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UPC,
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Abstract

Zanaboni’s procedure for establishing Saint-Venant’s principle is ex-
tended to anisotropic homogeneous transient heat conduction on regions
that are successively embedded in each other to become indefinitely elon-
gated. No further geometrical restrictions are imposed. The boundary
of each region is maintained at zero temperature apart from the common
surface of intersection which is heated to the same temperature assumed
to be of bounded time variation. Heat sources are absent. Subject to
these conditions, the thermal energy, supposed bounded in each region,
becomes vanishingly small in those parts of the regions sufficiently remote
from the heated common surface. As with the original treatment, the
proof involves certain monotone bounded sequences, and does not depend
upon differential inequalities or the maximum principle. A definition is
presented of an elongated region.

1 Introduction

Previous discussions of decay in transient heat conduction include that by
Knowles [15], who is concerned with a semi-infinite cylinder and an energy
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Problemas de la Termomecánica (MTM2016-74934-P)” of the Ministerio Español de Economia
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function over space-time related to that introduced here. It is shown that the
function in that part of the cylinder greater than a certain distance from the
heated base possesses an upper bound that exponentially decays with respect to
that distance provided the temperature vanishes at asymptotically large axial
distance. Horgan, Payne and Wheeler [10], who briefly review other main con-
tributions, consider the same problem but treat the cross-sectional spatial mean
square norm of the temperature, and construct a similiar exponentially spatially
decaying upper bound. They conclude that decay is at least as rapid as in the
steady problem. Both studies involve a differential inequality for the respective
measures, whereas the present approach relies upon the Cauchy convergence of
a monotone sequence. An explicit distance function is not employed except in
the definition of an elongated region. Consequently, decay estimates of the kind
derived in [10, 15] are not to be expected.

Saint-Venant’s principle as postulated by Zanaboni [19] for linear elasticity
relates to a sequence of successively embedded regions that create an elongated
body of arbitrary shape. The surfaces of the component regions have common
intersection Γ which is the only part of the respective surfaces subjected to
the same prescribed self-equilibrated load. Zero boundary data are prescribed
over the remainder of the surface of each region which are in equilbrium under
zero body force. Zanaboni’s version of Saint-Venant’s principle asserts that
the strain energy becomes vanishingly small in those parts of the indefinitely
elongated body sufficiently remote from Γ,

The objective of this paper is to prove the corresponding assertion for clas-
sical anisotropic homogeneous transient heat conduction in the absence of heat
sources.. The common surface Γ of the sequence of enlarging regions is subject
to the same prescribed temperature for all regions, in each of which the thermal
energy is bounded. Furthermore, the time-derivative of the temperature over Γ
is assumed bounded. The general procedure is that originally devised by Zan-
aboni [19] but modified to incorporate certain simplications introduced in [14].
Linear thermoelasticity is similarly treated in [12].

The argument is mainly algebraic and employs a fundamental inequality,
derived using integration by parts and standard inequalities, to demonstrate
that a space-time measure defined in terms of the thermal energy of the enlarging
regions forms a monotonically decreasing sequence that is bounded below. Saint-
Venant’s principle as formulated by Zanaboni then follows from the Cauchy and
other convergence theorems.

Section 2 details the geometric context of the problem. A bounded elongated
region, defined in Section 3, is used to generate an unbounded elongated region.
Part of the surface of this first region forms the common intersection Γ of the
surfaces of all subsequent regions and is heated to a prescribed temperature
which is the same for all regions. Complementary parts of the respective sur-
faces are at zero temperature. The initial boundary value problems are stated
in Section 4, while the positive-definite thermal energy measures, assumed uni-
formly bounded and in terms of which the analysis is conducted, are introduced
in Section 5. The main part of Section 5, however, is devoted to the construction
of the fundamental inequality crucial for the proof in Section 7 of Zanaboni’s
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version of Saint-Venant’s principle. In Section 6, the fundamental inequality is
employed to derive a monotonically decreasing bounded below sequence of the
thermal energies which by the Cauchy and Bolzano-Weierstrass convergence
theorems leads to bounds for the thermal energy in a region sufficiently remote
from the common surface Γ. The appropriate form of Saint-Venant’s principle
is expressed as a theorem stated and proved in Section 7. Section 8 consists of
some brief concluding remarks.

