

MASTER THESIS

TITLE: Shot Boundary Detection based on Deep Convolutional Neural
Network

MASTER DEGREE: Master's degree in Applied Telecommunications and
Engineering Management (MASTEAM)

AUTHOR: Chenjia Zhao

ADVISOR: Francesc Tarrés, Arnau Raventos Mayoral

DATE: August, 31st 2018

Abstract

Shot boundary detection (SBD) is the process of automatically detecting the
boundaries between shots in the videos, which is an important pre-processing
step for video analysis, such as indexing, browsing, summarization and other
content-based operations. Nowadays with the continuously growing video data,
traditional technologies based on low-level features of the frames (such as
color histogram) no longer fits the requirements, not only from the speed point
of view, but also the accuracy.

Knowing that convolutional neural networks (CNN) become unprecedented
popular in image processing these years, due to it’s powerfulness in feature
analysis and classification, we implement a fully convolutional neural network
based on the paper created by Michael Gygli, which is a 3-dimensional neural
network. Our purpose is to detect the middle shot boundary in every 10 frames,
that is to say, to estimate if there is shot boundary between the 5th and the 6th
frame out of 10. While implementing the neural network architecture several
modifications have been tested and proposed.

Thus, we created a proprietary dataset with thousands of frames and
generated different transitions such as cuts and gradual transitions, to put them
into our 3-dimensional network for training. The advantage of fully
convolutional networks is that allows to use a large temporal context without
the need of repeatedly processing frames.

By testing with our evaluation dataset, in the end of the project we got a
satisfactory result with the accuracy approximately 95%. And we found the
weakness of the network through analysis of each kind of shot transition. We
hope that our efforts for the project will contribute to the investigation of shot
detection strategies based on convolutional neural network.

ACKNOWLEDGMENT

I'd like to take this opportunity to express my gratitude to my advisor Francesc
and Arnau, they guided me to improve little by little in this project and helped
me solved some key problems, such as the initialization of weights and the
construction of cloud servers. Without their help, I barely could not finish my
project favourably.

I am also grateful to all the members of the faculty and staff in UPC,
Castelldefels, who have provided me a lot of help and encouragement during
my one year's study.

Last but not least, I would give my thanks to my parents and friends for their
support, which helped me to finish my study successfully.

CONTENTS

	

INTRODUCTION ... 1	

1.	 INTRODUCTIONS OF THE BASIC CONCEPTS .. 2	

1.1.	 Introduction to Shot Boundary Detection .. 2	

1.2.	 Introduction to convolutional neural network ... 4	
1.2.1	 Fully convolutional neural networks ... 4	
1.2.2	 3D convolutional networks ... 7	

1.3.	 Research framework .. 8	

1.4.	 Structure arrangement ... 9	

2.	 NEURAL NETWORK IMPLEMENTATIONS ... 10	

2.1.	 Network architecture .. 10	
2.1.1	 Comparison of hidden neuron output units .. 11	

2.2.	 Details of implementation .. 14	
2.2.1	 Feature map and strides .. 14	
2.2.2	 Comparison of classifiers: Softmax vs. Sigmoid .. 15	
2.2.3	 Loss function .. 17	
2.2.4	 Optimizer .. 18	
2.2.5	 Learning rate decay .. 19	

3.	 DATASET PREPARATION .. 21	

3.1.	 Extract shot boundaries in real case .. 21	

3.2.	 Augmentation of the dataset ... 22	
3.2.1	 Shot boundary generation .. 22	
3.2.2	 'Negative' dataset generation ... 29	

3.3.	 Conclusion of dataset generation ... 32	

4.	 NETWORK TRAINING AND ANALYSIS OF RESULTS 33	

4.1.	 Training with extracted dataset ... 33	

4.2.	 Training with augmented dataset ... 37	
4.2.1	 Overall testing on the test dataset .. 38	
4.2.2	 Testing separately of different transitions ... 39	

5.	 CONCLUSIONS ... 50	

5.1.	 Project conclusion ... 50	

5.2.	 Knowledge and personal conclusions ... 50	

5.3.	 Sustainability considerations .. 51	

5.4.	 Ethical considerations ... 51	

ACRONYMS ... 53	

REFERENCES .. 54	

ANNEX A .. 56	

ANNEX B .. 57	

Introduction 1

INTRODUCTION

The main purpose of the project is to construct a neural network in order to
detect if there is a shot boundary in the middle of the input 10 frames. Our work
is mainly based on the paper [1], to realise a similar function.

We extracted our training and evaluate dataset from more than 70 American
series manually and from which we made an augmented dataset for our
network training and testing.

This document first explains what is shot boundary detection and current
algorithms for its automatic detection. Later it introduces neural network as a
tool to solve this problem. Our project used a 3D fully convolutional neural
network to acquire change of information due to motion. The second chapter is
the implementation detail of our neural network, including its structure, feature
map, etc, and the next chapter explains in detail how we made the dataset. In
the end, the forth chapter is some testing results of our network, in which we
analysed the result with the strong point and weakness of our network. In the
conclusion we summarized our work on this project, what we've contributed our
effort and what we still need to improve, together with some considerations of
sustainability and ethical considerations.

2 Shot Boundary Detection

1. Introductions of the Basic Concepts

1.1. Introduction to Shot Boundary Detection

Video is gradually becoming the main stream in propagating information thanks
to the development of Internet, as a result, an increasingly amount of video
contents are generated and transmitted world-widely every day, even each hour.
To combat the information explosion, it is essential to analyse and understand
these videos for various purposes such as: research, recommendation and
ranking, the later ones have a tightly relationship with Big-Data analysis, which
is also an important tool of data analysis used in many research fields, and of
course, has tremendous economic value.

Videos have been studied for so many years by different communities in
computer vision field, some tasks like: action recognition, motion detection and
video retrieval are closely-connected with shot boundary detection. A shot in a
video is a series of interrelated consecutive pictures taken contiguously by a
single camera and representing a continuous action in time and space [6], and
shot boundary indicates the boundary of the frames where the interrelated
contents start and end. Shot boundary detection (named SBD afterwards) is an
indispensable process step of video manipulation.

A shot is a sequence of frames shot uninterruptedly by one camera. There are
several video transitions usually used in film editing to juxtapose adjacent shots
[7]. In the context of shot transition detection they are usually grouped into two
types: Sharp transition and Gradual Transition (see Fig. 1.1 [2]). Sharp
transition is a sudden transition from one shot to another, which are also known
as hard cuts or simply cuts. We can see from Fig. 1.1 that the first two frames
belong to one shot and the third frame belongs to another shot. Gradual
transitions are also often known as soft transitions and can be of various types:
Wipes, Fades, Dissolves, Semi-transparent, etc. In this kind of transitions the
two shots are combined using chromatic, spatial or spatial-chromatic effects
which gradually replace one shot by another [7], thus the transit process may
contain more than one frames.

 3

Fig. 1.1 Shot transitions are classified into two main categories: sharp and
gradual. Gradual transitions are further classified into soft and wipes. Soft

include semi-transparent, fade in and fade out. Wipes are the most ill-defined
form of transitions.

For SBD, it is required to deal with different types of transitions not only the hard
cuts but those gradual transitions such as fades and dissolves. Although shot
detection appears to be a simple task for a human being, for the fact that
human sense of vision is unbelievably advanced. However, it is a non-trivial
task for computers. Shot detection would be a trivial problem if each frame of a
video was enriched with additional information about when and by which
camera it was taken. Possibly no algorithm for cut detection will ever be able to
detect all cuts with certainty, unless it is provided with powerful artificial
intelligence [8].

While most algorithms achieve good results with hard cuts, many fail with
recognizing soft cuts. Hard cuts usually go together with sudden and extensive
changes in the visual content while soft cuts feature slow and gradual changes.
A human being can compensate this lack of visual diversity with understanding
the meaning of a scene. While a computer assumes a black line wiping a shot
away to be 'just another regular object moving slowly through the on-going
scene', a person understands that the scene ends and is replaced by a black
screen [8].

Also, the ‘flashes’ as well as some light changes always happen in the videos,
which also bring challenges to SBD.

