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1. Introduction

The characterization of heart with a view to distinguish abnormal from normal be-

haviour is an interesting topic in clinical sciences. Currently there exist several medical

tests for checking the state of the heart at a given moment. However there are 2

limitations when using these tests that are basically the cost and the level of ex-

pertisement needed to perform and analyse them. The cheapest and most common

one is the Electrocardiogram (ECG), which has been used for many years, but this

recording of electrical outputs of the heart fails to gather all physical and physiological

information and more tests are required for a proper diagnosis.

Apart from that, in general the medical community is cursed with immobilism. Out-

dated methods are still used because of their relatively good performance instead of

adopting new ones that may perform better, based on the technology advancements

being made in the recent years. The vast increment in computational power available

for a single individual and new visualization techniques are the key for new treatments

and patient follow-ups, and for improving healthcare in general.

Current techniques treat all the patients equally, there is not patient specificity. It

is clear that, in medical terms, two patients will never behave the same and there

is now the possibility of recording tons of incredibly complex data for each patient,

while processing it according to the needs.

Also, as many data has been recorded over time, applying new algorithms as deep

learning techniques may be able to, for each patient, perform an anticipated diagnosis.
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With evolving electronical and computing devices it is possible to track continuously

the individual and continuously giving automatic diagnosis. That would change the

medical care for good. For many years medical community has been treating with

unhealthy individual, when the patient feels ill goes to the hospital. Nevertheless the

concept of anticipated continuous diagnosis would change that drastically, triaging

better the potential patients and prioritizing the ones at most risk in the queue of

medical care.

In conclusion, new algorithms and visualization techniques are the first step to improve

medical care using the evolving technology. However, these new implementations

would not be useful without human supervision. This is why new tools are welcomed

when it comes to improving diagnosis, but should never be totally automatized.

2. Objectives

The aim of this thesis is to provide a line of investigation consisting of a new vi-

sualization tool which helps solving the problems mentioned in the current medical

community. Specifically, we pretend to develop a tool to better understand the un-

derlying mechanisms of heart functioning, so the tool will be applied to cardiology.

We will focus on the information coming from an electrocardiogram and try to extract

the relevant information that it is containing. First we are introducing certain con-

cepts that will be useful to understand how we pretend to process the data to provide

patient specificity in our visualization tool. Then, after defining our space, two types

2 2 OBJECTIVES



of heart irregularities are being addressed: sudden irregularities and progressive ones.

The results represent an example of how our tool can be applied to identify sudden

and track progressive anomalies over time.

The process of defining our visualization space and testing it is developed using the

power of applied mathematics. We will be using the Matlab mathematical calcula-

tion tool for all the process, like signal acquisition, signal processing, plotting, results

analysis and final visualization.

Understanding the electrocardiogram as electrical output signals of the heart, our

algorithm processes that information and reshapes it to obtain a personalized three

dimensional representation. At some stage of this thesis we will test how a variant of

our tool can relate to physical and physiological properties of the heart only through

the processing of this electrical information.

Note how we do not pretend to develop and automatic diagnose algorithm. We will

provide with a new visualization tool trying to capture and optimize the information

from electrocardiograms that in the right hands could lead to better diagnosis.

This thesis represents the first step of a new approach to electrocardiography, and we

pretend to make a tiny contribution to medicine.

3. Previous Concepts

In this section we pretend to introduce and explain the basic concepts that are being

used in the development of our new visualisation tool.

3 PREVIOUS CONCEPTS 3



Figure 1: Scheme of the main part of the standard sinus rythm

3.1 Electrocardiography

One of the most commonly performed medical test is Electrocardiogram (ECG). This

is the process of recording electrical activity of the heart through electrodes placed

in different parts of the human body. These electrodes can detect the tiny changes

in electrical activity travelling through the cells and muscles of the heart, the move-

ment of which are controlled by the repolarizing and depolarizing patterns at every

heartbeat. That is, the physical movement of the heart is controlled by circulation

of electrical pulses (order of few mV), which are captured in standard 12-lead ECGs

(an example of standard ECG record is shown on top of Figure 6 in a later Section).

Each lead represents a measurement of electric potential of the heart from different

angles in space, during a fixed time period (usually 10 seconds).

The electrical signal of a heartbeat can be divided into different parts. Each
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Figure 2: Directions of the 12 leads of standard ECG

part can be visualized in a different way from each lead. For the purpose of this

work, it is only necessary to understand that different heart diseases can be diagnosed

thanks to different common alterations in different parts of the signal of the heartbeat

in different leads, and depending on the current state of the patient.

Though, the main parts of the heartbeat can be visualized in the Figure 1 and are the

P-wave, the QRS-complex, the ST-segment and the T-wave, that represent electrical

pulses in different regions of the heart. The peak with the greatest amplitude in the

standard lead, that is the R-peak, represents for instance the electrical signal that

makes the ventricles contract and pump a great amount of blood to the body.

As explained, each lead of the 12-lead in an ECG represents the electrical activity of

the heart in certain direction over time. Each lead has a given name: the 3 limb leads

(I, II, III), the 3 augmented limb leads (aVR, aVL, aVF), and the 6 precordial leads

(V1, V2, V3, V4, V5, V6), which directions can be checked in Figure 2. The limb

leads and the augmented limb leads lie in the body plane (frontal plane), while the

precordial leads lie in the horizontal plane, perpendicular to the frontal and containing

the heart.

3 PREVIOUS CONCEPTS 5



3.2 Vectorcardiogram

After knowing of the existence of the standard 12-lead ECG, one may wonder if the

information that each lead is gathering from the heart may be redundant. That is,

leads close to one another may capture information that does not differ too much.

So, assuming the human body is a three-dimensional structure, it should be possible

to represent the evolution of electrical signals coming from the heart in a 3D space.

Doing that, the electrical signal can be represented in an understandable space and

also be captured but with less computational space: instead of a 1D vector for each

lead (voltage over time) for a total of 12 vectors of length N (depending on the sample

frequency) it could be stored in a single 3D vector, or a N × 3 matrix, that could be

able to capture the most important information avoiding redundant data.

This exact idea led to the development of Vectorcardiography, by E. Frank in 1950.

He wanted to construct three orthogonal leads containing all the electric information:

leads X , Y , Z . This idea of expressing the electric information in Vectorcardiograms

(VCG) started to popularize in late 90s, with the advance of computational methods

and power. The X , Y and Z vectors are just the result of projecting the standard

12-lead of the ECG in 3 orthogonal directions in space. Different matrixes can be used

to do this linear transformation, depending on which 3 directions we want to project

the leads and which parts of the heartbeat want to be maximized. The dimensions

of the matrixes are 3 × 8, as the augmented limb leads and the limb lead III are

not used. The most commonly used is called Dower matrix. However the paper [1]
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studies different matrix transformations for different purposes, and concludes that the

best one for maximizing information in QRS complex is the QLSV matrix. This will

be useful for a certain study in our thesis, and along with other matrixes can be found

in the Appendix A.

Then, given a fixed matrix M , the X , Y , Z values are computed through the function

f :

f : R8 −→ R3



V1(t)

V2(t)

V3(t)

V4(t)

V5(t)

V6(t)

I (t)

II (t)



7−→


X (t)

Y (t)

Z (t)

 = f





V1(t)

V2(t)

V3(t)

V4(t)

V5(t)

V6(t)

I (t)

II (t)





= M ·



V1(t)

V2(t)

V3(t)

V4(t)

V5(t)

V6(t)

I (t)

II (t)


The representation of the heartbeat in the VCG is a 3D vector loop, starting and

finishing at the same point. The different parts of the standard ECG (P-wave, QRS-

complex, etc.) are observed in different characteristic zones of the loop.

Several studies have been performed about the improvements in diagnostics of cer-

tain cardiologic diseases using this way of concentrating and representing the data.
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Figure 3: Example of a VCG representation over time

However, the authors of the current work think that by forcing the 3 directions over

which to project the 12 leads to be orthogonal (in fact we use 8 leads instead of 12,

and we can do that ) it is hard to incorporate patient specificity in the visualization,

and thus this representation can be improved by taking into account the variability

between different patients, extracting the most relevant information from the current

subject. Also introducing concepts related to dynamic systems could be interesting,

like the reconstruction of the systems attractor.

