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Abstract
Wave-storms are the responsible of the main changes in the Coast. Their detailed
characterization results in a better design of any marine structure. The most com-
mon approach to describe wave-storms is to simplify the event by taking the sig-
nificant wave-height (Hp), peak period (Tp) and direction (θ∗p) at the peak of the
storm and treating these variables independently. However, it is well accepted that
some relationship should exist between them. What is more, the development of
sophisticated numerical models in Coastal Engineering are demanding additional
variables such as the duration of the wave-storm (D), the amount of associated en-
ergy (E), temporary evolution of the variables and their relationship to atmospheric
climate-indices, to better reproduce the simulated processes.
The main objectives and results of this thesis are as follows. First, wave-storms in the
present wave climate of the Catalan Coast are characterized, assuming stationarity.
The wave-storm variables modelled are: the energy at the peak of the wave-storm
(Eu), Tp, E, D, θ∗p and the proportions of time from the start to the storm peak and
from the storm peak to the end (growth-decay rates). E, Eu, Tp and D are fit by
generalized Pareto distributions (GPD). Their joint probability structure is charac-
terized by a hierarchical Archimedean copula (HAC). θ∗p is characterized through a
mixture of von Mises-Fisher probability distribution functions and related to E, Tp
and D through a multinomial logistic model. The growth-decay rates are related
to D through third degree polynomials. A triangle and an irregular-trapezoid are
proposed to model the wave-storm shape.
In the present climate of the Catalan Coast, the constructed statistical model can
serve to generate synthetic wave-storms. The most predominant θ∗p are north and
east. The most appropriate geometric figure to describe the evolution of the wave-
height is a irregular-trapezoid. For D over 100h, the peak of the wave-storm is
generally closer to the end of the wave-storm than to the start.
After establishing a stationary model, non-stationarity is incorporated into the char-
acterization of wave-storms in the Catalan Coast. E, Hp, Tp and D are character-
ized through non-stationary GPDs. The wave-storm threshold, the wave-storminess
and the parameters of the GPDs are related to North Atlantic Oscillation (NAO),
East Atlantic pattern (EA) and Scandinavian pattern (SC) and their first two time-
derivatives, through Vectorial generalized additive models. The joint probability
structure is characterized by a pseudo-time-dependent HAC. A severe greenhouse
gas emission scenario is considered.
The mean values of all wave-storm variables decrease in the 21st century, except
for D in the northern part of the coast. A negative NAO may cause an increase
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in wave-storminess; the wave-storm threshold and the GPD parameters are most
influenced by the dynamics of the climate-patterns, rather than by the climate-
patterns themselves.
The non-stationary methodology is repeated in the northwestern Black Sea, con-
sidering both a mild and a severe emission scenarios. Here, wave-storminess is
not affected by the proposed climate-patterns, whereas the wave-storm threshold is
strongly influenced by SC and EA. The average value of the wave-storm variables
seem to have a more positive trend than in the Catalan Coast, and it is observed
that an increase in mean values is related to an increase in variance. SC and EA
also strongly influence the parameters of the GPDs.
In the two study areas, the dependence between E and D is high, while the general
dependence among the wave-storm variables is medium. In the Catalan Coast, it is
expected that the dependence between E and D should increase with time. In the
northwestern Black Sea, it is the dependence among all the wave-storm variables
that increases with time, in both emission scenarios; the severe emission scenario
presents less dependence among wave-storm variables.
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Resumen
Los temporales de mar provocan gran parte de las cambios a la costa. Sus caracter-
ización detallada tiene como consecuencia un mejor diseño de cualquier estructura
marina. El enfoque más común para describir los temporales de mar es simpli-
ficar este suceso tomando la altura de ola significante (Hp), el periodo pico (Tp) y
la dirección (θ∗p) en el pico de la tormenta y tratándolas de forma independiente.
Sin embargo, está ampliamente aceptado que exista al menos alguna relación entre
ellas. Es más, el desarrollo de sofisticados modelos numéricos en la Ingeniería de
Costas pide variables adicionales como la duración de tormenta (D), la cantidad
de energía asociada (E), la evolución temporal de las variables y su relación con
índices climáticos atmosféricos, todo para una mejor reproducción de los procesos
simulados.
Los objetivos y resultados principales de esta tesis son lo siguiente. Primero, se
caracteriza tormentas de mar en el clima de oleaje presente, de la costa catalana,
suponiendo estacionalidad. Las variables modeladas son: la energía unitaria en el
pico del temporal (Eu), Tp, E, D, θ∗p y la proporción de tiempo desde el inicio hasta
el pico y desde el pico al final del temporal (ratios de crecimiento-decrecimiento).
Se caracteriza E, Eu, Tp y D con distribuciones generalizadas de Pareto (GPD), y
se caracteriza la estructura de probabilidades conjunta de estas variables vía una
cópula jerárquica arquimedeana (HAC). Se caracteriza θ∗p con una combinación de
distribución de probabilidad de von Mises-Fisher y se le relaciona con E, Tp y D
a través de un modelo logístico multinomial. Se propone una forma triangular o
trapezoide-irregular para modelar la forma del temporal.
En el clima presente de la coasta catalana, el model estadístico construido puede
generar temporales sintéticos. Las θ∗p principales son el norte y el este. La figura
geométrica que mejor describe la evolución de la altura de ola es un trapezoide
irregular. Para D mayor que 100h, el pico del temporal está generalmente más
cerca del final que del principio. La media de cada variable decrece en el siglo 21,
excepto la de D, en el norte de la costa. Una NAO negativa puede causar una
subida de la tormentosidad. Además, el umbral de tormenta y los parámetros de
GPD están influenciados principalmente por la dinámica de los patrones climáticos,
en vez de serlo por los propios patrones climáticos.
Después de establecer un modelo estacionario, se incorpora la no estacionalidad a
la caracterización de temporales de mar en la costa catalana. Se caracteriza E,
Hp, Tp y D con GPDs no estacionarios. El umbral de temporal, la tormentosidad
y los parámetros de los GPDs están relacionados con la Oscilación de Atlántico
norte (NAO), el Patrón de Atántico oriental (EA) y el Patrón escandinavo (SC)
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y sus primeras dos derivadas temporales, a través de Modelos aditivos generaliza-
dos vectoriales. Se caracteriza la estructura de probabilidades conjunta con un
HAC pseudo-dependiente del tiempo. Se considera un escenario grave de Cambio
climático.
Se repite la metodología no estacionaria en el noroeste del Mar negro, considerando
tanto un escenario suave de Cambio climático como otro grave. En el noroeste del
Mar negro, la tormentosidad de mar no está afectada por los patrones climáticos
propuestos, todo y que el umbral de temporal está fuertemente influenciada por SC
y EA. Los valores medios de las variables de temporal parecen tener una tendencia
más positiva que en la costa catalana, y se observa que una subida de los valores
medios se relaciona con otra subida de las varianzas. SC y EA afectan fuertemente
a los parámetros de los GPDs.
En las dos zonas de estudio, la dependencia entre E y D es alta, mientras que la
dependencia general entre las variables de temporal es media. En la costa catalana,
se espera que la dependencia entre E y D crezca con el tiempo. En el noroeste
del Mar negro, es la dependencia entre todas las variables de temporal la que crece
con el tiempo, en ambos escenarios de Cambio climático; el escenario grave presenta
menos dependencia entre las variables.
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1. Introduction

Human populations exhibit a predisposition to occupy the coastal fringe. The projec-
tions for population at the coastal zone show more demographic growth than inland
areas (Merkens et al. (2016); Neumann et al. (2015)). There is a variety of reasons
for this phenomenon: compared to continental regions, coastal areas present benefits
such as a milder weather, better communications and cheaper means of transporta-
tion, by means of maritime transportation, as well as fishery as a resource of food
(Small and Nicholls (2003)). In some countries, the sea water is even a resource of
fresh water for daily use. The coast is often a vulnerable environment, which natural
ecosystem needs constant care and protection against natural hazards such as wave
storms. Other elements on the coast, such as harbours and promenades, are also
prone to destruction by the same hazard. The action of wave storms require special
attention, for their severity (Sánchez-Arcilla et al. (2008b)). However, due to their
scarcity in number, they are not well understood, which lead to the fact that they
are not easily predictable.
A first question to ask oneself should be “what is an extreme event?” (Embrechts
et al. (1997)). They are those episodes that are extraordinary in nature, based on the
criteria of one indicator. In engineering, the importance of wave-storms are remarked
as they are the design values to be used for infrastructure. However, this argument
only holds valid in a world with a single stressor (the hydrodynamic forcing) or
within a stationary framework. The actual assessment should be multivariate, which
grows complicated when the variables have joint dependence of non-linear nature.
Also, Climate Change make it necessary to consider a non-stationary framework for
future wave climate (Wang et al. (2015a)). These two approaches are explored in
this thesis.

1.1. Motivation

Wave storms strongly perturb the state of coastal environments. Such changes
become concomitant, with episodic coastal hazards such as marine flooding and
erosion. These extreme phenomena drive complex hydrodynamic processes, the
understanding of which is basic for proper infrastructure design (Goda (2010)).
Statistical characterization of storms is required to provide high quality boundary
conditions for the increasingly need for assessing and forecasting the impacts of
storms (Sánchez-Arcilla et al. (2014); Gràcia et al. (2013)). The conventional design
is usually based on the probabilistic definition of a single parameter, typically the
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Chapter 1 Introduction

wave height. Other wave-storm variables, like duration of the storm, storm total
energy and associated wave period can all influence the final response of a beach or
the progression of the damage of a structure (Martín-Soldevilla et al. (2015); Melby
and Kobayashi (2011)). These variables are atually mutualy dependent (Salvadori
et al. (2007); de Waal and van Gelder (2005)), but the classical methodology either
assumes one variable to be stochastic and the other ones to be deterministic or
assumes all variables to be stochastic but completely independent.
A common modelling approach is to hindcast high energy events or to synthesize
storms to a representative extreme sea-state, which is generally predisposed by the
degree of knowledge of the area. For the latter case, dependency structures among
the hydrodynamic variables pose a hurdle, because they are usually unknown. Ex-
ploratory methods such as 2D scatter plots, have been widely used as a rule-of-thumb
for the most frequent problem, wave height vs. wave period. However, the interpre-
tation of existing co-dependences among several variables becomes more difficult,
disregarding their mutual dependences. Hard to interpret are those cases in which
a wide scatter cloud can mislead biased co-dependence structures, due to subjec-
tive criteria. Storm modelling requires to consider a multivariate analysis of storm
parameters (Corbella and Stretch (2012)), as univariate analyses may oversimplify
coastal processes, thus leading to overestimation of the storm induced damages.
Another aspect of concern is that wave-storms may eventually be exacerbated as
a consequence of Climate Change. Such changes in the local climates may affect
patterns in wave-storminess, which has a significant role in enhancing the destruction
of dunes, transportation of sediments beyond the surf-zone to unusual depth or burial
of benthic biota (Wang et al. (2015b); Hemer and Trenham (2016)). Climate Change
would also intensify wave-storms, conditioning on several coastal hazards: flooding
(Hinkel et al. (2014); Wahl et al. (2016)), erosion (Hinkel et al. (2013); Casas-Prat
et al. (2016); Li et al. (2014); Valchev et al. (2010)), harbour agitation (Sánchez-
Arcilla et al. (2016); Sierra et al. (2015)) and overtopping (Sierra et al. (2016)). The
stationary assumption, key pillar in the last decades for designing infrastructures,
does not hold valid for Climate Change impact studies. Hence, there is a pressing
urge for methodologies that consider non-stationarity in wave storm variables. Not
only to model average values, but also the variability of such variables and the joint
probability structure should be addressed.

1.2. Objectives

The main objective of this thesis is to characterize the wave-storm intensity vari-
ables in two fetch-limited, micro-tidal environments: the Catalan Coast (north-
western Mediterranean Sea) and the northwestern Black Sea. This characterization
leads to building multivariate models that consider the non-stationary joint prob-
ability structure of the wave-storm intensity variables. The non-stationarity help
include changes in the climatic trend. The non-stationary models also establish

14



1.3 Outline of the thesis

the relationship between the weave-storm intensity variables and three atmospheric
climate-patterns. These models can be used to define hydrodynamic loads for the
design of coastal infrastructures, under present and future climate.
The specific objectives, per study area, are as follows:

1. In the Catalan Coast, there are two main groups of tasks.
a) The stationary approach deals with wave-storms in the present climate

of the Catalan Coast. The detailed tasks are:
i. To characterize wave-storm intensity variables with probability dis-

tribution function.
ii. To propose a statistical tool to characterize their joint probability

structure.
iii. To characterize the wave-directionality of the wave-storm and to re-

late it to the wave-storm intensity variables.
iv. To relate wave-storm intensity variables to the intra-time variables

of the wave-storm.
b) The non-stationary approach deals with future wave-storms in the Cata-

lan Coast. It uses wave projections for the years 1950-2100, considering
a severe greenhouse gas emission scenario. The detailed tasks are:
i. To characterize wave-storm intensity variables through non-stationary

probability distribution function.
ii. To propose a pseudo-non-stationary characterization of their joint

probability structure.
iii. To establishes the relationship of the wave-storm intensity variables

to climate-indices.
2. In the northwestern Black Sea, the non-stationary approach is repeated . It

deals with projections in the same period of 1950-2100. It considers both a
mild and a severe emission scenario.