The usual conventions are adopted of summation over repeated subscripts,
and a subscript comma to denote partial differentiation. Vector and tensor
quantities are not typographically distinguished, while subscripts have the range
1, 2, 3 apart from η which is used as an additional time variable. A solution of
sufficient smoothnees is assumed always to exist.

2 Geometry

A bounded region of three dimensional Euclidean space is indefinitely enlarged
by successive accretion, such that n accretions generate (n+1) regions, each em-
bedded in its successor. Accordingly, in terms of a notation convenient for later
purposes, the sequence of open simply connected regions {Ωj} , j = 1, . . . n+ 1,
satisfies the inclusions

∅ 6= Ωn+1−r ⊂ Ωn+1−s, 0 ≤ s < r ≤ n. (2.1)

The final enlarged region in the sequence is Ωn+1, while each accretion used in
its construction is of size and shape that may be chosen appropriately to the
problem under consideration. The surface ∂Ωn of each region Ωn is Lipschitz
continuous.

Note that s, r are integers and unless equal thus differ by at least 1.

Let Ω0 = ∅. The accretions D
(n+1)
i are defined by

D
(n+1)
i = Ωn+1−i\Ωn−i, 0 ≤ i ≤ n, (2.2)

D(n+1)
n = Ω1\Ω0 = Ω1. (2.3)

At the (m+ 1) stage, where m > n, a further (m− n) accretions have been
added to Ωn+1 to form a region Ωm+1. In consequence, the new region consists
of new accretions Dm+1

j , j = 0, 1, . . . (m − n) plus those used to form Ωn+1, so
that

D
(m+1)
(m−n)+i = D

(n+1)
i , i = 0, 1, 2 . . . n. (2.4)

Correspondingly, regions in the sequence may be identified according to the
relations

Ωm+1−j = Ωn+1−i, j = (m− n) + i, i = 0, 1, 2 . . . n. (2.5)

The non-empty part of the boundary common to all ∂Ωn is denoted by Γ
where

∅ 6= Γ ⊂ ∂Ωn ∩ ∂Ωn+1, n = 1, 2, 3, ....., (2.6)

3



while that part of the surface ∂Ωn contained in Ωn+1 is represented by Σn:

Σn = ∂Ωn ∩ Ωn+1, n = 1, 2, 3, ....... (2.7)

We require the sequence of regions Ωn, n = 1, 2, 3, . . . to be elongated. This
term is defined in the next section.

3 Elongated regions

An intuitive understanding of what is meant by an elongated region is that
it has at least one dimension much larger than the others. This description,
however, fails to restrict the shape or connectivitly of the region, which becomes
important when discussing Saint-Venant’s principle. Cavities and cracks can
create stress ooncentrations which invalidate the usual principle.

Our definition of an elongated region depends upon a basic region that has
the following properties.

Definition 3.1 (The basic region) The basic region is a bounded region Ω
with smooth boundary ∂Ω for which the distance function is d(x, y) for x, y ∈
Ω∪∂Ω. Let ∂Ω be decomposed into mutually disjoint but individually connected
parts such that ∂Ω = Γ ∪ ∂Ω1 ∪ ∂Ω2. When x ∈ Γ, z ∈ ∂Ω1, and y ∈ ∂Ω2 we
require d(x, z) ≤ d(x, y). Moreover, let x̄ ∈ Γ and ȳ ∈ ∂Ω2 be chosen to satisfy

d(x̄, ȳ) = sup
x,y

d(x, y).

Take planes perpendicular to the straight line joining x̄, ȳ and let the inter-
section with Ω of the plane through the point x̄+ λȳ be the cross section P (λ).
Define

λ = min (λ : P (λ) ∩ ∂Ω1 6= ∅), (3.1)

λ̄ = max (λ : P (λ) ∩ ∂Ω1 6= ∅). (3.2)

Now vary Γ, ∂Ω1, ∂Ω2 by the addition or subtraction of respective parts of
the boundary ∂Ω such that the endpoints of Γ lie on P (λ) and the endpoints of
∂Ω2 lie on P (λ̄).