3.3 Attractor

An attractor is a mathematical concept in the field of Dynamic Systems. It is a

set of numerical values toward which a system tends to evolve. System values get-

ting close enough to the attractor values will remain close even if slightly disturbed.
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When applying this concept to our case, treating the heart as a dynamic system, it

is impossible to know the exact attractor as the equations leading the system are

unknown. However, Takens theorem [2], also known as embedding theorem, allows

us to reconstruct it.

The theorem establishes that, when there is a measured quantity from a dynamical

system (electrical activity from the heart in our case), it is possible to reconstruct a

state space that is equivalent to the original (but unknown) state space composed of

all the dynamical variables. These dynamical variables should have the key for perfect

diagnosis, and reproducing them is the aim of [3], which among others articles mo-

tivated this thesis. It is possible to see in it how the reconstruction of the attractor

and other parameters are used in order to triage successfully healthy and unhealthy

patients.

Here, for a given output signal x(t), we produce n-dimensional objects y(t) as fol-

lowing:

y(t) = [x(t), x(t + T ), ... , x(t + (n − 1)T )] (1)

Where n refers to the embedding dimension and T is a given time delay parameter.

Takens theorem allows us to take n ≥ 3 for an embedding, though dimension of the

phase space is unknown. However, there is much literature about how to set the

value of T . As established in [4], T is set to be the first minimum of the function I ,

called mutual information, understanding the formula in the discrete form, since we

3 PREVIOUS CONCEPTS 9



Figure 4: Representation of how a 3D attractor of a single ECG signal lead is constructed for a
given T = 15ms time delay. We simply plot the evolution of the 3 red dots over time.

will work with a fixed sampling frequency fs :

I (a, b) =
∑
j ,k

P(aj , bk) log2

[
P(aj , bk)

P(aj)P(bk)

]
(2)

Where a = x [n], b = x [n + Tfs ] and x [n] = x(t0 + n
fs

) . Note how d [n] with n ∈ N

refers to d being a discrete signal; and P(dj) refers to the probability of measurement

dj (dj are the points in the d signal), and practically we will compute them using the

normalized histograms, as we are working with deterministic signals. Ultimately T

would be chosen as the first minimum of I (T ) = I (x [n], x [n + Tfs ]).

10 3 PREVIOUS CONCEPTS



4. PLAR : Our New Space

After having introduced the main concepts that will be applied in this work, it is time

to focus in our approach.

We wanted to create a new three-dimensional visualization tool that captures and

concentrates the most relevant electric information for each patient, relatively easy to

interpret for non-experts in the cardiologic field and offering the possibility of optimum

patient-triaging and anticipated diagnosis in further steps of the tool development,

with the final objective of speeding up the health system and focusing resources on

most critic patients.

Taking as a starting point the concept of VCG, we wanted to create a three dimen-

sional space in which the representation of the electric signal of the heart would be able

to adapt to every different patient. This patient specificity is accomplished through

choosing the directions over which project the standard 12-leads from the ECG. Or

what is equivalent, learning from the X , Y and Z vectors of the VCG and projecting

them to certain directions depending on how they behave in order to broaden and

maximize the electric information. However, we did not want only to deal with the

electrical signal at every time step, but also to take into account the previous electric

behaviour of the heart in order to apply the attractor concept introduced in the pre-

vious section. So, understanding the heart as a dynamic system, it does not sound

wild to add a component of attractor in our space, that is a time-delayed signal, so

that our tool may be able to grasp part of the underlying mechanisms of the system

4 PLAR : OUR NEW SPACE 11



allowing us to capture subtle changes over short or long time periods.

Our new visualization tool will be referred in this thesis as PLAR : Patient-Learning

Attractor Representation.

4.1 First Component of PLAR

Maximizing the electric information of the heart may sound ambiguous. There is a

point in a heartbeat of every 12-lead ECG where the absolute value of the voltage is

maximum. This corresponds to the ventricular contraction, that is the moment the

ventricles contract and pump blood to the body and lungs: the R-peak in the QRS-

complex. In the VCG vector loop, the QRS-complex is represented as the wider turn

in the heartbeat representation. So, analogously to what happens in every 12-lead of

an ECG, there is a direction in the 3D space of the VCG in which projecting the loop

over that direction, the maximum of the absolute projected signal is maximum. Or

formally, we want the vector
−→
R ∈ R3 such that:

−→
R = arg max

−→
Q ,‖
−→
Q ‖=1

(
max

t

[
‖ [X (t), Y (t), Z (t)] ·

−→
Q ‖
])

(3)

So, that is the direction over which, intuitively, the electric potential measured from

the heart is maximum. For our visualization tool then, it will be useful to have

the projection of the VCG over the
−→
R direction as the first component of our new

12 4 PLAR : OUR NEW SPACE



representation:

γ1(t) =
−→
R ·


X (t)

Y (t)

Z (t)

 (4)

The Matlab code implemented for the computation of this
−→
R direction can be found

in Appendix B.

4.2 Second Component of PLAR

Similarly to what has been done for the first component, a vector
−→
V over which

project the signal coming from VCG is also desired to define the PLAR’s second

component. In this case, to avoid redundant electric information, we will choose
−→
V

such that, if L−→
V

refers to the VCG signal projected over
−→
V direction:

−→
V = arg min

−→
Q ,‖
−→
Q ‖=1

I (L−→
R

, L−→
Q

) (5)

Where I refers to the mutual information function, defined previously in expression (2).

That is, we want the second component to be the projection of the VCG signal over the

direction
−→
V that has the least information in common with the VCG signal projected

over
−→
R , which is the first PLAR component. Doing so, we pretend to broaden the

space, and capture as much information as possible with only 2 projections of the

4 PLAR : OUR NEW SPACE 13



VCG signal. Then we obtain the second component of our PLAR as:

γ2(t) =
−→
V ·


X (t)

Y (t)

Z (t)

 (6)

Details about how this second component is computed are explained in a project that

was being developed in parallel to this thesis (see [7]).

4.3 Third Component of PLAR

To incorporate the concept of attractor, the third component will be the same as the

first one but delayed a certain amount of time T , or a certain time samples:

γ3(t) = γ1(t + T ) (7)

Note how choosing this signal γ1(t) to be delayed can seem arbitrary. But we definitely

decided on this after testing several other options.

The delay term T can be computed every time as stated in [4] , or set to a fixed

value. We have observed that taking T = 15ms as delay has a good behaviour for

all the study in this thesis, or 15 time samples since the frequency sample of our

ECGs is fs = 1000Hz . So, after some tuning of the parameters, the standard PLAR

transformation is set to be the three-dimensional curve over time (note we delayed
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the second component as well for visualization purposes):

γ(t) = [γ1(t), γ2(t + T ), γ3(t)] ∈ R3 (8)

Having defined the 3 components of our PLAR, given 8 leads of information

of a heartbeat, L, the 3D curve obtained as PLAR is totally defined knowing the

matrix M (D or QLSV , depending on the intentions in this thesis), the 2 vectors over

which we project the VCG curve
−→
R and

−→
V , and the time delay T from which we

are defining the attractor component. That means the 3D curve S obtained in PLAR

can be understood as a function of those parameters:

S = S(L, M ,
−→
R ,
−→
V , T )

Note we will use S to refer to the set of three-dimensional points obtained in the

PLAR space.

An example of a healthy patient PLAR is presented in Figure 5. See how we compute

the 3 components of our PLAR curve for a given ECG signal in Appendix B.

