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Abstract 
 
 
Shot boundary detection (SBD) is the process of automatically detecting the 
boundaries between shots in the videos, which is an important pre-processing 
step for video analysis, such as indexing, browsing, summarization and other 
content-based operations. Nowadays with the continuously growing video data, 
traditional technologies based on low-level features of the frames (such as 
color histogram) no longer fits the requirements, not only from the speed point 
of view, but also the accuracy.  
 
Knowing that convolutional neural networks (CNN) become unprecedented 
popular in image processing these years, due to it’s powerfulness in feature 
analysis and classification, we implement a fully convolutional neural network 
based on the paper created by Michael Gygli, which is a 3-dimensional neural 
network. Our purpose is to detect the middle shot boundary in every 10 frames, 
that is to say, to estimate if there is shot boundary between the 5th and the 6th 
frame out of 10. While implementing the neural network architecture several 
modifications have been tested and proposed.  
 
Thus, we created a proprietary dataset with thousands of frames and 
generated different transitions such as cuts and gradual transitions, to put them 
into our 3-dimensional network for training. The advantage of fully 
convolutional networks is that allows to use a large temporal context without 
the need of repeatedly processing frames.  
 
By testing with our evaluation dataset, in the end of the project we got a 
satisfactory result with the accuracy approximately 95%. And we found the 
weakness of the network through analysis of each kind of shot transition. We 
hope that our efforts for the project will contribute to the investigation of shot 
detection strategies based on convolutional neural network. 
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INTRODUCTION 
 
The main purpose of the project is to construct a neural network in order to 
detect if there is a shot boundary in the middle of the input 10 frames. Our work 
is mainly based on the paper [1], to realise a similar function.  
 
We extracted our training and evaluate dataset from more than 70 American 
series manually and from which we made an augmented dataset for our 
network training and testing.  
 
This document first explains what is shot boundary detection and current 
algorithms for its automatic detection. Later it introduces neural network as a 
tool to solve this problem. Our project used a 3D fully convolutional neural 
network to acquire change of information due to motion. The second chapter is 
the implementation detail of our neural network, including its structure, feature 
map, etc, and the next chapter explains in detail how we made the dataset. In 
the end, the forth chapter is some testing results of our network, in which we 
analysed the result with the strong point and weakness of our network. In the 
conclusion we summarized our work on this project, what we've contributed our 
effort and what we still need to improve, together with some considerations of 
sustainability and ethical considerations.
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1. Introductions of the Basic Concepts  
 

1.1. Introduction to Shot Boundary Detection 
 
Video is gradually becoming the main stream in propagating information thanks 
to the development of Internet, as a result, an increasingly amount of video 
contents are generated and transmitted world-widely every day, even each hour. 
To combat the information explosion, it is essential to analyse and understand 
these videos for various purposes such as: research, recommendation and 
ranking, the later ones have a tightly relationship with Big-Data analysis, which 
is also an important tool of data analysis used in many research fields, and of 
course, has tremendous economic value. 
 
Videos have been studied for so many years by different communities in 
computer vision field, some tasks like: action recognition, motion detection and 
video retrieval are closely-connected with shot boundary detection. A shot in a 
video is a series of interrelated consecutive pictures taken contiguously by a 
single camera and representing a continuous action in time and space [6], and 
shot boundary indicates the boundary of the frames where the interrelated 
contents start and end. Shot boundary detection (named SBD afterwards) is an 
indispensable process step of video manipulation. 
 
A shot is a sequence of frames shot uninterruptedly by one camera. There are 
several video transitions usually used in film editing to juxtapose adjacent shots 
[7]. In the context of shot transition detection they are usually grouped into two 
types: Sharp transition and Gradual Transition (see Fig. 1.1 [2]). Sharp 
transition is a sudden transition from one shot to another, which are also known 
as hard cuts or simply cuts. We can see from Fig. 1.1 that the first two frames 
belong to one shot and the third frame belongs to another shot. Gradual 
transitions are also often known as soft transitions and can be of various types: 
Wipes, Fades, Dissolves, Semi-transparent, etc. In this kind of transitions the 
two shots are combined using chromatic, spatial or spatial-chromatic effects 
which gradually replace one shot by another [7], thus the transit process may 
contain more than one frames.  
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Fig. 1.1  Shot transitions are classified into two main categories: sharp and 
gradual. Gradual transitions are further classified into soft and wipes. Soft 

include semi-transparent, fade in and fade out. Wipes are the most ill-defined 
form of transitions. 

 
For SBD, it is required to deal with different types of transitions not only the hard 
cuts but those gradual transitions such as fades and dissolves. Although shot 
detection appears to be a simple task for a human being, for the fact that 
human sense of vision is unbelievably advanced. However, it is a non-trivial 
task for computers. Shot detection would be a trivial problem if each frame of a 
video was enriched with additional information about when and by which 
camera it was taken. Possibly no algorithm for cut detection will ever be able to 
detect all cuts with certainty, unless it is provided with powerful artificial 
intelligence [8]. 
 
While most algorithms achieve good results with hard cuts, many fail with 
recognizing soft cuts. Hard cuts usually go together with sudden and extensive 
changes in the visual content while soft cuts feature slow and gradual changes. 
A human being can compensate this lack of visual diversity with understanding 
the meaning of a scene. While a computer assumes a black line wiping a shot 
away to be 'just another regular object moving slowly through the on-going 
scene', a person understands that the scene ends and is replaced by a black 
screen [8]. 
 
Also, the ‘flashes’ as well as some light changes always happen in the videos, 
which also bring challenges to SBD. 
 
Traditional SBD methods depend on a set of low level features, such as colour 
or edge histogram, in conjunction with simple models like SVMs (Support 
Vector Machines), whose results normally are hard to be satisfying due to 
several reasons. For example, they don’t perform well when dealing with 
gradual transitions, because the gradual transitions don’t show apparent colour 
change between frames. And also, the video editors always try to make shot cut 
more inconspicuous in order that the contents look more consistent, which also 
brings big challenges to SBD algorithms. Due to the fact that videos show 
strong variation in content and motion speed, the blur caused by fast motions is 
always falsely considered as shot change. 



4  Shot Boundary Detection 

   
 

 
To improve SBD methods and encouraging researches, the TRECVid initially 
launched benchmarking activities of SBD challenges for several years, and 
supported evaluation of the task where a large variety of SBD techniques from 
different research groups worldwide were benchmarked each year on the same 
video using the same scoring mechanisms and with the same manually created 
ground-truth[3], and these actually obtained good results. Nevertheless, 
problems haven’t been solved yet, at the meantime, new technologies about 
images are developing continuously, which push us to move on to chase for 
better solutions. 
 

1.2. Introduction to convolutional neural network 
 
Convolutional neural network is a kind of network that is most successful in 
practical applications. It is specially used to process lattice structure data. For 
example, image data can be seen as two-dimensional lattice data composed of 
pixels. Unlike mathematics, in machine learning, convolution is the local feature 
multiplied by the corresponding weight, and then to be accumulated. 
 
In 1958, two neurobiologists, Hubel and Wiesel, conducted an early study of the 
visual cortex and eventually discovered the secret of the Primary Visual Cortex 
(V1) of the mammalian visual system. 
 
This visual cortex has three important properties: 

• The V1 layer is arranged in the air like a net. When light passes through 
only the lower part of the retina, the general area corresponding to V1 
enters into excitement. 

• It contains many simple cells that map linearly to small areas of the 
image, which is called ‘Localized Receptive Field’. The convolutional 
feature extraction unit of convolutional network also mainly simulates the 
nature of simple cells. 

• At the same time it also contains many complex cells that detect features 
in simple cells and have invariant detection capabilities for small 
translations of features, which is the source of inspiration for the ‘Pooling 
unit’ in the convolutional network. 

 
From the point of view of machine learning, convolution brings two important 
ideas: Sparse Connectivity and Parameter Sharing. The former improves 
generalization performance by reducing the number of parameters while 
improving efficiency and the latter uses the same parameters to extract the 
same kind of features, greatly reducing the number of parameters that need to 
be stored. 
 

