate EOmesh on a cycle-accurate simulator execut-
ing PowerPC ISA programs. The simulator is an enhanced
version of SoCLib [28] that we integrated with gNoCsim [1],
a cycle-accurate NoC simulator.

We evaluate EOmesh on meshes with 16 cores (4x4) and
36 cores (6x6) to assess the scalability of our approach.

In our manycore, load (and write-miss) requests comprise
four-flit messages from the core to memory. Given that cache

Fig. 6: Percentage of loads/stores in each benchmark. EM
stands for EEMBC Auto and MediaBench.

line size is 64-bytes and we need 16-bits for control data
(512+16 bits), memory answers with 4-flit messages over 132-
bit wide links. Evicted line requests require a 4-flit message
and a one-flit answer. In our proposed mesh design, packe-
tization [16], shown to minimize WCD, adds control data to
each of the flits, therefore requiring an extra flit, so 5 instead
of 4 (512+5*16 bits over a 132-bit wide channel), leading to
25% overhead.

C. Metrics

For each setup, usually matching one result chart, WCET
estimates are shown normalized to the maximum WCET
observed in those results obtained with the baseline weighted
mesh. Hence, normalized WCET (nWCET) estimates below 1
are better than those provided by the default weighted mesh
and vice versa.

nWCET =
WCETEOmesh

max(WCETweighted)
(7)

D. Benchmarks and Workloads

Manycores can speed up the guaranteed execution time (i.e.
reduce the WCET) of real-time multithreaded applications that
use several cores. Manycores can also increase the number of
single-task applications that can be safety consolidated. Inter-
estingly, the former are becoming more frequent in automotive
systems with the advent of autonomous driving, while the
latter are more frequent in more conservative domains (e.g.
avionics) that build on software partition-based systems (e.g.
IMA [32] in avionics).

We aim at capturing the load that different applications put
on the NoC. In order to use representative load values, we
build on two representative suites: MediaBench [10] that com-
prises multimedia and communication applications relevant
for autonomous navigation and driving systems, and EEMBC
Autobench [18] benchmark suite that comprises automotive
applications. Figure 6 shows the load each benchmark in both
suites puts on the NoC: loads, stores and the addition of both.
In particular we measure local data/instr. cache miss rate,
breaking it down between loads and stores. We see variance
in the load/store rate from 0% up to 15%.

We create different benchmarks (A, B, ..., H) with load
and store access frequencies between 2.5% and 40%, with the
following steps: 2.5%, 5%, 10%, 20%, and 40%, as shown on
the right hand side of Figure 6. Hence we capture observed
variance and also go beyond by mimicking more heavy loaded
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TABLE III: Benchmarks

Benchmarks A B C D E F G H
% Local Op 80 50 50 60 95 87.5 87.5 90
% LD Op 10 10 40 20 2.5 2.5 10 5
% ST Op 10 40 10 20 2.5 10 2.5 5

scenarios. Table III shows the details on our benchmarks from
which we generate several workloads to evaluate EOmesh.
• Analytical maximum load. WCD bounds are computed

for all cores. This is the most stressful scenario for the
NoC, where requests are assumed to contend in the worst
possible way with other cores’ requests.

• Independent applications. We generate a set of appli-
cations with varying number of load (LD), store (ST)
and in-core (local) operations as described in Table III.
Those allow assessing different degrees of load in the
NoC. In particular, benchmark A-D correspond to high-
demanding benchmark in terms of bandwidth, whereas E-
H benchmark are their low-demanding counterparts (25%
requests w.r.t. A-D applications).

• Parallel applications. We create 2x2 homogeneous par-
allel applications in which all threads correspond to the
same reference benchmark to study their sensitivity to the
particular mapping of the application in the mesh.

• Heterogeneous applications. We have generated hetero-
geneous parallel applications comprising several phases
and varying the amount of tasks in each of the phases.
We have generated 8000 directed acyclic graphs (DAG) to
simulate different coarse-grain parallel applications as the
ones supported by the ADA programming language [23].
Figure 7 shows an schematic of the DAG template we
have used to generate the different applications. For each
application DAG tasks are chosen randomly from the
workloads in Table III.

Fig. 7: DAG schematic of the heterogeneous applications.

E. Analytical Contention Bounds

First, we compute the WCD bounds across cores, whose
maximum determines the worst contention that any core
request could experience. As shown in Figure 8 for a 4x4
mesh, the EOmesh reduces significantly the WCD for those
flows (the corresponding router is indicated in brackets) with
highest WCD values. This is achieved by a better organization
of the traffic (combined XY and YX routing policy) and
an appropriate weight allocation, which slightly increases the
WCD for the fastest nodes to decrease it for the slowest ones.

Fig. 8: WCD bounds for all flows (4x4 mesh nodes).

In particular, the maximum WCD for the original weighted
mesh (flows 12 and 13) decreases by 14.7% in the EOmesh
(flow 13). Thus, the amount of contention that is added to each
request during WCET estimation is significantly reduced.