Traditional SBD methods depend on a set of low level features, such as colour
or edge histogram, in conjunction with simple models like SVMs (Support
Vector Machines), whose results normally are hard to be satisfying due to
several reasons. For example, they don’t perform well when dealing with
gradual transitions, because the gradual transitions don’t show apparent colour
change between frames. And also, the video editors always try to make shot cut
more inconspicuous in order that the contents look more consistent, which also
brings big challenges to SBD algorithms. Due to the fact that videos show
strong variation in content and motion speed, the blur caused by fast motions is
always falsely considered as shot change.

4 Shot Boundary Detection

To improve SBD methods and encouraging researches, the TRECVid initially
launched benchmarking activities of SBD challenges for several years, and
supported evaluation of the task where a large variety of SBD techniques from
different research groups worldwide were benchmarked each year on the same
video using the same scoring mechanisms and with the same manually created
ground-truth[3], and these actually obtained good results. Nevertheless,
problems haven’t been solved yet, at the meantime, new technologies about
images are developing continuously, which push us to move on to chase for
better solutions.

1.2. Introduction to convolutional neural network

Convolutional neural network is a kind of network that is most successful in
practical applications. It is specially used to process lattice structure data. For
example, image data can be seen as two-dimensional lattice data composed of
pixels. Unlike mathematics, in machine learning, convolution is the local feature
multiplied by the corresponding weight, and then to be accumulated.

In 1958, two neurobiologists, Hubel and Wiesel, conducted an early study of the
visual cortex and eventually discovered the secret of the Primary Visual Cortex
(V1) of the mammalian visual system.

This visual cortex has three important properties:

• The V1 layer is arranged in the air like a net. When light passes through
only the lower part of the retina, the general area corresponding to V1
enters into excitement.

• It contains many simple cells that map linearly to small areas of the
image, which is called ‘Localized Receptive Field’. The convolutional
feature extraction unit of convolutional network also mainly simulates the
nature of simple cells.

• At the same time it also contains many complex cells that detect features
in simple cells and have invariant detection capabilities for small
translations of features, which is the source of inspiration for the ‘Pooling
unit’ in the convolutional network.

From the point of view of machine learning, convolution brings two important
ideas: Sparse Connectivity and Parameter Sharing. The former improves
generalization performance by reducing the number of parameters while
improving efficiency and the latter uses the same parameters to extract the
same kind of features, greatly reducing the number of parameters that need to
be stored.

1.2.1 Fully-convolutional neural networks

Inspired by deep learning breakthroughs in image processing domain, where
rapid progress has been made in the past few years in feature learning [4],
many convolutional network models have been made for extracting image

 5

features. The fundamental goal in applying deep learning to computer vision is
to remove the cumbersome, and ultimately limiting, feature selection process
and convolutional network takes advantage of the fact that we’re analysing
images, and sensibly constrains the architecture of the deep network so that we
drastically reduce the number of parameters in our model [5].

Fig. 1.2 [14] shows the traditional structure of convolutional neural network,
which consist of convolution layers, max-pooling processes and fully-connected
layers. Here the green ‘convolution’ area includes convolutional layers and max-
pooling processes and the blue area includes only fully-connected layers. The
function of convolutional layers is to extract high-dimensional features and
poolings reduce the size of feature map. As it is showed in the figure, the height
and width of the feature map have been reduced every step after a pooling
process and the depth grows in the first few steps by learning more features.
Fully-connected layers, similar to deep-learning networks, are used for weight
training, in the end select the most probable results using Softmax.

Fig. 1.2 Normal structure of convolutional neural network

The fully-convolutional structure shown below in the Fig. 1.3 [14]. Just like the
literal meaning, it is a structure only contains convolutional layers all the time,
with stride or max-pooling, but without fully-connected layers. Here in the end
the height and width of the feature map is the 1/32 times of the original image
by poolings or strides.

Fig. 1.3 Fully-convolutional structure

Fully-convolutional networks can have a process called Upsampling (marked in
Fig. 1.4 [14]), which is a backward strided convolution process. That is to say, to
increase the size of the feature map, step by step, until it reaches the original
size, thus realize an end-to-end, pixel-wise prediction. Generally, there are 3

6 Shot Boundary Detection

types of upsampling, FCN-32s, FCN-16s and FCN-8s, which can increase the
height and width by 32 times, 16 times and 8 times respectively. The author in
paper [9] explained the process in detail, and he made a conclusion that FCN-
8s works better than FCN-32s and FCN-16s. In the same way we can also have
FCN-4s or FCN-2s, but the author gave us a specific conclusion that once it
belongs FCN-8s, the network cannot be optimized.

In the end we can apply Softmax to estimate the probability of each category. It
is a pixel-wised estimation, because in the end the output image would be a
probability estimation where larger the values of corresponding pixels, more
probable that they belong to this specific category.

Fig. 1.4 Upsampling process in fully-convolutional network

The contribution of fully convolutional networks is that realize an end-to-end
classification by learning with only convolutional layers, thus fully convolutional
versions of existing networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-a-time by dense
feed-forward computation and back-propagation (see Fig. 1.5) [9].

Fig. 1.5 Fully convolutional network can efficiently learn to make dense

predictions for per-pixel tasks like semantic segmentation.

 7

However, fully-convolutional networks have some shortcomings, one of them is
that it uses relatively superficial features. For the reason that some upsample
operation may add the pooling feature value of the upper layer, which may lead
to insufficient use of high-dimensional features. Also, if we need upper layer
features, we must pay more attention to the change of image size. One situation
is that if the images of test set are too much larger or smaller than that of
training set, effects of fully-convolutional networks wouldn’t be so that good.

Anyway, the paper [9] written by J. Long and E. Shelhamer provides us a new
method for semantic segmentation, which inspired the appearance of some
outstanding semantic CNNs, for example the SegNet from Cambridge and
symmetric back-forward convolutional network of Hyeonwoo Noh. In our project,
we also used fully-convolutional network, without upsample process, without
repeat process of the frames.

1.2.2 3D convolutional networks

Current SBD techniques are classified into two main categories: spatial-only
and spatio-temporal analysis based [2]. The former estimates the temporal
profile by comparing only spatial features such as colour histograms, edges,
mutual information and entropy, etc, which can generate conservative detection
accuracy with fast processing speed. Networks built on this method are known
as 2D ConvNets.

Spatio-temporal techniques use optical flow to make detection more robust to
scene and camera motions, which are known as 3D ConvNets. Compared to
2D ConvNet, 3D ConvNet is well-suited for spatio-temporal feature learning.
Due to the fact that more than one frame may be included in one shot transition,
containing the temporal features, 3D ConvNets approach is a better choice.

Fig. 1.6 illustrates the difference, 2D convolution applied on an image will output
an image, 2D convolution applied on multiple images (treating them as different
channels [10]) also results in an image [11]. Hence, 2D ConvNets lose temporal
information of the input signal right after every convolution operation. Only 3D
convolution preserves the temporal information of the input signals resulting in
an output volume.

Fig. 1.6 2D and 3D convolution operations.
a) Applying 2D convolution on an image results in an image. b) Applying 2D
convolution on a video volume (multiple frames as multiple channels) also

results in an image. c) Applying 3D convolution on a video volume results in
another volume, preserving temporal information of the input signal.

8 Shot Boundary Detection

A deconvolutional method has been explained in [15], that how does 3D
ConvNets learn internally [15]. As it is tested by [11], we observed that C3D
starts by focusing on appearance in the first few frames and tracks the salient
motion in the subsequent frames [11]. We took an example (see Fig.1.7) from
the experiment of Tran’s work [11], which shows clearly how the 3D networks
learn when facing a series of frames with motion changes.

In the first example, we can see the first row are composed of 16 continuous
frames with motion change of a woman, and the second row is the visualization
of the deconvolution method act on feature maps with highest activations
projected back to the image space [11], which clearly shows that in the first few
frames the feature focuses on the whole person and later it tracks the motion of
the pole vault performance over the rest of the frames. It is better viewed from
colour screen.

Similar to this, the second example also shows that in the beginning 3D
ConvNet focuses on the eye area and later it moves to the area around the
eyes while applying the makeup.