1.2.1 Fully-convolutional neural networks  
 
Inspired by deep learning breakthroughs in image processing domain, where 
rapid progress has been made in the past few years in feature learning [4], 
many convolutional network models have been made for extracting image 
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features. The fundamental goal in applying deep learning to computer vision is 
to remove the cumbersome, and ultimately limiting, feature selection process 
and convolutional network takes advantage of the fact that we’re analysing 
images, and sensibly constrains the architecture of the deep network so that we 
drastically reduce the number of parameters in our model [5]. 
 
Fig. 1.2 [14] shows the traditional structure of convolutional neural network, 
which consist of convolution layers, max-pooling processes and fully-connected 
layers. Here the green ‘convolution’ area includes convolutional layers and max-
pooling processes and the blue area includes only fully-connected layers. The 
function of convolutional layers is to extract high-dimensional features and 
poolings reduce the size of feature map. As it is showed in the figure, the height 
and width of the feature map have been reduced every step after a pooling 
process and the depth grows in the first few steps by learning more features. 
Fully-connected layers, similar to deep-learning networks, are used for weight 
training, in the end select the most probable results using Softmax.  
 

 
Fig. 1.2   Normal structure of convolutional neural network 

  
The fully-convolutional structure shown below in the Fig. 1.3 [14]. Just like the 
literal meaning, it is a structure only contains convolutional layers all the time, 
with stride or max-pooling, but without fully-connected layers. Here in the end 
the height and width of the feature map is the 1/32 times of the original image 
by poolings or strides. 
 

 
Fig. 1.3   Fully-convolutional structure 

 
Fully-convolutional networks can have a process called Upsampling (marked in 
Fig. 1.4 [14]), which is a backward strided convolution process. That is to say, to 
increase the size of the feature map, step by step, until it reaches the original 
size, thus realize an end-to-end, pixel-wise prediction. Generally, there are 3 
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types of upsampling, FCN-32s, FCN-16s and FCN-8s, which can increase the 
height and width by 32 times, 16 times and 8 times respectively. The author in 
paper [9] explained the process in detail, and he made a conclusion that FCN-
8s works better than FCN-32s and FCN-16s. In the same way we can also have 
FCN-4s or FCN-2s, but the author gave us a specific conclusion that once it 
belongs FCN-8s, the network cannot be optimized.  
 
In the end we can apply Softmax to estimate the probability of each category. It 
is a pixel-wised estimation, because in the end the output image would be a 
probability estimation where larger the values of corresponding pixels, more 
probable that they belong to this specific category.  
 

 
Fig. 1.4   Upsampling process in fully-convolutional network 

 
The contribution of fully convolutional networks is that realize an end-to-end 
classification by learning with only convolutional layers, thus fully convolutional 
versions of existing networks predict dense outputs from arbitrary-sized inputs. 
Both learning and inference are performed whole-image-at-a-time by dense 
feed-forward computation and back-propagation (see Fig. 1.5) [9]. 
 

 
Fig. 1.5   Fully convolutional network can efficiently learn to make dense 

predictions for per-pixel tasks like semantic segmentation. 
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However, fully-convolutional networks have some shortcomings, one of them is 
that it uses relatively superficial features. For the reason that some upsample 
operation may add the pooling feature value of the upper layer, which may lead 
to insufficient use of high-dimensional features. Also, if we need upper layer 
features, we must pay more attention to the change of image size. One situation 
is that if the images of test set are too much larger or smaller than that of 
training set, effects of fully-convolutional networks wouldn’t be so that good. 
 
Anyway, the paper [9] written by J. Long and E. Shelhamer provides us a new 
method for semantic segmentation, which inspired the appearance of some 
outstanding semantic CNNs, for example the SegNet from Cambridge and 
symmetric back-forward convolutional network of Hyeonwoo Noh. In our project, 
we also used fully-convolutional network, without upsample process, without 
repeat process of the frames. 
 

1.2.2 3D convolutional networks  
 
Current SBD techniques are classified into two main categories: spatial-only 
and spatio-temporal analysis based [2]. The former estimates the temporal 
profile by comparing only spatial features such as colour histograms, edges, 
mutual information and entropy, etc, which can generate conservative detection 
accuracy with fast processing speed. Networks built on this method are known 
as 2D ConvNets. 
 
Spatio-temporal techniques use optical flow to make detection more robust to 
scene and camera motions, which are known as 3D ConvNets. Compared to 
2D ConvNet, 3D ConvNet is well-suited for spatio-temporal feature learning. 
Due to the fact that more than one frame may be included in one shot transition, 
containing the temporal features, 3D ConvNets approach is a better choice. 
 
Fig. 1.6 illustrates the difference, 2D convolution applied on an image will output 
an image, 2D convolution applied on multiple images (treating them as different 
channels [10]) also results in an image [11]. Hence, 2D ConvNets lose temporal 
information of the input signal right after every convolution operation. Only 3D 
convolution preserves the temporal information of the input signals resulting in 
an output volume. 
 

 
 

Fig. 1.6 2D and 3D convolution operations.  
a) Applying 2D convolution on an image results in an image. b) Applying 2D 
convolution on a video volume (multiple frames as multiple channels) also 

results in an image. c) Applying 3D convolution on a video volume results in 
another volume, preserving temporal information of the input signal. 
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A deconvolutional method has been explained in [15], that how does 3D 
ConvNets learn internally [15]. As it is tested by [11], we observed that C3D 
starts by focusing on appearance in the first few frames and tracks the salient 
motion in the subsequent frames [11]. We took an example (see Fig.1.7) from 
the experiment of Tran’s work [11], which shows clearly how the 3D networks 
learn when facing a series of frames with motion changes.  
 
In the first example, we can see the first row are composed of 16 continuous 
frames with motion change of a woman, and the second row is the visualization 
of the deconvolution method act on feature maps with highest activations 
projected back to the image space [11], which clearly shows that in the first few 
frames the feature focuses on the whole person and later it tracks the motion of 
the pole vault performance over the rest of the frames. It is better viewed from 
colour screen. 
 
Similar to this, the second example also shows that in the beginning 3D 
ConvNet focuses on the eye area and later it moves to the area around the 
eyes while applying the makeup.  
 

 
Fig. 1.7 Motion learning in 3D ConvNets 

 
From this experiment we can see that C3D differs from standard 2D ConvNets 
in that it selectively attends to both motion and appearance, and it is definitely a 
proper course to take for analysing shot boundary, as it contains obvious motion 
change along the time between two shots. 

1.3. Research framework 
 
Regarding to the problems of SBD we’ve mentioned, considering the 
outstanding merits of 3D ConvNets, we constructed a 3D ConvNet structure 
using fully convolutional layers to implement the project based on the paper 
created by Michael Gygli [1]. Considering that there are some shortcomings in 
their work, for instance, it’s not sensible enough to motion blur, falsely detected 
partial hard cut, etc, we made our own improvement in the training dataset for a 
better training. We also considered to modify the network architecture if 
necessary and optimize the parameter selection for our extended training 
dataset. At the same time, we used the visualization tool Tensorboard to 
visualize our work, which is really helpful to check problems in the neural 
network at the beginning. 
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1.4. Structure arrangement 
 
The second chapter of this thesis states the network in detail, including the 
network architecture, feature maps and implementation details. The third 
chapter presents the dataset we’ve used for training and testing. The results are 
shown in the fourth chapter, followed by performance analysis. In the end, is the 
conclusion. The whole network has been implemented in python environment: 
Spyder, with the open source software library: TensorFlow. The details of the 
dataset and the code of this project have been attached in annexes, specified in 
file diretories. 
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2. Neural Network Implementations 
 
We propose shot boundary detection as a binary classification problem [1]. The 
objective is to correctly predict if a frame is part of the same shot as the 
previous frame or not. Each frame-prediction is based on a context of 10 frames. 
We will decide if there is boundary between the 5th and the 6th frames, no 
matter hard cuts or gradual transitions. 

2.1. Network architecture 
 
Fig. 2.1 shows our fully-convolutional architecture, predicts frame-accurate 
labels directly from pixels. The advantage of this kind of architecture is that by 
using a model that is fully convolutional in time, we can increase the input size 
and thus make e.g. 11 predictions by analysing 20 frames or 91 predictions by 
analysing 100 frames, etc., thus minimizing redundant computation [1].  
 