Let each P (λ) be singly connected and satisfy the following conditions:

c ≤ |P (λ)| < M <∞, λ ≤ λ ≤ λ̄, (3.3)

0 < |P (λ)| < M <∞, 0 < λ ≤ λ, (3.4)

0 = |P (0)|, (3.5)

0 < |P (λ)| < M <∞, λ̄ ≤ λ < 1, (3.6)

0 = |P (1)|, (3.7)

where c, M are speciified positive constants, and |P (λ)| denotes the diameter of
P (λ).
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These conditions are designed to prevent cross-sections from either collaps-
ing to zero or becoming unbounded. The assumption of single connectedness
precludes Ω from containing cavities in IR3 or (wide) slits in IR2. Note that the
ratio d(x̄, ȳ)/M may be arbitrarily large but finite. For simplicity, wedges, thick
infinite plates, quarter-spaces, cones, half-spaces, the whole space, and exterior
regions are excluded, but such regions may be easily incorporated into our anal-
ysis. On the other hand, cavities and cracks are likely to require a modified
treatment, and in consequence their consideration is postponed.

Definition 3.2 (Elongated region) Let Ωn, n = 1, 2, 3, . . . form the embed-
ded seqeunce defined in Section 2. Then Ωn, n = 1, 2, 3, . . . comprise a sequence
of elongated regions provided each member of the sequence is the union of basic
regions Ωn+1\Ωn, n = 0, 1, 2, . . ., and in addition satisfy

lim
n→∞

|Ωn| → ∞.. (3.8)

Cylindrical regions, regions that spiral within a wedge or cone, or are he-
lical in shape, or are non-contiguous (i.e., no self-contact) entangled knots are
examples of a sequence of elongated regions in the sense of Definition 3.2.

4 The initial boundary value problems

Each region Ωn, defined in the previous sections, is occupied by a homogeneous
heat conducting material with the same heat conduction symmetric tensor κ.
The treatment can be extended to spatially inhomogeneous heat conduction
materials in an obvious manner. A related, but different, study of functionally
graded heat conducting materials with similar nonhomogeneous properties is
presented in [11] for a cylinder, while [17] examines, again by a different method,
a certain nonlinear parabolic system for both a cylinder and cone. With respect
to an orthogonal Cartesian x1x2x3-coordinate system common to all regions, the
components of κ are κij = κji, i, j = 1, 2, 3. It is supposed that κ is positive-
definite in the sense that the following inequality holds for an assigned positive
constant κ0 and for each vector ξ ∈ IR3:

κ0ξiξi ≤ κijξiξj . (4.1)

The (positive) temperature in Ωn is denoted by u(n)(x, t) ∈ IR, where (x, t) ∈
Ωn×[0, Tn) and [0, Tn) is the maximal time interval of existence for Ωn. Assume
that Tn > 0 and that T = minn Tn > 0. Assume further that u(n) is twice
spatially and once temporally differentiable and define the second order linear
partial differential operator L to be

L(u(n)) =
(
κiju

(n)
,i

)
,j
, (x, t) ∈ Ωn × [0, T ). (4.2)

The generalised normal derivative on ∂Ωn is denoted by

∂u(n)

∂n
= niκiju

(n)
,j , (x, t) ∈ ∂Ωn × [0, T ), (4.3)
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where ni are the Cartesian coordinates of the generic unit outward normal vector
on ∂Ωn, n = 1, 2, 3, . . ..

Let w(x, t), (x, t) ∈ Γ× [0, T ), be a prescribed function that for an assigned
positive constant M1 satisfies the assumption:

M2
1 =

∫ T

0

∫
Γ(η)

w2
,η dSdη. (4.4)

In particular, we have M1 = 0 when w is independent of time. This condition,
however, is incompatible with the homogeneous initial data assumed below.

The sequence of initial boundary value problems to be studied is specified
by

L
(
u(n)

)
= u̇(n)(x, t), (x, t) ∈ Ωn × [0, T ), (4.5)

u(n)(x, t) = w(x, t), (x, t) ∈ Γ× [0, T ), (4.6)

= 0, (x, t) ∈ (∂Ωn\Γ)× [0, T ), (4.7)

u(n)(x, 0) = 0, x ∈ Ωn, (4.8)

where n = 1, 2, 3, . . ., and a superposed dot indicates differentiation with respect
to time. Homogeneous initial data are adopted in (4.8) for convenience.