4.4 Obsevations

From now on we will use the notation LHB to denote the electric signal from the 8

leads of standard ECG corresponding to a single heartbeat used in the VCG trans-

formation. Note how in practice there is a sample frequency, we know the electric

4 PLAR : OUR NEW SPACE 15



output of the heart not as a continuous function of time but sampled, though the

notation does not take into account this fact. Supposing the sample frequency is the

same for all the leads, and let THB and fs be the duration in seconds of the heartbeat

and the sample frequency, respectively, then, if p = bTHB · fsc , we practically have

LHB ∈ R8×p . We will use S(LHB) to denote our PLAR transformation explained

previously, S(LHB) ∈ R3×b(p−T ·fs)c (see how the fact of using an attractor results in

having a few less points in PLAR space, if only known the electric information of a

single heartbeat).

At this point, having defined our space in order to broaden the information

received from electric heart impulses, it would be the time to start verifying it. How-

ever, when doing so, one must be aware of certain aspects regarding the PLAR.

To start, as we are performing a three dimensional representation of the electric signal

from 8 different signals, it is clear that modifications in any of the 8 ECG signals will

have an impact on the 3D representation. However, if we wished to modify the three

dimensional representation to see what changes in R8 space (changes in ECG signal)

would cause the modification, it would not be feasible since the exact inverse trans-

formation cannot be defined. Even if we were able to reproduce the three dimensional

VCG figure from our PLAR curve, the fact of going linearly from an 8 dimensional

space to a 3 dimensional one makes the inverse application clearly non well-defined.

It is like projecting a 3D vector over a plane, and then trying to reproduce the orig-

inal vector only through the plane’s projection. Then the process of understanding
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carefully our new space can only be performed unidirectionally.

Another aspect to take into account is that PLAR is insensitive to rotations

in the VCG space. That is, suppose there are two different 8-lead ECG signals,

L1 = LHB,1(t) ∈ R8 and L2 = LHB,2(t) ∈ R8 , and LVCG
1 = LVCG

HB,1(t) ∈ R3 and LVCG
2 =

LVCG
HB,2(t) ∈ R3 being their VCG transformations through a linear transformation. If

LVCG
2 can be obtained rotating LVCG

1 around the 3 principal VCG axes (the same

angles for all t), then the PLAR curves obtained are the same for both signals (

S(L1) = S(L2) ).

Demostration: Supposing the representation in the VCG space starts at the origin,

and let γ, β,α be the successive rotations around z , y and x VCG axis respectively.

That is, the rotation matrixes are:

A =


1 0 0

0 cosα − sinα

0 sinα cosα

, B =


cos β 0 sin β

0 1 0

− sin β 0 cos β

, C =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1



Such that LVCG
2 (t) = A · B · C · LVCG

1 (t) for every t ∈ [0, Thb], where Thb is the

duration in seconds of the heartbeat being processed.

If
−→
R 1 = (R1

1 , R1
2 , R1

3 )T is the direction over which the maximum of projecting LVCG
1

is achieved, of value max ∈ R , that is, it exists a point p1
max = (a, b, c)T ∈ LVCG

1

such that
−→
R 1 · p1

max = max , then the rotation of
−→
R 1,
−→
R 2 = A · B · C ·

−→
R 1, is the

direction over which the maximum of projecting LVCG
2 is achieved, also giving value
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max , with the point p2
max being the rotation of p1

max :

−→
R 1

T
· p1

max = max =⇒
−→
R 2

T
· p2

max = (A · B · C ·
−→
R 1)T · (A · B · C · p1

max) = (9)

=
−→
R 1

T
· CT · BT · AT · A · B · C · p1

max =
−→
R 1

T
· p1

max = max (10)

Where it has been used that the inverse matrix of rotation matrixes are their own

transposed. Note how if there exists another direction over which projecting LVCG
2

is maximum and greater than max , then the rotation of the negative angles γ, β,α

of that direction would give a direction over which projecting LVCG
1 would be greater

than max , following an analogous procedure, coming into contradiction.

Then, as the direction
−→
R 2 defined is the one over which projecting LVCG

2 is maximum,

then it is clear that, following an analogous procedure that one in (9) and (10)

changing pmax for each point in LVCG
2 and expressing it in terms of rotation of LVCG

1 ,

the first and third components of our PLAR, γ1(t) and γ3(t), are the same for both

L1 and L2.

Considering now the minimization of mutual signal information as defined in (5),

the vector
−→
V 2 over which projecting the signal gives the minimum information when

compared to the signal projected over
−→
R 2 is the rotation of the one that does so

when compared to
−→
R 1 (by following again an analogous procedure of (9) and (10)).

So the second components γ2(t) are also equal for L1 and L2.
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Figure 5: Example of PLAR from a 10 seconds ECG signal of a cardiologically healthy individual

5. Data Acquisition for First PLAR Devel-

opment

After developing theoretically the idea of the new visualization cardiologic tool we

wanted to introduce different sets of real ECGs with simplified most common anoma-

lies in order to set the value to certain model parameters, like time delay T, to an

optimum value and identifying how these changes are expressed in our PLAR space.

To do so we disposed from a large amount of ECG records of different patients and

different years. However, as strange as it may sound, current ECG records are still
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stored in the hospital database only in .pdf format, that is no voltage vectors linked

to ECG leads are stored for any patient. Then we had to work on an algorithm that

enabled us extract the electrical signals of the beats from those standardized ECGs

records with the objective of analyzing and modifying them at our will once extracted.

The main parts in which the algorithm can be split are:

1. From .pdf to .png : In order to extract numerical data from the ECG records

we convert de pdf file to png, so that as an image .png format we can work

now with a matrix (size n×m, where n and m are determined by the resolution

of the files conversion) of 0 and 1, where 1 means there is electrical signal in

certain zones of the image file and 0 means no electrical signal recorded.

2. From .png to electrical 12-lead signals: Knowing the resolution of the matrix

(eg. of the image file) and supposing each lead of the 12 lead signals is located

approximately at the same region of the standardized ECG paper, it is possible

to extract the time vectors and voltage vectors of each lead.

3. Extracting a single beat: Using the Pan and Tompkins algorithm ([5]) to detect

automatically the peak of the R-wave in the reference lead, and an averaged-

window correlation method to detect when a P-wave starts, it is possible to

extract a single 12-lead heartbeat for each patient ECG record.

4. Extra modifications at ST segment: alterations introduced artificially on the ST

segment, in different leads, have been made in order to observe how they are

shown in our space.
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Figure 6: The implementation of the algorithm allows a conversion from paper ECG records to
digital data

The main idea behind the algorithm is that, given the 0 and 1 matrix repre-

senting the image of the ECG, knowing the vertical pixel associated to 0 mV for each

lead, the vertical range of pixels where a lead signal starts and each lead duration (all

these parameters are fixes for a standardized ECG), to follow the adjacent contiguous

1s pixels (meaning signal has been recorded) over each horizontal pixel. Doing that

with resolution enough it is feasible to collect the electric voltage for each lead of a
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single heartbeat (under the assumption of low variability of the heartbeat signal over

small periods of time) from only a pdf record of the ECG (see Figure 6).

It is important to understand the limitation of our study using this method to extract

the electrical data from the ECG record. Errors and noise in the process of getting the

pdf file from the ECG recording machine, added to errors due to resolution, filtering

of the signal and R and P wave algorithm detectors can result in a total error that

is far from being null. Thus, for further testing of our visualization tool these errors

are not taken into account, but for future stages of the technology it is necessary to

perform further research in order to diminish these errors.

6. Signal Filtering and Smoothing

Once the signal has been extracted from the ECG record, a process of filtering and

smoothing the signal needs to be done in order to get rid of non-desired perturbations

and to make the 3D PLAR curve visually cooler. The difficulty is in maintaining the

electric information outputted while eliminating other electric perturbations.

Like other electrical signals, ECG signals can be corrupted by various kinds of noise.

These can be presented as low-frequency noise, where the baseline of the signal is

perturbed (known as baseline wander), and high-frequency noise. They are caused

mainly by imperfections in recording devices or sensors, and the wrong placement of

the electrodes or some shaking of the patient during the recording of the data.