Fig. 1.7 Motion learning in 3D ConvNets

From this experiment we can see that C3D differs from standard 2D ConvNets
in that it selectively attends to both motion and appearance, and it is definitely a
proper course to take for analysing shot boundary, as it contains obvious motion
change along the time between two shots.

1.3. Research framework

Regarding to the problems of SBD we’ve mentioned, considering the
outstanding merits of 3D ConvNets, we constructed a 3D ConvNet structure
using fully convolutional layers to implement the project based on the paper
created by Michael Gygli [1]. Considering that there are some shortcomings in
their work, for instance, it’s not sensible enough to motion blur, falsely detected
partial hard cut, etc, we made our own improvement in the training dataset for a
better training. We also considered to modify the network architecture if
necessary and optimize the parameter selection for our extended training
dataset. At the same time, we used the visualization tool Tensorboard to
visualize our work, which is really helpful to check problems in the neural
network at the beginning.

 9

1.4. Structure arrangement

The second chapter of this thesis states the network in detail, including the
network architecture, feature maps and implementation details. The third
chapter presents the dataset we’ve used for training and testing. The results are
shown in the fourth chapter, followed by performance analysis. In the end, is the
conclusion. The whole network has been implemented in python environment:
Spyder, with the open source software library: TensorFlow. The details of the
dataset and the code of this project have been attached in annexes, specified in
file diretories.

10 Shot Boundary Detection

2. Neural Network Implementations

We propose shot boundary detection as a binary classification problem [1]. The
objective is to correctly predict if a frame is part of the same shot as the
previous frame or not. Each frame-prediction is based on a context of 10 frames.
We will decide if there is boundary between the 5th and the 6th frames, no
matter hard cuts or gradual transitions.

2.1. Network architecture

Fig. 2.1 shows our fully-convolutional architecture, predicts frame-accurate
labels directly from pixels. The advantage of this kind of architecture is that by
using a model that is fully convolutional in time, we can increase the input size
and thus make e.g. 11 predictions by analysing 20 frames or 91 predictions by
analysing 100 frames, etc., thus minimizing redundant computation [1].

Fig. 2.1 Our fully convolutional architecture
By providing 20 frames, the network could predict labels for frames from 6th to
16th, thus making redundant computation unnecessary. This allows to obtain
large speedups at inference.

Our network architecture is shown below in Table 1 in detail. In total we have 5
layers and all our layers are fully convolutional and each is followed by a ReLU
non-linearity [1]. For the convenience of fully convolutional architecture, we are

 11

able to increase the input size by n, thus reusing the shared parts of the
convolutional feature map and improving efficiency.

Table 2.1. Network architecture

Since our network is a 3D ConvNets, we refer the input feature map with a size
of w * h * t * channels, where w and h are width and height of the frames, t is
the length in number of frames, and channels refer to the number of channels,
respectively. We also refer 3D convolution kernel size by w * h * t, where the w
and h are kernel spatial size and t refers to kernel temporal depth.

We use a small input resolution of 64*64 RGB frames for efficiency and since
such low resolution are often sufficient for scene understanding [13].

2.1.1 Comparison of hidden neuron output units

We defined our convolutional layers with xavier_initializer of the weight and with
zero bias. This initializer is designed to keep the scale of the gradients roughly
the same in all layers. In uniform distribution this ends up being the range: x =
sqrt(6. / (in + out)); [-x, x] and for normal distribution a standard deviation of
sqrt(2. / (in + out)) is used (defined in [22]).

Each convolutional layer is followed by an activation function using as hidden
neuron output, and Rectified Linear Unit (ReLU) is always considered as an
excellent hidden neuron output unit, due to the fact that Sigmoid and Tanh are
easy to become saturated.

Fig. 2.2 shows the shape of Sigmoid and its derivative. And Tanh has the
similar shape with Sigmoid, shown in Fig. 2.3, with the difference that it
squashes real number to range between [-1,1].

12 Shot Boundary Detection

Fig. 2.2 Sigmoid and its derivative.

Fig. 2.3 Shape of Tanh

Which is shown in Fig. 2.2 is that when the input value is very large or very
small, the gradients of Sigmoid and Tanh will be near to 0. That is to say, when
we are trying to modify the weights in order to learn, we may nearly get zero
gradient, so it cannot learn more. This situation is like a cup of salt water near to
saturation. Thus, it’s quiet important to pay attention to the initial value of the
parameters, in order to avoid saturation.

Since ‘gradient disappearance problem’ is the nightmare for network learning,
ReLU is really a good choice to combat it. The shape of ReLU shows in Fig. 2.4
and (2.1-1&2) are the expressions of ReLU.

f(x) = x when x >= 0 (2.1-1)
f(x) = 0 when x < 0 (2.1-2)

 13

Fig. 2.4 ReLU shape

Comparing to Sigmoid and Tanh function, ReLU has mainly three differences:

• Unilateral inhibition: Function value equals to 0 when input less than 0.
• Relatively wide excitement border: When input is more than 0, the

function is linear with derivative equals to 1 until infinity. Unlike Sigmoid,
whose excite border is very narrow.

• Sparse activation: it only selectively responds to a small part of the input
signal, and a large amount of signals are deliberately shielded, as it
inhibits the other side.

In 2001, Attwell et al. speculated that neuronal coding work is sparse and
distributed based on observational learning of brain energy expenditure. In 2003,
Lennie et al. estimated that only 1 to 4% of neurons were activated
simultaneously in the brain, further indicating the sparseness of neuron work.
Thus, ReLU is similar to the working principle of human neurocritical layer,
which can improve the accuracy of learning and extract sparse features better
and faster.

From this point of view, after the initialization of the weights, the traditional
Sigmoid function has nearly half of the neurons activated at the same time,
which is inconsistent with the study of neuroscience, and it will cause great
problems for deep network training.

However, there is no such perfect function, ReLU also has its weakness. Such
as ‘no derivative’ at the point ‘0’, cause its left derivative is 0 and right derivative
is 1, also we cannot train the negative axle. So, between many years
researchers gave some improvements to ReLU, such as Leaky ReLU and
Absolute Value Rectification. There is one called Softplus, it’s like a smooth
version of ReLU, whose shape shown below in Fig. 2.5, comparing to ReLU
with green line (Softplus) and blue line (ReLU).

14 Shot Boundary Detection

Fig. 2.5 Shape of Softplus and ReLU.

Softplus (x) = ln(1 + ex) (2.2)

With the expression of (2.2), we can get the derivative at x=0. Comparing to
ReLU, we can get the derivative for every input value and it’s not easy to be
saturated neither comparing to Sigmoid. It is smoother than ReLU, but has the
same function property. Nevertheless, in 2011, Glorot compared Softplus and
ReLU and found that the later one is better [20]. With the fact that ‘Practice is
the sole criterion for testing truth’, normally it’s not encouraged to use Softplus,
although it seems perfect in theory, but not good in practice.

From our point of view, Softplus doesn’t work well maybe because the lack of
‘Sparse activation’, which is really important in biological nerve.

Last but not least, there is no prove that ReLU is suitable for all kinds of
networks, we need to choose suitable function for different tasks via lots of trials.
For instance, in recurrent neural networks, we don’t often use piecewise linear
activation function like ReLU, but tend to use Sigmoid or Tanh, with the knowing
of saturation. Thus, the choice of hidden neuron is a kind of hyperparameter,
referring to variables based on empirical, which need to be tested in real case.

2.2. Details of implementation

2.2.1 Feature map and strides

According to the network structure proposed in [1], it only contains convolutional
layers, without max-pooling layers to reduce the dimension. And for each layer,
we used a stride of 2. In C3D the shape of the stride should be [1, 2, 2, 2, 1],
which hasn’t been clarified in [1], but it has been explained in Tensorflow
website [12]. We used a stride = [1, 1, 2, 2, 1] for the reason that our input has
the dimension of [10, 64, 64, 3], the first parameter refers to the 10 frames in

 15

one snippet, which we don’t want to reduce or decrease it. Although it hasn’t
been clarified in [1], we believe that we took the same decision. So here we set
our stride equals to [1, 1, 2, 2, 1] instead of [1, 2, 2, 2, 1] in order to keep the
first dimension.