1.3. Outline of the thesis
This thesis is the presentation of the work reflected in the flow-chart of Fig. 1.1.
The thesis consists of an introduction (chapter 1), a presentation of the study areas
(chapter 2), a presentation of the methodology (chapter 3), a compendium of three
published scientific papers (chapter 4 through chapter 7), a general results and dis-
cussion (chapter 8), a conclusion (chapter 9) and a list of proposed future works
(chapter 10).
The compendium of papers comprises a total of three articles: chapter 4 proposes
a stationary characterization of wave-storms in the Catalan Coast; chapter 5 and
chapter 6 propose a non-stationary characterization of wave-storms in the Catalan
Coast; and chapter 7 applies the methodology in chapter 5 to the northwestern
Black Sea. The bibliographical information of the three papers is:
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2. Study areas
The proposed analysis via multivariate non-stationary methodologies has been ap-
plied both to the Catalan Coast and the northwestern Black Sea. These are two
fetch-limited and micro-tidal environments. This common feature set ground to
characterize their wave-storms and to compare them to each other.

2.1. Catalan Coast
The Mediterranean Sea (see Fig. 2.1) is of semi-enclosed nature and is dominated by
its orographic patterns, the air-sea temperature differences and the passage of low
pressure centres from the Atlantic (Lionello et al. (2012)). The main morphological
features at the Catalan Coast are the existence of mountain chains parallel and close
to the coast, the Pyrenees Mountains to the north, and the Ebre river valley to the
south; these orographic discontinuities, along with the major river valleys, let strong
winds flow towards the coast (Grifoll et al. (2015)).
The northwestern Mediterranean coastal winds are typically low to medium, on
average, ranging up to 11.05m/s (Sánchez-Arcilla et al. (2008c)). The most frequent
and intense wind is the northerly Tramuntana, appearing from November to March.
It is the major forcing for the northern and central northwestern Mediterranean
coast waves. From latitude 41◦N southward, the principal wind direction is the
northwesterly Mistral. It is channelled by the western Pyrenees and the Ebre valley.
The Mistral are formed by the superposition of gap and downhill flows from the
Pyrenees. A secondary wind mass, the westerly Ponent, comes from the depressions
in northern Europe and sweeps across the entire Iberian Peninsula from west to east.
Easterly winds are frequent during the summer. They are commonly triggered by
an intense high-pressure area on the British Islands. A different source for this wind
is a high level of cold air pool deepening over the Mediterranean Sea, which leads to
cyclo-genesis, resulting in the passage of a low off the northwestern Mediterranean
coast (Bolaños et al. (2009); Lionello et al. (2012)). Winds are more variable in
higher intensities. Thus, some relatively large wind modulus variability is generated
during wave-storms (Bolaños (2004)). Winds are the main forcing for waves at
the northwestern Mediterranean. Wave directions are directly correlated with wind
direction, except the waves that form 50◦ with the coast, which can be generated
by any wind direction. This might be explained by the orientation of the Catalan
coast-line. Also, all winds, at some point, are capable of creating an alongshore
wave train in the Catalan Coast.
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Chapter 2 Study areas

The largest waves come from the east, caused by the joint action of the most sig-
nificant fetches and winds (Bolaños et al. (2009)). This is especially evident at
the southern Catalan Coast. Such directionality is evident, also, for the mean peak
wave-period, but not for wave-storm durations. Appart from the fact that the north-
western Mediterranean coast was a micro-tidal environment (Lionello et al. (2012)),
the slope of the bathymetry is relatively steep in the north, while it widens in the
south. This has a direct impact on how waves behave when approaching the coast,
as the bathymetry has an effect on the type of impacting waves and the beach slope
determines the vulnerability to floods. Waves on the northwestern Mediterranean
coast also have an important effect on sediment transport, as short wave lengths do
not help beach sediments to restore itself during summer time. The maximum sig-
nificant wave-height, Hs,max, is 0.85m in the nothern part of the Catalan coast, and
is 5.48m in the southern part. The maximum peak wave-period, Tp,max, is 15.87s in
the northern half of the Catalan Coast and is 14.1s in the southern half.

Figure 2.1.: Map of the Catalan Coast (northwestern Mediterranean Sea). The
bathymetry is in meters, AR5 nodes are represented by red triangles; Puertos del
Estado buoy nodes, by green rhombes; and SIMAR wave model nodes, by solid
black points. Source: Lin-Ye et al. (2016)
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2.2 Northwestern Black Sea

2.2. Northwestern Black Sea
The Black Sea is located between 41 and 46◦N and 27 and 42◦E (see Fig. 2.2). It
is connected to the Mediterranean Sea through the Turkish straits, formed by the
Bosporus strait, the Sea of Marmara, and the Dardanelles strait. The greater part of
the sea is a basin with depths exceeding 2000m. However, the western shelf slope is
considerably smooth, sparing great depths. The northwestern Black Sea bathes the
coasts of Romania and Ukraine, among others, and one important region located
here is the Danube Delta, which is notorious for the preservation of its natural
resources.

Figure 2.2.: (i) Map of the Black Sea. The northwestern Black Sea is enclosed by a
red rectangle. (ii) Map of the northwestern Black Sea. Nodes from the statistical
model are in red and are numbered from north to south. The right figure show
wave-roses at points A and B (orange dots) from the map of the northwestern
Black Sea. The bar on the right-bottom shows the wave height-ranges at the
wave-rose. Source: Lin-Ye et al. (2017)

A great part of the Black Sea’s coast is surrounded by mountains, which are the
Balkans, the Pontic Mountains, the Caucasus and the Crimean mountains. This
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Chapter 2 Study areas

feature marks the wind patterns in the coastal areas. The general atmospheric
circulation in the Black Sea is influenced by the configuration of the Azores and
Siberian high-pressure areas and the Asian low-pressure area. Local winds, such
as sea breezes, mountain–valley circulation, slope winds, foehns and bora have a
considerable impact on the atmospheric circulation pattern, as well.
The most marked feature of wind and wave climate in the northwestern Black Sea is
a significant seasonal variability. During cold seasons, the most relevant configura-
tion is determined by the relative position, displacement and resulting interactions
between the Mediterranean cyclones and the Eastern European (Siberian) anticy-
clone (Valchev et al. (2010)). The most intense and frequent winds affecting the
coast are those from the northeast, east and southeast. They have the largest fetch,
thus leading to the most severe wave-storms.
The average maximum wave heights in the western Black sea is 6.2m, whereas the
average mean wave heights is 0.2m. Following the wind pattern, waves propagate
most frequently from the east, northeast and southeast. The easterly waves are
predominant within the entire shelf zone. Their probability of occurrence ranging
between 30% and 40%. The fraction of northeastern waves have a probability of
occurrence of 30% and the fraction of southeastern waves have a probability of
occurrence of over 10% (Valchev et al. (2010)).
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3. Methodology: main steps

This chapter is organized as follows: 1) storm definition and dataset (sec. 3.1) and
2) model formulation (sec. 3.2).

3.1. Storm definition and dataset

This section is organized as follows: a) stationary model at the Catalan Coast,
b) General circulation models and atmospheric climate-patterns, c) non-stationary
model at the Catalan Coast, d) non-stationary model at the northwestern Black Sea
and e) observational data used for validation.

3.1.1. Storm definition and dataset for the stationary model in
the Catalan Coast
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Figure 3.1.: Mean-excess-plot of Hm0 for the C3 and PdE-BCN-II nodes, which
are a pair of model and buoy nodes, central to the Catalan Coast. The red line
represents the number of events over a given threshold, while q50, q5 and q95 are the
Hm0 quantiles. The horizontal and left-vertical axes are in log-scale (in meters).
Source: Lin-Ye et al. (2016)

The data used are SIMAR hindcasted waves (Gomez and Carretero (2005)) for
the years 1996-2013. The data consists of wave hindcast simulations by WAM
(WAMDI Group et al. (1988)) andWAVEWATCH3 (Tolman (2009)), fed by HIRLAM
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Chapter 3 Methodology: main steps

wind fields (Unden et al. (2002)). SIMAR provides consistent, gapless and spatially
dense time-series. A wave-height threshold is selected to separate the wave-storms
from the wave regimes in regular conditions. One of the characteristics of wave-
storms is that their occurrence in time, for a given geographical location, follows
a Poisson distribution. An implication of this statement is that the time lapse be-
tween wave-storms must follow an exponential probability distribution function; if
else, these events would not be extreme. The wave-height used here is the spectral
significant wave-height (Hm0), which is equal to Hs divided by 0.95 (Holthuijsen
(2007)). The candidates for wave-height threshold range from 1.5m to 3m. 1.5m is
the double of the mean wave height in the Catalan Coast (CIIRC (2010)). The se-
lected threshold is also used as the location parameter x0 of the Generalized Pareto
distribution employed to fit the Hm0. Thus, the threshold should belong to the
linear part of a excess-over-threshold plot (Ortego et al. (2012), see an example of
such plot in Fig. 3.1). On the same mean excess wave-height plot, the statistical
significance of storms is assessed as well.
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Figure 3.2.: a) Definition of variables for a single wave-storm, b) definition of the
unitary energy at the peak of the wave-storm, Eu (the red dashed line is the
wave-storm), c) proposed storm shapes (irregular-trapezoid and triangular) and
wave-storm variables required for their definition. Source: Lin-Ye et al. (2016)

From these wave-storms, the following variables are modelled: its total energy (E),
the unitary energy at the peak of the wave-storm (Eu, which is equivalent to (Hm0)2),
the peak wave-period at the peak of the wave-storm (Tp), the total duration (D),
the ratio of time from the start of the wave-storm (iniT ) to its peak and from the
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3.1 Storm definition and dataset

peak to the end (endT ) (growth-decay rates, see Fig. 3.2c) and the wave direction
at the peak of the wave-storm (written as θHmax or θ∗p). E is defined as

E =
ˆ endT

iniT

H2
m0dt

where t is time.
The definition of Eu is:

Eu = mean

(
k∑
i=1

ˆ endTi

iniTi

H2
m0dt

)
≈ mean

(
k∑
i=1

(
Eu,(i−1) + Eu,i + Eu,(i+1)

))

where k is the number of occurrences of maximum Hm0 and iniTi − endTi encloses
3hrs of storm duration. Eu synthesizes the energy shortly before and after the peak
of the wave-storm. The subset (see Fig. 3.2b) presents a) point (t− 1) where the
wave-height is growing to reach the peak, b) point (t) is the storm peak and c) point
(t+ 1) where the wave-height is decreasing or maintaining. The differential energy
at (t + 1) in decreasing or maintaining the energy is an important assumption for
point t. It is what reflects the skewness of the wave-storm. It is considered in the
stationary model for the Catalan Coast that the variables E and Eu provide more
complete metrics for the storm hazard rather than a representative wave-height, as
they describe the behaviour of the entire wave-storm, rather than a snapshot. In the
non-stationary characterizations of wave-storms, this variable is dropped in favor of
the significant wave-height at the peak of the wave-storm, which is more widely
used in Literature. E, Eu, Tp and D take positive real values; consequently, they
are log-transformed to avoid scale effects (Egozcue et al. (2006)).
The growth rate is the percentage of time from iniT to the maximum Hm0. The
decay rate is the percentage of time from the maximum Hm0 to endT . The storm-
wave’s evolution over time is modelled with either a irregular-trapezoidal or a tri-
angular shape (see Fig. 3.2c). The residuals associated to both candidates are com-
puted as the area below the hindcasted function of Hm0 minus the area below the
corresponding theoretical geometry, as defined in Fig. 3.2c. The geometric shape
that provides the lowest residual is chosen for the stationary wave-storm character-
ization model.