For the baseline wander perturbation, it is obvious that by default the signal should
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Figure 7: Example of low frequency noise filtering using a 3rd degree polynomial fitting

be zero centered. The signal in each lead should be 0 when there is no electrical

response from a depolarization in the heart cells. For large ECG records, of the order

of minutes, there is a lot of bibliography of ECG baseline filtering, and a very common

treatment is a Chebyshev Type II filter. However for a 2.5 seconds lead signal baseline

wander that cannot be used, and simply fitting a 3rd degree polynomial by linear least

squares and substracting it from the original signal has resulted in the fastest and best

method.

Our algorithm is robust to high-frequency noise, as we will see in later chap-

ters. However in order to smooth the signal for visualization purposes and to soften

the ECG signal extracted through our data acquisition algorithm we have implemented

the Savitzky-Golay filter. This filter is designed to increase the signal-to-noise ratio,

through a convolution process, by fitting successive sub-sets of adjacent data points

with a low-degree polynomial again by linear least squares method, and its applica-
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bility in the electrocardiography field is studied in [6]. Though it can be expressed in

terms of successive coefficients, the idea of this filter is, for each point of the signal

yi , if n is the degree of the polynomial and m is the frame length (must be odd):

• Find the coefficients of the n-degree polynomial Pi ,n that bests fits the m points(
yi−m−1

2
, yi−m−1

2
+1, ... , yi−1, yi , yi+1, ... , yi+m−1

2

)
.

• Assign to the new signal the value Yi = Pi ,n(xi) instead of yi .

Note how for the first m−1
2

points the filter is not defined, and the points of the end

of the signal are used. The opposite happens for the last m−1
2

last points.

After some tuning of the parameters, it results that for our data the best combination

is n = 3 and m = 17, the same as established in [6]. This combination offers a

compromise between smoothing of the signal and relatively low error when comparing

the resulting signal to the signal non-smoothed.
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Figure 8: Zoomed image of a lead I signal of a heartbeat for the signal unfiltered and filtered using
S-Golay filter against high frequency noise

Figure 9: PLAR representation before and after smoothing the signal extracted from the ECGs
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7. ST Segment Variations

We want to test the behaviour of the PLAR new space defined to certain cardiologic

anomalies. As the space has been created theoretically and intuitively to capture and

synthesize heart electric information, though no theoretical results can be obtained,

we can start to view how experimentally it behaves. There are many ways to do so,

introducing different ECGs with anomalies. However in this step we have focused on

one common anomaly, ST segment variations. As its name suggests, this anomaly

is defined by a variation of the ST segment above or below 0.1 mV of the signal

baseline, which means 1 mm above or below it in the paper ECG. This variation can

be present in one or more leads of ECG, and it is associated to several conditions,

the most important being heart attack. Because of that, being able to observe and

understand these variations in our PLAR might enable our tool to work as a good

support in diagnosis.

7.1 Methodology

To study how different S-T segment variations are shown in our PLAR space different

artificial and manual modifications have been made to some leads. Specifically we

have introduced, separately, alterations of −2 mm, −1 mm, 1 mm and 2 mm in the

ST segment of the precordial leads V1, V2, V3, V4, V5 and V6. This alteration has

been performed by adding a clean pulse of different amplitude in the specific lead
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Figure 10: Lead V3 with fake ST deviations added before the high-frequency noise filtering

location (ST segment) for the considered ECG. An example of a lead modified is

shown in Figure 10.

We have chosen the precordial leads because, as seen in previous chapters, they are

all located in the frontal plane and we want to see how this rotation between the

leads is transformed into the PLAR space.

After that, to study the consistence of our representation to high-frequency noise,

some controlled noise (Gaussian white noise) has been added to the raw signal. Note

how despite having developed a filter against high frequency noise, we pretend to

study how our PLAR space is really affected by this noise in the ECG. The amount

of noise added is quantified through the signal to noise ratio (STNR), measured in

dB. If the signal is expressed as s(t) = e(t) + n(t) , where e(t) is the unperturbed

signal, without noise, and n(t) represents the noise, then we have

STNR = 20 · log10

(
Ae(t)

An(t)

)
(11)
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Figure 11: Heartbeat in V3 lead, raw signal and signal with added noise. Signal To Noise Ratio is
40 dB

Where Ai refers to the root mean square (RMS) amplitude of the signal i (RMS is

defined as the square root of the mean over time of the squared signal). Note how

the higher the STNR the cleaner is the signal.

7.2 Results and Observations

As expected, ST elevations in different leads are presented in different ways in our

space. In Figure 12 we can observe that all PLAR remains the same for all leads

deviations except the zone associated to the ST segment. In the zoomed image we

can appreciate how 1 mm ST deviation in different precordial leads make the resulting

PLAR differ for each lead. When comparing the PLAR curves with ST deviations to

the raw or healthy PLAR curve it has been observed that each lead ST deviation has

a direction of propagation. What is more, given a lead, in the zone of the curves

associated to the ST segment, distances in the PLAR space to the raw PLAR curve
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Figure 12: PLARs of the same beat with 1 mm ST elevations in each precordial lead

are proportional to the ST deviation in the lead. This fact is shown in Figure 13, in

which PLARs resulting from deviations in lead V3 ST segment lie in the same line,

and the distance between the curves are the same for the given deviations. Note

how a safety criterion could be established for a given patient whose standard beat is

recorded, and S-T segment deviations from it in any lead could be rapidly detected.

To better understand the rotation of the curves depending on the lead, we

present in Figure 14, for 2 independent ECG, the rotation of each curve relative to

the curve with ST elevation on lead V1.

The same angle evolution but with added noise in the signals is also pre-

sented. Then, watching these results, it can be stated that the relative rotation

between the leads is conserved in our visualization. Notice how the perturbations in

different leads only manifest in the zone linked to the ST segment. The closest lead

to V1 in angle is V2, with a 30 angle separating them approximately, and then come
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Figure 13: Zoomed image of how deviations in lead V3 are observed in PLAR

Figure 14: Angle evolution for 2 different ECGs when a 1 mm increment in ST segment is incorpo-
rated , without and with added noise. Note how the effect of the delay T is clearly observed in the
first 15 and last 15 milliseconds of the variations
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V3, V4, V5 and V6 just in order, coinciding with the vector leads distribution in space

(see Section 3.2).

Also, note how the addition of noise is clearly observed in the graphs, but the overall

distribution of angles between the leads remains the same. However, the relative

angles of V6 and V5 leads start to overlap when further noise is applied and it would

not be possible to totally distinguish them in certain zones if the signal had a STNR

greater than 40 dB.

These results constitute an example of how our tool can be used for a fast and under-

standable diagnosis tool. Compared to the VCG representation, the results perform

much better in PLAR space when it comes to isolate the anomaly and distinguish

ST-segment deviations in different leads.

8. Progressive Disease Tracking

Apart from testing how sudden changes in the signal from the heart are represented

in PLAR we would like our tool to be also useful for tracking progressive conditions.

For instance, evolving physical and physiological changes in the heart must have an

impact in the electric signal measured over years, which adequately processed through

our new technology can lead to better tracking and control of the patient. Here we

will test our hypothesis and develop our tracking methods applied to Hypertrophic

Cardiomyopathy (HCM). This is a condition in which a portion of the heart becomes

thickened without an obvious cause, which causes difficulty to pump blood. It is the
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main cause of death in young athletes. The region of the standard ECG that seems

of interest is the QRS complex. In standard ECGs, when the disease is not yet fully

developed it is hard to tell when a patient has this condition, and further medical and

more expensive tests are required (mainly Echocardiograms, EEG). Fully describing

the evolution of the condition only through ECG data would mean a decrease in the

cost of treatment and patient follow-up.

8.1 Methodology

For the theoretical development of our method we require of a standard record of

patient suffering from HCM. We disposed of 10 standard ECGs, from years 2011 to

2018, of the same patient, as his heart developed the condition. If we represent the

curves of the PLAR or the VCG representation for each year ECG, we are not able so

see any trend that make us think that the heart is getting thicker and unhealthier, as it

can be observed in Figure 15. Here we are using the QLSV matrix for generating the

VCG from the ECG signal and then obtaining also our PLAR, because as mentioned

in [1] this is the matrix that maximizes the information in the QRS complex.