Fig. 2.6 is an illustration of a filter’s stride hyperparameter [5] for extracting
features, where the filter has three different weights. If the stride=1, we get the
full convolution computed in the figure. For example, here ‘-7’ is computed by
(3*1+(-4) *2+2*(-1)) and we get five outputs after that. When the stride=2, we
don’t make the fully compute, instead, it gets convolution computation at the
distance of two, which is equivalent to convolutional computation with a
decimation by a factor of 2. In the case of stride=1, if we sample it with a
distance of 2, we’ll get the same result as we sample all of them when stride of
two. But the computation complexity increases a lot if we make full convolution,
which is a waste of computer resources.

Fig. 2.6 Illustration of strides

2.2.2 Comparison of classifiers: Softmax vs. Sigmoid

For the output unit of the neuron network, we usually calculate probability when
dealing with classify tasks, the most widely used are Sigmoid units or Softmax
units. From function level (target category prediction) these two functions are
the same. However, they are obviously different from mathematics point of view,
which play a vital role in deep learning and the other research fields.

The expression of Sigmoid shown in (2.3):

f(x) = (1 + e-x)-1 (2.3)

This function takes any range of real numbers and the returned output value is
in the range of (0, 1). It has a ‘S curve’, shown in Fig. 2.7, clearly that Sigmoid
can be used for two-level classification.

16 Shot Boundary Detection

Fig. 2.7 Shape of Sigmoid

From a mathematical point of view, the Sigmoid function has a large signal gain
in the central region and a small signal gain in the two side regions, which has a
good effect on the feature space mapping of the signal. From the perspective of
neuroscience, the central region resembles the excitement of neurons, and the
two regions resemble the inhibition states of neurons. Therefore, in the aspect
of neural network learning, the key features can be pushed to the central area
and the non-key features can be pushed to both sides.

The Softmax function is also often used in the final layer of a neural network-
based classifier. Such networks are commonly trained under a log loss (or
cross-entropy) regime, giving a non-linear variant of multinomial logistic
regression [16].

Which is different from Sigmoid is that the domain of Softmax is a vector, it
returns probabilities with the sum equal to 1. The Softmax function calculates
the probability distribution of more than two events. In general, this function will
calculate the probability of each target category in all possible target classes.

The expression of Softmax shown in (2.4):

 (2.4)

It can be seen from the formula that if one zj is larger than the other z, then the
mapped component (the probability of target category) will be close to 1 and the
others will be close to 0. We can see that when n=2, the expression will be
exactly the same with that of Sigmoid, thus we can say that the Softmax
function can be viewed as a generalization of the Sigmoid function, it can be
used for multi-classify, while Sigmoid can only classify two classes. We can also
understand Softmax as it maps K-dimensional vectors to another K-dimensional
vector. In terms of communication, if the Sigmoid function is MISO, Softmax is
the MIMO Sigmoid function. [19]

In this project we chosen Sigmoid function for classification unit, considering
that we only have two labels: ‘0’ and ‘1’, which refer to ‘no boundary in the

 17

middle’ and ‘boundary in the middle’ respectively. Thus, it’s suitable for us to
use Sigmoid. In the paper of Michael Gygli [1], they used Softmax for
classification, suppose that they may made their labels as ‘[0,1]’ and ‘[1,0]’ to
represent ‘no boundary in the middle’ and ‘boundary in the middle’, or vise
versa. From function level, these two functions for our project are exactly the
same, depend on our label form, we chosen Sigmoid.

2.2.3 Loss function

We need a cost function to estimate the extent of inconsistency between the
model's predicted value and the real value. The gradient in the gradient descent
refers to the partial derivative of the cost function to each parameter. The
direction of the partial derivative determines the direction of the parameter
decline in the learning process. The learning rate determines the step size of
each step change. The derivative and learning rate can be updated using the
Gradient Descent Algorithm.

To train our model, we used cross-entropy loss, which minimize with vanilla
stochastic gradient descent. As we explained in the previous paragraphs,
Sigmoid and Softmax units are easy to saturate, which apparently shows in
their curves. Thus, we need to provide it a relatively large gradient to overcome
the saturation when it appear an ‘error’. That’s why normally in neuron networks
we use cross-entropy as cost function by default.

Here we define cross-entropy cost function as:

 (2.5)

for one neuron with multiple inputs and one output, where y refers to expecting
output and a is the real output. In the case of Sigmoid:

 α = σ(z) = (1 + e-z)-1 where z = w * x + b (2.6)

And the partial derivative of weight and bias when we use Sigmoid:

 (2.7)

 (2.8)

We can see from the expression is that for cross-entropy, the renewal of the
weight is depend on the difference between expecting output and the real
output (σ(z)-y). If there is a big difference, weight will renew faster, and in the
opposite situation, the other way around. This is a really good character in deep
learning, and it can overcome the problem of cost function that weights update
too slowly.

18 Shot Boundary Detection

2.2.4 Optimizer

For optimizer we used Momentum-Based Optimization instead of Stochastic
Gradient Descent (SGD), which is also widely used in deep learning. The
difference between Momentum and SGD is that in SGD, how long we go in one
step depend on the simply multiplication of gradient and learning rate, but in
Momentum algorithm, how long we go in one step depend on previous velocity
and current strength, which refers to gradient.

Similar to physics, we use the variable v to express the velocity, indicating the
direction and rate of the parameter's movement in the parameter space, and the
negative gradient of the cost function indicates the force of the parameter's
movement in the parameter space. According to Newton's laws of motion,
momentum equals mass times velocity, while in Momentum, we assume that
the quality of the unit 1, so the speed v can be directly used as momentum. We
also introduce hyper-parameter β, whose value ranges between [0,1], is used to
adjust the attenuation of the previous gradient.

The following expression (2.9) is the updated velocity, where α is initial learning
rate and β is initial momentum parameter. And w is the updated parameter for
the next step.

V = βv - α�w (2.9)
W = w + v (2.10)

One way to think about how we might tackle this problem is by investigating
how a ball rolls down a hilly surface. Driven by gravity, the ball eventually settles
into a minimum on the surface, but for some reason, it doesn’t suffer from the
wild fluctuations and divergences that happen during gradient descent. Why is
this the case? Unlike in stochastic gradient descent (which only uses the
gradient), there are two major components that determine how a ball rolls down
an error surface. The first, which we already model in SGD as the gradient, is
what we commonly refer to as acceleration. But acceleration does not single-
handedly determine the ball’s movements. Instead, its motion is more directly
determined by its velocity. Acceleration only indirectly changes the ball’s
position by modifying its velocity [5].

Velocity-driven motion is desirable because it counteracts the effects of a wildly
fluctuating gradient by smoothing the ball’s trajectory over its history. Velocity
serves as a form of memory, and this allows us to more effectively accumulate
movement in the direction of the minimum while cancelling out oscillating
accelerations in orthogonal directions. Velocity is used to accumulate parameter
gradients for each round of training, and the larger the β, the greater the
influence of the previous gradient on the current training gradient. Assume that
the direction of each training gradient is the same, just as the ball rolls down
from the slope, but due to the presence of the attenuation factor β, the ball does
not always accelerate down, but reaches the maximum speed and after with
uniform speed forward. In practice, the commonly used β value can be 0.5, 0.9,
0.99, whichever is appropriate.

 19

2.2.5 Learning rate decay

In practice, we always need to decrease the learning rate by the increase of
training steps. The reason is that some algorithm may introduce source noise,
and this kind of noise is caused by the special nature of individual data [17].
Thus, even though we are around the optimal solution, the noise will not
disappear and causes oscillation near the optimal solution. To eliminate or
mitigate this situation, we try to minimize the learning rate around the optimal
solution.

For the learning rate decay, the most common method used is
Exponential_decay, the advantage of this method is that the convergence
speed is faster and simpler. Similar to that, we have Piecewise_constant,
Polynomial_decay, Natural_exp_decay, etc. These several methods are not
much different, for they are mainly based on exponential attenuation. There
exist a problem is that in the beginning, the learning rate falls rapidly, thus in
complex problems, it may lead to rapid convergence to local minimums without
exploring a certain range of parameter space.