5 Fundamental inequality

A fundamental inequality is derived which leads to a monotone sequence studied
in Section 6. For this purpose, we introduce the bilinear function defined on a
region Ω by

VΩ (u, v) =

∫ t

0

∫
Ω(η)

u,iκijv,j dxdη +
1

2

∫
Ω(t)

uv dx, (5.1)

where u, v ∈ C2 (Ω× [0, T )), and the notation Ω(t) indicates that relevant quan-
tities are evaluated at time t. In particular, we consider the thermal energy
function obtained when (5.1) is specialised to the form

VΩn

(
u(n), u(n+1)

)
=

∫ t

0

∫
Ωn(η)

u
(n)
,i κiju

(n+1)
,j dxdη +

1

2

∫
Ωn(t)

u(n)u(n+1) dx,

(5.2)
where u(n) ∈ C2 (Ωn × [0, T )). It is also supposed that

VΩn(u(n), u(n)) ≤M2, n = 1, 2, . . . , (5.3)

for prescribed positive constant M2 independent of n.
The function VΩ∞\Ωn

(
u(∞), u(∞)

)
is employed in [15] to establish exponen-

tial decay in a semi-infinite cylinder using an argument based upon differential
inequalities
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Repeated integration by parts and use of relations (4.5)-(4.8) together with
definitions (4.2) of the linear operator L and (4.3) of the generalised normal
derivative, yields an equivalent representation for (5.2). We have

VΩn
(u(n), u(n+1)) =

∫ t

0

∫
Γ

w
∂u(n+1)

∂n
dSdη −

∫ t

0

∫
Ωn(η)

u(n)L(u(n+1)) dxdη

+
1

2

∫
Ωn(t)

u(n)u(n+1) dx

= VΩn+1
(u(n+1), u(n+1))− 1

2

∫
Ωn(t)

u(n)u(n+1) dx

+

∫ t

0

∫
Ωn(η)

L
(
u(n)

)
u(n+1) dxdη. (5.4)

We examine the last term on the right of (5.4). Let Qn(t) = Ωn × [0, t) and
for differentiable functions φ, ψ set

[φ, ψ]Qn(t) =

∫ t

0

∫
Ωn(η)

κijφ,iψ,j dxdη, (x, t) ∈ Qn(t). (5.5)

Integration by parts yields∫ t

0

∫
Ωn(η)

(
κiju

(n)
,i

)
,j
u(n+1) dxdη =

∫ t

0

∫
Γ(η)

u(n) ∂u
(n)

∂n
dSdη

+

∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη −

[
u(n), u(n+1)

]
Qn(t)

= VΩn
(u(n), u(n)) +

∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη

−
[
u(n), u(n+1)

]
Qn(t)

. (5.6)

Insertion of (5.6) into (5.4), after rearrangement gives

2VΩn
(u(n), u(n+1)) = VΩn

(u(n), u(n)) + VΩn+1
(u(n+1), u(n+1))

+

∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη. (5.7)

The next step constructs an upper bound for VΩn
(u(n), u(n+1)) by means of

Young’s, or the arithmetic-geometric mean, inequality. The result substituted
in (5.7) generates the intermediate fundamental inequality

VΩn
(u(n), u(n)) + VΩn+1

(u(n+1), u(n+1))

≤ α1VΩn
(u(n), u(n)) + α−1

1 VΩn
(u(n+1), u(n+1))

−
∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη, (5.8)
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where α1 is an arbitrary positive constant to be chosen. A bound must now be
obtained for the surface integral appearing in the last term on the right of (5.8).

5.1 Subsidiary inequalities

Let n be fixed, and consider two subregions An, Bn that satisfy An ⊂ Ωn,
Bn ⊂ Ωn+1\Ωn, and let

Σn ⊂ ∂An, Σn ⊂ ∂Bn, (5.9)

∂An\ (Σn ∪ ΣAn
) 6= 0, (5.10)

∂Bn\ (Σn ∪ ΣBn
) 6= 0, (5.11)

where Σn = ∂Ωn ∩ Ωn+1 (see (2.7), ΣAn
= ∂An ∩ Ωn, and ΣBn

= ∂Bn ∩
(Ωn+1\Ωn).

Schwarz’s inequality applied to the last term on the right of (5.8) yields

|
∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη| ≤

[∫ t

0

∫
Σn(η)

u(n+1)u(n+1) dSdη

]1/2

×

[∫ t

0

∫
Σn(η)

(
∂u(n)

∂n

)2

dSdη

]1/2

. (5.12)

To bound the first integral on the right we employ the Sobolev trace inequal-
ity (see, for example, [1, 9, 8, 16, 18]):∫

Σ

v2 dS ≤
∫
∂D

v2 dS ≤ C(D)