In this case neither PLAR nor VCG curves evolution over time show a clear advance

of the disease or have a behaviour that expresses a trend over time.

However, if we consider that in the present (last 2018 ECG) the
−→
R and

−→
V directions

presented in 4.1 and 4.2 are the ones telling more information about the heart at

the present moment, if we project the VCGs over years over these present directions
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Figure 15: Evolution over years of PLAR and VCG representation for a HCM patient

instead of over each years
−→
R and

−→
V , we should be able to observe a trend in time.

Formally, if we call
−→
Rp and

−→
Vp to the

−→
R and

−→
V directions of the present (or last

year ECG), and
−→
Ri and

−→
Vi to those directions at ith year, how we were obtaining our

PLAR curves before was, synthetically:

Si = S(Li , QLSV ,
−→
Ri ,
−→
Vi , T )

And now we pretend to obtain a retuned Si as follows:

Si = S(Li , QLSV ,
−→
Rp,
−→
Vp, T )
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Figure 16: Retuned PLAR over years

Doing so, we can observe this retuned PLARs curves in the Figures 16 and 17.

In this case, if we focus on the main loop, one can observe that the visual repre-

sentations over the years are getting closer and closer to the last 2018 figure. It is

like the curves were unfolding over time until reaching the present state. In Figure

17 we represented only the evolution of the main QRS-complex loop of each PLAR,

as medically it should be the part that tells us more information about the heart in

HCM progressive disease.

For the automatic process of isolating the QRS complex loop in each PLAR curve, an

algorithm has been implemented. It is based in the fact that the points corresponding

to the QRS-complex, in the PLAR curve have more distance (Euclidian) from one

another than the rest of the points of the heartbeat. Or from another point of view,
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Figure 17: Main QRS loops of retuned PLAR over years

for a given heartbeat signal, it exists ε > 0 such that:

|Bε(S(r)) ∩ S(LHB)| = 1 ∀r ∈ [TQRS ,1, TQRS ,2] (12)

|Bε(S(s)) ∩ S(LHB)| > 1 ∀s ∈ [0, THB ] \ [TQRS ,1, TQRS ,2] (13)

Where Bε(S(t)) denotes the ball of radius ε in the PLAR R3 space, understanding

that S(t) is the point in the PLAR curve of the LHB ECG linked to instant of time t;

and the interval [TQRS ,1, TQRS ,2] denotes the time interval in which the QRS complex

is taking place in the standard ECG. Again, consider the notation in the context of

discrete temporal space, and see also how for ε small enough, the expression (12)

holds ∀t ∈ [0, THB ].

What the relations in (12) is saying is that there is no other S(LHB) points at a lower
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distance than ε of the point S(r) than the own S(r), while this does not hold for

the same ε when the points do not belong to the QRS complex. Applying a weaker

variant of this property (code presented in Appendix B) it is possible to isolate the

PLAR main loops as represented in Figure 17 and study their tendency over the years.

8.2 TDR: Today-Related Coefficient

Once we have observed the graphical tendency of the main loops of the PLAR over

the years to get closer and unfolding to the final or present PLAR curve, it is time to

define a metric to assess these differences. We do this with the objective of quanti-

fying how different is each ith curve to the final or present curve, and see if there is

effectively a trend over years due to the HCM condition. Also we will use the metric

to check if our new representation is capable of capturing the physiological and phys-

ical changes that are taking place in the heart, which we will relate to parameters

extracted from EEG over years.

Different metrics have been considered and studied. We would like to have a coeffi-

cient associated to each year PLAR curve to measure how close is the figure to the

final PLAR (we call it TRC: Today-Related Coefficient). The metric that seems to

best capture the evolution of the curves and that best correlates to changes in EEG

parameters is the following:

TRC i =
1

Tl

∫
l

−−→
Si(t) ·

−−−→
Sp(t)dt (14)
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This is a theoretical formula, where each i years PLAR main loop position vector is

represented by
−−→
Si(t) ;

−−−→
Sp(t) is the present or last years PLAR main loop position

vector; l refers to the integration domain of the curves, referring to the PLAR main

QRS loop, and Tl is the duration of the PLAR main QRS loop. However, as each

years heartbeat time duration does not have to be equal, and the PLAR main loops

are not continuous but discrete curves, for practical purposes we use an analogous

expression:

TRC i =
1

Ni

Ni∑
j=1

−−→
Si(j) ·

−−→
Sp(j) (15)

Where now Ni refers to the minimum number of points between the Si curve and Sp

curve, and j refers to the j-th point of the Sp curve.

Generally the number of points in Si and Sp is different, as they are heartbeats taken

at different years. Suppose Ni is the number of points in Si and let M be the points

in Sp, such that M > Ni (if its the opposite the process described is analogous). In

order to synchronize the position vectors multiplied at each term of the summation

in the previous expression, we will approximate or relocate the terms
−−→
Sp(j) present

inside the sum of expression (15) as:

−−→
Sp(j) ≈

(
j

Ni
M − j1

)
·
−−−→
Sp(j1) +

(
j2 −

j

Ni
M

)
·
−−−→
Sp(j2) (16)

Where j1 = b j
Ni

Mc and j2 = d j
Ni

Me. See how the terms multiplying
−−−→
Sp(j1) and

−−−→
Sp(j2)

are between 0 and 1, and adding them equals 1.

Note again how we proposed this metric with the intention of capturing the tendency
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Figure 18: TRC evolution over the disease period

of the retuned PLAR curves over years after knowing how was their behaviour.

Having defined our metrics as in (15), it is obvious that TRC i will have a greater

value when the i curve is very close to the final p curve and a lower (even negative)

value when the shapes of the 2 curves differ (supposing
−−→
Si(j) and

−−→
Sp(j) have more or

less the same modulus for each j and i).

8.3 Results and Observations

Plotting the evolution of the TRC over the years we see how, in Figure 18, there

is a trend of our parameter increasing, meaning the curves are getting closer to the

last PLAR curve. Note how there are 3 points associated to 2017 (there are 3 ECGs

from that year) and 2 to 2018 (the last being the maximum value). Globally TRC is

increasing over time, though in 2017 something changes. However, we do not want
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Figure 19: Retuned PLARs and TRC evolution over years for a healthy individual.

our space and parameter to express solely time progression, but to be able to track

physical and physiological changes of the heart as it suffers the disease.

The evolution of TRC in Figure 18 is significant and we hypothesize that is due to the

heart disease HCM. For instance, if we study the evolution of TRC as defined for a

healthy individual over years (without any noticeable heart conditions) as well as the

retuned PLAR QRS-complex loop curves, we observe that there is not a progression

or a behaviour that could make us think that the heart is getting worse (see Figure

19). The PLAR curves are close to one another and very similar for all the years in

this case, which did not happen in the case of the HCM patient, and the evolution

of the TRC looks like random noise around a baseline signal, which depends on the

amplitude of the PLAR curve. Apart from that note how the TRC values are between

0.3 and 0.5, while in the HCM case these values fluctuated from −0.2 to 2.5. For

healthy individuals that would be the expected result over years, no abnormalities

observed in the ECG follow-up over time.
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Physiological Tracking

Going back to the HCM case, a commonly used parameter to check the functioning of

the heart is the Ejection Fraction (EF ), obtained from EEG test. This is the volumetric

fraction of blood ejected from the heart, usually referring to the left ventricle, and

its expression is: EF (%) = SV
EDV
· 100, where SV refers to stroke volume (difference

of volumes just before and after the contraction) and EDV to end-diastolic volume

(volume of ventricle just before contraction). It is a measure of pumping efficiency.

Healthy individuals have EF between 50% and 65%. Over the years EF is changing

accordingly to the progression of the HCM condition. To see if there is statistical

correlation between EF and TRC for each year, a commonly used technique is to

normalize the features (divide by the maximum value achieved in all the years) and

see if there is a linear correlation between them. The results of doing so are shown in

Figure 20. We should mention that the value of EF normalized does not equal 1 in

any represented point because it is considered that the maximum of EF takes place

in 2010, and it is used this value to normalize the feature.