What we used in the project is Cosine_decay. It is a new strategy proposed in
the last year (2017) [21] by Ilya Loshchilov and Frank Hutter. The basic shape
of whom is the cosine function, shown in Fig. 2.8, where the red line refers to
alpha=0.3 and blue line refers to alpha=0.0, with alpha the minimum learning
rate we can accept.

Fig. 2.8 Cosine_decay function shape

These four steps below are the calculations for decayed learning rate, where
‘decay_steps’ is the total iterations we’ll take and ‘global_step’ refers to in which
step we are. We took alpha equals to 0.0 in our work.

global_step = min(global_step, decay_steps) (2.11)
cosine_decay = 0.5 * (1 + cos (pi * global_step / decay_steps)) (2.12)

20 Shot Boundary Detection

decayed = (1 - alpha) * cosine_decay + alpha (2.13)
decayed_learning_rate = learning_rate * decayed (2.14)

 21

3. Dataset Preparation

The dataset has been generated in a two steps’ process. First, we’ve collected
and verified hard cuts in real case from our material, after that we’ve generated
other types of transitions applying the algorithms indicated in paper [1], that is
our augmented dataset.

3.1. Extract shot boundaries in real case

To obtain the dataset large enough to train the network, we created dataset
using randomly selected 70 episodes from more than 20 American series
(details in Annex A). Each episode has a text file attached, indicating the
number of frames that should be a boundary, detecting with the traditional
method. And we verified them manually the selected episodes, to see if it is
correct or no, we labelled the errors of the provided text file and to use them to
make our accurate dataset.

Proofed by facts that most of the judge errors of algorithm occur in the period of
introduction, for the reason that the images and letters are vibrating all the time,
thus influence the judgement of algorithm. Another common error is the flash, or
the changing of light colour, which heavily influence recognition results. Due to
the fact that most of the series we chosen are criminals, and cases occur mainly
at night or obscure places, once there is a gunshot, the specific frame would be
very bright, thus leads to judge error. Also, the police car with red and blue
lights, whose the colour will fill all the image thus could be judged as different
shots.

In the process of manual verification and re-annotation, if there is a boundary
not in the middle place (between the 5th and 6th, we labelled them as ‘no
boundary’, because we want to train our network to learn that the boundary is in
the middle. If it is a dissolve or fade transition, we need to see if the boundary is
in the middle of the transition or no.

In regard to the weakness mentioned in Michael’s paper [1], we paid more
attention on motion blur and background change. We marked these kinds of
change as ‘no transition’, to put them into our network for training, in order to
make the network resistive to them.

In our case, one special situation is that one single frame has been divided into
2 or 3 parts, each part contains a scene. Once one of the parts changes, we
judged it as a shot boundary for the fact that there is a boundary of one shot,
although the whole image frame hasn’t change that much. However, this may
bring some defects in the network learning, for example, some partial change of

22 Shot Boundary Detection

the background can be detected as shot change, which will be an error in the
future prediction.

In this part we have 35072 snippets as input data, which is or dataset in real
case, including ‘transition’ (‘1’) and ‘no transition’ (‘0’). Each input has a shape
(10*64*64*3). And we divide 10% of it as our test dataset for the network to
make evaluation and to calculate accuracy.

3.2. Augmentation of the dataset

3.2.1 Shot boundary generation

For the better training of the network, we need to generate more dataset to
provide a large variety or to make the network resist to a specific kind of
transition. In general, we need to generate five kinds of transition: hard cuts,
crops, dissolves, fade ins/outs and wipes. Table 3.1 [1] gives us a specification
how these different transitions generated.

Table 3.1 Transitions references

• Cuts. Its duration is one frame, which means among the 10 frames, the
5th and the 6th are from different shots respectively, thus they are
obviously different. These cuts are easy to generate, just to take five
continuous frames from one shot and another five from another shot and
make an input of 10 frames.

• Crop cuts. This transition also with a duration of one frame. In order to

generate this cut, we took 10 continuous frames from one single shot,
from the 6th one, we made a crop cut, up to 50%-70% of full image size.
Although the cropped sizes are randomly chosen, in one snippet, these
five cropped frames have the same cropped size and the same cropped
position. With this method, we made new input snippets by connecting
the five cropped frames with the five original frames.

• Dissolves. It is a kind of transition that linearly interpolates between shots,

with a duration of 3 to 14 frames. To generate this, we took two samples
from different shots, each sample contains 10 continuous frames. And
then we generated numpy arrays according to the duration, one array

 23

contains 10 elements ranging from 0 to 1, with which we combine the two
samples by sequence to make linear interpolations, in the end returned
one new snippet containing 10 new frames, that is a new dataset.

• Fade in/out. This transition is similar to dissolves, but it interpolates

linearly from one frame to a frame of single colour (normally black or
white), also with a duration from 3 up to 14 frames. The method to
generate these transitions are quite similar to that of dissolves, only to
use a black or white frames as one sample to generate linear
interpolations.

• Wipes. This is a type of transition that one shot is moving out while the

other shot is moving in, typically in horizontal direction, with a duration of
6 to 9 frames. For an on-going frame, one part is a part of a frame from
previous shot, the other part comes from a frame of the next shot. These
two parts form an on-going frame, proportionally, depend on its duration.
To generate this, we also made numpy arrays, each has 10 elements
valuing from 0 to 1, proportionally according to the duration. The same
with dissolves we used two samples taken from different shots, to crop
the frames respectively according to the proportion indicating in the array,
and append the corresponding part together to generate a new snippet.

It’s important to understand that here the duration with the number of frames
means that how many frames are on-going. Taking wipe transition as an
example, if the duration is 6 frames, which means that among the 10 input
frames, there are 6 frames that contain two parts, and we kept the transition in
the middle by correctly making numpy arrays.

Since we already have the dataset taken from the episodes, we could use them
to generate our new data without reading new frames again. Most of the
transitions require us to take samples with 10 continuous frames, we could use
the snippets that with the label ‘0’. However, it will arise a problem is that,
snippets labelled with ‘0’ not only refer to 10 continuous frames, but also include
the case that there is a boundary not in the middle, using that must bring some
errors in the dataset.

Thus, we decided to take samples with label ‘1’, which contain 10 frames each,
with a boundary in the middle, and we are sure that the first five frames are
continuous and the last five the same, as we assume that most of them are
hard cuts. We can take any two of them to make a new hard cut, shown in
Fig.3.1.

24 Shot Boundary Detection

Fig. 3.1 Hard cuts generation

With this method, we considered that we may mislead the network by putting
the first parts of the hard cuts always in the first, so the network may learn that
the last frame of the first part is the boundary place, not the position between
the 5th and 6th. Thus, we’ve made another kind of hard cuts shown in Fig. 3.2,
in which we exchanged the position of two parts of the cut, to avoid such
problems.

Fig. 3.2 Hard cuts generation without misleading

 25

Fig. 3.3 shows some samples generated by our algorithm, where the first 10
frames is a new data and the next 10 frames is another. And then we used the
new generated hard cuts to make the other transitions.

Fig. 3.3 Generated hard cuts

In order to make the other transitions, we need to make samples of 10 frames
with ‘no transition’ first to suit our algorithms (here 'no transition' refers to
continuous 10 frames without boundary in any place). There are many methods
to make 10 continues frames, in our project we use three methods to generate
‘no transition’: Mirror, Copy and Double.

For the mirror method, we took the first five to make five mirror images, to be
attached in front of the sample, together with the original five frames, we can
make one new sample x, containing 10 continuous frames. The same with that
we can make another continuous sample y using the other five frames in this
snippet. Fig. 3.4 indicates the way to generate continuous samples.

26 Shot Boundary Detection

Fig. 3.4 Mirror method to make continuous samples

Copy method is simple, for one sample taken, we only used the first frame and
the 10th frame and copy them to make continuous samples x and y, shown in
Fig. 3.5.