 
 

Fig. 2.1 Our fully convolutional architecture 
By providing 20 frames, the network could predict labels for frames from 6th to 
16th, thus making redundant computation unnecessary. This allows to obtain 
large speedups at inference.  
 
Our network architecture is shown below in Table 1 in detail. In total we have 5 
layers and all our layers are fully convolutional and each is followed by a ReLU 
non-linearity [1]. For the convenience of fully convolutional architecture, we are 
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able to increase the input size by n, thus reusing the shared parts of the 
convolutional feature map and improving efficiency. 
 
Table 2.1. Network architecture 

 

 
 
Since our network is a 3D ConvNets, we refer the input feature map with a size 
of w * h * t * channels, where w and h are width and height of the frames, t is 
the length in number of frames, and channels refer to the number of channels, 
respectively. We also refer 3D convolution kernel size by w * h * t, where the w 
and h are kernel spatial size and t refers to kernel temporal depth. 
 
We use a small input resolution of 64*64 RGB frames for efficiency and since 
such low resolution are often sufficient for scene understanding [13]. 
 

2.1.1 Comparison of hidden neuron output units 
 
We defined our convolutional layers with xavier_initializer of the weight and with 
zero bias. This initializer is designed to keep the scale of the gradients roughly 
the same in all layers. In uniform distribution this ends up being the range: x = 
sqrt(6. / (in + out)); [-x, x] and for normal distribution a standard deviation of 
sqrt(2. / (in + out)) is used (defined in [22]). 
 
Each convolutional layer is followed by an activation function using as hidden 
neuron output, and Rectified Linear Unit (ReLU) is always considered as an 
excellent hidden neuron output unit, due to the fact that Sigmoid and Tanh are 
easy to become saturated. 
 
Fig. 2.2 shows the shape of Sigmoid and its derivative. And Tanh has the 
similar shape with Sigmoid, shown in Fig. 2.3, with the difference that it 
squashes real number to range between [-1,1]. 
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Fig. 2.2 Sigmoid and its derivative. 

 

 
Fig. 2.3 Shape of Tanh 

 
Which is shown in Fig. 2.2 is that when the input value is very large or very 
small, the gradients of Sigmoid and Tanh will be near to 0. That is to say, when 
we are trying to modify the weights in order to learn, we may nearly get zero 
gradient, so it cannot learn more. This situation is like a cup of salt water near to 
saturation. Thus, it’s quiet important to pay attention to the initial value of the 
parameters, in order to avoid saturation. 
 
Since ‘gradient disappearance problem’ is the nightmare for network learning, 
ReLU is really a good choice to combat it. The shape of ReLU shows in Fig. 2.4 
and (2.1-1&2) are the expressions of ReLU. 
 

f(x) = x   when x >= 0    (2.1-1) 
f(x) = 0   when x < 0    (2.1-2) 
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Fig. 2.4 ReLU shape 

 
Comparing to Sigmoid and Tanh function, ReLU has mainly three differences: 
 

• Unilateral inhibition: Function value equals to 0 when input less than 0. 
• Relatively wide excitement border: When input is more than 0, the 

function is linear with derivative equals to 1 until infinity. Unlike Sigmoid, 
whose excite border is very narrow. 

• Sparse activation: it only selectively responds to a small part of the input 
signal, and a large amount of signals are deliberately shielded, as it 
inhibits the other side. 

 
In 2001, Attwell et al. speculated that neuronal coding work is sparse and 
distributed based on observational learning of brain energy expenditure. In 2003, 
Lennie et al. estimated that only 1 to 4% of neurons were activated 
simultaneously in the brain, further indicating the sparseness of neuron work. 
Thus, ReLU is similar to the working principle of human neurocritical layer, 
which can improve the accuracy of learning and extract sparse features better 
and faster. 
 
From this point of view, after the initialization of the weights, the traditional 
Sigmoid function has nearly half of the neurons activated at the same time, 
which is inconsistent with the study of neuroscience, and it will cause great 
problems for deep network training. 
 
However, there is no such perfect function, ReLU also has its weakness. Such 
as ‘no derivative’ at the point ‘0’, cause its left derivative is 0 and right derivative 
is 1, also we cannot train the negative axle. So, between many years 
researchers gave some improvements to ReLU, such as Leaky ReLU and 
Absolute Value Rectification. There is one called Softplus, it’s like a smooth 
version of ReLU, whose shape shown below in Fig. 2.5, comparing to ReLU 
with green line (Softplus) and blue line (ReLU). 
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Fig. 2.5 Shape of Softplus and ReLU. 
 

Softplus (x) = ln( 1 + ex )   (2.2) 
 
With the expression of (2.2), we can get the derivative at x=0. Comparing to 
ReLU, we can get the derivative for every input value and it’s not easy to be 
saturated neither comparing to Sigmoid. It is smoother than ReLU, but has the 
same function property. Nevertheless, in 2011, Glorot compared Softplus and 
ReLU and found that the later one is better [20]. With the fact that ‘Practice is 
the sole criterion for testing truth’, normally it’s not encouraged to use Softplus, 
although it seems perfect in theory, but not good in practice. 
 
From our point of view, Softplus doesn’t work well maybe because the lack of 
‘Sparse activation’, which is really important in biological nerve. 
 
Last but not least, there is no prove that ReLU is suitable for all kinds of 
networks, we need to choose suitable function for different tasks via lots of trials. 
For instance, in recurrent neural networks, we don’t often use piecewise linear 
activation function like ReLU, but tend to use Sigmoid or Tanh, with the knowing 
of saturation. Thus, the choice of hidden neuron is a kind of hyperparameter, 
referring to variables based on empirical, which need to be tested in real case. 
 

2.2. Details of implementation 

2.2.1 Feature map and strides 
 
According to the network structure proposed in [1], it only contains convolutional 
layers, without max-pooling layers to reduce the dimension. And for each layer, 
we used a stride of 2. In C3D the shape of the stride should be [1, 2, 2, 2, 1], 
which hasn’t been clarified in [1], but it has been explained in Tensorflow 
website [12]. We used a stride = [1, 1, 2, 2, 1] for the reason that our input has 
the dimension of [10, 64, 64, 3], the first parameter refers to the 10 frames in 
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one snippet, which we don’t want to reduce or decrease it. Although it hasn’t 
been clarified in [1], we believe that we took the same decision. So here we set 
our stride equals to [1, 1, 2, 2, 1] instead of [ 1, 2, 2, 2, 1] in order to keep the 
first dimension.  
 
Fig. 2.6 is an illustration of a filter’s stride hyperparameter [5] for extracting 
features, where the filter has three different weights. If the stride=1, we get the 
full convolution computed in the figure. For example, here ‘-7’ is computed by 
(3*1+(-4) *2+2*(-1)) and we get five outputs after that. When the stride=2, we 
don’t make the fully compute, instead, it gets convolution computation at the 
distance of two, which is equivalent to convolutional computation with a 
decimation by a factor of 2. In the case of stride=1, if we sample it with a 
distance of 2, we’ll get the same result as we sample all of them when stride of 
two. But the computation complexity increases a lot if we make full convolution, 
which is a waste of computer resources. 
 

 
 

Fig. 2.6 Illustration of strides 
 

2.2.2 Comparison of classifiers: Softmax vs. Sigmoid 
 
For the output unit of the neuron network, we usually calculate probability when 
dealing with classify tasks, the most widely used are Sigmoid units or Softmax 
units. From function level (target category prediction) these two functions are 
the same. However, they are obviously different from mathematics point of view, 
which play a vital role in deep learning and the other research fields. 
 
The expression of Sigmoid shown in (2.3): 

f(x) = ( 1 + e-x )-1    (2.3) 
 

This function takes any range of real numbers and the returned output value is 
in the range of (0, 1). It has a ‘S curve’, shown in Fig. 2.7, clearly that Sigmoid 
can be used for two-level classification. 
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Fig. 2.7 Shape of Sigmoid 

 
From a mathematical point of view, the Sigmoid function has a large signal gain 
in the central region and a small signal gain in the two side regions, which has a 
good effect on the feature space mapping of the signal. From the perspective of 
neuroscience, the central region resembles the excitement of neurons, and the 
two regions resemble the inhibition states of neurons. Therefore, in the aspect 
of neural network learning, the key features can be pushed to the central area 
and the non-key features can be pushed to both sides. 
 