In this case the statistical correlation R2 of the 2 magnitudes EF normalized and TRC

normalized is 0.8368. Albeit there is not a clear linear relation, which may be due to

human variability, the R2 coefficient is high enough to justify further studies in this

field, with several patients, while tuning certain model parameters (like T , the matrix

M or modify the metric) for the optimum physiological tracking through TRC .
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Figure 20: Normalized EF vs. normalized TRC

Physical Tracking

Another commonly used parameter to check hearts functioning is Posterior Wall

Thickness (PWT ). It refers to the average left ventricular wall thickness (measured

in mm). In this case, this parameter is also of interest because as heart suffers from

HCM, the ventricular wall is getting thicker. In average adults a PWT of 11 mm is

normal, reaching 13 mm in certain athletes, while it being higher means hypertrophy

of certain part of the heart. Again to see if there is statistical correlation between

PWT and TRC an analogous procedure than the one in Physiological Tracking has

been followed, resulting in Figure 21. See again that the R2 coefficient could be

higher; there is not an obvious linear relation between our TRC and the physical

parameter studied. However, also the R2 is high enough to justify further studies in

this field and development of the new tool.
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Figure 21: Normalized PWT vs. Normalized TRC

9. Future Work

There is still much work to do in order to understand the complexity of PLAR and

how we can use it to detect other heart anomalies. It would be senseless to believe

at this point that the same parameters for generating the PLAR curve would work

for helping in diagnose of several different diseases. So now would be the time to

test our visualization tool in some more patient ECGs with different conditions, while

tuning the parameters in black used to obtain the PLAR curve:

S = S(L, M,
−→
R ,
−→
V , T)

However, even the
−→
R and

−→
V directions could be modified in the future in order to

improve patient-specificity of our representation depending on the condition studied.

Also, about following the physical and physiological state of the heart over time
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as we tried to do in Section 8, other metrics or methods can be applied with the

objective of tracking the heart progression using only electrical data. A possible

future step could be to study the PLAR curves obtained over time through different

curve parameters. During this project we tried to work with local curve parameters to

try to find a better tracking metric, through the numerical computation of the local

Frenet Trihedral, curvature and torsion for each point of the PLAR curve (wellknown

concepts in the Differential Geometry field used to characterize the behaviour of a

given 3D curve). Even though there is not a theoretical evidence that this might be

a useful path, we hypothesized from Figure 17 that a metric able to better capture

the evolution of the PLAR main QRS-complex loops over time would have to take

more complex parameters of the PLAR curves compared into account.

We developped an algorithm that calculates the local Frenet Trihedral, curvature and

torsion for each point of the QRS-complex loop of the PLAR from the whole PLAR

curve, as shown in Figure 22. Note how it is evident here how the PLAR curve

is composed of several discrete points, and that computing numerically the curve

parameters may result at some point in not having a smooth evolution of the vectors

of the Frenet Trihedral (due to errors or noise that are magnified in the computation of

the derivatives of the curves). So for future work the signal acquisition and processing

needs to be accurate.

The fact that we have not been able to find a consistent metric using these

parameters does not mean that they are useless. Further investigation and develop-

ment needs to be carried out to relate better the PLAR curve to heart state using
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Figure 22: From a PLAR curve we are able to compute the Frenet Trihedral, curvature and torsion
for each point of the QRS-complex loop.

the concepts introduced here or others.
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10. Conclusions

This thesis constitutes the first development steps of the PLAR new visualization tool.

We have been able to define a three-dimensional space, using the power of applied

mathematics, where subtle changes in ECGs are represented. As a first example, ST

segment deviations can be characterized when they take place in different precordial

leads. Also the defined space seems to be consistent to noise in the ECG data.

We also wanted our tool to be able to help tracking progressive heart diseases. We

developed a method which a priori can distinguish between healthy and HCM affected

individuals after studying their ECGs over years, and we obtained relatively good re-

sults when tracking physical and physiological properties evolution to the HCM process

over time. Because of that many specialized and expensive tests performed only to

know the current physical and physiological state of the heart, like echocardiograms

or X-ray analysis, could be avoided, and this fact could mean a change in medical

care for good.

Albeit we did not solve all the problems presented in the introduction, we proposed

a line of investigation that may be of interest. This thesis finishes here, but it opens

a door to long term projects and further work that could end up in what we initially

expected from the tool, that is becoming a good support tool for medical assessment

in the complex field of cardiology.
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A. APPENDIX A

A.1 Orthogonalization matrix

In the Section 3.2 we mention the existence of different M orthogonalization matrix

used for going from a R8 space to R3, that is for creating the VCG space. Through

the thesis we use D and QLSV matrix to reconstruct better different parts of the

ECG, though PLSV is also used in literature.

D =


−0.172 −0.074 0.122 0.231 0.239 0.194 0.156 −0.010

0.057 −0.019 −0.106 −0.022 0.040 0.048 −0.227 0.887

−0.228 −0.310 −0.245 −0.063 −0.054 0.108 0.021 0.102



QLSV =


−0.147 −0.058 0.037 0.139 0.232 0.226 0.199 −0.018

0.023 −0.085 −0.003 0.033 0.060 0.104 −0.146 0.503

−0.184 −0.163 −0.190 −0.119 −0.023 0.043 0.085 −0.130



PLSV =


−0.266 0.027 0.065 0.131 0.203 0.220 0.370 −0.154

0.088 −0.088 0.003 0.042 0.047 0.067 −0.131 0.717

−0.319 −0.198 −0.167 −0.099 −0.009 0.060 0.184 −0.114


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B. APPENDIX B (Matlab code)

In this section we present the most fundamental code implemented in the project.

The different functions here allow us to:

• ecg to vcg.m : Calculate the resulting VCG of a given ECG data

• findRvect.m : Compute the vector R over which projecting the VCG data gives

a maximum value

• vcg to plar.m : From a three-dimensional representation of electrical informa-

tion in form of VCG, we follow the methodology explained to get to our PLAR

curve

• get QRS loop.m : Isolate the main QRS loop from a PLAR curve

• metric curves.m : Given 2 curves, it computes the metric that tells how much

different are from each other. It is the implementation of the expression in (15).

Finally we present an example of how all these functions can be concatenated

to, from an ECG signal in a pdf format, obtain a PLAR representation, and compute

the difference between 2 different ECGs in the PLAR space.
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Matlab Code

1 f u n c t i o n [ Port ] = e c g t o v c g ( P , m )
2 % Trans forms t h e 12 l e a d ECG i n P to t h e 3 l e a d VCG i n

Port
3 % m = 1 f o r u s i n g Dower m a t r i x ;
4 % m = 2 f o r u s i n g PLSV m a t r i x ;
5 % m = 3 f o r u s i n g QLSV m a t r i x ;
6 i f m == 1
7 %Dower
8 D = [−0.172 , −0.073 , 0 . 1 2 2 , 0 . 2 3 1 , 0 . 2 3 9 , 0 . 1 9 3 ,

0 . 1 5 6 , −0.009;
9 0 . 0 5 7 , −0.019 , −0.106 , −0.022 , 0 . 0 4 0 , 0 . 0 4 8 ,

−0.227 , 0 . 8 8 6 ;
10 −0.228 , −0.310 , −0.245 , −0.063 , 0 . 0 5 4 , 0 . 1 0 8 ,

0 . 0 2 1 , 0 . 1 0 2 ] ;
11 e l s e i f m == 2
12 %PLSV
13 D = [−0.266 , 0 . 0 2 7 , 0 . 0 6 5 , 0 . 1 3 1 , 0 . 2 0 3 , 0 . 2 2 0 ,

0 . 3 7 0 , −0.154;
14 0 . 0 8 8 , −0.088 , 0 . 0 0 3 , 0 . 0 4 2 , 0 . 0 4 7 , 0 . 0 6 7 , −0.131 ,