Fig. 3.5 Copy method to make continuous samples

And the double method is that for every frame in a hard cut, we made a copy,
it’s like we doubled every frame to make a sample of 20, and cut them into two
(See Fig. 3.6).

 Fig. 3.6 Double method to make continuous samples

 27

Now we can use our newly-made ‘no transition’ samples to generate the other
transitions. For the crops, we can make a crop to the last half of sample x (or
sample y) and keep the first five frames to form a crop cut. Fig. 3.7 gives us an
example of crop cut.

Fig. 3.7 Generated crop cut

In the case of dissolves and fade ins/outs, sample x and sample y can be used
as two continuous samples to generate linear interpolations, and for the wipes,
these two samples also can be used. Fig. 3.8.a provides us a sample of
dissolve we generated, with a duration of. Fig. 3.8.b shows two samples of fade
in and fade out respectively and Fig. 3.8.c gives us a sample of wipe.

Fig. 3.8.a Generated dissolve transition

28 Shot Boundary Detection

Fig. 3.8.b Generated fade-in & fade-out transitions

Fig. 3.8.c Generated wipe transition

Also, the sample x and sample y can be used as new ‘no transition’ data
(continuous samples), which will be similar to the original datasets. Fig. 3.9
shows us an example that is ‘no transition’.

 29

Fig. 3.9 Example of 'no transition'

3.2.2 'Negative' dataset generation

Remember that one important function of our network is to judge if there is a
shot boundary in the middle position. Thus, we need to generate a large amount
of ‘negative’ datasets, with transition, but not in the middle. The ‘negatives’
includes all kinds of transitions: hard cuts, crops, dissolves, wipes and fade
in/outs.

Regarding to the hard cuts and crops, it is obviously a ‘negative’ case if the
differ (the distance between the boundary and the middle position) is equal to or
more than one frame. Fig. 3.10 and Fig. 3.11 show us some examples of
negative hard cuts and crops.

30 Shot Boundary Detection

Fig. 3.10 Generated 'negative' hard cuts

Fig. 3.11 Generated 'negative' crop transitions

And for the gradual transitions, it’s even difficult for human eyes to judge the
boundary position, so the threshold for these kinds of transition is larger. In our
case, we’ve made ‘negatives’ with the boundary position difference is equal to
or more than three frames. Fig. 3.12.a, b, c, d show the negative wipes,
dissolves, fade-ins and fade-outs respectively.

 31

Fig. 3.12.a Generated 'negative' wipe transition

Fig. 3.12.b Generated 'negative' dissolve transition

Fig. 3.12.c Generated 'negative' fade-in transition

32 Shot Boundary Detection

Fig. 3.12.d Generated 'negative' fade-out transition

3.3. Conclusion of dataset generation

In total we have 1,602,349 snippets of augmented data and these snippets
have two types: the first is ‘no transition’, which are snippets consisting of
frames from a single shot or exist a shot boundary not in the middle; and the
second is transition snippets which have a transition from one shot to another,
with the boundary in the middle. We made each of our batch with 32 snippets,
thus whose batch shape should be (32 * 10 * 64 * 64 * 3).

In order to effectively train our network, each of our batch contains 16 snippets
with transition and 16 snippets without transition, that is half of them. We
assume that the network will do a better learning by providing a balanced
indication. Also we let the labels in one batch is the form: [1, 0, 1, 0…...1, 0],
with balanced ‘1’ and ‘0’.

In one batch, we also defined the occupancy of different kinds of transitions,
50% of transitions are hard cuts, which is near to the real case. And dissolves,
wipes, fade-ins, fade-outs, crops occupy approximately 10% each. That is to
say, in a batch of 32 snippets, 16 of them are ‘0’s and 16 of them are ‘1’s, in
which 8 of ‘1’s are hard cuts and the other 8 are dissolves, wipes, fade-ins,
fade-outs and crops. In our case, specifically we had 2 snippets of dissolve
transition, 2 wipes, 2 crops, 1 fade-in and 1 fade-out in one training batch.

For the test dataset generated, we divided the types of transitions in order to
test them individually to measure how good the network in detecting one type or
another. In total we have 2127 snippets of data for testing in the generated part.

Thus, in our whole dataset, approximately we have 48500 batches of inputs for
training and 2500 batches for testing.

In the next chapter we are going to talk about the results of the network training,
with the original real dataset and augmented dataset separately and its analysis.

 33

4. Network training and analysis of results

4.1. Training with extracted dataset

The first training of the network we've used the dataset extracted from American
series in real case. We ran it in a laptop, averagely it would take five hours if we
run 1000 iterations, which is really slow but we just wanted to test if there is
something wrong in it.

To fasten up the speed, we used an Azure Cloud Service Machine with a K80
as GPU and a Xeon E5-2673 v4 as the CPU. After configuring everything inside,
we can reach an approximate speed 0.03h/1000 iterations, which is about 150
times faster than a 1.8GHz dual-core Intel Core i5 processor.

In our project, to make it easier to understand, debug, and optimize TensorFlow
programs, we used Tensorboard a lot as a tool to visualize our neuron network
as well as the accuracy and the loss function. Fig. 4.1 illustrated our network
structure, visualized by Tensorboard.

34 Shot Boundary Detection

Fig. 4.1 Tensorboard visualization of our network structure

With the input image x, one important step is the normalization. By using the
formula (4.1), we kept the image pixel value within [-1,1], which is better for the
network to train.

y = x / 127 - 1, where x refers to input images (4.1)

And then we put normalised data into this five-convolutional-layer’s network for
training. By reshaping the output, we can calculate the loss and accuracy by
comparing the predicted label and the real one.

With the dataset taken from the American series, after one epoch, we can get
the accuracy 92.47%. With training for more than 50 epochs, we visualized the
accuracy and loss using Tensorboard, shown below in Fig. 4.2 & 4.3. They
show the accuracy and loss of our network in training progress.

 35

Fig. 4.2 Training accuracy curve

Fig. 4.3 Training cost function curve

We can see in the middle there is an area where the accuracy drops a lot and
loss increases. Because we’ve shuffled the data, so in most cases of training it
didn’t appear. In this case, we suppose that the reason maybe the influence of
unstable dataset, such as introduction in the series, which influence a lot the
judgement of the network. In the end, for the training set, the accuracy can
reach 95%, also the loss is decreasing continuously, means that we are
reaching the optimal situation.

36 Shot Boundary Detection

Fig. 4.4 & 4.5 below show the accuracy and the loss of test dataset after each
epoch of training. Here the ‘X’ axis refers to the number of steps (epochs) and
‘Y’ refers to accuracy and cost value respectively. So, these figures show
mainly the change tendency of accuracy and cost value according to the
training steps.

With more epochs are trained, the testing accuracy doesn’t have obvious
increase, on the contrary, it goes down a little bit to 92.5%. The reason may be
the insufficient dataset and over-fitting. Also, the loss begins to increase after
several epochs of dropping, which is normal for existing over-fitting, and this, is
one of the reasons to make the accuracy couldn’t be improved.

Fig. 4.4 Testing accuracy curve

Fig. 4.5 Testing cost function curve

 37

In the original testing set, we didn’t divide the types of transitions, so we didn’t
know how good our network facing different transitions. The only thing we are
sure about is that the most errors occur in the part of introduction, because the
network is really in a dilemma when facing the unstable brought by image flutter.
Also, for gradual transition, it’s hard to define if the boundary is exactly in the
middle position, which is another dilemma. The last but not least, as we talked
about before, we judged them as a cut when there is a part of the image
changes, this may influence the judgement of neuron network in the future.

4.2. Training with augmented dataset

To improve the network performance, we trained the network with the
augmented dataset. Facing the brand new dataset, the key task is to test the
hyperparameters, such as the number of iterations in one epoch, the learning
rate, the number of neurons in one layer, etc. After several times of testing, in
the end we've decided to train 6000 iterations each epoch with the initial
learning rate 0.001, later apply a cosine_decay. For the number of neurons in
each layer, we took the same stated in paper [1].

After training for more than 30 epochs, we've seen that the printed accuracy
remained the same with the previous, so we stopped it and visualized them
using Tensorboard. Fig. 4.6 & 4.7 show us the accuracy and loss function in
training progress. What we can see in the figure is that the accuracy in the end
remains between 90% to 95% and the cost is decreasing as a whole.