3.1.2. General Circulation Models (GCM) and atmospheric
climate-patterns

GCMs provide the general circulation of the Earth’s atmosphere. They contain
information on atmospheric dynamics, also under the effects of Climate Change
(Voldoire et al. (2013); Kwak et al. (2017); Luo et al. (2017)). Different GCMs
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Chapter 3 Methodology: main steps

downscalings can be obtained from the CMIP5 experiment. Some of the GCMs
created in the CMIP5 experiment are shown on Tab. 3.1. A selected GCM is used
in each study area to generate, after a series of steps, the projected wave data
to be characterized. The CMCC-CM GCM is used in the Catalan Coast and the
CNRM-CM5 GCM is used in the northwestern Black Sea. In each study area,
18 other GCMs (see Tab. 3.1) are valued to bound the uncertainty. The proposed
atmospheric climate-patterns are the North Atlantic Oscillation (NAO, Barnston
and Livezey (1987)), the East Atlantic pattern (EA) and the Scandinavian pattern
(SC). Their climate-indices are used as variables. For instance, the climate-index
of NAO is NAO (in italic). These climate-indices can be derived from monthly
sea-level pressure-fields that can be downloaded from the CMIP5 Project’s website.
They have been scaled to have a mean value equal to zero and a variance equal to
unity.

Table 3.1.: General Circulation Models from the CMIP5 experiment (Taylor et al.
(2012)).

GCM model focused on Country/ Continent
CMCC-CM Europe
CMCC-CMS Europe
CNRM-CM5 Europe
FGOALS-G2 Europe
GFDL-CM3 United States
GFDL-ESM2G United States
GFDL-ESM2M United States
HadGEM2-AO Europe
HadGEM2-CC Europe
HadGEM2-ES Europe
INM-CM4 Europe
IPSL-CM5A-LR Europe
IPSL-CM5B-LR Europe
IPSL-CM5A-MR Europe
MIROC-ESM Japan
MIROC-ESM-CHEM Japan
MIROC5 Japan
MPI-ESM-LR Europe
MPI-ESM-MR Europe
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Figure 3.3.: Monthly outputs of a) North Atlantic oscillation and b) East Atlantic
pattern, from differen GCMs (Tab. 3.1). Source: Lin-Ye et al. (2017)
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The NAO index (Barnston and Livezey (1987)) is based on the surface sea-level
pressure difference between the Azores High and the Subpolar Low. The positive
phase of the NAO reflects below-normal heights and pressure across the high lati-
tudes of the North Atlantic and above-normal heights and pressure over the central
North Atlantic, the eastern United States and western Europe. The negative phase
reflects an opposite pattern of height and pressure anomalies over these regions. The
NAO exhibits considerable inter-seasonal and inter-annual variability, and prolonged
periods, of several months, of both positive and negative phases of the pattern are
common (see Fig. 3.3a).
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Figure 3.4.: Monthly outputs of Scandinavian pattern, from differen GCMs
(Tab. 3.1). Source: Lin-Ye et al. (2017)

The EA pattern (see Fig. 3.3b) is structurally similar to the NAO, and consists of
a north-south dipole of anomaly centers spanning the North Atlantic from east to
west. The EA pattern could be interpreted as a southward shifted NAO pattern
if not because the lower-latitude centre contained a strong subtropical link in asso-
ciation with modulations in the subtropical ridge intensity and location. The EA
pattern exhibits very strong multi-decadal variability in the years 1950-2004, with
the negative phase prevailing during much of 1950-1976, and the positive phase
occurring during much of 1977-2004.
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The SC pattern (see Fig. 3.4) consists of a primary circulation center over Scandi-
navia, with weaker centers of opposite sign over western Europe and eastern Rus-
sia/western Mongolia. The positive phase of this pattern is associated with positive
height anomalies, sometimes reflecting major blocking anticyclones, over Scandi-
navia and western Russia, while the negative phase of the pattern is associated with
negative height anomalies in these regions.

3.1.3. Storm definition and dataset for the non-stationary model
in the Catalan Coast

The non-stationary statistical model to characterize wave-storms in the Catalan
Coast uses wave projections for the years 1950-2100. These projections are for a
Representative Concentration Pathway 8.5 Climate-Change scenario (RCP8.5, i.e.
an increase of the radiative forcing values in the year 2100 relative to pre-industrial
values of 8.5W/m2, Stocker et al. (2013)). This scenario considers a CO2 concentra-
tion in the atmosphere near 1250ppm in 2100, which is double that of any other sce-
nario in the Fifth Assessment Report (Stocker et al. (2013)). The modelling chain is
as follows. The CMCC-CM (Sánchez-Arcilla et al. (2008c)) GCM provides boundary
conditions for the Regional Circulation Model (RCM) COSMO-CLM (Rockel et al.
(2008)). The COSMO-CLM grid, that has a resolution of 0.125◦× 0.125◦, spans the
whole Mediterranean region. The wind field that derives from the COSMO-CLM
RCM feeds the WAM wave model, which generate wave conditions for the same
domain and spatial resolution than the RCM.
A statistical model assuming stationarity in time-frames of 50 years is used to obtain
initial values to estimate non-stationary wave-storm thresholds. These time-frames
are: past (PT, 1950-2000), present and near-future (PRNF, 2001-2050) and far
future (FF, 2051-2100). The wave-storm threshold, h0, for the Hs is h0,RCP4.5 =
2.09m. It is based on the methodology in sec. 3.1.1, where the threshold for Hm0 is
2.2m.
Four wave-storm variables are characterized: E, Hs at the peak of the wave-storm
(Hp), Tp and D. Here, E reflects the potential total wave energy within a single
event (i.e. analogous to the total volume, in run-off studies), whereas Hp links to
the pulsing event that can trigger phenomena, infrastructure damage, flooding or
erosion. E, Hp, Tp and D take positive real values; consequently, they are log-
transformed to avoid scale effects (Egozcue et al. (2006)).

3.1.4. Storm definition and dataset for the non-stationary model
in the northwestern Black Sea

The non-stationary statistical model in the northwestern Black Sea is fed with output
from a process-based model. Two Climate-Change scenarios are considered: RCP
4.5 and RCP 8.5. RCP4.5 supposes an increase of the radiative forcing values in the
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year 2100, relative to pre-industrial values, of 4.5W/m2 (Stocker et al. (2013)). A
general Circulation Model (GCM) provides atmospheric conditions to be downscaled
with a Regional Circulation Model. Here, the GCM is CNRM-CM5, and the RCM
is ALADIN. Wind-fields from the ALADIN model have been downloaded from the
website of the Mediterranean Coordinated Regional Downscaling Experiment (Med-
CORDEX) initiative. These wind fields span the whole Europe with a spatial and
temporal resolution of 12km × 12km and 3h, respectively. They have served as
input for the SWAN spectral wave-model. The computational domain spans the
whole Black Sea, with a regular grid of 9km × 9km and a time-step of 20min. The
time period modelled spans 1950 to 2100.
The wave-storm threshold, h0, in this stationary model is h0,RCP4.5 = 1.8m for
RCP4.5, and 2.0m = h0,RCP8.5 for RCP8.5, based on excess-over-threshold graphs of
Hs. The methodology in sec. 3.1.1 to select a wave-storm threshold is repeated in the
northwestern Black Sea. The difference in value of the storm thresholds for different
RCPs is because it has been observed that the storms generated under the RCP4.5
is slightly less extreme than the ones generated under the RCP8.5. Therefore, while
the h0,RCP8.5 is considered to be 2.0m, the h0,RCP4.5 is defined as 0.2m lower than
h0,RCP8.5. h0 serves as an initial value for the non-stationary wave-storm thresholds.
The energy and hydrodynamics of the storms are also characterized by the same
wave-storm intensity variables as in the Catalan Coast. They take positive real
values and are log-transformed to avoid scale effects (Egozcue et al. (2006)). θ∗p is
analyzed in the northwestern Black Sea.

3.1.5. Observational data used for validation

Buoy data from the Puertos del Estado buoy network is used to validate the station-
ary model in the Catalan Coast, in the years 1996-2013. The same buoy data and the
SIMAR hindcasted wave data are used to validate the non-stationary model in the
Catalan Coast, in the years 1996-2013. ERA-interim reanalysis (Hemer et al. (2013);
Dee et al. (2011); Wang et al. (2014)) is used to to validate the non-stationary model
in the northwestern Black Sea, in the years 1979-2016. Despite having a spatial res-
olution of 80km, this global reanalysis presents gapless, bias corrected information
from 1979 to present day.

3.2. Model formulation

This section is organized as follows: a) wave-storm intensity sub-model, b) wave-
storm intra-time sub-model and wave-storm directionality sub-model, c) generation
of data from stationary synthetic wave-storms d) validation and e) estimation of the
uncertainty from the GCM.
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3.2 Model formulation

3.2.1. Wave-storm intensity sub-model

First, the stationary Generalized Pareto distribution (GPD) function is used in
the Catalan Coast. Then, a non-stationary GPD is developed, by combining the
techniques from a stationary GPD and a Vectorial generalized additive model. A
stationary hierarchical Archimedean copula (HAC) is first applied to the stationary
model. Then, a series of stationary HACs produce time-series of dependence param-
eters for the non-stationary approaches. This sub-section is organized as follows: i)
Generalized Pareto distribution, ii) Vectorial generalized additive models and iii)
the joint dependence structure.

3.2.1.1. Generalized Pareto distribution function (GPD)

E, Eu, Hs, Tp and D are wave-storm intensity variables, and are characterized
by GPDs (Coles (2001)). Stationary GPDs are used in the stationary model and
non-stationary GPDs are used in the non-stationary models. The definition of a
stationary GPD is as follows. It is assumed that the wave-storms are time points
which have an associated random magnitude. Variable probability patterns must
be independent and identically distributed (Coles (2001); Tolosana-Delgado et al.
(2010)). If X is the magnitude of a wave-storm variable and x0 is, at the same
time, a value of the support of X and a location parameter x0. The excess over
the location parameter x0 is Y = X − x0, conditioned to X > x0. Therefore, the
support of Y can be either [0 , ysup] or a positive real line. ysup is the upper bound.
The GPD cumulative function is

FY (y|β, ξ) = 1−
(

1 + ξ

β
y

)− 1
ξ

, 0 ≤ y ≤ ysup , β ≥ 0 , ξ ∈ R

and the associated probability density function is

fY (y|β, ξ) = 1
β

(
1 + ξ

β
y

)− 1
ξ
−1

, 0 ≤ y < ysup , β ≥ 0 , ξ ∈ R

where β is the scale parameter and ξ is the shape parameter. ξ determines the
domain of attraction of the distribution. The selection of a physically justified
threshold for each variable can promote convergence of the tail of the probability
distribution function. Given the location-parameter x0 and the scale-parameter β,
the mean value of a wave-storm variable is given by:

E (X) = x0 + β

1− ξ ≈ x0 ξ < 1,

and the variance of a wave-storm variable is:
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V ar (X) = β2

(1− ξ)2 (1− 2ξ)
≈ β2 ξ <

1
2 ,

The location parameter x0 of the GPD, in the stationary model of the Catalan Coast,
is: the square of the storm threshold, h2

0, for Eu; the peak wave-period related to
the H0 (CIIRC (2010)), for Tp; the minimum storm duration Dmin = 6hrs for D
and h2

0 ·Dmin for E. In the non-stationary models, the initial values of the location
parameters x0 are: the storm threshold, h0, for Hp; the peak wave-period related to
the h0 (CIIRC (2010)), for Tp; the minimum storm duration Dmin = 6hrs for D and
h2

0 ·Dmin for E. Also, the shape parameter ξ is supposed to be constant.