∫
D

κijv,iv,j dx, (5.13)

where D, a bounded region of three-dimensional Euclidean space IR3, has Lips-
chitz continuous boundary ∂D such that Σ ⊂ ∂D, S ⊂ ∂D are non-intersecting
proper subsets of ∂D that satisfy ∂D\ (Σ ∪ S) 6= ∅. The function v ∈ W 1,2(D)
vanishes on part of the boundary:

v(x) = 0, x ∈ ∂D\(Σ ∪ S), (5.14)

and C(D) is a computable positive constant.
Inequality (5.13) is applied to the subregion Bn with Σ = Σn.
Now let v ∈W 2,2(D) satisfy the boundary condition

v(x) = 0, x ∈ ∂D\S. (5.15)

The second integral on the right of (5.12) is treated by means of the inequality∫
Σ

(
∂v

∂n

)2

≤ a(D)

∫
D

κijv,iv,j dx+ b(D)

∫
D

(L(v))
2
dx, (5.16)
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where the operator L is defined in (4.2). and a(D), b(D) are positive constants.
The proof relies upon a Rellich identiy (see, for example, [2, 3, 13, 16]). We now
apply (5.16) to the subregion An with S = ΣAn

and Σ = Σn.
The respective embedding constants C(D), a(D), b(D) depend upon the re-

gion D and therefore in the present particular case on Bn and An. Conse-
quently, for each n, we postulate that the choice of An and Bn can be always
adjusted such that, for example, a(An) = a(A1) = a, b(An) = b(A1) = b, and
C(Bn) = C(B1) = C, where a, b, and C as defined are positive constants. We
obtain

|
∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη| ≤ C1/2(α2 + α3)

2

∫ t

0

∫
Bn(η)

u
(n+1)
,i κiju

(n+1)
,j dxdη

+
aC1/2

2α2

∫ t

0

∫
An(η)

u
(n)
,i κiju

(n)
,j dxdη

+
b

2α3
C1/2

∫ t

0

∫
An(η)

(
u(n)
,η

)2

dxdη

≤ C1/2(α2 + α3)

2

∫ t

0

∫
Ωn+1(η)\Ωn(η)

u
(n+1)
,i κiju

(n+1)
,j dxdη

+
aC1/2

2α2

∫ t

0

∫
Ωn(η)

u
(n)
,i κiju

(n)
,j dxdη

+
b

2α3
C1/2

∫ t

0

∫
Ωn(η)

(
u(n)
,η

)2

dxdη, (5.17)

where Young’s inequality is employed and α2, α3 are arbitrary positive constants
to be chosen.

Consider the last integral on the right of (5.17). On noting (4.4), integrating
by parts, employing (5.16) together with standard inequalities, we obtain∫ t

0

∫
Ωn(η)

(
u(n)
,η

)2

dxdη =

∫ t

0

∫
Ωn(η)

u(n)
,η L

(
u(n)

)
dxdη

≤ M1

(a(Ω)

∫ t

0

∫
Ωn(η)

u
(n)
,i κiju

(n)
,j dxdη

)1/2

+

(
b(Ω)

∫ t

0

∫
Ωn(η)

(
u(n)
,η

)2

dxdη

)1/2
 ,

where Ω ⊂ Ω1, fixed for all n, is chosen appropriately.
Let α4 denote an arbitrary positive constant. Young’s inequality applied to

the last expression leads to∫ t

0

∫
Ωn(η)

(
u(n)
,η

)2

dxdη ≤M2
1 (α4 + b(Ω)) +

a(Ω)

α4

∫ t

0

∫
Ωn(η)

u
(n)
,i κiju

(n)
,j dxdη.

(5.18)
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Substitution of (5.18) in (5.17) after rearrangement gives

|
∫ t

0

∫
Σn(η)

u(n+1) ∂u
(n)

∂n
dSdη| ≤ C1/2

2
(α2 + α3)

∫ t

0

∫
Ωn+1(η)\Ωn(η)

u
(n+1)
,i κiju

(n+1)
,j dxdη

+

[
C1/2a

2α2
+
C1/2a(Ω)b

2α3α4

] ∫ t

0

∫
Ωn(η)

u
(n)
,i κiju

(n)
,j dxdη

+M2
1 (α4 + b(Ω))

C1/2b

2α3
. (5.19)

5.2 Fundamental inequality (continued)

On returning to (5.8) and using (5.19) to eliminate the surface integral, we
obtain

1

α1
VΩn+1\Ωn

(
u(n+1), u(n+1)

)
+

(
1− 1

α1

)
VΩn+1

(
u(n+1), u(n+1)