Fig. 4.6 Training accuracy curve

38 Shot Boundary Detection

Fig. 4.7 Training cost function curve

4.2.1 Overall testing on the test dataset

For the overall testing, we've tested the evaluate dataset all together without
separate the types of transitions. Fig. 4.8 & 4.9 show us the accuracy and the
cost function of the whole dataset.

Fig. 4.8 Testing accuracy curve

 39

Fig. 4.9 Testing cost function curve

We can see that the accuracy remains the same in after several epochs, which
is 95.8%, and the scale value on the axis are all 0.958, maybe for the reason
that the accuracy hasn’t change. Nevertheless, the cost function keeps going
down. From the point of view of the accuracy, it seems that the network hasn’t
learnt anything new in the end, but actually we are reaching the optimal solution
little by little.

4.2.2 Testing separately of different transitions

From here we are going to test different types of transitions individually in order
to analyse how good works our network facing a specific transition.

• Hard cuts

Fig. 4.10 & 4.11 are the visualised accuracy and cost function tested with
hard cuts. We can say that our network can detect hard cuts accurately with
100%. Here the number of ‘X’ axis changes, which not refers to the number
of epochs any more with the reason that we smooth the figure in
Tensorboard to make it shows clearer. But it’s necessary to say that for the
individual testing, we only shown the value with 10 epochs, with that we can
already see the change tendency.

40 Shot Boundary Detection

Fig. 4.10 Testing hard cuts accuracy curve

Fig. 4.11 Testing hard cuts cost function curve

The loss function in the end decreases to 0.013, which means that we nearly
don't make any error in predicting that if it is a boundary or not.

• Wipe transition

Fig. 4.12 & 4.13 show the accuracy and loss of the wipe transition. Which is
similar to detecting hard cuts, our network also works great on wipe

 41

transition with the accuracy 100% in almost all the cases. The loss is almost
0.00 in the end.

Fig. 4.12 Testing wipes accuracy curve

Fig. 4.13 Testing wipes cost function curve

42 Shot Boundary Detection

• Dissolve transition

Fig. 4.14 & 4.15 show the testing of dissolve transitions. We can see the
accuracy for testing dissolves is increasing up to 90.6% in the 10 epochs
and the loss keeps decreasing overtime, however, it's still 10 times larger
than the loss of the testing with hard cuts.

Fig. 4.14 Testing dissolves accuracy curve

Fig. 4.15 Testing dissolves cost function curve

 43

It makes sense that for dissolves, the accuracy is not so high as testing hard
cuts, and the loss is larger. Because for dissolve transition, including fade in
and fade out, they are linear interpolation between two different images, it’s
a gradual progress without an obvious or a sudden change. Thus, after a
large amount of training, our network can detect that there exists a transition,
but it’s confused to judge whether the transition is just in the middle. It may
appear in the 5th frame also the 6th frame, or even the 7th. Even our human
eyes cannot estimate precisely where should be the boundary. So, for our
network, in the end it can get more than 90% accuracy in testing, it’s a
satisfactory result.

• Crop transition

For the crop transition, we’ve got a moderate result. Fig. 4.16 & 4.17 show
us the accuracy and loss function of crop test dataset. We can see that
maybe sometimes it can reach 100% accuracy in some testing, but it
maintains 96.9% in overall accuracy. In the generation of crop transitions,
we made it crop up to 70% of the whole image, which will contain the main
part of the image. If the crop area is just in the middle, or this area have all
the contents that the network focuses on, it may be judged as a continuous
frame with the previous one.

Fig. 4.16 Testing crops accuracy curve

44 Shot Boundary Detection

Fig. 4.17 Testing crops cost function curve

And for the loss function, although there is some area that the loss increases,
it’s still below 0.028. Even though it cannot be that good as detecting hard
cuts, our network is quite effective in detecting crops.

• Fade in

Fig. 4.18 & 4.19 show us the testing of fade in transitions. The test accuracy,
after a period of decline in the middle, it finally reached 96.8%. In this period,
there may be a lot of dark frames in between, and it is not obvious when
transitioning from black to real frame, which is easy to be mistaken as ‘no
boundary’. Another point, as we mentioned in the dissolve transition, is that
it is difficult for the neuron network to determine if the boundary is in the
middle, even though it has learned many examples. For fade in transition, if
the incoming frame is originally dark, it’s more confusing for the network to
locate the boundary position. So in this area, accuracy has dropped a lot,
and the value of loss has risen a lot.

But after more rounds of learning, the state of the neural network has
gradually stabilized, the accuracy can reach 96.8%, and the loss is also
declining. Overall, it has got very good test results.

 45

Fig. 4.18 Testing fade-ins accuracy curve

Fig. 4.19 Testing fade-ins cost function curve

• Fade out

The case of fade out transition is much more stable than that of fade in,
shown in Fig. 4.20 & 4.21. Basically, it has reached a stable accuracy since
epoch 2, accompanied by a gradual decline in the loss value. Although the

46 Shot Boundary Detection

decline is slower or even stay stable at the end, it is in line with the neuron
network learning process, that is, the closer to the optimal value, the slower
the parameter update. And the final test accuracy of fade out can reach
96.8%.

Fig. 4.20 Testing fade-outs accuracy curve

Fig. 4.21 Testing fade-outs cost function curve

 47

• Negative transitions

The dataset of the ‘negatives’ contains all kinds of transitions, but their
boundaries are not in the middle, thus they are judged as ‘no transition’. We
tested the ‘negative’ dataset separately to determine the neuron network's
ability in analysing boundary locations.

Fig. 4.22 & 4.23 show the test of 'negative' dataset. It can be seen that in the
10 epochs that we tested, the state of the network is not very stable. At the
beginning, the accuracy was only 84.3%. Later, after a period of training, it
finally stabilized at around 93.7%.

Fig. 4.22 Testing 'negatives' accuracy curve

48 Shot Boundary Detection

Fig. 4.23 Testing 'negatives' cost function curve

Fig. 4.23 shows that the testing loss of the ‘negative’ dataset is very high,
probably because the number of epochs tested is too small and the loss
value has not dropped to somewhere near the optimal. However, as it’s
shown in Fig. 4.24, the loss during the training is stable at around 0.25 in the
end.

Fig. 4.24 Overall training cost function curve in 10 epochs

In general, for the test of ‘negative’ data, although the test accuracy is above
90%, it is still relatively lower than the test for the whole evaluate dataset.

 49

Along with the higher loss, it lowers the overall test accuracy, which
indicates that the boundary position in the gradual transition is a very
important but very problematic task for neuron networks.

In this chapter, we’ve analysed the training and the testing results of our neuron
network. We could get a 94% accuracy in testing the extracted real case
dataset. Later by training with the augmented dataset, we could get the 95.8%
accuracy in testing augmented evaluate dataset.

By testing all types of transitions individually, we’ve seen that our network is
very strong and sensitive to hard transitions, such as hard cuts, wipe transition
as well as crop transitions. For gradual transitions, it's relatively weaker,
especially for dissolve transition. As we’ve analysed before, dissolve is the
linear interpolation between two frames, so, all the interpolated frames in the
transition duration would be similar to each other, thus influence the network’s
judgement.

Meanwhile, the testing of the ‘negative’ dataset also states that for gradual
transition, it’s hard to define the boundary position, but we believe that at least
our network performs very well in detecting the existence shot boundary.
Nevertheless, the network works better in detecting fade-ins and fade-outs
comparing to dissolve transitions. The reason may be the interpolation between
the colourful frames and all black frames, which is much easier than figuring the
interpolation of two colourful frames.

In the next chapter we are going to make a conclusion, about all the works
we’ve done from the beginning, including the sustainability considerations and
ethical considerations.

50 Shot Boundary Detection

5. Conclusions

5.1. Project conclusion

This project is about shot boundary detection based on convolutional neural
network, including the material reading in the previous period, the production of
the data set and the construction of the overall structure of the neural network.
The framework of the specific fully convolutional neural network is based on
paper [1]. In paper [1], they tested with the RAI dataset with the final accuracy
88%, it’s not comparable since we didn’t test the same dataset. Overall, we
have achieved the final testing accuracy around 95% with our test dataset. This
is a relatively satisfactory result.