3.2.1.2. Vectorial generalized additive models (VGAM)

The non-stationary models use VGAM to determine the parameters of a non-
stationary GPD, as well as the non-stationary wave-storm threshold and the stormi-
ness. The initial values of location parameters x0 used to estimate the GPD are as
defined above. The VGAM presents the linear function (Fessler (1991)):

ηi(j) = β1(j) + f2(j) (xi2) + . . .+ fp(j) (xip)

where ηi(j) is the jth dependent variable, xi is the ith independent variable that
generates ηi. ηi is a sum of smooth functions of the individual covariates. Additive
models do all smoothing in R, avoiding large bias introduced in defining areas in
Rn.
The assumptions for regression models are: 1) independence of residuals, 2) residuals∼
N (0, σ2) and 3) homoscedasticity of residuals. The 1) is tested with a AutoCorre-
lation Function plot, the 2) can be solved with a Quantile-Quantile plot against a
N (0, σ2) distribution (where the sample standard deviation is used as σ2). 3) can
simply be analyzed through a scatterplot of the fitted values vs. the residuals.
The storm-threshold is estimated by fitting its relationship with any factor by a
Laplace function. The factors for the non-stationary models can either be time, a
climate-index, or either one of the first two time-derivative of a climate-index. The
wave-storminess can be estimated by approximating its relationship with any factor
by a Poisson probability-distribution-function. As the wave-storminess is a counting
variable, a vectorial generalized linear model (VGLM, Yee and Wild (1996)) can be
employed in this case. The VGLM is a particular case of VGAM.
The specific technique employed to obtain the GPD location-parameters x0 is called
quantile regression (Koenker (2005); Muraleedharan et al. (2016)). The quantile
regression is a type of VGAM, it estimates the 100τ̂% conditional quantile yτ̂ (x)
of a response variable Y as a function u (x, τ) of covariates x. l∗u = lu + %uRu is
minimized. Where lu = τ̂

∑
i:ri≥0

|ri| (1− τ̂) ∑
i:ri<0

|ri| for residuals ri = yi − u (xi, τ̂). %
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is a roughness coefficient that controls the trade-off between quality of fit to the data
and roughness of the regression function. R is a roughness penalty (Northrop and
Jonathan (2011); Jonathan et al. (2013)). It is assumed that ξ remains constant,
while β can depend on co-variates. β estimated through a VGLM.
The Climatic-indexes NAO, EA and SC, as well as their first two time-derivative,
are used as covariates to the VGAM in the prediction of the storm-threshold, the
storminess and the GPD parameters. The two main tools to test for the influence
of each climate-pattern or its dynamics on the predicted parameters are the Akaike
information criterion (AIC, Akaike (1987)) and the Bayesian information criterion
(BIC, Tamura et al. (1991)). In the non-stationary model for the northwestern Black
Sea, this influence is also quantified by comparing VGAM coefficient to the relative
order of magnitude between the predictand and the predictor.

3.2.1.3. Joint dependence structure: the hierarchical Archimedean copula

There is dependence among wave-storm intensity variables (Corbella and Stretch
(2012, 2013); Salvadori et al. (2016)). A dependogram can aid visualizing this (see
Fig. 3.5). A Dependogram is an independence test based on empirical copula pro-
cesses (Genest and Remillard (2004)). It provides insight into joint dependencies of
any subsets of the variables, displaying the subsets on the horizontal axis and the
statistic per subset (the departure from independence) on the vertical axis. A statis-
tic (vertical line) below the threshold value (bullets) means a totally independent
subset, whereas the length of the vertical line above the bullet reflects the degree of
co-dependence of the variables in the subset.
Copulas (Sklar (1959)) simplify the modelling of the multivariate joint probability
structure by linking it to the cummulative probability distribution of the variables.
For any multivariate distribution functionH with margins Fj, j ∈ {1, ..., d}, a copula
C can be defined such that

H (x1, ...,xd) = C (F1 (x1) , ...,Fd (xd)) ,x ∈ R (3.2.1)

Inversely, given a copula C and univariate distribution functions Fj, j ∈ {1, ..., d},
an H defined by eq. 3.2.1 is a distribution function with marginals Fj, j ∈ {1, ..., d}.
Being uj = Fj, a d-dimensional copula is Archimedean if it is of the form

C (u;φ) = φ
(
φ−1 (u1) + · · ·+ φ−1 (ud)

)
, u ∈ [0, 1]d ,

for a given generator function φ. An example of a generator function is the Gumbel
generator function

(− log (u))θ θ ∈ [1,∞) .

u is the wave-storm variable, and θ is the dependence parameter which indicates
independence when θ = 1 and total dependence when θ → ∞. θ in a copula
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Figure 3.5.: Example of a dependogram. The numbers represent the following
wave-storm intensity variables: 1) total energy (E), 2) unitary energy at the peak
of the wave-storm (Eu) or significant wave-height at the peak of the wave-storm
(Hp), 3) peak wave-period at the peak of the wave-storm (Tp) and 4) total duration
(D).

should not be mistaken for a parameter of the movMF distribution. Other types of
Archimedean copula generator functions, such as Clayton and Frank can be referred
to in Wahl et al. (2011).
Here, θ of different Gumbel copulas are not easily comparable, as the support of θ is
semi-infinite. Thus, θ are transformed into Kendall’s Tau, or Kendall’s rank correla-
tion coefficient (Kendall (1937)), whose support is [0, 1). τ reflects the concordance
of sets of observations {(x1, y1) , . . . , (xi, yi) , . . . , (xn, yn)}:

τ = (number of concordant pairs)− (number of discordant pairs)
1
2n (n− 1)

∀i, j ∈ N, i 6= j, a pair of observations is concordant if (xi > xj)
⋂ (yi > yj) or

(xi < xj)
⋂ (yi < yj); a pair is discordant if (xi > xj)

⋂ (yi < yj) or
(xi < xj)

⋂ (yi > yj); if xi = xj of yi = yj, the pair is neither concordant nor discor-
dant.
Archimedean copulas are insensitive to variable permutation and often have con-
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3.2 Model formulation

strained multivariate dependence structures, as they depend on a single parameter.
Hierarchical Archimedean copulas can be a useful tool to overcome these problems by
nesting simple 2D-Archimedean copulas into multilayer tree structures (see Fig. 3.6)
that are fitted in a recursive way (Okhrin et al. (2013)). Several generator functions
can be used for each level of a HAC. For simplicity, in this thesis, only one generator
function is used per HAC.

Being φ1, . . . , φd Laplace-Transform generators, for 1 ≤ k ≤ d−2, k+1 < j ≤ d and
v, ṽ > 0, multi-dimensional variables can be nested, as the following proves true:

exp
(
−vφ(k)−1

k+1

(
φ

(k)
j (·; ṽ) ; ṽ

))
= φ

(k+1)
j (·; v) .

Thus, although HACs build structures based on 2-D distributions, they can still
preserve the properties of copulas. A HAC is aggregated in the following manner.
The couple with the strongest dependence is aggregated and substituted by a joint
pseudo-variable (Okhrin et al. (2013)). For example, let E andD share a dependence
parameter θ(E,D). Let it be the highest valued dependence parameter among all the
pairs of variables. The pair of variables (E,D) can be substituted by the pseudo-
variable

Z(E,D)
def= φθ̂(E,D)

[
φ−1
θ̂(E,D)

{
F̂D (E)

}
+ φ−1

(θ̂E,D)
{

F̂E (D)
}]

At the next level, the parameter of all the pairs of variables and pseudo-variables
are again evaluated. This procedure is continued until the highest hierarchical level
(i.e. the root) is reached.

In order to test the goodness-of-fit of a nested copula, each of its levels must be
tested. The model probability distribution is compared to the empirical probability
distribution. An empirical copula is constructed as

Ĉ (u1, ...,ud) = n−1
n∑
i=1

d∏
j=1

I
{

F̂j (Xij) ≤ uj
}

where n is the sample size, d is the number of variables, uj is a vector belonging
to the interval [0, 1] and I is an identity matrix where the diagonal elements F̂j
are the empirical marginal distribution function of variables Xj. The k2 of Kendall
(Gan et al. (1991)) can be employed to provide a quantitative indicator for such a
comparison.

There are three types of aggregation method: «minimum», «mean» and «maxi-
mum». If the absolute difference of the dependence parameters of two subsequent
nodes is smaller than a constant ε,

|θ1 − θ2| < ε
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●

logE logD

logH

logTθ = 2.44

θ = 5.74

θ = 1.54

Figure 3.6.: Example of a Gumbel type HAC structure. In this case, it characterizes
the joint probability structure of the following four wave-storm intensity variables:
total energy and duration (E and D, respectively), significant wave-height and
peak wave-period at the peak of the wave-storm (Hp and Tp, respectively). It
characterizes the joint probabilities in pairs of variables or pseudo-variables. The
θ are the dependence parameters.

«minimum» means that the smallest dependence-parameter of the two is chosen,
«maximum» selects the largest dependence parameter, and «mean» calculates their
average value. The aggregation method is not attained to any theoretical restric-
tions, so the one that maximizes goodness-of-fit is the one selected.
Presumably, wave-storms might present a typical pattern of producing extreme val-
ues for most wave-storm variables. A Gumbel type HAC is used to include these
possible upper extreme dependences (Salvadori et al. (2007)). The HAC have a se-
ries of advantages (Okhrin et al. (2013)): a) they are more flexible and hold a more
intuitive dependence structure than the simple Archimedean copulas; b) they re-
quire less parameters than other kinds of copulas (e.g. elliptical copula); c) because
of the hierarchical nature of the structure, there is a marginal cumulative distribu-
tion function at each node of the HAC structure, which is easier to interpret; and
d) when basing each copula on a single generator function, dependence analyses are
simplified.
In order to build a joint probability structure for the non-stationary models, a series
of stationary HAC has been obtained for periods of 15 years. The time-windows of 15
years overlap with the previous and the latter time-windows, in order to reproduce
a non-stationary effect. Then, the corresponding dependence parameters are linked
to form time-series of dependence parameters. A time-window of 15 years has been
selected because a shorter time-window would provide an insufficient number of
storms to be fitted by a HAC. On the other hand, the smaller the blocks, the more
non-stationary effect can be represented with this quasi-stationary HAC fitting.
Therefore, 15 years is the optimum number in this case as a tradeoff between the lack
of storms for fitting and the maximum size of the blocks. As in the stationary model,
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3.2 Model formulation

the Gumbel HAC is used, while the fitting method is the Maximum Likelihood
method. The goodness-of-fit of a Gumbel type HAC is tested using stationary
HACs, built on time-frames of 50 years (PT, PRNF and FF).

3.2.2. The wave-storm intra-time sub-model and the
wave-storm directionality sub-model

The growth and decay rates in the stationary model are related to D through a
polynomial function. A suitable relationship is a third degree polynomial function,
where the independent variable is D: f (D) = a0 + a1D + a2D

2 + a3D
3.

The wave directions in a stationary model are modelled with von Mises-Fisher dis-
tributions (vMF), f (x|θ). The definition of the parameter θ is θ = (µ, κ), where µ
is the mean and κ is the “standard deviation”. This type of probability distribution
function allow for a more flexible definition of the wave direction contingency, as its
support is on [0, 2π). The von Mises-Fisher distributions can help transform θ∗p into
categories of principal wave-directions (PD), instead of fitting them into predefined
bins of cardinal directions. A mixture of vMF (movMF) distributions (Barnerjee
et al. (2005); Mardia and Jupp (2009)) is defined as:

f (x|Θ) =
k∑

h=1
αhfh (x|θh) , (3.2.2)

where Θ = {α1, . . . , αk, θ1, . . . , θk}. The αh are the h-th mixture probabilities (1 ≤
h ≤ k), they are non-negative and sum to one; by definition, the mode with the
largest αh is the principal direction.
An Expectation maximization (EM) approach is used for maximizing the expecta-
tion of eq. 3.2.2 with the constraints µThµh = 1 and κh ≥ 0:

αh = 1
n

n∑
i=1
p (h|xi,Θ)

From the soft EM framework used here, the distribution of the hidden variables is
given by

p (h|xi,Θ) = αhfh (xi|Θ)∑k
l=1 αlfl (xi|Θ)

The θ∗p is decomposed into the sine and cosine of the angle, and these two elements
are fit by the movMF distributions. The means µk of each movMF within the
mixture are considered as a principal direction (PDk). These PDk directions are
considered categories. All θ∗p fall into the “influence area” of one of the PDk and
engross the probability of this principal direction. Each PDk is represented by a µk.
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The predicted PDk categories are linked to logE, log T , logD through a multinomial
logistic model (Hosmer et al. (2013)).

3.2.3. Generation of data from (stationary) synthetic
wave-storms

In the case of the stationary model, synthetic wave-storms can be generated, given
a desired return period (Tr). Here, a single return period should represent the
univariate values of the four wave-storm intensity variables E, Eu, Tp and D. For
example, if the Tr of the wave-storm was set to be 5 years, the wave-storm intensity
variables should be the typical ones of a 5 year return-period wave-storm. θ∗p and
the growth-decay rates are assumed to be independent from the Tr.
The proposed definition of Tr is:

Tr = 1
n

n∑
i=1
Tri (x) , x ∈ R

where Tri is the return period of a wave-storm intensity variable x. It is calculated
by means of the Kendall return period Salvadori et al. (2007):

Trk = 1
λ · (1− F (x)) , λ ∈ R , x = (x1, . . . , xi, . . . , xn) ∈ Rn (3.2.3)

where λ is the annual occurrence of storms and F (x) is

F (x) = 1
n

n∑
i=1
F (Xi < xi)

where ui is the cumulative probability of a 1-D variable, I is the unit interval [0, 1],
the critical threshold t ∈ I is given by t = inf {s ∈ I : KC (s) = p} = K

[−1]
C (p),

where KC is the Kendall coefficient. The selected tolerance of error, imposed on the
joint and marginal return periods of elements to be classified within a wave-storm
of a given Tr, is 20%. This is the observed limit of errors in the reproduction of
wave-storm intensity variables in the northwestern Mediterranean (Sánchez-Arcilla
et al. (2008a, 2014)).