The Softmax function is also often used in the final layer of a neural network-
based classifier. Such networks are commonly trained under a log loss (or 
cross-entropy) regime, giving a non-linear variant of multinomial logistic 
regression [16]. 
 
Which is different from Sigmoid is that the domain of Softmax is a vector, it 
returns probabilities with the sum equal to 1. The Softmax function calculates 
the probability distribution of more than two events. In general, this function will 
calculate the probability of each target category in all possible target classes.  
 
The expression of Softmax shown in (2.4): 

 

  (2.4) 
 

It can be seen from the formula that if one zj is larger than the other z, then the 
mapped component (the probability of target category) will be close to 1 and the 
others will be close to 0. We can see that when n=2, the expression will be 
exactly the same with that of Sigmoid, thus we can say that the Softmax 
function can be viewed as a generalization of the Sigmoid function, it can be 
used for multi-classify, while Sigmoid can only classify two classes. We can also 
understand Softmax as it maps K-dimensional vectors to another K-dimensional 
vector. In terms of communication, if the Sigmoid function is MISO, Softmax is 
the MIMO Sigmoid function. [19] 
 
In this project we chosen Sigmoid function for classification unit, considering 
that we only have two labels: ‘0’ and ‘1’, which refer to ‘no boundary in the 
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middle’ and ‘boundary in the middle’ respectively. Thus, it’s suitable for us to 
use Sigmoid. In the paper of Michael Gygli [1], they used Softmax for 
classification, suppose that they may made their labels as ‘[0,1]’ and ‘[1,0]’ to 
represent ‘no boundary in the middle’ and ‘boundary in the middle’, or vise 
versa. From function level, these two functions for our project are exactly the 
same, depend on our label form, we chosen Sigmoid. 

2.2.3 Loss function 
 
We need a cost function to estimate the extent of inconsistency between the 
model's predicted value and the real value. The gradient in the gradient descent 
refers to the partial derivative of the cost function to each parameter. The 
direction of the partial derivative determines the direction of the parameter 
decline in the learning process. The learning rate determines the step size of 
each step change. The derivative and learning rate can be updated using the 
Gradient Descent Algorithm. 
 
To train our model, we used cross-entropy loss, which minimize with vanilla 
stochastic gradient descent. As we explained in the previous paragraphs, 
Sigmoid and Softmax units are easy to saturate, which apparently shows in 
their curves. Thus, we need to provide it a relatively large gradient to overcome 
the saturation when it appear an ‘error’. That’s why normally in neuron networks 
we use cross-entropy as cost function by default. 
 
Here we define cross-entropy cost function as: 
 

   (2.5) 
 

for one neuron with multiple inputs and one output, where y refers to expecting 
output and a is the real output. In the case of Sigmoid: 
 

 α = σ(z) = ( 1 + e-z )-1 where z = w * x + b   (2.6) 
 
And the partial derivative of weight and bias when we use Sigmoid: 
 

  (2.7) 

   (2.8) 
 

We can see from the expression is that for cross-entropy, the renewal of the 
weight is depend on the difference between expecting output and the real 
output (σ(z)-y). If there is a big difference, weight will renew faster, and in the 
opposite situation, the other way around. This is a really good character in deep 
learning, and it can overcome the problem of cost function that weights update 
too slowly.  
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2.2.4 Optimizer 
 
For optimizer we used Momentum-Based Optimization instead of Stochastic 
Gradient Descent (SGD), which is also widely used in deep learning. The 
difference between Momentum and SGD is that in SGD, how long we go in one 
step depend on the simply multiplication of gradient and learning rate, but in 
Momentum algorithm, how long we go in one step depend on previous velocity 
and current strength, which refers to gradient. 
 
Similar to physics, we use the variable v to express the velocity, indicating the 
direction and rate of the parameter's movement in the parameter space, and the 
negative gradient of the cost function indicates the force of the parameter's 
movement in the parameter space. According to Newton's laws of motion, 
momentum equals mass times velocity, while in Momentum, we assume that 
the quality of the unit 1, so the speed v can be directly used as momentum. We 
also introduce hyper-parameter β, whose value ranges between [0,1], is used to 
adjust the attenuation of the previous gradient. 
 
The following expression (2.9) is the updated velocity, where α is initial learning 
rate and β is initial momentum parameter. And w is the updated parameter for 
the next step. 
  

V = βv - α�w   (2.9) 
W = w + v   (2.10) 

 
One way to think about how we might tackle this problem is by investigating 
how a ball rolls down a hilly surface. Driven by gravity, the ball eventually settles 
into a minimum on the surface, but for some reason, it doesn’t suffer from the 
wild fluctuations and divergences that happen during gradient descent. Why is 
this the case? Unlike in stochastic gradient descent (which only uses the 
gradient), there are two major components that determine how a ball rolls down 
an error surface. The first, which we already model in SGD as the gradient, is 
what we commonly refer to as acceleration. But acceleration does not single-
handedly determine the ball’s movements. Instead, its motion is more directly 
determined by its velocity. Acceleration only indirectly changes the ball’s 
position by modifying its velocity [5]. 
 
Velocity-driven motion is desirable because it counteracts the effects of a wildly 
fluctuating gradient by smoothing the ball’s trajectory over its history. Velocity 
serves as a form of memory, and this allows us to more effectively accumulate 
movement in the direction of the minimum while cancelling out oscillating 
accelerations in orthogonal directions. Velocity is used to accumulate parameter 
gradients for each round of training, and the larger the β, the greater the 
influence of the previous gradient on the current training gradient. Assume that 
the direction of each training gradient is the same, just as the ball rolls down 
from the slope, but due to the presence of the attenuation factor β, the ball does 
not always accelerate down, but reaches the maximum speed and after with 
uniform speed forward. In practice, the commonly used β value can be 0.5, 0.9, 
0.99, whichever is appropriate. 
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2.2.5 Learning rate decay 
 
In practice, we always need to decrease the learning rate by the increase of 
training steps. The reason is that some algorithm may introduce source noise, 
and this kind of noise is caused by the special nature of individual data [17]. 
Thus, even though we are around the optimal solution, the noise will not 
disappear and causes oscillation near the optimal solution. To eliminate or 
mitigate this situation, we try to minimize the learning rate around the optimal 
solution. 
 
For the learning rate decay, the most common method used is 
Exponential_decay, the advantage of this method is that the convergence 
speed is faster and simpler. Similar to that, we have Piecewise_constant, 
Polynomial_decay, Natural_exp_decay, etc. These several methods are not 
much different, for they are mainly based on exponential attenuation. There 
exist a problem is that in the beginning, the learning rate falls rapidly, thus in 
complex problems, it may lead to rapid convergence to local minimums without 
exploring a certain range of parameter space. 
 
What we used in the project is Cosine_decay. It is a new strategy proposed in 
the last year (2017) [21] by Ilya Loshchilov and Frank Hutter. The basic shape 
of whom is the cosine function, shown in Fig. 2.8, where the red line refers to 
alpha=0.3 and blue line refers to alpha=0.0, with alpha the minimum learning 
rate we can accept. 
 

 
 

Fig. 2.8 Cosine_decay function shape 
 
These four steps below are the calculations for decayed learning rate, where 
‘decay_steps’ is the total iterations we’ll take and ‘global_step’ refers to in which 
step we are. We took alpha equals to 0.0 in our work. 
 

global_step = min(global_step, decay_steps)    (2.11) 
cosine_decay = 0.5 * (1 + cos (pi * global_step / decay_steps))   (2.12) 
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decayed = (1 - alpha) * cosine_decay + alpha   (2.13) 
decayed_learning_rate = learning_rate * decayed   (2.14) 
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3. Dataset Preparation 
 

 
The dataset has been generated in a two steps’ process. First, we’ve collected 
and verified hard cuts in real case from our material, after that we’ve generated 
other types of transitions applying the algorithms indicated in paper [1], that is 
our augmented dataset. 
 

3.1. Extract shot boundaries in real case 
 
To obtain the dataset large enough to train the network, we created dataset 
using randomly selected 70 episodes from more than 20 American series 
(details in Annex A). Each episode has a text file attached, indicating the 
number of frames that should be a boundary, detecting with the traditional 
method. And we verified them manually the selected episodes, to see if it is 
correct or no, we labelled the errors of the provided text file and to use them to 
make our accurate dataset. 
 