)
−C

1/2(α2 + α3)

2

∫ t

0

∫
Ωn+1(η)\Ωn(η)

u
(n+1)
,i κiju

(n+1)
,j dxdη

≤
[
α1 − 1 +

1

2

{
aC1/2

α2
+
bC1/2a(Ω)

α3α4

}]
VΩn

(
u(n), u(n)

)
+M2

1 (α4 + b(Ω))

(
bC1/2

2α3

)
. (5.20)

Now set

α1 = 2, α2 = α3 =
1

4C1/2
, (5.21)

so that (5.20) becomes

1

2
VΩn+1\Ωn

(
u(n+1), u(n+1)

)
+

1

2
VΩn+1

(
u(n+1), u(n+1)

)
−1

4

∫ t

0

∫
Ωn+1(η)\Ωn(η)

u
(n+1)
,i κiju

(n+1)
,j dxdη

≤ q

2
VΩn

(
u(n), u(n)

)
+
Q

2
, (5.22)

where

q = 2
[
1 + 2C

{
a+ ba(Ω)α−1

4

}]
, (5.23)

Q = 4bCM2
1 (α4 + b(Ω)) . (5.24)

On appealing to definition (5.2), we may finally write (5.22) as

1

2
VΩn+1\Ωn

(
u(n+1), u(n+1)

)
+ VΩn+1

(
u(n+1), u(n+1)

)
≤ qVΩn

(
u(n), u(n)

)
+Q,

(5.25)
which is the fundamental inequality required subsequently.
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6 Monotone sequence

We construct a monotone sequence from inequalities (5.25).
Choose α4 so that Q = q > 1. That is, set

α4 =
H +

√
(H2 + 4IJ)

2J
, (6.1)

where

H = (1 + 2aC)− 2bCb(Ω)M2
1 , I = 2bCa(Ω), J = 2bCM2

1 ,

Q = q =
[
(1 + 2aC) + 2bCb(Ω)M2

1 +
√

(H2 + 4IJ)
]
. (6.2)

Recall that both q and Q are independent of n.
With this choice of arbitrary constants, inequality (5.25) becomes

1

2
VΩn+1\Ωn

(u(n+1), u(n+1)) + VΩn+1
(u(n+1), u(n+1)) ≤ q

[
VΩn

(u(n), u(n)) + 1
]
.

(6.3)
For the moment, the positive-definite first term on the left in (6.3) is dis-

carded, and by recursion, the resulting inequality leads to the sequence

VΩn+1
(u(n+1), u(n+1)) ≤ q

(
VΩn

(u(n), u(n)) + 1
)

(6.4)

= q
(qr − 1)

(q − 1)
+ qrVΩn+1−r , r = 1, 2 . . . n, (6.5)

where here and subsequently arguments of the respective energies are omitted.
The sequence may be compactly represented on setting

an+1
r = q

(qr − 1)

(q − 1)
+ qrVΩn+1−r

, r = 0, 1, 2 . . . n, (6.6)

to obtain

0 ≤ an+1
r ≤ an+1

s , 0 ≤ r < s ≤ n, n = 0, 1, 2, . . . (6.7)

Let M3 be a specified positive (bounded) constant and suppose for n =
0, 1, 2, . . . that r lies in the range where

0 ≤ an+1
r ≤M3. (6.8)

The lower bound is implied by the positive-definite hypothesis. Upon recalling
assumption (5.3), we have also the bound

an+1
r q

(
qr − 1

q − 1

)
+ qrVn+1−r ≤ q

(
qr − 1

q − 1

)
+ qrM2. (6.9)

Condition (6.8) is consistent with inequality (6.9) provided M2 and M3 are
selected to satisfy

q

(
qr − 1

q − 1

)
+ qrM2 ≤M3.