3.2.4. Validation

The comparison of the model with the observations is relatively straightforward for
the stationary model. The wave-storm variables in the stationary model: E, Eu,
Tp, D, θ∗p, growth-decay rates, can be compared to observational data through a
Quantile-Quantile plot.
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3.2 Model formulation

In a non-stationary model, the wave-storm intensity variables (E, Hp, Tp and D) of
the model are compared to the observational data. The methodology of validation
for a non-stationary model is as follows. Being the observational data:

{Hp,1, . . . , Hp,i, . . . , Hp,n} , i = 1÷ n, n ∈ R,

and the model data (written as H∗p , just for this explanation):{
H∗p,1, . . . , H

∗
p,j, . . . , H

∗
p,m

}
, j = 1÷ n, m ∈ R,

they are combined to form a joint set of data{
Hp,1, . . . , Hp,i, . . . , Hp,n, H

∗
p,1, . . . , H

∗
p,j, . . . , H

∗
p,m

}
.

For the Catalan Coast, such set of data is partitioned into four intervals, separated
by the quartiles of the set. For the northwestern Black Sea, the set of data is
partitioned into quantiles that are multiples of 10.

To illustrate the methodology, the one used in the Catalan Coast is described be-
low. It is easily adaptable to the northwestern Black Sea. Being the quartiles
{q0, q25, q50, q75, q100}, there are elements from both the observed Hp and the model
H∗p , in each interval. Two vectors can be defined as

vecobs =
( q25∑

q0

p (Hp,i) ,
q50∑
q25

p (Hp,i) ,
q75∑
q50

p (Hp,i) ,
q100∑
q75

p (Hp,i)
)
,

and

vecmodel =
( q25∑

q0

p
(
H∗p,j

)
,
q50∑
q25

p
(
H∗p,j

)
,
q75∑
q50

p
(
H∗p,j

)
,
q100∑
q75

p
(
H∗p,j

))
,

where vecobs is the vector for the observation, and vecmodel is the one for the model.
Each element of the vector is the summation between two quartiles of the probability
distribution function. vecobs and vecmodel are compositional data, as their elements
are parts of a whole (Egozcue and Pawlowsky-Glahn (2011)), appart of fulfilling
other properties defined in Aitchison (1982) and Egozcue et al. (2003). The distance
between these two vectors can be determined with an Aitchison measure (Aitchison
(1992); Pawlowsky-Glahn and Egozcue (2001)),

d (x,y) =
∣∣∣∣∣ln x (1− y)

y (1− x)

∣∣∣∣∣ , x,y ∈ (0, 1) ∈ R, (3.2.4)

Where x and y are the vectors compared. Another metric is the Kullback-Leibler
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divergence (Kullback (1997)):

DKL (P ‖ Q) =
∑
i

P (i) log P (i)
Q (i) . (3.2.5)

This function measures the extra entropy of the probability distribution Q of the
model, respect to the probability distribution P of the observations. Note that for
any i, Q (i) = 0, must imply P (i) = 0, or there would be a indertemination. That is,
the model should consider all the values that the observations show. Also, whenever
P (i) = 0, the the contribution of the i-th term is null, as lim

x→0
x log (x) = 0.

Both eq. 3.2.4 and 3.2.5 take values in R+
0 . The module of the vector is a particular

case of both measures, thus both can be compared to the vectorial module in the
Euclidean space of x and y, which are of the order of 1 (Egozcue and Pawlowsky-
Glahn (2011)). Measures below 1 denote similarity of the model to the observations.

3.2.5. Estimation of the uncertainty from the GCM

For the non-stationary models, different GCM can be compared to each other by
measuring the distance between the outcoming wave-storm variables. A Partial
AutoCorrelation Function-based distance can measure the autocorrelation between
two time series by providing comparison information of lower dimensions than the
time-series themselves (Montero and Vilar (2014)). It is a model-free approach.
That is, the two time-series compared, do not have to belong to specific models.
The PACF coefficient measures the correlation of pairs of elements from each time
series at all shorter lags of time.
Let ρ̂XT = (ρ̂1,XT , . . . , ρ̂L,XT )T and ρ̂YT = (ρ̂1,YT , . . . , ρ̂L,YT )T be the estimated auto-
correlation vectors of the two time-series, XT and YT respectively, for some L such
that ρ̂i,XT ≈ 0 and ρ̂i,YT ≈ 0 for i > L. Then, an autocorrelation distance is defined
as dACF (XT , YT ) =

√
(ρ̂XT − ρ̂YT )T Ω (ρ̂XT − ρ̂YT ), where Ω is a matrix of weights

of value ≤ 1, and 0 ≤ dACF (XT , YT ) ≤ 2, where 0 corresponds to total coincidence,
and 2, to total discordance.
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Abstract

Extreme events, such as wave-storms, need to be characterized for coastal infras-
tructure design purposes. Such description should contain information on both
the univariate behaviour and the joint-dependence of storm-variables. These
two aspects have been here addressed through generalized Pareto distributions
and hierarchical Archimedean copulas. A non-stationary model has been used
to highlight the relationship between these extreme events and non-stationary
climate. It has been applied to a Representative Concentration pathway 8.5
Climate-Change scenario, for a fetch-limited environment (Catalan Coast). In
the non-stationary model, all considered variables decrease in time, except for
storm-duration at the northern part of the Catalan Coast. The joint distribu-
tion of storm variables presents cyclical �uctuations, with a stronger in�uence
of climate dynamics than of climate itself.
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Figure 1

1

Figure 1: ACC1 in di�erent time-frames for wave-energy (E) (sub�gures a and c) and duration
(D) (sub�gures b and d). Results for Hp and Tp are not shown because their ACC1 values
are close to 1.
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Figure 1

1

Figure 2: ACC2 at present-near-future (PRNF, 2000-2050) for a) E, b) Hp, c) Tp and d) D.
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Figure 1

1

Figure 3: ACC2 at far-future (FF, 2050-2100) for a) E, b) Hp, c) Tp and d) D.
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Figure 4: Yearly averaged storm-energy (Eyear) during a) past (PT), b) present-near-future
(PRNF) and c) far-future (FF), at node 12.

4

5



2.5

3.0

3.5

4.0

1950 1960 1970 1980 1990 2000
Year

H
s,

Ye
ar

 [m
] quantile

.05

.5

.95

(a)

2.50

2.75

3.00

3.25

2000 2010 2020 2030 2040 2050
Year

H
s,

Ye
ar

 [m
] quantile

.05

.5

.95

(b)

2.5

3.0

3.5

4.0

2050 2060 2070 2080 2090 2100
Year

H
s,

Ye
ar

 [m
] quantile

.05

.5

.95

(c)

Figure 1

1

Figure 5: Yearly averaged storm-duration (Hs,year) during a) past (PT), b) present-near-
future (PRNF) and c) far-future (FF), at node 12.
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Figure 6: Yearly averaged storm-duration (T p,year) during a) past (PT), b) present-near-
future (PRNF) and c) far-future (FF), at node 12.
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Figure 7: Yearly averaged storm-duration (Dyear) during a) past (PT), b) present-near-future
(PRNF) and c) far-future (FF), at node 12.
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Figure 8: Goodness-of-�t of the dependence structure at node 12, for past (PT). The nesting
level of the top image corresponds to the lowest in Fig.4 (main text), the image in the middle
corresponds to the second lowest nesting level in Fig. 4 (main text), and the last �gure
corresponds to the highest (root) nesting level. The k2 parameter (Gan et al., 1991) quanti�es
the goodness-of-�t.
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Figure 9: GoF of the dependence structure at node 12, for present-near-future (PRNF).
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Figure 10: GoF of the dependence structure at node 12, for far-future (FF).
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Figure 12: Partial autocorrelation distance between 99th quantiles of E from the CMCC-CM
compared to the other global circulation-models. This is related to Fig. 11, where the same
colour categories and linetypes are used. A null distance means perfect agreement with the
reference (CMCC-CM), whereas a 1 is the opposite. The x-axis represent di�erent nodes (see
Fig. 1 of the main text).
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Figure 14: Partial autocorrelation distance between 99th quantiles of Hp from the CMCC-
CM compared to the other global circulation-models. This is related to Fig. 13. The x-axis
represent di�erent nodes.
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Figure 15: 99th quantile of Tp at node 12, using VGAM (GPD distribution) with time series
climate-indices as covariates: Tp ∼ (GPD (µ (SC) , σ (NAO) , ξ)).
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Figure 16: Partial autocorrelation distance between 99th quantiles of Tp from the CMCC-
CM compared to the other global circulation-models. This is related to Fig. 15. The x-axis
represent di�erent nodes.
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Figure 17: 99th quantile of D at node 12, using VGAM (GPD distribution) with time series
climate-indices as covariates: D ∼ (GPD (µ (EA) , σ (dSC) , ξ)).
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Figure 18: Partial autocorrelation distance between 99th quantiles of D from the CMCC-CM
compared to the other global circulation-models. This is related to Fig. 17. The x-axis
represent di�erent nodes.
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Abstract: The characterization of future wave-storms and their relationship to large-scale climate
can provide useful information for environmental or urban planning at coastal areas. A hybrid
methodology (process-based and statistical) was used to characterize the extreme wave-climate at
the northwestern Black Sea. The Simulating WAve Nearshore spectral wave-model was employed
to produce wave-climate projections, forced with wind-fields projections for two climate change
scenarios: Representative Concentration Pathways (RCPs) 4.5 and 8.5. A non-stationary multivariate
statistical model was built, considering significant wave-height and peak-wave-period at the peak of
the wave-storm, as well as storm total energy and storm-duration. The climate indices of the North
Atlantic Oscillation, East Atlantic Pattern, and Scandinavian Pattern have been used as covariates to
link to storminess, wave-storm threshold, and wave-storm components in the statistical model. The
results show that, first, under both RCP scenarios, the mean values of significant wave-height and
peak-wave-period at the peak of the wave-storm remain fairly constant over the 21st century. Second,
the mean value of storm total energy is more markedly increasing in the RCP4.5 scenario than in the
RCP8.5 scenario. Third, the mean value of storm-duration is increasing in the RCP4.5 scenario, as
opposed to the constant trend in the RCP8.5 scenario. The variance of each wave-storm component
increases when the corresponding mean value increases under both RCP scenarios. During the 21st
century, the East Atlantic Pattern and changes in its pattern have a special influence on wave-storm
conditions. Apart from the individual characteristics of each wave-storm component, wave-storms
with both extreme energy and duration can be expected in the 21st century. The dependence between
all the wave-storm components is moderate, but grows with time and, in general, the severe emission
scenario of RCP8.5 presents less dependence between storm total energy and storm-duration and
among wave-storm components.

Keywords: SWAN; storminess; climate change; climate patterns; Black Sea; copula; generalized
additive model

1. Introduction

The hydrosphere presents several types of extreme events, such as droughts [1], floods [2], and
wave-storms [3]. Coastal areas are one of the most active environments, which can lead to conflicts and
incompatibility of uses. Wave-action dynamics drives these changes, affecting infrastructure stability,
sediment dynamics, and the resilience of coastal systems [4–6]. Such variability reaches hazardous
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rates under extreme wave regimes (i.e., wave-storms) [7]. Hence, wave-storm characterization can
provide useful information regarding their destructive potential.

Wave-storm characterization can be performed through two approaches: process-based [8,9]
and statistical [10,11] models. Process-based models can include complex physical phenomena, but
they can be computationally expensive. Statistical models are easier to interpret and computationally
cheaper, but they cannot reproduce local phenomena. A hybrid strategy (i.e., statistical models built
using process-based outputs as input) is a better method for both approaches, and recent works
have addressed this methodology [10,12,13]. In order to tackle multiple wave-storm components
at once, a multivariate statistical model can serve to characterize individual storm components, as
well as the dependence structure. The significant-wave-height (Hs) is the most frequently used
wave-storm component. It is usually regarded as being independent of other storm components,
such as peak-period (Tp) or storm-duration (D). However, this assumption has been questioned in
[14,15], among others. Similarly, it was discussed in Salvadori et al. [16] that univariate analyses
lead to an inaccurate estimation of marine drivers, so these cannot describe coastal processes
adequately. Fully-nested Archimedean copulas have previously been successfully applied to
characterize semi-dependence among variables [15,17], so this hypothesis was adopted in the proposed
statistical model.