Proofed by facts that most of the judge errors of algorithm occur in the period of 
introduction, for the reason that the images and letters are vibrating all the time, 
thus influence the judgement of algorithm. Another common error is the flash, or 
the changing of light colour, which heavily influence recognition results. Due to 
the fact that most of the series we chosen are criminals, and cases occur mainly 
at night or obscure places, once there is a gunshot, the specific frame would be 
very bright, thus leads to judge error. Also, the police car with red and blue 
lights, whose the colour will fill all the image thus could be judged as different 
shots. 
 
In the process of manual verification and re-annotation, if there is a boundary 
not in the middle place (between the 5th and 6th, we labelled them as ‘no 
boundary’, because we want to train our network to learn that the boundary is in 
the middle. If it is a dissolve or fade transition, we need to see if the boundary is 
in the middle of the transition or no. 
 
In regard to the weakness mentioned in Michael’s paper [1], we paid more 
attention on motion blur and background change. We marked these kinds of 
change as ‘no transition’, to put them into our network for training, in order to 
make the network resistive to them. 
 
In our case, one special situation is that one single frame has been divided into 
2 or 3 parts, each part contains a scene. Once one of the parts changes, we 
judged it as a shot boundary for the fact that there is a boundary of one shot, 
although the whole image frame hasn’t change that much. However, this may 
bring some defects in the network learning, for example, some partial change of 
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the background can be detected as shot change, which will be an error in the 
future prediction. 
 
In this part we have 35072 snippets as input data, which is or dataset in real 
case, including ‘transition’ (‘1’) and ‘no transition’ (‘0’). Each input has a shape 
(10*64*64*3). And we divide 10% of it as our test dataset for the network to 
make evaluation and to calculate accuracy.  
 

3.2. Augmentation of the dataset 

3.2.1 Shot boundary generation 
 
For the better training of the network, we need to generate more dataset to 
provide a large variety or to make the network resist to a specific kind of 
transition. In general, we need to generate five kinds of transition: hard cuts, 
crops, dissolves, fade ins/outs and wipes. Table 3.1 [1] gives us a specification 
how these different transitions generated.  
 
Table 3.1 Transitions references 

 
 

• Cuts. Its duration is one frame, which means among the 10 frames, the 
5th and the 6th are from different shots respectively, thus they are 
obviously different. These cuts are easy to generate, just to take five 
continuous frames from one shot and another five from another shot and 
make an input of 10 frames.  

 
• Crop cuts. This transition also with a duration of one frame. In order to 

generate this cut, we took 10 continuous frames from one single shot, 
from the 6th one, we made a crop cut, up to 50%-70% of full image size. 
Although the cropped sizes are randomly chosen, in one snippet, these 
five cropped frames have the same cropped size and the same cropped 
position. With this method, we made new input snippets by connecting 
the five cropped frames with the five original frames. 

 
• Dissolves. It is a kind of transition that linearly interpolates between shots, 

with a duration of 3 to 14 frames. To generate this, we took two samples 
from different shots, each sample contains 10 continuous frames. And 
then we generated numpy arrays according to the duration, one array 
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contains 10 elements ranging from 0 to 1, with which we combine the two 
samples by sequence to make linear interpolations, in the end returned 
one new snippet containing 10 new frames, that is a new dataset.  

 
• Fade in/out. This transition is similar to dissolves, but it interpolates 

linearly from one frame to a frame of single colour (normally black or 
white), also with a duration from 3 up to 14 frames. The method to 
generate these transitions are quite similar to that of dissolves, only to 
use a black or white frames as one sample to generate linear 
interpolations. 

 
• Wipes. This is a type of transition that one shot is moving out while the 

other shot is moving in, typically in horizontal direction, with a duration of 
6 to 9 frames. For an on-going frame, one part is a part of a frame from 
previous shot, the other part comes from a frame of the next shot. These 
two parts form an on-going frame, proportionally, depend on its duration. 
To generate this, we also made numpy arrays, each has 10 elements 
valuing from 0 to 1, proportionally according to the duration. The same 
with dissolves we used two samples taken from different shots, to crop 
the frames respectively according to the proportion indicating in the array, 
and append the corresponding part together to generate a new snippet. 
 

It’s important to understand that here the duration with the number of frames 
means that how many frames are on-going. Taking wipe transition as an 
example, if the duration is 6 frames, which means that among the 10 input 
frames, there are 6 frames that contain two parts, and we kept the transition in 
the middle by correctly making numpy arrays.  
 
Since we already have the dataset taken from the episodes, we could use them 
to generate our new data without reading new frames again. Most of the 
transitions require us to take samples with 10 continuous frames, we could use 
the snippets that with the label ‘0’. However, it will arise a problem is that, 
snippets labelled with ‘0’ not only refer to 10 continuous frames, but also include 
the case that there is a boundary not in the middle, using that must bring some 
errors in the dataset. 
 
Thus, we decided to take samples with label ‘1’, which contain 10 frames each, 
with a boundary in the middle, and we are sure that the first five frames are 
continuous and the last five the same, as we assume that most of them are 
hard cuts. We can take any two of them to make a new hard cut, shown in 
Fig.3.1.  
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Fig. 3.1 Hard cuts generation 

 
With this method, we considered that we may mislead the network by putting 
the first parts of the hard cuts always in the first, so the network may learn that 
the last frame of the first part is the boundary place, not the position between 
the 5th and 6th. Thus, we’ve made another kind of hard cuts shown in Fig. 3.2, 
in which we exchanged the position of two parts of the cut, to avoid such 
problems. 
 

 
Fig. 3.2 Hard cuts generation without misleading 

 



   25 

   
 

Fig. 3.3 shows some samples generated by our algorithm, where the first 10 
frames is a new data and the next 10 frames is another. And then we used the 
new generated hard cuts to make the other transitions. 
 

 
Fig. 3.3 Generated hard cuts 

 
In order to make the other transitions, we need to make samples of 10 frames 
with ‘no transition’ first to suit our algorithms (here 'no transition' refers to 
continuous 10 frames without boundary in any place). There are many methods 
to make 10 continues frames, in our project we use three methods to generate 
‘no transition’: Mirror, Copy and Double. 
 
For the mirror method, we took the first five to make five mirror images, to be 
attached in front of the sample, together with the original five frames, we can 
make one new sample x, containing 10 continuous frames. The same with that 
we can make another continuous sample y using the other five frames in this 
snippet. Fig. 3.4 indicates the way to generate continuous samples. 
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Fig. 3.4 Mirror method to make continuous samples 

 
Copy method is simple, for one sample taken, we only used the first frame and 
the 10th frame and copy them to make continuous samples x and y, shown in 
Fig. 3.5. 
 

 
Fig. 3.5 Copy method to make continuous samples 

 
And the double method is that for every frame in a hard cut, we made a copy, 
it’s like we doubled every frame to make a sample of 20, and cut them into two 
(See Fig. 3.6). 
 

 
 Fig. 3.6 Double method to make continuous samples 
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Now we can use our newly-made ‘no transition’ samples to generate the other 
transitions. For the crops, we can make a crop to the last half of sample x (or 
sample y) and keep the first five frames to form a crop cut. Fig. 3.7 gives us an 
example of crop cut. 
 

 
Fig. 3.7 Generated crop cut 

 
In the case of dissolves and fade ins/outs, sample x and sample y can be used 
as two continuous samples to generate linear interpolations, and for the wipes, 
these two samples also can be used. Fig. 3.8.a provides us a sample of 
dissolve we generated, with a duration of. Fig. 3.8.b shows two samples of fade 
in and fade out respectively and Fig. 3.8.c gives us a sample of wipe. 

 

 
Fig. 3.8.a Generated dissolve transition 
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Fig. 3.8.b Generated fade-in & fade-out transitions 

 

 
Fig. 3.8.c Generated wipe transition 

 
Also, the sample x and sample y can be used as new ‘no transition’ data 
(continuous samples), which will be similar to the original datasets. Fig. 3.9 
shows us an example that is ‘no transition’. 
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Fig. 3.9 Example of 'no transition' 

 

3.2.2 'Negative' dataset generation 
 
Remember that one important function of our network is to judge if there is a 
shot boundary in the middle position. Thus, we need to generate a large amount 
of ‘negative’ datasets, with transition, but not in the middle. The ‘negatives’ 
includes all kinds of transitions: hard cuts, crops, dissolves, wipes and fade 
in/outs.  
 