EOMesh is specifically designed to reduce the WCET of
the slowest thread in a parallel application. This is achieved
by allocating bandwidth so that the maximum WCD (and so
the imbalance) in the original wmesh is reduced. That is,
the WCD (and hence the WCET) suffered by threads closer
to main memory is on-purpose increased to reduce that of
threads farther away from main memory, since those determine
the WCET of the overall application. In this line, Figure 8
should not be read in terms of the number of threads (nodes)
for which EOMesh reduces WCD, but instead, on whether
EOMesh reduces the WCET of the slowest thread.

F. Independent (single-threaded) Applications
In order to assess the impact of EOmesh WCD reduction

w.r.t. the baseline weighted mesh, we have evaluated it using
all single-threaded applications. In particular, we obtain time-
composable WCET bounds (thus valid regardless of the tasks
running in the other cores) for each application on each of the
cores. WCET estimates have been obtained by considering the
execution time in isolation (obtained with measurements in this
particular evaluation) and adding the WCD to each request,
where the WCD depends on the mesh policies (baseline
weighted mesh or EOmesh) and the particular core where the
application is run. Note that other WCET estimation practices
applied during unit testing (aka when contender tasks are
unknown) would provide different in-isolation execution times,
but would account for NoC contention analogously to our work
(i.e. considering the worst-case contention per request).

Figure 9 shows, for each application, the WCET reduction
achieved with the EOmesh (1 − WCETEOmesh

WCETWeighted
). As shown,

despite the fraction of operations causing NoC requests de-
creases from 50% (applications B and C) down to only 5%
(application E), the relative WCET reduction in the range 5%-
9% and 15%-28% for 4x4 and 6x6 meshes respectively due to
the fact that NoC latency is the dominant factor in the WCET
time. For completeness, we also show the results in a per-core
basis for application A (see Figures 11 and 12 for 4x4 and
6x6 respectively), as illustrative example of how the WCET
varies across cores. Notice that in this case we use the nWCET
metric in Equation 7. As shown, in line with WCD results, the
EOmesh slightly penalizes the WCET for those cores with
lowest in-isolation execution time to decrease appreciably the
WCET in the cores with highest in-isolation execution time.
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Fig. 9: WCET estimation re-
duction.

Fig. 10: Average execution
time reduction.

Fig. 11: Normalized WCET for application A (4x4).

Fig. 12: Normalized WCET for application A (6x6).

G. Parallel Applications

We have evaluated the relative WCET of a set of parallel
applications building on our reference single-threaded applica-
tions on a 4x4 mesh. The first experiment consisted in building
16-thread parallel applications with all threads being of the
same type (e.g. 16 A applications). As expected, the WCET
was dictated by the worst thread, thus delivering the same
results shown in Figure 9. Then, we have built 4-thread parallel
applications mapping them in 4 different square regions (2x2
cores) in the 4x4 mesh. Each such square region corresponds
to the partition of the mesh into 4 square regions, which we
identify with U (upper), B (bottom), L (left) and R (right).
For instance, UR corresponds to the upper-right square, which
includes nodes (2,2), (2,3), (3,2) and (3,3).

Results for those 4-thread homogeneous parallel applica-
tions are shown in Figure 13, again, normalized (for each
reference application) w.r.t. the maximum WCET across all
parallel applications. As shown, the EOmesh provides sig-
nificant gains for the UL mapping, which is the one with
highest WCET estimates. Gains for the second worst case
(BL) are also noticeable. Results for the third worst case
(UR) are slightly worse for the EOmesh. As explained before,
the EOmesh decreases the WCD of the slowest nodes at the
expense of increasing the WCD for some (fast) nodes. Finally,
the best square (BR) experiences almost no change (up to 0.3%
WCET variation).

Overall, the EOmesh proves to be also beneficial for parallel
applications, decreasing the WCET in those regions that lead

Fig. 13: nWCET. 4-thread homogeneous apps (4x4 mesh).

Fig. 14: nWCET for heterogeneous parallel applications.

to highest WCET estimates.
Figure 14 shows results for DAG-based heterogeneous par-

allel applications on a 4x4 mesh, whose threads are mapped
randomly to cores. We show results for applications with 1
to 20 phases and processor utilizations of 50% and 100%. A
100% utilization means that all the 16 cores in the manycore
are utilized while with 50% utilization the amount of cores
utilized in each of the phases is different but being 50% on
average. As show in the plot, WCET reductions around 8%-
9% are obtained regardless the degree of utilization and the
number of phases of the parallel applications. EOmesh effec-
tively homogenizes bandwidth across cores, which ultimately
decreases the imbalance across threads in parallel applications.
While some threads run in cores with lower bandwidth in the
EOmesh, since some others run in cores with low bandwidth
in the baseline weighted mesh allows the EOmesh to speed
them up. Hence, by speeding up the threads in the slowest
cores (due to their lower bandwidth), EOmesh improves the
performance of parallel applications.