The effects of wave-storms may be aggravated as a consequence of climate change [11,18,19].
Changes in extreme wave-climate add a layer of complexity, and the often-used stationary methods
are limited when addressing climate trends. Non-stationary models can better capture the variation
introduced by climate change by handling the changing trends of the storm components better [20].
Extreme value distributions of wave-storm variables can be modelled as linear or smooth functions
of covariates [21], and a generalized additive model can be used to estimate the location and scale
parameters of a generalized Pareto distribution fitted to wave-storm variables [22–24]. Indices related to
atmospheric climate patterns can serve as covariates in these regression models. Thus, the relationship
between a changing atmosphere and the wave-storms can be tackled.

Hybrid approaches that address the main wave-storm physical processes and the nature of the
storm components are suitable for managing coastal areas such as the coast of the northwestern
Black Sea. However, there is a lack of future wave projections in this area. The aim of this paper
is to characterize the extreme wave-climate at the northwestern Black Sea with a hybrid strategy,
under two climate change scenarios (Representative Concentration Pathways (RCPs) 4.5 and 8.5).
These scenarios represent an increase of the radiative forcing-values in the year 2100 relative to
pre-industrial values of 4.5 and 8.5 W/m2 [25,26], respectively. Wave projections were obtained from
a process-based model (Simulating WAves Nearshore, SWAN). SWAN outputs have served to build
a multivariate non-stationary statistical model that characterizes the probability distributions and
the joint probability structure of the wave-storm variables. It also relates these variables to climate
indices. This characterization can help to assess the level of change in wave-storm characteristics
under the effects of climate change. The wave-storms under the two proposed emission scenarios
are compared to each other. Once the relationship between wave-storm components and climate
indices is determined, a set of different Global Circulation Models are used in order to bound their
own uncertainty. The paper is structured as follows. Section 2 describes the study-area and its climate.
Section 3 states the methodology to project and to build the hybrid framework. Results are listed in
Section 4, discussed in Section 5, and concluded in Section 6.

2. Study Area

The Black Sea is a fetch-limited, wave-dominated, and micro-tidal basin (see Figure 1), located
between 41.0 and 46.0◦N and 27.0 and 42.0◦E [27]. In fetch-limited basins, waves do not have enough
length of fetch to reach the fully arisen sea condition, and fetch-limited sea states are generated. In these
situations, there may be two effects: (i) for a fixed wind-speed, the maximum significant wave-height
is limited by the fetch-length; (ii) the time-duration of swell-waves may be shorter than in non-limited
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fetch condition. A micro-tidal basin has a small tidal range, on the order of decimetres. Hence, the sea
variability depends on wind and waves, partly contributed by the Danube river and to a lesser degree
by the Mediterranean Sea. The Black Sea is connected to the Mediterranean Sea through the Sea of
Marmara and the Bosporus and Dardanelles straits to the southwest, and to the Sea of Azov through
the Kerch Strait on the opposite side. The greater part of the Black Sea is a basin with a relatively flat
bottom relief and depths exceeding 2000 m. However, its western shelf slope is considerably gentle.
The proposed non-stationary statistical model is built at the northwestern area, where 34 nodes are
used (see Figure 1).

The general large-scale atmospheric circulation over the Black Sea is influenced by the
configuration of the Azores and Siberian high-pressure areas and the Asian low-pressure area.
Additionally, a great part of the Black Sea’s coast is surrounded by mountains, which are the Balkans,
the Pontic, the Caucasus, and the Crimean mountains. This feature generates specific wind patterns
in the inner shelf-area. Local winds such as sea breezes, mountain-valley circulation, and slope
winds also have a considerable impact on the atmospheric circulation pattern of the study-area [28].
The most remarkable feature of wind and wave-climate in the northwestern Black Sea is their seasonal
variability [4].

Figure 1. (i) Map of the Black Sea. The computational domain for the Simulating WAves Nearshore
(SWAN) model is enclosed by a green rectangle (see first step of the proposed methodology), whereas
the northwestern Black Sea is enclosed by a red rectangle (see the second step of the same methodology).
(ii) Map of the northwestern Black Sea. Nodes from the statistical model are in red and are numbered
from north to south. The right figure shows wave-roses at points A and B (orange dots) from the map
of the northwestern Black Sea [29]. The bar on the right-bottom shows the wave height-ranges at the
wave-rose.
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A wave-storm year is a year-long period of intense wave-storm activity, which ranges in the
present approach from July of the previous year to June of the next year. During a wave-storm
year, the most relevant pattern is determined by the relative position, displacement, and resulting
interactions between the Mediterranean cyclones and the Eastern European (Siberian) anticyclone.
The most intense and frequent winds affecting the coast are those from the northeast, east and
southeast. They have the longest fetch and produce the most severe wave-storms. However, as this is
a fetch-limited environment, little energy is absorbed from the wind forcing, and wave-periods tend to
be shorter than in large water bodies such as the Atlantic Ocean.

The average significant wave-height at deep waters in the northwestern Black Sea range
between a minimum of 0.35 m in spring (March–May) to a maximum of 0.75 m in winter (from
December–February) [28]. The average peak wave-period ranges from 1.8 s in spring to 2.4 s in
winter. Due to the influence of the wind pattern, waves propagate most frequently from the east,
northeast and southeast [30]. Eastern waves are predominant within the entire shelf zone (see Figure 1).
Their directional sector frequency ranges between 30% and 40%. The fraction of northeastern waves
has a frequency of 30% and the frequency of southeastern waves is over 10% [4]. The most energetic
months are December to February [28,31]. Winter wave-storms are much more frequent than summer
ones [4]. The average wave-storm duration between 1980 and 1993 was 30 h, whereas the maximum
wave-storm duration was about 130 h. The most energetic wave directions were northerly, whereas
the average wave-heights during wave-storms were 1.5–4.5 m.

3. Methods

The proposed hybrid methodology (See Figure 2) consists of four stages: (i) Wave-projections at
the Black Sea generated with a process-based model; (ii) set-up of a multivariate non-stationary
statistical model; (iii) validation of the non-stationary statistical model; (iv) comparison of the
obtained wave-storm components with those derived from other general circulation models. The same
methodology was applied for each climate change scenario (RCP 4.5 and RCP 8.5).

3.1. First Step: Process-Based Dynamical Modelling

The temporal coverage in this study spans from 1950 to 2100. Two climate change scenarios
were considered in this study: RCP 4.5 and RCP 8.5 scenarios. A general circulation model (GCM),
with a basis in climate-assessment studies [32–34], provides the general circulation of the Earth’s
atmosphere. Although the spatial coverage is global, the grid size is too coarse for modelling wave
forcings (i.e. wind-fields) at a relatively small basin such as the Black Sea. In this case, spatial and
temporal resolution (plus the addition of physical processes that need to be considered at a regional
scale) can be downscaled with a regional circulation model (RCM).

The process to build the projections starts by dynamical downscaling of the CRNM-CM5 GCM
(see Figure 2), through the ALADIN 5.2 RCM [35–37], and then projecting ocean-waves with the SWAN
model. ALADIN 5.2 is a bi-spectral RCM that uses a double Fourier representation for spectral fields.
It uses a semi-implicit, semi-Lagrangian advection scheme. The main parameterizations employed are:
a mass-flux scheme with convergence of humidity closure for the convection [38]; the statistical cloud
scheme by [39]; and the large-scale precipitation scheme by [40]. The RCM lateral boundary conditions
were obtained from the CRNM-CM5 GCM outputs.

RCP4.5 and RCP8.5 wind-fields from the ALADIN model were downloaded from the
Mediterranean Coordinated Regional Downscaling Experiment (Med-CORDEX) initiative [41]. Wind
fields coincided for both RCP scenarios at the 1950–2005 period (historical time slice), whereas the fields
for the future period (2005–2100) differed at each RCP. These wind fields span the whole of Europe
with a spatial and temporal resolution of 12 km×12 km and 3 h, respectively. This spatio-temporal
resolution for the wave forcings follows the state-of-the-art in future wave climate projections [42–44].
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Figure 2. Flow-chart of the different steps in the proposed hybrid methodology. This methodology
is analogous for each climate change scenario (Representative Concentration Pathways, RCP, 4.5 and
8.5). CNRM-CM5 is the General (Atmospheric) Circulation Model used to build the statistical model.
ERA-interim is the reanalysis used to validate the statistical model. Each variable is fit by a generalized
Pareto distribution (GPD) function and their joint probability structure is characterized by a series
of hierarchical Archimedean copulas (HAC). Rectangles are the results, rhombuses are the methods.
Different colors are only intended to separate different stages of the process. Elements inside the “input”
box have been obtained from external sources. The side analyses are not included in the graph, for the
sake of clarity.
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These winds serve as input for the SWAN spectral wave-model [45]. The computational domain
spans the whole Black Sea with a regular grid of 9 km×9 km (see the domain marked with a green
solid line in Figure 1). The bathymetry comes from the GEBCO dataset (GEB-2008), which has
a spatial resolution of approximately one arc-minute. The spatial resolution taken can reproduce
the wave generation and the deep-water wave propagation phenomena in the study area. Hence,
wind wave-growth, quadruplet interaction, whitecapping dissipation, and bottom friction terms are
activated, whereas triad interaction and wave breaking are deactivated.

The SWAN model was run in a non-stationary mode with a time-step of 20 min for the whole
1950–2100 period. Wind fields are updated every 3 h with a spatial resolution of 12 km×12 km. Wave
outputs are saved hourly at a subset of computational nodes. These outputs mainly consist of time
series of integrated wave-spectra parameters: significant wave-height, peak and mean wave-period,
wave-direction, among others. Once these time-series are obtained , the second stage of the proposed
hybrid methodology is applied at the 34 selected nodes of the northwestern Black Sea (see Figure 1).

The second stage in the proposed methodology (see the next section) consists of fitting a
non-stationary multivariate model that has as response variables a set of storm components that
use large-scale climate indices as predictors (covariates). These storm components come from the
SWAN time series obtained in this first step.

3.2. Second Step: The Statistical Model

3.2.1. Definition of Wave-Storms and Their Components

The second stage in the proposed analysis deals with the construction of a multivariate
non-stationary statistical model. This model assesses the changes in the wave-storm components
during 1950–2100 in the northwestern Black Sea (see Figure 1). Although models have long been
built considering stationarity, there is a series of drawbacks with this approach. Extreme events are
rare, and in the cases where several time-windows were considered (e.g., a window of less than
15 years), samples of high extreme events in each time window would not be statistically significant.
Consequently, the estimated upper tail of the probability distribution function would not yield reliable
results. Further, climate change has a non-negligible effect on extremes, threatening the foundations of
assumptions such as stationary wave-storm thresholds. A non-stationary model can overcome these
shortcomings because it can include the effects of climate change on extreme wave-climate.

The sample of wave-storms were extracted from the projections (see Figure 2) by splitting the
projections into mean sea-conditions and extremal conditions by means of a wave-storm threshold (see
Figure 3a). As a preliminary analysis, a model considering stationarity in time-windows of 50 years
was built separately, in order to obtain an initial approximation for the parameters of the non-stationary
statistical model built here. Wave-height thresholds in the stationary model were h0,RCP4.5 = 1.8 m
for RCP4.5 and 2.0 m = h0,RCP8.5 for RCP8.5, which are the corresponding 90th quantile [46] at node
19. Wave-storms in the sample are independent. An independent wave-storm is defined as having
a minimum duration of 6 h and a minimum time-interval between wave-storms of 72 h [11]. A
sensitivity analysis on the minimum time-interval was carried out, testing for two possible minimum
time-intervals: the proposed one and 12 h.