Regarding to the hard cuts and crops, it is obviously a ‘negative’ case if the 
differ (the distance between the boundary and the middle position) is equal to or 
more than one frame. Fig. 3.10 and Fig. 3.11 show us some examples of 
negative hard cuts and crops. 
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Fig. 3.10 Generated 'negative' hard cuts 

 

 

 
Fig. 3.11 Generated 'negative' crop transitions 

 
And for the gradual transitions, it’s even difficult for human eyes to judge the 
boundary position, so the threshold for these kinds of transition is larger. In our 
case, we’ve made ‘negatives’ with the boundary position difference is equal to 
or more than three frames. Fig. 3.12.a, b, c, d show the negative wipes, 
dissolves, fade-ins and fade-outs respectively. 
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Fig. 3.12.a Generated 'negative' wipe transition 

 

 
Fig. 3.12.b Generated 'negative' dissolve transition 

 
 

 
Fig. 3.12.c Generated 'negative' fade-in transition 
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Fig. 3.12.d Generated 'negative' fade-out transition 

 

3.3. Conclusion of dataset generation 
 
In total we have 1,602,349 snippets of augmented data and these snippets 
have two types: the first is ‘no transition’, which are snippets consisting of 
frames from a single shot or exist a shot boundary not in the middle; and the 
second is transition snippets which have a transition from one shot to another, 
with the boundary in the middle. We made each of our batch with 32 snippets, 
thus whose batch shape should be (32 * 10 * 64 * 64 * 3).  
 
In order to effectively train our network, each of our batch contains 16 snippets 
with transition and 16 snippets without transition, that is half of them. We 
assume that the network will do a better learning by providing a balanced 
indication. Also we let the labels in one batch is the form: [1, 0, 1, 0…...1, 0], 
with balanced ‘1’ and ‘0’.  
 
In one batch, we also defined the occupancy of different kinds of transitions, 
50% of transitions are hard cuts, which is near to the real case. And dissolves, 
wipes, fade-ins, fade-outs, crops occupy approximately 10% each. That is to 
say, in a batch of 32 snippets, 16 of them are ‘0’s and 16 of them are ‘1’s, in 
which 8 of ‘1’s are hard cuts and the other 8 are dissolves, wipes, fade-ins, 
fade-outs and crops. In our case, specifically we had 2 snippets of dissolve 
transition, 2 wipes, 2 crops, 1 fade-in and 1 fade-out in one training batch. 
 
For the test dataset generated, we divided the types of transitions in order to 
test them individually to measure how good the network in detecting one type or 
another. In total we have 2127 snippets of data for testing in the generated part. 
 
Thus, in our whole dataset, approximately we have 48500 batches of inputs for 
training and 2500 batches for testing.  
 
In the next chapter we are going to talk about the results of the network training, 
with the original real dataset and augmented dataset separately and its analysis. 
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4. Network training and analysis of results 
 

4.1. Training with extracted dataset 
 
The first training of the network we've used the dataset extracted from American 
series in real case. We ran it in a laptop, averagely it would take five hours if we 
run 1000 iterations, which is really slow but we just wanted to test if there is 
something wrong in it.  
 
To fasten up the speed, we used an Azure Cloud Service Machine with a K80 
as GPU and a Xeon E5-2673 v4 as the CPU. After configuring everything inside, 
we can reach an approximate speed 0.03h/1000 iterations, which is about 150 
times faster than a 1.8GHz dual-core Intel Core i5 processor. 
 
In our project, to make it easier to understand, debug, and optimize TensorFlow 
programs, we used Tensorboard a lot as a tool to visualize our neuron network 
as well as the accuracy and the loss function. Fig. 4.1 illustrated our network 
structure, visualized by Tensorboard. 
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Fig. 4.1 Tensorboard visualization of our network structure 
 
With the input image x, one important step is the normalization. By using the 
formula (4.1), we kept the image pixel value within [-1,1], which is better for the 
network to train. 

 
y = x / 127 - 1,  where x refers to input images   (4.1) 

 
And then we put normalised data into this five-convolutional-layer’s network for 
training. By reshaping the output, we can calculate the loss and accuracy by 
comparing the predicted label and the real one. 
 
With the dataset taken from the American series, after one epoch, we can get 
the accuracy 92.47%. With training for more than 50 epochs, we visualized the 
accuracy and loss using Tensorboard, shown below in Fig. 4.2 & 4.3. They 
show the accuracy and loss of our network in training progress. 
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Fig. 4.2 Training accuracy curve 

 

 
Fig. 4.3 Training cost function curve 

 
We can see in the middle there is an area where the accuracy drops a lot and 
loss increases. Because we’ve shuffled the data, so in most cases of training it 
didn’t appear. In this case, we suppose that the reason maybe the influence of 
unstable dataset, such as introduction in the series, which influence a lot the 
judgement of the network. In the end, for the training set, the accuracy can 
reach 95%, also the loss is decreasing continuously, means that we are 
reaching the optimal situation. 
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Fig. 4.4 & 4.5 below show the accuracy and the loss of test dataset after each 
epoch of training. Here the ‘X’ axis refers to the number of steps (epochs) and 
‘Y’ refers to accuracy and cost value respectively. So, these figures show 
mainly the change tendency of accuracy and cost value according to the 
training steps.  
 
With more epochs are trained, the testing accuracy doesn’t have obvious 
increase, on the contrary, it goes down a little bit to 92.5%. The reason may be 
the insufficient dataset and over-fitting. Also, the loss begins to increase after 
several epochs of dropping, which is normal for existing over-fitting, and this, is 
one of the reasons to make the accuracy couldn’t be improved. 

 

 
Fig. 4.4 Testing accuracy curve 

 
Fig. 4.5 Testing cost function curve 
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In the original testing set, we didn’t divide the types of transitions, so we didn’t 
know how good our network facing different transitions. The only thing we are 
sure about is that the most errors occur in the part of introduction, because the 
network is really in a dilemma when facing the unstable brought by image flutter. 
Also, for gradual transition, it’s hard to define if the boundary is exactly in the 
middle position, which is another dilemma. The last but not least, as we talked 
about before, we judged them as a cut when there is a part of the image 
changes, this may influence the judgement of neuron network in the future. 
 

4.2. Training with augmented dataset 
 

To improve the network performance, we trained the network with the 
augmented dataset. Facing the brand new dataset, the key task is to test the 
hyperparameters, such as the number of iterations in one epoch, the learning 
rate, the number of neurons in one layer, etc. After several times of testing, in 
the end we've decided to train 6000 iterations each epoch with the initial 
learning rate 0.001, later apply a cosine_decay. For the number of neurons in 
each layer, we took the same stated in paper [1].  
 
After training for more than 30 epochs, we've seen that the printed accuracy 
remained the same with the previous, so we stopped it and visualized them 
using Tensorboard. Fig. 4.6 & 4.7 show us the accuracy and loss function in 
training progress. What we can see in the figure is that the accuracy in the end 
remains between 90% to 95% and the cost is decreasing as a whole.  
 

 
Fig. 4.6 Training accuracy curve 
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Fig. 4.7 Training cost function curve 

 

4.2.1 Overall testing on the test dataset 
 
For the overall testing, we've tested the evaluate dataset all together without 
separate the types of transitions. Fig. 4.8 & 4.9 show us the accuracy and the 
cost function of the whole dataset.  
 

 
Fig. 4.8 Testing accuracy curve 
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Fig. 4.9 Testing cost function curve 

 
We can see that the accuracy remains the same in after several epochs, which 
is 95.8%, and the scale value on the axis are all 0.958, maybe for the reason 
that the accuracy hasn’t change. Nevertheless, the cost function keeps going 
down. From the point of view of the accuracy, it seems that the network hasn’t 
learnt anything new in the end, but actually we are reaching the optimal solution 
little by little. 
 

4.2.2 Testing separately of different transitions 
 
From here we are going to test different types of transitions individually in order 
to analyse how good works our network facing a specific transition.  
 