H. Average Performance

One of the main side effects when balancing the behavior
of applications – and quality of service solutions in gen-
eral – is the loss of throughput, since processor design is
tunned to improve average performance. In order to show that
our proposed approach does not negatively impact average
performance, we have run our reference applications in all
cores simultaneously and collected measurements with actual
contention. Our results show that, in general, the discrepancies
between the baseline weighted mesh and the EOmesh are
very low. For illustration purposes, in Figure 10 we show
the execution time reduction obtained with the EOmesh in
the slowest core in each case. As shown, EOmesh does not
cause any degradation in performance but results in some gains
(around 1%-2% for 4x4 and 11%-15% for 6x6) due to avoiding
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bubbles in arbitration, thus removing unnecessary stalls and
increasing also average performance.

VII. RELATED WORK

While there have been several proposal for real-time aware
NoC designs, exploring to which extent high-performance
(COTS) NoC designs can be used in the real-time domain is of
paramount importance: on the one hand, it is well accepted that
the CRTES domain is a relative small market in comparison
with other domains such as mobile. Hence, customized NoCs
specifically designed for real-time systems (e.g. time-triggered
ones and those based on TDMA), which may require high non-
recurrent costs, will naturally find difficulties to be adopted
in the context of industrial CRTES [29]. On the other hand,
the big majority of the proposed manycore designs across
all computing domains use high-performance wormhole NoCs
(wNoCs) to perform the interconnection of cores and shared
resources within the chip. This makes wNoCs accessible (at
low cost) by the CRTES since they are implemented in a vast
set of chips. In this paper, we have focused on achieving global
balanced bandwidth as a way to reduce WCET estimates with
no (or minimum) hardware support.

Several real-time specific NoCs have been proposed based
on TDMA such as [25] and [5]. While TDMA-based NoCs
deal with contention at transaction level (e.g. read and write
memory operations), time-triggered architectures [13] increase
the abstraction level by introducing a self-contained computa-
tional unit. In time-triggered architectures, micro-components
exchange messages in contention-free slots. However, event-
triggered transactions, such as cache misses that access main
memory through the NoC, may suffer contention delay, which
must be upper bounded. We refer to NoC designs with real-
time guarantees and time-composable behavior as guaranteed
service NoCs. Nostrum [12] and Aethereal [5] NoCs pro-
vide guaranteed service using time-division multiplexing, and
hence, time composable bounds.

Many studies have also been carried out with the purpose
of providing realistic and feasible latency bounds for best-
effort wNoCs. Using prioritization on a per-virtual channel
basis has proven being an effective means to achieve tight
latency bounds in wNoCs [26]. However, the use of per-virtual
channel prioritization becomes impractical when a significant
number of flows exist in the network. To overcome this issue,
the impact of virtual channel sharing has been analyzed in [27]
and [21]. However, while these approaches effectively reduce
the number of virtual channels required, the timing guarantees
obtained build upon a detailed knowledge of the characteristics
of the software (applications and/or tasks) that will be executed
in the deployed system and hence, do not meet incremental
qualification requirements. The work in [8] has similar pros
and cons, since the proposed solution guarantees specific
bandwidth allocation for guaranteed-service connections per
port, by splitting the bandwidth of output ports among best
effort and guaranteed service connections.

Authors in [9] made one of the first studies that provided
reliable contention bounds for wNoCs without building upon
flit-level virtual channel preemption. Later, this analysis has

been improved in [20] where tighter bounds are presented. The
model in [20], as those mentioned above, also requires detailed
information on all communication flows that will be finally
deployed in the system to estimate reliable upperbounds.
In other words, latency bounds provided in [20] are not
time-composable. Some recent works that build upon wNoCs
propose interference-free NoC designs [19], [31]. The solution
in [19] has been proven to cause lower degradation on best-
effort traffic than the one in [31]. The former achieves its
goal by using specific ways to multiplex virtual channels.
However, despite its improved performance, the performance
degradation caused on best-effort traffic is still large.

Recently, authors in [15] have proposed an alternative
approach to meet CRTES requirements. In particular, that
work proposes specific ways to derive time-composable WCD
bounds without sacrificing average performance and by allo-
cating weights to arbiters so that fair bandwidth allocation
is achieved across cores, building upon weighted meshes,
which are widely used in high-performance routers for off-chip
wormhole networks [3] . Still, as discussed before, bandwidth
allocation is improved but is still unbalanced. In our work we
tackle this limitation by adapting routing policies and weight
allocation conveniently.

VIII. CONCLUSIONS

Weighted meshes are an effective solution to homogenize
bandwidth allocation across cores, which is of prominent
importance for tight WCET estimation in critical real-time
systems. However, as shown in this work, weighted meshes
fail to provide homogeneous bandwidth across cores. In this
work we introduce the EOmesh that provides near-optimal
homogeneous bandwidth allocation across cores by (i) com-
bining XY and YX routing policies and (ii) allocating weights
accordingly. This allows limiting the local bandwidth allocated
to specific ports that cannot use all allocated slots, thus induc-
ing some imbalance. Our results show large WCD reductions
and WCET reductions in the range 5%-28%, while keeping
hardware cost roughly unchanged. Moreover, we show that
benefits hold in the context of parallel applications, whose
WCET becomes less sensitive to the particular cores where
they are allocated.
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