The storm-threshold is obtained through vectorial generalized additive models (VGAMs, [47,48]),
using climate indices as covariates. All the nodes use the same climate index as covariate for a given
RCP scenario, following the principle of parsimony. The covariates of a VGAM are predictors, whereas
the predictand is the wave-storm threshold. VGAM presents the linear function [49]:

ηi(j) = β1(j) + f2(j) (xi2) + . . . + fp(j)
(
xip
)

, (1)

where ηi(j) is the jth dependent variable, xi is the ith independent variable that generates ηi. ηi is
a sum of smooth functions of the individual covariates. Additive models do all smoothing in IR,
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avoiding large bias introduced in defining areas in IRn. The assumptions for regression models are:
(1) independence of residuals; (2) residuals follow a Gaussian distribution of the form N

(
0, σ2);

and (3) residuals are homoscedastic. Assumption (1) is tested with an autocorrelation function plot [50].
Assumption (2) can be tackled with a Q-Q plot comparing the empirical distribution of the residuals
to a N

(
0, σ2) distribution, where the sample standard deviation is used as σ2. Assumption (3) can

simply be visually analysed through a scatter-plot of the fitted values vs. the residuals.
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Figure 3. (a) Schematic view of the definition of a wave-storm. The blue thick line represents a wave,
the red thin line represents a wave-storm threshold of value h0. (b) Hierarchical Archimedean copula
(HAC)-structure-tree at node 13, in the period 2001–2050, under the RCP4.5 scenario. The circles
contain the names of the storm components, which are bound together by a dependence-parameter,
written in the rectangles (θ ∈ [0, ∞)). This HAC-structure-tree comes from the stationary statistical
model. It is representative of all nodes, at each time-window of 50 years and in both emission scenarios.
Then, it is selected to represent the dependence-structure of the whole non-stationary statistical model.

The VGAM of the statistical model built in this paper uses as covariates the climate indices in
the GCMs that represent the large-scale climate patterns of the North Atlantic Oscillation (NAO),
the Eastern Atlantic Pattern (EA) and the Scandinavian Pattern (SC) [11,51]. The first and second
time-derivatives of these climate indices are employed as well. This adoption of climate indices as
covariates was previously discussed in [11]. These large-scale indices can be derived from monthly
sea-level pressure-fields that can be downloaded from the CMIP5 Project’s website. They have been
scaled to have a mean value equal to zero and a variance equal to unity. In order to avoid sudden
oscillations that would hinder interpretation, they have been filtered with a second-order low-pass
Butterworth filter [52], whose low-pass period was 10 years. The Akaike information criterion [53] and
the Bayesian information criterion [54] are applied on the VGAM to test the sensitivity of the wave
storm threshold to each climate index.

Storms are clustered by storm-years (referred to hereafter as “years”). Storminess can be
estimated by approximating its relationship with the selected climate index and time derivatives
by a Poisson probability distribution function. As it is a counting variable, a vectorial generalized
linear model (VGLM, a particular case of VGAM [47]) can be adopted. A storm-threshold is estimated
by approximating its relationship with the climate index by a Laplace function. The Akaike information
criterion and the Bayesian information criterion can also be applied to the VGLM to test the sensitivity
of storminess to each climate index. The averaged value of the regression coefficient of the VGAM at
nodes 13 and 29 (Cr) is used to quantify the influence of the climate index chosen. Cr is the coefficient
that multiplies the predictor xi2 in the function f2,(i) (xi2) = Cr · xi2 from Equation (1), the predictor
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being a climate index. Cr is back-transformed from its logarithmic form to its natural form in Sections
4 and 5 (“Results” and “Discussion”) for ease of understanding. If Equation (1) was rewritten as

ηi(j) ≈ β1(j) + Cr · xi2,

for xi2 6= 0, both sides of the equation could be divided by xi2 and become

ηi(j)/xi2 ≈ β1(j)/xi2 + Cr.

The presence of xi2 close to zero—which would make such division an indetermination—can be
avoided by translating xi2 from the interval (−2, 2] to the interval (0, 4]. Therefore, the two terms on
the right side—β1(j)/xi2 and Cr—could be comparable. β1(j)/xi2 can be herein defined as the ratio
between the wave-storm threshold and the climate index. This ratio is approximated by the mean of
the natural value of the wave-storm threshold divided by double the maximum climate index value.

The wave-storms are represented by the following storm components: storm-energy (E),
significant wave-height and peak-wave-period at the peak of wave-storm (Hp and Tp, respectively),
and storm-duration (D). The definition of E is

E =
1
D

∫ t f

ti

H2
s (t) dt, (2)

where ti and t f are the starting and ending time of a wave-storm. The inclusion of E and D are thought
to provide more information on the general behaviour of a wave-storm, whereas Hp and Tp represent
upper limit wave conditions of a wave-storm. E, Hp, Tp, and D take positive real values. Consequently,
they are log-transformed to avoid scale effects when building the statistical models [55], but are still
referred to as E, Hp, Tp, and D in the interpretation of the models, for ease of understanding. The
mean wave-storm wave-directions have also been extracted for a complementary side analysis, which
serves to describe the evolution of wave directionality in 1950–2100.

3.2.2. Generalized Pareto Distribution: Univariate Distribution-Function

Storm-thresholds from the stationary statistical model are used as starting values to iterate
for non-stationary location parameters x0 of Hp. The starting value for a non-stationary location
parameter x0 of Tp is 5.8 s for both RCP4.5 and RCP8.5 scenarios. The starting value for the
non-stationary location parameter x0 of D is defined as the minimum storm duration (6 h) and the
starting value of the non-stationary location parameter x0 of E is E0,RCP4.5 = h2

0,RCP4.5· 6 = 19.4 m2/h
(E0,RCP8.5 = 24.0 m2/h). All these starting values for non-stationary location parameters x0 fall on the
linear part of corresponding excess-over-threshold functions, so their probability distributions can be
modelled by generalized Pareto distributions (GPDs, [11,14,55,56]).

The definition of a GPD is as follows. Y = X− x0 is the excess of a magnitude X over a location
parameter x0, conditioned to X > x0, the support of Y is

[
0 , ysup

]
, where ysup is the upper bound of y,

if it exists [57]. The GPD cumulative function is

FY (y|β, ξ) = 1−
(

1 +
ξ

β
y
)− 1

ξ

, 0 ≤ y ≤ ysup, (3)

where β ≥ 0 is the scale parameter and ξ ∈ IR is the shape parameter. Given the location parameter x0

and the scale parameter β, the mean value of a wave-storm component is given by:

E (X) = x0 +
β

1− ξ
≈ x0, ξ < 1, (4)
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and the variance of a wave-storm component is:

Var (X) =
β2

(1− ξ)2 (1− 2ξ)
≈ β2, ξ <

1
2

, (5)

where the parameters are the same ones as in Equation (3). Therefore, the location parameter x0 and
the scale parameter β provide information on the mean value and the variance, respectively.

A quantile regression—a particular type of VGAM [58,59]—is selected to estimate the location
parameters x0 of the GPD in the non-stationary statistical model. It estimates the 100τ̂% conditional
quantile yτ̂ (x) of a response variable Y as a function u (x, τ) of covariates x. l∗u = lu + $uRu is
minimized, where lu = τ̂ ∑

i:ri≥0
|ri| (1− τ̂) ∑

i:ri<0
|ri| for residuals ri = yi − u (xi, τ̂). $ is a roughness

coefficient that controls the trade-off between quality of fit to the data and roughness of the regression
function. R is a roughness penalty [60,61]. As a side analysis, a VGAM that uses time as the single
covariate helps visualize the non-stationarity of the projected location parameters x0.

An assumption in this paper for the non-stationary GPDs is that the shape-parameter ξ remains
constant, while the scale parameter β can depend on co-variates. β is estimated through a VGLM.
The sensitivity of the GPD parameters to the proposed climate indices and time-derivatives is tested by
applying the same Akaike and Bayesian information criterion on the VGAM or VGLM. The averaged
value of the regression parameters of the VGLM and the quantile regression at nodes 13 and 29, Cr,
is used again to quantify the influence of the predominant climate index. It is compared to the ratio
between the wave-storm component and the climate index.

3.2.3. Copulas: The Joint-Dependence Structure

Wave-storm components are semi-dependent, according to graphical dependence-tests (not
shown). Because of this semi-dependence, the non-stationary joint-dependence-structure of the storm
components may be parametrized by hierarchical Archimedean copulas (HACs, [62]). A copula is a
multivariate distribution function with standard univariate margins [63–65]. A d-dimensional copula
is Archimedean [66] if it is of the form

C (F; φ) = φ−1 (φ (F1) + · · ·+ φ (Fd)) , F ∈ [0, 1]d ,

for a given generator function φ. Being φ1, . . . , φd the Laplace-Transform generators, for 1 ≤ k ≤ d− 2,
k + 1 < j ≤ d and v, ṽ > 0, multi-dimensional variables can be nested, as the following proves true:

exp
(
−vφ

(k)−1
k+1

(
φ
(k)
j (·; ṽ) ; ṽ

))
= φ

(k+1)
j (·; v) .

A HAC can be a useful tool to nest simple Archimedean copulas into larger and more complex ones
(see Figure 3b). A HAC provides a dependence parameter, θ, at each nesting level. θ can be transformed
into other correlation parameters, such as Kendall’s τ [66–68], the interpretation of which is more
straightforward: τ = 0 indicates independence, whereas τ → 1 means total dependence. This τ should
not be mistaken by the τ̂ in Section 3.2.2.

To model the non-stationary dependence, the storm components are clustered into periods of
15 years, in order to compute the dependence parameters for each block and node. This creates a
pseudo-non-stationary HAC [11] per node. The clusters are of the size 15 years, because a smaller size
would provide an insufficient number of wave-storms to characterize the joint probability structure.
On the other hand, the smaller the blocks, the more non-stationary the HAC would be. Therefore,
15 years is the optimum number in the trade-off between the lack of wave-storms for fitting and the
maximum size of the blocks. Additionally, each time-window overlaps with the previous and the later
time-window, in order to reflect the non-stationarity.
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The HAC type and structure have been suggested by the stationary model built apart. The HAC
tree in Figure 3b—which is a Gumbel-type HAC—represents the HACs used in all computational nodes
and for both RCPs in the non-stationary statistical model. Wave-storms typically produce extreme
values for several storm components (i.e., Hp and E) at the same time. If extremal dependence [69,70]
among the storm components is evident, Gumbel-type Archimedean copulas can include such
upper-tail dependence [15,17], as discussed previously in [14] and [11]. The HAC can be tested
by a goodness-of-fit test in the stationary statistical model [71]. The κ2 statistic [72] can serve to
quantify this goodness-of-fit. κ2 takes values in the interval [0, 1], where a perfect fit corresponds
to κ2 = 1. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [73] is applied on the dependence
parameters of the pseudo-non-stationary HACs to confirm that these are non-stationary. The p-value
in a KPSS test gives the level of significance at which the null test (the necessity of a non-stationary
model to characterize the HAC parameters) cannot be rejected.

3.3. Third Step: Validation of the Non-Stationary Statistical Model

The data used to validate the statistical model in both emission scenarios is the ERA-interim
reanalysis [43,74–77]. "ERA" stands for "European Reanalysis". This global reanalysis, despite having
a spatial resolution of 80 km, presents gapless, bias corrected information from 1979 to present day.
The ERA-interim data available for the northwestern Black Sea is at 43.5◦N, 31.5◦E. The nearest
node from the wave-model is node number 19, at 44.8◦N, 30.0◦E (see Figure 1). Node 19 is central
to the northwestern Black Sea, and is thus considered to be able to represent the study area. The
validation period is 1979–2016, which is shorter than the 1950–2100 (control period) of the wave-climate
projections. Therefore, it is only intended to validate the years 1979–2016.

ERA-interim (validation) wave-storms are extracted by using the same non-stationary thresholds
as the projections. The ERA-interim wave-storms do not coincide in timing with the projected
wave-storms, as the latter reflect a climate signal and do not put emphasis on the prediction of the exact
timing. With this in mind, [11] proposed a method to estimate the likelihood of the projected probability
density function to the probability density function of measurements. The Hp of ERA-interim data is:

{
Hp,1, . . . , Hp,i, . . . , Hp,n

}
, i = 1÷ n, n ∈ IR,

and the Hp of the model data (written as H∗p , here)

{
H∗p,1, . . . , H∗p,j, . . . , H∗p,m

}
, j = 1÷ n, m ∈ IR.

Hp from both sources are combined to form a joint dataset:

{
Hp,1, . . . , Hp,i, . . . , Hp,n, H∗p,1, . . . , H∗p,j, . . . , H∗p,m

}
.

Such a set is partitioned into ten intervals, separated by the quantiles that are multiples of 10. There
are elements from both ERA-interim Hp and the projections in each interval. The probability of falling
into each one of these intervals must be similar for the model and the reanalysis, so that the model can
be validated.