11



Rearrangement leads to

r ≤ ln

(
M3 + q

q−1

M2 + q
q−1

)
[ln q]−1. (6.10)

Let {x} denote the greatest integer that does not exceed x. Define r0 by

r0 =

{
ln

(
M3 + q

q−1

M2 + q
q−1

)
[ln q]−1

}
. (6.11)

A subsequence, again denoted by an+1
r , now may be extracted from (6.7)

which for ε > 0 and sufficiently large n0, satisfies the condition

|an+k+1
s − an+1

r | ≤ ε, n ≥ n0, (6.12)

for all k ≥ 0. Here, s, r lie in the interval [0, r0], and r0 is given by (6.11).
Precise values of r, s are dependent on n and k and together with the particular
case s = r = 0 require slightly different discussion. By the Bolzano-Weierstrass
theorem, as s→∞ the subsequence converges to a limit ã ≥ 0 such that

|ã− an+k+1
s | ≤ ε, n ≥ n0, k ≥ 0, (6.13)

or
ã− ε ≤ an+k+1

s ≤ ã+ ε, n ≥ n0, k ≥ 0. (6.14)

We revert to (6.6) to express these bounds in terms of the energies. Subject
to the above stated conditions on r, s, and r0, we have

ã− ε+
q

(q − 1)
(1− qs) ≤ qsVΩn+k+1−s

≤ ã+ ε+
q

(q − 1)
(1− qs), (6.15)

which is the basis for the derivation of Saint-Venant’s principle.

7 Saint-Venant’s principle

The necessary preliminary components have now been assembled for the proof
of Zanaboni’s version of Saint-Venant’s principle which is stated in the following
theorem.

Theorem 7.1 The systems of parabolic initial boundary value problems (4.5)-
(4.8) for transient heat conduction subject to the boundedness conditions (5.3)
and (4.4) possess solutions which when measured by the energy function (5.2)

tend to zero in the accretion regions D
(n+1)
0 = Ωn+1\Ωn as n→∞.

Proof
Provided n ≥ n0, inequalities (6.15) hold both when k = 0 and k > 0. Each

possibility corresponds, say, to the terms an+1
r and an+k+1

s in the convergent
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subsequence, and to the respective regions Ωn+1−r and Ωn+k+1−s, where 0 ≤
s, r ≤ r0, and r0 is specified by (6.11). In what follows, it is assumed without
loss that k > 0. The regions Ωn belonging to the original sequence may now be
recalibrated by considering a new region composed of (N + 1) accretions chosen
such that

ΩN+1 = Ωn+k+1−s, (7.1)

ΩN = Ωn+1−r, (7.2)

where
s− r < k. (7.3)

The difference between r and s is at most r0, and consequently, condition (7.3)
is satisfied for sufficiently large k. At this stage, the ordering of r and s is not
assumed, but later the mutually exclusive cases s ≤ r − 1, r ≤ s − 1, r = s,
which exhaust all choices, are separately treated.

According to (2.1), condition (7.3) implies

ΩN = Ωn+1−r ⊂ Ωn+k+1−s = ΩN+1. (7.4)

The thermal energy is uniquely determined in each isolated region and in
consequence we have the relations

VΩN+1

(
u(N+1), u(N+1)

)
= VΩn+k+1−s

(
u(n+1+k−s), u(n+1+k−s)

)
, (7.5)

VΩN

(
u(N), u(N)

)
= VΩn+1−r

(
u(n+1−r), u(n+1−r)

)
. (7.6)

The procedure that established the basic inequality (5.25) may be applied
to accretions DN+1

i , defined in (2.2) and (2.3), and leads to

1

2
VDN+1

0

(
u(N+1), u(N+1)

)
≤ q

[
VΩN

(
u(N), u(N)

)
+ 1
]
−VΩN+1

(
u(N+1), u(N+1)

)
,

(7.7)
where we recall that DN+1

0 = ΩN+1\ΩN .
We now assume s − r ≤ −1 and let t > 0 satisfy s ≤ t ≤ r − 1. For

convenience, we again omit arguments of functions, and multiply inequality
(7.7) by qt and use inequalities (6.15) to obtain

qt

2
VDN+1

0
≤ qt+1(VΩN

+ 1)− qtVΩN+1
(7.8)

≤ qrVΩn+1−r
+ qt+1 − qsVΩn+k+1−s

, s ≤ t ≤ r − 1,

= 2ε+
q

(q − 1)

[
1− qr + qt+1 − qt − 1 + qs

]
(7.9)

≤ 2ε, (7.10)

where the square bracket in (7.9) is non-positive since 1 < qs ≤ qt, qt+1 ≤ qr

by the assumed inequalities s ≤ t ≤ r − 1.

13



But then (7.10) immediately gives

VDN+1
0
≤ 4q−tε ≤ 4ε, (7.11)

since t ≤ r ≤ r0, and q > 1. Inequality (7.11) for r > s represents the desired
result for Saint-Venant’s principle as formulated by Zanaboni.