This is due to our careful handling of the training dataset in the early stage,
which ensures the accuracy of the training. By analysing the inadequacies of
the investigation in paper [1], we focused on the data types that they did not
detect well, that is one of the reasons we achieved good results. At the same
time, we have been continuously improving the parameters during the
implementation of the project.

Referring to the choice of hyperparameters, such as the number of training
iterations in each epoch, we still need a lot of testing to analyse. We've tested
the number of iterations per epoch 5000, 6000, 8000, 10000 and 12000, in the
end we chosen 6000 iteration/epoch. Also, for the initial learning rate, we
chosen 0.001 for the final model after testing with 0.01 and 0.1. However, there
are still many aspects for improvement, such as optimization of neural networks
and methods to prevent over-fitting.

In the future research, we'd like to make improvement on detecting gradual
transitions, as it is a troublesome case for shot boundary detection. We are also
continuing finding a more efficient way to make the network learn, such as
providing a clear-indicated dataset.

5.2. Knowledge and personal conclusions

This project gives me a chance to learn convolutional neural networks from
scratch. Through the previous reading of the materials, I have got a general
understanding of the working principle and basic structure of the neural network.
Based on the understanding of it and according to the guidance of paper [1], I
built the neural network of our project. At the same time, the production of
datasets also plays an important role in this project, although it is boring and
complicated, it is directly related to the learning quality of neural networks, that’s
why I also take this part of the work very carefully and patiently.

It's hard to imagine that in just a few short months, I can learn and manage the

 51

convolutional neural network and apply it. I am very grateful to my instructors
Francesc and Arnau for guiding me step by step in this project until completing
it. Without their help, I will not achieve this satisfactory result.

5.3. Sustainability considerations

Our project is video processing based on convolutional neural network, which
has important significance in the field of image processing. Moreover, the
research of convolutional neural network is of great significance to the
development of the whole society. It is a core part of artificial intelligence
technology, its development, together with human understanding of brain
cognition, play a mutually reinforcing role. Convolutional neural networks are
used in many fields, which greatly promote the advancement of science and
technology and the improvement of the efficiency of social mechanisms.

At the same time, in economic terms, it also has great potential. Artificial
intelligence is gradually deepening into the normal life of human beings, and it
has a huge economic benefit. It changes the value of our goods and the way we
pay. We can say that the economic society promotes the development of
science and technology.

However, it has some impact on environment and resources. This is a software-
based project that runs on a cloud server. In addition to the use of the mobile
hard disk in the previous production of the dataset, there is no hardware device
used, so there is not much material resource consumption. In the project
implementation process, it will occupy certain network resources, and the
generated dataset will be rarely reused at the end of the project, so some
resource garbage is generated.

5.4. Ethical considerations

Convolutional neural network is the core technology of artificial intelligence
implementation. Its research is based on human understanding of brain
cognition, with many unexplained aspects. However, due to limitations in data
resources and hardware conditions, I believe that its progress will not transcend
human wisdom. Due to the strong extensibility and the possibility of creating
value of convolutional neural networks, more and more scientists explore it,
resulting in many new, socially valuable goods or concepts which inevitably
bring huge economic benefits.

52 Shot Boundary Detection

 53

ACRONYMS

CNN Convolutional Neural Network
ConvNets. Convolutional Networks
FCN Fully Convolutional Neural Network
SBD Shot Boundary Detection
SGD Stochastic Gradient Descent
ReLU Rectified Linear Unit

54 Shot Boundary Detection

REFERENCES

[1] Michael Gygli. Ridiculously Fast Shot Boundary Detection with Fully
Convolutional Neural Networks. arXiv:1705.08214v1 [cs.CV] 2017.

[2] A. Hassanien, M. Elgharib, A. Selim, M. Hefeeda, and W. Matusik. Large-
scale, fast and accurate shot boundary detection through spatio-temporal
convolutional neural networks. arXiv preprint arXiv:1705.03281, 2017.

[3] A. F. Smeaton, P. Over, and A. R. Doherty. Video shot boundary detection:
Seven years of trecvid activity. CVIU,2010.

[4] A.Krizhevsky, I.Sutskever, and G.Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012.

[5] Nikhil Buduma, Nicholas Lacascio. Fundamentals of Deep Learning. June,
2017.

[6] Weiming Shen; Jianming Yong; Yun Yang (18 December 2008). Computer
Supported Cooperative Work in Design IV: 11th International Conference,
CSCWD 2007, Melbourne, Australia, April 26-28, 2007. Revised Selected
Papers. Springer Science & Business Media. pp. 100–. ISBN 978-3-540-92718-
1.

[7] Basic Technical Terms
https://en.wikipedia.org/wiki/Shot_transition_detection

[8] Vastness of the problem
https://en.wikipedia.org/wiki/Shot_transition_detection

[9] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In CVPR, 2015.

[10] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015.

[11] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning
spatio-temporal features with 3d convolutional networks. In ICCV, 2015.

[12] TensorFlow. https://www.tensorflow.org

[13] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large
data set for nonparametric object and scene recognition. PAMI, 2008.

[14] 卷积神经网络 CNN（3）—— FCN(Fully Convolutional Networks)要点解释
https://blog.csdn.net/fate_fjh/article/details/53446630

[15] M. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In ECCV, 2014.

 55

[16] Softmax function. https://en.wikipedia.org/wiki/Softmax_function

[17] 杨云, 杜飞. 《深度学习实战》清华大学出版社. ISBN 978-7-302-49102-6

[18] Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. What is the best
multi-stage architecture for object recognition. 2009a.

[19] 神 经 网 络 中 的 激 活 函 数 （ activation function ） -Sigmoid, ReLu,
TanHyperbolic(tanh), softmax, softplus.
https://blog.csdn.net/qrlhl/article/details/60883604

[20] Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep Sparse Rectifier Neural
Networks. Paper presented at the International Conference on Artificial
Intelligence and Statistics.

[21] Ilya Loshchilov, Frank Hutter. SGDR: Stochastic Gradient Descent with
Warm Restarts. arXiv: 1609.03983v5 [cs.LG] 3 May 2017.

[22] Xavier Glorot and Yoshua Bengio: Understanding the difficulty of training
deep feedforward neural networks. International conference on artificial
intelligence and statistics. 2010.

56 Shot Boundary Detection

Annex A

This annex provides some details of the dataset, that are the videos we used to
extract the frames.

All the videos we used are American series, with the frame rate 23.976,
according to that we extracted frames using ffmpeg through terminal.

In total we took 71 episodes from more than 20 different series. Many themes
are included, such as, criminal (Bones), action (Prison Break), horror (America
Horror Story) and feature story (Shameless), etc. Some of them have the darker
background as keynote, especially criminal and horror type. And such amount
of them are used in order to make the network sensible to darker frames.

All the videos used are in the folder (external hard drive):
>> /Volumes/TOSHIBA EXT/shotdataset/DATASET/input/done

All the frames extracted are in the folder of Azure Cloud Service Machine:
>> /mnt/shot_dataset/we

With all the annotations in the folder:
>> /mnt/shot_dataset/annotations

The network read the dataset in the fly, all the .csv files are in the folder of cloud
machine:
>> /mnt/shot_dataset

 57

Annex B

This annex gives the main folder to run the proposed algorithm over a different
data base. All the codes are uploaded and conserved in the cloud machine.

>> /home/ugiat/src/data_loader.py: load the dataset to the network.

>> /home/ugiat/src/augmenteddata.py: includes several algorithms to generate
augmented dataset from the extracted hard cuts.

>> /home/ugiat/src/takename.py: write the augmented data into .csv files.

>> /home/ugiat/src/CNN_arnau.py: together with data_loader.py to load batches
into the network to train and to test the extracted dataset.

>> /home/ugiat/src/CNNk.py: together with data_loader.py to train and to test
the augmented dataset, with several changes in order to load data in the fly,
instead of previously making batches of data.