• Hard cuts 
 
Fig. 4.10 & 4.11 are the visualised accuracy and cost function tested with 
hard cuts. We can say that our network can detect hard cuts accurately with 
100%. Here the number of ‘X’ axis changes, which not refers to the number 
of epochs any more with the reason that we smooth the figure in 
Tensorboard to make it shows clearer. But it’s necessary to say that for the 
individual testing, we only shown the value with 10 epochs, with that we can 
already see the change tendency. 
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Fig. 4.10 Testing hard cuts accuracy curve 

 
 

 
Fig. 4.11 Testing hard cuts cost function curve 

 
 
The loss function in the end decreases to 0.013, which means that we nearly 
don't make any error in predicting that if it is a boundary or not.  
 
• Wipe transition 
 
Fig. 4.12 & 4.13 show the accuracy and loss of the wipe transition. Which is 
similar to detecting hard cuts, our network also works great on wipe 
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transition with the accuracy 100% in almost all the cases. The loss is almost 
0.00 in the end.  
 
 

 
Fig. 4.12 Testing wipes accuracy curve 

 
 

 
Fig. 4.13 Testing wipes cost function curve 
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• Dissolve transition 
 
Fig. 4.14 & 4.15 show the testing of dissolve transitions. We can see the 
accuracy for testing dissolves is increasing up to 90.6% in the 10 epochs 
and the loss keeps decreasing overtime, however, it's still 10 times larger 
than the loss of the testing with hard cuts.  
 

 
Fig. 4.14 Testing dissolves accuracy curve 

 
 

 
Fig. 4.15 Testing dissolves cost function curve 
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It makes sense that for dissolves, the accuracy is not so high as testing hard 
cuts, and the loss is larger. Because for dissolve transition, including fade in 
and fade out, they are linear interpolation between two different images, it’s 
a gradual progress without an obvious or a sudden change. Thus, after a 
large amount of training, our network can detect that there exists a transition, 
but it’s confused to judge whether the transition is just in the middle. It may 
appear in the 5th frame also the 6th frame, or even the 7th. Even our human 
eyes cannot estimate precisely where should be the boundary. So, for our 
network, in the end it can get more than 90% accuracy in testing, it’s a 
satisfactory result. 
 
• Crop transition 
 
For the crop transition, we’ve got a moderate result. Fig. 4.16 & 4.17 show 
us the accuracy and loss function of crop test dataset. We can see that 
maybe sometimes it can reach 100% accuracy in some testing, but it 
maintains 96.9% in overall accuracy. In the generation of crop transitions, 
we made it crop up to 70% of the whole image, which will contain the main 
part of the image. If the crop area is just in the middle, or this area have all 
the contents that the network focuses on, it may be judged as a continuous 
frame with the previous one.  
 

 
Fig. 4.16 Testing crops accuracy curve 
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Fig. 4.17 Testing crops cost function curve 

 
And for the loss function, although there is some area that the loss increases, 
it’s still below 0.028. Even though it cannot be that good as detecting hard 
cuts, our network is quite effective in detecting crops. 
 
• Fade in 
 
Fig. 4.18 & 4.19 show us the testing of fade in transitions. The test accuracy, 
after a period of decline in the middle, it finally reached 96.8%. In this period, 
there may be a lot of dark frames in between, and it is not obvious when 
transitioning from black to real frame, which is easy to be mistaken as ‘no 
boundary’. Another point, as we mentioned in the dissolve transition, is that 
it is difficult for the neuron network to determine if the boundary is in the 
middle, even though it has learned many examples. For fade in transition, if 
the incoming frame is originally dark, it’s more confusing for the network to 
locate the boundary position. So in this area, accuracy has dropped a lot, 
and the value of loss has risen a lot.  
 
But after more rounds of learning, the state of the neural network has 
gradually stabilized, the accuracy can reach 96.8%, and the loss is also 
declining. Overall, it has got very good test results. 
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Fig. 4.18 Testing fade-ins accuracy curve 

 

 
Fig. 4.19 Testing fade-ins cost function curve 

 
 
 

• Fade out 
 
The case of fade out transition is much more stable than that of fade in, 
shown in Fig. 4.20 & 4.21. Basically, it has reached a stable accuracy since 
epoch 2, accompanied by a gradual decline in the loss value. Although the 
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decline is slower or even stay stable at the end, it is in line with the neuron 
network learning process, that is, the closer to the optimal value, the slower 
the parameter update. And the final test accuracy of fade out can reach 
96.8%. 
 

 
Fig. 4.20 Testing fade-outs accuracy curve 

 

 
Fig. 4.21 Testing fade-outs cost function curve 
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• Negative transitions 
 
The dataset of the ‘negatives’ contains all kinds of transitions, but their 
boundaries are not in the middle, thus they are judged as ‘no transition’. We 
tested the ‘negative’ dataset separately to determine the neuron network's 
ability in analysing boundary locations.  
 
Fig. 4.22 & 4.23 show the test of 'negative' dataset. It can be seen that in the 
10 epochs that we tested, the state of the network is not very stable. At the 
beginning, the accuracy was only 84.3%. Later, after a period of training, it 
finally stabilized at around 93.7%. 

 

 
Fig. 4.22 Testing 'negatives' accuracy curve 
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Fig. 4.23 Testing 'negatives' cost function curve 

 
Fig. 4.23 shows that the testing loss of the ‘negative’ dataset is very high, 
probably because the number of epochs tested is too small and the loss 
value has not dropped to somewhere near the optimal. However, as it’s 
shown in Fig. 4.24, the loss during the training is stable at around 0.25 in the 
end. 

 

 
 

Fig. 4.24 Overall training cost function curve in 10 epochs 
 

In general, for the test of ‘negative’ data, although the test accuracy is above 
90%, it is still relatively lower than the test for the whole evaluate dataset. 
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Along with the higher loss, it lowers the overall test accuracy, which 
indicates that the boundary position in the gradual transition is a very 
important but very problematic task for neuron networks. 

 
In this chapter, we’ve analysed the training and the testing results of our neuron 
network. We could get a 94% accuracy in testing the extracted real case 
dataset. Later by training with the augmented dataset, we could get the 95.8% 
accuracy in testing augmented evaluate dataset.  
 
By testing all types of transitions individually, we’ve seen that our network is 
very strong and sensitive to hard transitions, such as hard cuts, wipe transition 
as well as crop transitions. For gradual transitions, it's relatively weaker, 
especially for dissolve transition. As we’ve analysed before, dissolve is the 
linear interpolation between two frames, so, all the interpolated frames in the 
transition duration would be similar to each other, thus influence the network’s 
judgement.  
 
Meanwhile, the testing of the ‘negative’ dataset also states that for gradual 
transition, it’s hard to define the boundary position, but we believe that at least 
our network performs very well in detecting the existence shot boundary. 
Nevertheless, the network works better in detecting fade-ins and fade-outs 
comparing to dissolve transitions. The reason may be the interpolation between 
the colourful frames and all black frames, which is much easier than figuring the 
interpolation of two colourful frames. 
 
In the next chapter we are going to make a conclusion, about all the works 
we’ve done from the beginning, including the sustainability considerations and 
ethical considerations. 
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5. Conclusions 
 

5.1. Project conclusion 
 

This project is about shot boundary detection based on convolutional neural 
network, including the material reading in the previous period, the production of 
the data set and the construction of the overall structure of the neural network. 
The framework of the specific fully convolutional neural network is based on 
paper [1]. In paper [1], they tested with the RAI dataset with the final accuracy 
88%, it’s not comparable since we didn’t test the same dataset. Overall, we 
have achieved the final testing accuracy around 95% with our test dataset. This 
is a relatively satisfactory result. 
 
This is due to our careful handling of the training dataset in the early stage, 
which ensures the accuracy of the training. By analysing the inadequacies of 
the investigation in paper [1], we focused on the data types that they did not 
detect well, that is one of the reasons we achieved good results. At the same 
time, we have been continuously improving the parameters during the 
implementation of the project. 
 
Referring to the choice of hyperparameters, such as the number of training 
iterations in each epoch, we still need a lot of testing to analyse. We've tested 
the number of iterations per epoch 5000, 6000, 8000, 10000 and 12000, in the 
end we chosen 6000 iteration/epoch. Also, for the initial learning rate, we 
chosen 0.001 for the final model after testing with 0.01 and 0.1. However, there 
are still many aspects for improvement, such as optimization of neural networks 
and methods to prevent over-fitting.  
 