0 . 7 1 7 ;
15 −0.319 , −0.198 , −0.167 , −0.099 , −0.009 , 0 . 0 6 0 ,

0 . 1 8 4 , −0.114] ;
16

17 e l s e i f m == 3
18 %QLSV
19 D = [−0.147 , −0.058 , 0 . 0 3 7 , 0 . 1 3 9 , 0 . 2 3 2 , 0 . 2 2 6 ,

0 . 1 9 9 , −0.018;
20 0 . 0 2 3 , −0.085 , −0.003 , 0 . 0 3 3 , 0 . 0 6 0 , 0 . 1 0 4 ,

−0.146 , 0 . 5 0 3 ;
21 −0.184 , −0.163 , −0.190 , −0.119 , −0.023 , 0 . 0 4 3 ,

0 . 0 8 5 , −0.130] ;
22 e l s e
23 p r i n t f ( ’ Only 0 , 1 , 2 o r 3 ’ )
24 end
25 l e a d s = [ 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 , 2 ] ;
26 Port = (D∗P ( : , l e a d s ) ’ ) ’ ;
27 end
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1 f u n c t i o n [ R ] = f i n d R v e c t ( VCG )
2 % F i n d s t h e R v e c t o r m a x i m i z i n g t h e v a l u e o f t h e

p r o j e c t i n g VCG o v e r t h a t
3 % d i r e c t i o n ( note i s t h e same as m a x i m i z i n g a b s o l u t e

v a l u e o f t h e p r o j e c t i o n )
4 f o b j = @( v ) −max ( p r o j e c t (VCG, v ) ) ; %We d e f i n e t h e

f u n c t i o n we want to o p t i m i z e
5 % These l i n e s a r e to s t a r t t h e o p t i m i z a t i o n o f t h e

f u n c t i o n c l o s e enough to
6 % t h e optimum R v e c t o r
7 THETA = 0 : 0 . 0 1∗ p i : 2∗ p i ;
8 PHI = 0 : 0 . 0 1∗ p i : p i ;
9 [THETA, PHI ] = m e s h g r i d (THETA, PHI ) ;

10 X = co s (THETA) .∗ s i n ( PHI ) ;
11 Y = s i n (THETA) .∗ s i n ( PHI ) ;
12 Z = c os ( PHI ) ;
13 F = z e r o s ( s i z e (Z , 1 ) , s i z e (Z , 2 ) ) ;
14 f o r i = 1 : s i z e (Z , 1 )
15 f o r j = 1 : s i z e (Z , 2 )
16 F ( i , j ) = f o b j ( [ X( i , j ) ; Y( i , j ) ; Z( i , j ) ] ) ;
17 end
18 end
19 [M, J ] = min ( F ) ;
20 [ a n y t h i n g , i ] = min (M) ;
21 j = J ( i ) ;
22 t h e t a = THETA( 1 , i ) ;
23 p h i = PHI ( j , 1 ) ;
24 %Now we know t h e c i l i n d r i c c o o r d i n a t e s o f t h e v e c t o r

s t a r t i n g t h e
25 %i t e r a t i o n to f i n d R
26 v0x = c os ( t h e t a ) .∗ s i n ( p h i ) ;
27 v0y = s i n ( t h e t a ) .∗ s i n ( p h i ) ;
28 v0z = co s ( p h i ) ;
29 v0 = [ v0x ; v0y ; v0z ] ;
30 R = fminunc ( f o b j , v0 ) ; % We use t h e Matlab non− l i n e a r

o p t i m i z a t i o n t o o l g i v e n a f i r s t v a l u e f o r i t e r a t i n g
31 R = R/norm (R) ; % We make s u r e t h e v e c t o r o b t a i n e d i s

n o r m a l i z e d
32 end
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1 f u n c t i o n [ p l a r ] = v c g t o p l a r (VCG, T)
2 % g e t s t h e PLAR r e p r e s e n t a t i o n o f t h e VCG s i g n a l , w i t h

d e l a y T
3 % f i n d R d i r e c t i o n
4 R = f i n d R v e c t (VCG) ;
5 R = R ( : ) ;
6 % f i n d V d i r e c t i o n
7 [ THETA, PHI , I ] = c o r r e l a t i o n s u r f a c e (VCG, R) ;
8 [M, J ] = min ( I ) ;
9 [ a n y t h i n g , i ] = min (M) ;

10 j = J ( i ) ;
11 t h e t a = THETA( 1 , i ) ;
12 p h i = PHI ( j , 1 ) ;
13 V = [ c os ( t h e t a ) .∗ s i n ( p h i ) , s i n ( t h e t a ) .∗ s i n ( p h i ) , c os ( p h i

) ] ’ ;
14 e1 = VCG∗R ; % P r o j e c t t h e VCG to R d i r e c t i o n : F i r s t

component o f PLAR
15 e2 = VCG∗V ; % P r o j e c t t h e VCG to V d i r e c t i o n : Second

component o f PLAR w i t h o u t d e l a y
16 gamma1 = e1 ( 1 : end ) ; % F i n a l F i r s t component
17 gamma2 = e2 (T+1: end ) ; % F i n a l Second component
18 gamma3 = e1 (T+1: end ) ; % F i n a l t h i r d component
19 k = min ( [ l e n g t h (gamma1) , l e n g t h (gamma2) , l e n g t h (gamma3)

] ) ; % To make components have t h e same l e n g t h
20 gamma1 = gamma1 ( 1 : k ) ;
21 gamma2 = gamma2 ( 1 : k ) ;
22 gamma3 = gamma3 ( 1 : k ) ;
23 p l a r = [ gamma1 ( : ) ,gamma2 ( : ) ,gamma3 ( : ) ] ;
24 end
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1 f u n c t i o n [ QRS loop ] = get QRS loop ( p l a r )
2 % I s o l a t e s t h e main QRS l o o p from t h e PLAR c u r v e i n

p l a r
3 x = p l a r ( : , 1 ) ; y = p l a r ( : , 2 ) ; z = p l a r ( : , 3 ) ;
4 n = l e n g t h ( p l a r ) ;
5 l o n g = 0 ; % The l o n g i t u d e o f t h e QRS loop a t each

i t e r a t i o n
6 eps = 0 . 0 0 8 ; % We s t a r t i t e r a t i n g w i t h e p s i l o n r e a l l y

s m a l l
7 deps = 0 . 0 0 2 ; % Parameter we w i l l i n c r e m e n t eps a t

each i t e r a t i o n
8 p e r c = 0 . 0 8 ; % To e n s u r e t h e l o o p o b t a i n e d i s l o n g

enough ; We s e t 8% o f t h e l e n g t h o f a l l PLAR ;
9 % We compute t h e d i s t a n c e s between each p o i n t and t h e

s u b s e q u e n t o f t h e
10 % p l a r
11 p0 = [ x ( 1 ) ; y ( 1 ) ; z ( 1 ) ] ;
12 v e c t d i s t = z e r o s ( n−1 ,1) ;
13 f o r i =2:n
14 p1 = [ x ( i ) ; y ( i ) ; z ( i ) ] ;
15 v e c t d i s t ( i −1) = norm ( p1−p0 ) ;
16 p0 = p1 ;
17 end
18 v e c t d i s t = v e c t d i s t ( : ) ;
19 v e c t d i s t = s g o l a y f i l t ( v e c t d i s t , 3 , 1 7 ) ; % We smooth

t h e d i s t a n c e s v e c t o r to a v o i d n o i s y e r r o r s
20 w h i l e ( long<p e r c ∗n )
21 v e c t i n d = [ ] ;
22 e n t r a t = 0 ; % Parameter t h a t c o n t r o l s when to s t o p

a f t e r g e t t i n g a l l QRS−l o o p
23 eps = eps+deps ;
24 f o r i =2:n
25 i f ( v e c t d i s t ( i −1)>eps )
26 e n t r a t = 1 ;
27 v e c t i n d = [ v e c t i n d ; i ] ; % We add t h e

i n d i x e s t h a t f u l f i l l t h e s t a b l i s h e d
c r i t e r i a

28 e l s e
29 i f ( e n t r a t ==1)
30 b r e a k
31 end
32 end
33 end
34 l o n g = l e n g t h ( v e c t i n d ) ;
35 end
36 QRS loop = [ x ( v e c t i n d ) , y ( v e c t i n d ) , z ( v e c t i n d ) ] ;
37 end
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1 f u n c t i o n [ my metr ] = m e t r i c c u r v e s ( Si , Sp , term )
2 % Computes t h e m e t r i c i n my metr o f S i and Sp , as

e s t a b l i s h e d i n ’ term ’
3 % term = 1 f o r c a l c u l a t i n g t h e ’ d i s t a n c e ’ t h r o u g h

m e t r i c 1 ( used i n t h e s i s )
4 % term = 2 f o r c a l c u l a t i n g t h e ’ d i s t a n c e ’ t h r o u g h

m e t r i c 2
5 % term = 3 f o r c a l c u l a t i n g t h e ’ d i s t a n c e ’ t h r o u g h

m e t r i c 3
6 n = l e n g t h ( S i ) ; m = l e n g t h ( Sp ) ;
7 N = min ( n ,m) ;
8 M = max ( n ,m) ;
9 i f (N==n )