To deal with the case s > r, select s1 ≥ 0 such that

ΩN+1 = Ωn+1−r = Ωn+k+1−s1 ,

ΩN = Ωn+k+1−s ⊂ Ωn+k+1−s1 = ΩN+1,

which are valid subject to

s1 − r = k, (7.12)

s1 < s. (7.13)

Respective terms in the basic inequality (7.8), but with t now satisfying
r ≤ t ≤ s − 1 , may be treated as follows. Bounds (6.15) are again used to
obtain:

qtVΩN+1
= qtVΩn+1−r

≥ ã− ε+
q

(q − 1)
(1− qr), t ≥ r,

and

q1+tVΩN
≤ qsVΩn+k+1−s, t ≤ (s− 1),

≤ ã+ ε+
q

(q − 1)
(1− qs).

As indicated, these operations require

r ≤ t ≤ (s− 1) ≤ (r0 − 1), (7.14)

which implies
(r + 1) ≤ s ≤ r0, (7.15)

and shows that s 6= r.
Substitution in (7.8) yields

qt

2
VDN+1

0
≤ ã+ ε+

q

(q − 1)
(1− qs) + q(1+t) − ã+ ε− q

(q − 1)
(1− qr)

≤ 2ε, (7.16)

by virtue of relations (7.14). Zanaboni’s version of Saint-Venant’s principle is
established for r < s.

It remains to consider the case when r = s in the convergent subsequence;
that is, when

|an+k+1
r − an+1

r | ≤ ε, n ≥ n0, (7.17)
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and inequalities (6.14) and (6.15) are satisfied for s = r. Set

ΩN+1 = Ωn+k+1−r, (7.18)

ΩN = Ωn−r = Ωn+1−(r+1). (7.19)

It follows from (2.1) that
ΩN ⊂ ΩN+1

provided
(r − k) < (r + 1)

which is always valid.
The choice of regions implies

VΩN+1
= VΩn+k+1−r

,

VΩN
= VΩn−r

.

Consider inequality (7.8) with t = r and use (6.15) repeatedly to derive the
following inequalities

qr

2
VDN+1

0
≤

[
q(1+r)VΩn+1−1−r

+ q(1+r) − qrVΩn+k+1−r

]
≤

[
ã+ ε+

q

(q − 1)
(1− q(1+r)) + q(1+r) − ã+ ε− q

(q − 1)
(1− qr)

]
= 2ε. (7.20)

But 0 ≤ r ≤ r0 <∞, and consequently Saint-Venant’s principle is proved when
r = s.

The special case r = s = 0, which may be included in the argument leading
to (7.20), presents no difficulty in the derivation of a Saint-Venant principle. In
this respect, the constant M3 appearing in (6.8) may be chosen arbitrarily large
or small. A sufficiently small M3 requires, from (6.11),that r0 = 0, which as
just demonstrated may be included in the proof.

8 Concluding remarks

Zanaboni’s version of Saint-Venant’s principle postulates that in an elongated
linear elastic body in the absence of source terms and regardless of the body’s
shape the strain energy tends to zero in regions increasingly remote from the
load surface. This paper extends the result to transient heat conduction subject
to bounded thermal energies and a bounded time derivative of the temperature
prescribed over the common surface Γ. An advantage of Zanaboni’s procedure is
its applicability to bodies of general geometry. Such generality, however, is also
a weakness. In constrast to the approach based upon, for example, differential
inequalities for cylindrical bodies, it is not yet possible to derive precise decay
estimates. Nevertheless, the general character of conclusions derived using the
Zanaboni argument for the spatial, rather than the temporal, distribution of
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thermal energy has obvious implications for issues such as domain decomposition
in the design of computer programs.

It is well known that the mathematical model adopted here for transient heat
conduciton admits an infinite speed of heat propagation. Implications of this
property are beyond the intended scope of the present study. Reconciliation,
however, is apparently needed since we have shown that the space-time inte-
gral of the thermal energy taken over sufficiently remote regions remains small
irrespective of time. It would also be of related interest to explore, either by
the present or some other method, whether Zanaboni’s version of Saint-Venant’s
principle is valid for the Green-Naghdi [6, 7], Maxwell-Cattaneo [4, 5], or similar
hyperbolic theories that admit a finite speed of heat propagation

A further extension of the method to hyperbolic systems, including the wave
equation, awaits investigation. By contrast, the treatment of external regions,
the half-space, and cone-like regions appears amenable to a direct extension of
present methods.
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