In the future research, we'd like to make improvement on detecting gradual 
transitions, as it is a troublesome case for shot boundary detection. We are also 
continuing finding a more efficient way to make the network learn, such as 
providing a clear-indicated dataset.  
 

5.2. Knowledge and personal conclusions 
 

This project gives me a chance to learn convolutional neural networks from 
scratch. Through the previous reading of the materials, I have got a general 
understanding of the working principle and basic structure of the neural network. 
Based on the understanding of it and according to the guidance of paper [1], I 
built the neural network of our project. At the same time, the production of 
datasets also plays an important role in this project, although it is boring and 
complicated, it is directly related to the learning quality of neural networks, that’s 
why I also take this part of the work very carefully and patiently. 
 
It's hard to imagine that in just a few short months, I can learn and manage the 
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convolutional neural network and apply it. I am very grateful to my instructors 
Francesc and Arnau for guiding me step by step in this project until completing 
it. Without their help, I will not achieve this satisfactory result. 
 

5.3. Sustainability considerations 
 
Our project is video processing based on convolutional neural network, which 
has important significance in the field of image processing. Moreover, the 
research of convolutional neural network is of great significance to the 
development of the whole society. It is a core part of artificial intelligence 
technology, its development, together with human understanding of brain 
cognition, play a mutually reinforcing role. Convolutional neural networks are 
used in many fields, which greatly promote the advancement of science and 
technology and the improvement of the efficiency of social mechanisms.  
 
At the same time, in economic terms, it also has great potential. Artificial 
intelligence is gradually deepening into the normal life of human beings, and it 
has a huge economic benefit. It changes the value of our goods and the way we 
pay. We can say that the economic society promotes the development of 
science and technology.  
 
However, it has some impact on environment and resources. This is a software-
based project that runs on a cloud server. In addition to the use of the mobile 
hard disk in the previous production of the dataset, there is no hardware device 
used, so there is not much material resource consumption. In the project 
implementation process, it will occupy certain network resources, and the 
generated dataset will be rarely reused at the end of the project, so some 
resource garbage is generated. 
 

5.4. Ethical considerations 
 
Convolutional neural network is the core technology of artificial intelligence 
implementation. Its research is based on human understanding of brain 
cognition, with many unexplained aspects. However, due to limitations in data 
resources and hardware conditions, I believe that its progress will not transcend 
human wisdom. Due to the strong extensibility and the possibility of creating 
value of convolutional neural networks, more and more scientists explore it, 
resulting in many new, socially valuable goods or concepts which inevitably 
bring huge economic benefits. 
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ACRONYMS 
 
CNN           Convolutional Neural Network 
ConvNets.  Convolutional Networks 
FCN            Fully Convolutional Neural Network 
SBD            Shot Boundary Detection 
SGD            Stochastic Gradient Descent 
ReLU           Rectified Linear Unit 

                 



54  Shot Boundary Detection 

   
 

REFERENCES 
 
[1] Michael Gygli. Ridiculously Fast Shot Boundary Detection with Fully 
Convolutional Neural Networks. arXiv:1705.08214v1 [cs.CV] 2017. 
 
[2] A. Hassanien, M. Elgharib, A. Selim, M. Hefeeda, and W. Matusik. Large-
scale, fast and accurate shot boundary detection through spatio-temporal 
convolutional neural networks. arXiv preprint arXiv:1705.03281, 2017. 
 
[3] A. F. Smeaton, P. Over, and A. R. Doherty. Video shot boundary detection: 
Seven years of trecvid activity. CVIU,2010. 
 
[4] A.Krizhevsky, I.Sutskever, and G.Hinton. Imagenet classification with deep 
convolutional neural networks. In NIPS, 2012. 
 
[5] Nikhil Buduma, Nicholas Lacascio.  Fundamentals of Deep Learning. June, 
2017. 
 
[6] Weiming Shen; Jianming Yong; Yun Yang (18 December 2008). Computer 
Supported Cooperative Work in Design IV: 11th International Conference, 
CSCWD 2007, Melbourne, Australia, April 26-28, 2007. Revised Selected 
Papers. Springer Science & Business Media. pp. 100–. ISBN 978-3-540-92718-
1. 
 
[7] Basic Technical Terms   
https://en.wikipedia.org/wiki/Shot_transition_detection 
 
[8] Vastness of the problem  
https://en.wikipedia.org/wiki/Shot_transition_detection 
 
[9] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for 
semantic segmentation. In CVPR, 2015. 
 
[10] K. Simonyan and A. Zisserman. Very deep convolutional networks for 
large-scale image recognition. In ICLR, 2015. 
 
[11] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning 
spatio-temporal features with 3d convolutional networks. In ICCV, 2015. 
 
[12] TensorFlow. https://www.tensorflow.org 
 
[13] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large 
data set for nonparametric object and scene recognition. PAMI, 2008. 
 
[14] 卷积神经网络 CNN（3）—— FCN(Fully Convolutional Networks)要点解释  
https://blog.csdn.net/fate_fjh/article/details/53446630 
 
[15] M. Zeiler and R. Fergus. Visualizing and understanding convolutional 
networks. In ECCV, 2014. 



   55 

   
 

 
[16] Softmax function. https://en.wikipedia.org/wiki/Softmax_function 
 
[17] 杨云, 杜飞. 《深度学习实战》清华大学出版社. ISBN 978-7-302-49102-6 
 
[18] Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. What is the best 
multi-stage architecture for object recognition. 2009a. 
 
[19] 神 经 网 络 中 的 激 活 函 数 （ activation function ） -Sigmoid, ReLu, 
TanHyperbolic(tanh), softmax, softplus.  
https://blog.csdn.net/qrlhl/article/details/60883604 
 
[20] Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep Sparse Rectifier Neural 
Networks. Paper presented at the International Conference on Artificial 
Intelligence and Statistics. 
 
[21] Ilya Loshchilov, Frank Hutter. SGDR: Stochastic Gradient Descent with 
Warm Restarts. arXiv: 1609.03983v5 [cs.LG] 3 May 2017. 
 
[22] Xavier Glorot and Yoshua Bengio: Understanding the difficulty of training 
deep feedforward neural networks. International conference on artificial 
intelligence and statistics. 2010. 

 
 



56  Shot Boundary Detection 

   
 

 

Annex A 
 
This annex provides some details of the dataset, that are the videos we used to 
extract the frames. 
 
All the videos we used are American series, with the frame rate 23.976, 
according to that we extracted frames using ffmpeg through terminal. 
 
In total we took 71 episodes from more than 20 different series. Many themes 
are included, such as, criminal (Bones), action (Prison Break), horror (America 
Horror Story) and feature story (Shameless), etc. Some of them have the darker 
background as keynote, especially criminal and horror type. And such amount 
of them are used in order to make the network sensible to darker frames. 
 
All the videos used are in the folder (external hard drive):  
>> /Volumes/TOSHIBA EXT/shotdataset/DATASET/input/done 
 
All the frames extracted are in the folder of Azure Cloud Service Machine: 
>> /mnt/shot_dataset/we 
 
With all the annotations in the folder: 
>> /mnt/shot_dataset/annotations 
 
The network read the dataset in the fly, all the .csv files are in the folder of cloud 
machine: 
>> /mnt/shot_dataset 
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Annex B 
 
This annex gives the main folder to run the proposed algorithm over a different 
data base. All the codes are uploaded and conserved in the cloud machine. 
 
>> /home/ugiat/src/data_loader.py: load the dataset to the network. 
 
>> /home/ugiat/src/augmenteddata.py: includes several algorithms to generate 
augmented dataset from the extracted hard cuts. 
 
>> /home/ugiat/src/takename.py: write the augmented data into .csv files. 
 
>> /home/ugiat/src/CNN_arnau.py: together with data_loader.py to load batches 
into the network to train and to test the extracted dataset. 
 
>> /home/ugiat/src/CNNk.py:  together with data_loader.py to train and to test 
the augmented dataset, with several changes in order to load data in the fly, 
instead of previously making batches of data. 
 