10 c1 = S i ; c2 = Sp ;
11 e l s e
12 c1 = Sp ; c2 = S i ;
13 end
14 my metr = 0 ;
15 %c1 i s t h e s h o r t e s t c u r v e
16 %c2 i s t h e l o n g e s t c u r v e
17 %We compute t h e sum as e s t a b l i s h e d i n m e t r i c p a r a m e t e r

’ term ’
18 f o r i =1:N
19 j = i ∗M/N; % We a p p r o x i m a t e t h e l o c a t i o n o f t h e

l o n g e s t
20 % c u r v e r e l a t e d to t h e i n d e x i o f t h e

s h o r t e s t c u r v e
21 j 1 = f l o o r ( j ) ; j 2 = c e i l ( j ) ;
22

23 i f ( term == 1)
24 x y z h e r e = ( c2 ( j1 , : ) + c2 ( j2 , : ) ) / 2 ;
25 my metr = my metr + norm ( x y z h e r e − c1 ( i , : ) ) ;
26 e l s e i f ( term == 2)
27 x y z h e r e = ( c2 ( j1 , : ) + c2 ( j2 , : ) ) / 2 ;
28 x y z h e r e = x y z h e r e ( [ 1 3 ] ) ;
29 my metr = my metr + norm ( x y z h e r e − c1 ( i , [ 1

3 ] ) ) ;
30 e l s e i f ( term == 3)
31 x y z h e r e = ( c2 ( j1 , : ) + c2 ( j2 , : ) ) / 2 ;
32 my metr = my metr + x y z h e r e ∗( c1 ( i , : ) ’ ) ;
33 e l s e
34 f p r i n t f ( ’ Wrong term number ’ )
35 end
36 end
37 my metr = my metr /N;
38 end
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All the functions can be concatenated in a simple Matlab Script . Note

how the function extract signals uses the algorithm described in Section 5 to get the

data from an ECG in pdf format to numerical.

1 %% Compute and r e p r e s e n t our PLAR c u r v e o f a pdf p a p e r
2 ECG = e x t r a c t s i g n a l s ( ’ ECG example . pdf ’ ) ;
3 % Here we o b t a i n a 12 x n m a t r i x i n ECG (12 l e a d s o f

normal ECG)
4

5 matr = 1 ;
6 VCG = e c g t o v c g (ECG , matr ) ;
7 T = 1 5 ; % Time d e l a y , i n t ime s a m p l e s
8 PLAR = v c g t o p l a r (VCG, T) ;
9

10 f i g u r e ( )
11 p l o t 3 (PLAR ( : , 1 ) , PLAR ( : , 2 ) , PLAR ( : , 3 ) ) % To show our PLAR

r e p r e s e n t a t i o n
12

13 %% Compute t h e d i f f e r e n c e o f 2 d i f f e r e n t PLAR main l o o p s
t h r o u g h an e s t a b l i s h e d m e t r i c

14 ECG2 = e x t r a c t s i g n a l s ( ’ ECG example2 . pd f ’ ) ;
15 VCG2 = e c g t o v c g (ECG2 , matr ) ;
16 PLAR2 = v c g t o p l a r (VCG2 , T) ;
17

18 S1 = get QRS loop (PLAR) ;
19 S2 = get QRS loop (PLAR2) ;
20 term = 1 ;
21 my metr i c = m e t r i c c u r v e s (PLAR , PLAR2 , term )
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In addition we include the code implemented to compute, given a 3D curve,

the Frenet concepts (orthogonal vectors at each point: Tangent, Normal and Binor-

mal, along with curvature and torsion) introduced in Future Work Section.

1 f u n c t i o n [ T, N, B , k , t ] = g e t f r e n e t t r i h e d r a l ( x , y , z )
2 % Given t h e x , y , z components o f t h e p o i n t s i n a curve ,

t h i s f u n c t i o n
3 % c a l c u l a t e s t h e Tangent , Normal and Binormal v e c t o r s

o r t h o n o r m a l base a t
4 % each p o i n t , a l o n g w i t h t h e c u r v a t u r e k and t o r s i o n t
5 % F i r s t we want a l l components as column v e c t o r s
6 x = x ( : ) ;
7 y = y ( : ) ;
8 z = z ( : ) ;
9 % We c a l c u l a t e t h e d e r i v a t i v e s

10 dx = g r a d i e n t ( x ) ;
11 dy = g r a d i e n t ( y ) ;
12 dz = g r a d i e n t ( z ) ;
13 dr = [ dx dy dz ] ;
14 % We c a l c u l a t e t h e 2nd d e r i v a t i v e s
15 ddx = g r a d i e n t ( dx ) ;
16 ddy = g r a d i e n t ( dy ) ;
17 ddz = g r a d i e n t ( dz ) ;
18 ddr = [ ddx ddy ddz ] ;
19 % The t a n g e n t v e c t o r s w i l l be ( each c o o r d i n a t e r e f e r s to

t h e r e s p e c t i v e p o i n t i n t h e c u r v e )
20 T = dr . / mag( dr , 3 ) ;
21 % From T we g e t a l s o i t s d e r i v a t i v e s
22 dTx = g r a d i e n t (T ( : , 1 ) ) ;
23 dTy = g r a d i e n t (T ( : , 2 ) ) ;
24 dTz = g r a d i e n t (T ( : , 3 ) ) ;
25 dT = [ dTx dTy dTz ] ;
26 % We c a l c u l a t e t h e normal v e c t o r ( s e e mag f u n c t i o n a t t h e

end )
27 N = dT . / mag(dT , 3 ) ;
28 % And t h e b i n o r m a l v e c t o r
29 B = c r o s s (T,N) ;
30 % Now t h e c u r v a t u r e
31 k = mag( c r o s s ( dr , ddr ) , 1 ) . / ( ( mag( dr , 1 ) ) . ˆ 3 ) ;
32 % We compute t h e 3 rd d e r i v a t i v e s
33 dddx = g r a d i e n t ( ddx ) ;
34 dddy = g r a d i e n t ( ddy ) ;
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35 dddz = g r a d i e n t ( ddz ) ;
36 dddr = [ dddx dddy dddz ] ;
37 % And f i n a l l y t h e t o r s i o n
38 t = vdot ( c r o s s ( dr , ddr ) , dddr ) . / mag( c r o s s ( dr , ddr ) , 1 )

. ˆ 2 ;
39

40 % S u b f u n c t i o n s used :
41 f u n c t i o n V = vdot (A , B) ,
42 V=z e r o s ( s i z e (A, 1 ) , 1 ) ;
43 f o r i =1: s i z e (A, 1 )
44 V( i ) = dot (A( i , : ) , B( i , : ) ) ;
45 end
46

47 f u n c t i o n N = mag(T, n ) ,
48 N = sum ( abs (T) . ˆ 2 , 2 ) . ˆ ( 1 / 2 ) ;
49 d = f i n d (N==0) ;
50 N( d ) = eps ∗ ones ( s i z e ( d ) ) ;
51 N = N ( : , ones ( n , 1 ) ) ;
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