Two vectors are defined as

vecobs,k =
qk+1

∑
qk

p
(

Hp,i
)

, k = 1, . . . , 11

and

vecmodel,k =
qk+1

∑
qk

p
(

H∗p,j

)
, k = 1, . . . , 11,
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where vecobs is the vector for ERA-interim reanalyses and vecmodel is the one for projections. vecobs and
vecmodel are compositional data, their elements being parts of a whole [78] and can be defined in the
Aitchison space [79,80]. The distance between these two vectors can be measured with an Aitchison
distance [81,82],

d (x, y) =
∣∣∣∣ln

x (1− y)
y (1− x)

∣∣∣∣ , x, y ∈ (0, 1) ∈ IR, (6)

where x and y are vecobs and vecmodel , respectively, in this case. Another measure is the Kullback–Leibler
divergence [83]:

DKL (P ‖ Q) = ∑
i

P (i) log
P (i)
Q (i)

. (7)

This function measures the extra entropy of the probability distribution Q of the model, with
respect to the probability distribution P of the observations. Note that for any i, Q (i) = 0 must
imply P (i) = 0, to avoid indetermination, thus ensuring that the model considers all the values that
the observations show. Additionally, whenever P (i) = 0, the contribution of the i-th term is null,
as lim

x→0
x log (x) = 0. Both Equations (6) and (7) are measures, and thus take values in IR+

0 . The module

of a vector is a particular case of both measures [78], and thus both measures can be compared to the
vectorial modules, in Euclidean space, of x and y, which are of order 1.

3.4. Fourth Step: Comparison of the Different GCMs

The non-stationary statistical model built in the second step uses large-scale climate indices
derived from GCM outputs (pressure-fields at sea-level). The SWAN projections (first step) were built
from MedCORDEX ALADIN wind-fields. These wind-fields result from a dynamical downscaling of
the CNRM-CM5 GCM. Hence, to put it clearly, the fitting of the statistical model (second step) consists
of using CNRM-CM5 projections of large-scale climate indices as predictors to estimate probability
distribution functions of the wave-storm components (response variables) derived from the SWAN
time-series.

One of the main advantages of the proposed statistical model is that it can predict how
the probability-distribution-functions of the storm components would vary if other projections of
large-scale climate indices were used as input. The first step of the proposed methodology requires a
computational cost that hampers the simulation of waves with different GCMs wind forcings. The
proposed statistical model can partly alleviate this computational burden via the establishment of
relationships between storm-wave components and climate indices. However, there is significant
uncertainty in climate change projections, and it is required to consider the results from several GCMs
prior to extracting conclusions. In this regard, a comprehensive list of GCMs that address climate
change scenarios can be found at the CMIP5 (Coupled Model Intercomparison Project Phase 5, [84])
Project site. The GCMs in Table 1—other than CNRM-CM5—have been employed to compare how
much they can differ from this GCM in extreme wave-climates at the Northwestern Black Sea. Note that
most of these models are centred on the European continent, except the MIROC branch (MIROC-ESM,
MIROC-ESM-CHEM and MIROC5), which focuses on the area of the Japanese Isles [85], and the GFDL
branch (GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M), which focuses on the United States [86].

The comparison of different GCMs can be carried out by contrasting the 99 th quantiles of
the storm components projected with the CNRM-CM5 GCM to the 99 th quantiles of the storm
components projected with other GCMs (see Table 1). Partial autocorrelation Function (PACF, [87])
based distances are used as a metric [87]. It measures the distance among time-series based on
the corresponding PACF, and is a model-free approach. That is, the two time-series compared—Xa

and Yb—do not have to belong to specific time-series models. The PACF coefficient measures the
correlation of pairs of elements from each time series at all shorter time lags (i.e., the relationship
between two points at one hour apart, two hours apart, and so on). Let ρ̂XT =

(
ρ̂1,XT , . . . , ρ̂L,XT

)T
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and ρ̂YT =
(
ρ̂1,YT , . . . , ρ̂L,YT

)T be the estimated autocorrelation vectors of XT and YT , respectively, for
some L such that ρ̂i,XT ≈ 0 and ρ̂i,YT ≈ 0 for i > L. Then, an autocorrelation distance is defined as

dACF (XT , YT) =
√(

ρ̂XT − ρ̂YT

)T Ω
(
ρ̂XT − ρ̂YT

)
, where Ω is a matrix of weights of value ≤ 1, and

0 ≤ dACF (XT , YT) ≤ 2, where 0 corresponds to total coincidence, and 2 to total discordance.

Table 1. List of general circulation models (GCM) employed. The GCM CNRM-CM5 is used to build the
non-stationary statistical model, whereas the other GCMs are compared to CNRM-CM5. CNRM-CM5
is shown in boldface to ease its search in the list.

GCM Latitude Longitude
Grid Size (◦) Grid Size (◦)

CMCC-CM 0.7484 0.7500
CMCC-CMS 3.7111 3.7500
CNRM-CM5 1.4008 1.4063
FGOALS-G2 2.7906 2.8125
GFDL-CM3 2.0000 2.5000

GFDL-ESM2G 2.0225 2.0000
GFDL-ESM2M 2.0225 2.5000
HadGEM2-AO 1.2500 1.8750
HadGEM2-CC 1.2500 1.8750
HadGEM2-ES 1.2500 1.8750

INM-CM4 1.5000 2.0000
IPSL-CM5A-LR 1.8947 3.7500
IPSL-CM5B-LR 1.8947 3.7500

IPSL-CM5A-MR 1.2676 2.5000
MIROC-ESM 2.7906 2.8125

MIROC-ESM-CHEM 2.7906 2.8125
MIROC5 1.4008 1.4063

MPI-ESM-LR 1.8653 1.8750
MPI-ESM-MR 1.8653 1.8750

4. Results

This section is organized as follows. For both emission scenarios, it addresses: (a) a sensitivity
test on the time-interval between wave-storms; (b) the evolution of wave directionality in 1950–2100;
and (c) a test of the assumptions of the VGAM. For each emission scenario, it addresses: (i) bounding
of the uncertainty of the GCM; (ii) value of wave-storminess and its relationship to the selected climate
indices; (iii) values of location parameters x0 of GPDs and their relationship to the selected climate
indices; (iv) values of scale parameters β of GPDs and their relationship to the selected climate indices;
(v) values of the parameters in the dependence structure; and (vi) validation of the non-stationary
statistical model.

A sensitivity analysis on the minimum time-interval between storms equal to 12 h provides
a storminess of approximately 50 storms/year at some nodes, in both RCP scenarios, which is
unrealistic. Therefore, a minimum time-interval between storms equal to 72 h is used. The wave-storm
mean wave-directions for the whole area of study and in both RCP scenarios are the same ones as
in historical records (see Figure 1). They stay the same over the period of study. Therefore, the
wave-directionality can be considered stationary, and emphasis can be put only on the wave-storm
components E, Hp, Tp, and D. Neither independence nor normality assumptions of the residuals of
the data used in the VGAM can be rejected. Therefore, jointly with the compliance of the wave-storm
thresholds with the mean-excess plots (see Section 3), the wave-storm components can be modelled by
non-stationary GPDs.
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4.1. RCP4.5

The GCMs coincide mainly at wave-storm components E and D, with PACF based distances
below 0.1. In the case of Hp and Tp, however, the maximum PACF-based distance can be 0.3 and
0.2, respectively. The GCMs presenting the largest PACF-based distance in the case of Hp and Tp can
come from any of the branches of GCMs in Table 1. Employing the CNRM-CM5 GCM, and assuming
non-stationarity, the estimated average number of wave-storms per year ranges from 27 storms/year
at node 1 to 35 storms/year at node 29, then decreases to 34 at node 33. Although SC is the most
influential climate index on storminess, the estimated number of storms per year is affected by neither
time nor climate indices. The storm-threshold is most sensitive to a combination of the first and the
second time-derivatives of SC.

The location parameters x0 of the GPD under RCP4.5 are shown in Figure 4. A selection of nine
out of thirty-four nodes are represented. There is an upward trend of the location parameter x0 of
E and D, while the location parameter x0 of Hp and Tp has a constant value. The averaged value
(in natural values) at nodes 13 and 29 of the mean of E, Hp, Tp, and D are 144.2 m2/h, 2.7 m, 6.6 s, and
33.0 h. The assumption in Equation (4) is fulfilled, because the shape parameter ξ is negative. The most
influential covariates on the GPD location parameter x0 are EA for E (Cr = 1.02) and D (Cr = 1.02),
the first time-derivative of NAO for Hp (Cr = −1.03) and SC for Tp (Cr − 1.01). The ratio between the
wave-storm component and the climate index is 35 in the case of E and of the order of magnitude of 1
in the rest of the wave-storm components.

The temporal evolution of the scale parameter β is shown in Figure 5, where the trend of the
location parameters x0 are reflected in the scale parameters β. The averaged value at nodes 13 and 29
of the variance of E, Hp, Tp, and D are 8.4 m2/h, 1.1 m, 1.0 s and 7.6 h. The assumption in Equation (5)
is fulfilled, as the shape parameter ξ is negative. The most influential covariates on the GPD scale
parameters β are the second time-derivative of SC for E (Cr = 1.17), EA for Hp (Cr = −1.00), and D
(Cr = 1.01), and the first time-derivative of EA for Tp (Cr = −1.42). The ratio between the wave-storm
component and the climate index is approximately 80 in the case of E; and approximately of the order
1 in the rest of the wave-storm components. These trends and relationships to the selected climate
indices will be further discussed in Section 5.

The Gumbel-type HAC is suitable for the proposed statistical model under RCP4.5. It has
significantly good graphical fit between empirical and theoretical HAC, while κ2 is over 0.90 at each
level of the HAC. The stationarity of the τs cannot be rejected, because the p-value from the test is 1.0%.
This proves that the HACs used in the proposed models are indeed non-stationary. The dependence
among variables, reflected by Kendall’s τ, is shown in Figure 6. τroot ranges between 0.55 and 0.65, and
has a positive trend at all nodes. τ(E,D) ranges between 0.82 and 0.87, and apparently presents cyclical
fluctuations. The test of the assumptions for VGAM shows conformity for the non-stationary threshold
of the ERA-interim data, which serves to validate projections in both RCP scenarios. The non-stationary
statistical model is validated for 1979–2016, as both types of measures (Equations 6 and 7) are invariably
below 1.0.
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Figure 4. Location parameter x0 of the generalized Pareto distribution (GPD) that models (a) E, (b) Hp,
(c) Tp, and (d) D at selected nodes, under the RCP4.5 scenario. The Eastern Atlantic Pattern (EA) was
used in the vectorial generalized additive model (VGAM) to predict the location parameter x0 of E and
D. The first time-derivative of the North Atlantic Oscillation (NAO) was used in the VGAM to predict
the location parameter x0 of Hp. The Scandinavian Pattern (SC) was used in the VGAM to predict the
location parameter x0 of Tp. The time series are approximated by a straight line, which helps to see the
trend of the location parameters x0 in each case.
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Figure 5. Scale-parameter β of the GPD that models (a) E, (b) Hp, (c) Tp, and (d) D at selected nodes,
under the RCP4.5 scenario. The EA was used in the VGAM to predict the scale parameter β of Hp and
D. The first time-derivative of EA was used in the VGAM to predict the scale parameter β of Tp. The
scale parameter β of E is not affected by the selected climate indices. The time series are approximated
by a straight line, which helps to see the trend of the scale parameter β in each case.
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Figure 6. The dependence-parameter τ of (a) all the storm components and (b) the subset E-D, under
the RCP4.5 scenario. Selected nodes serve to represent the results. Note that the scales for τ are different
for (a) and (b).

4.2. RCP8.5

PACF-based distances for E and D from different GCMs are below 0.1, except for models GFDL,
MIROC, and MPI, which present higher distances in the case of E. In the case of Hp, the maximum
PACF-based distance is 0.2, except for GFDL, IPSL, and MIROC GCMs. Tp is the least coincident
wave-storm component among the GCMs, with maximum PACF-based distance equal to 0.6 for the
IPSL and MIROC branches of the GCMs, whereas the second maximum PACF-based distance is
0.4 for the CMCC branch. Employing the CNRM-CM5 GCM, and assuming non-stationarity, the
estimated average number of wave-storms per year range from the 23 storms/year at node 1 to the
30–32 storms/year at nodes 24–34. Additionally, although NAO is the most influential climate index
on storminess, the estimated number of storms per year is not significantly affected by time nor climate
index. The wave-storm threshold is mostly influenced by the second time-derivative of EA.

The temporal evolution of the location parameters x0 is shown in Figure 7. The trends of the
location parameters x0 of H0, Tp, and D are constant. The location parameter x0 of E, however, does
not have a clear trend. The averaged value at nodes 13 and 29 of the mean of E, Hp, Tp, and D
are 149.1 m2/h, 2.9 m, 6.8 s, and 28.4 h. The assumption in Equation (4) is fulfilled, as the shape
parameter ξ is negative. The most influential covariates on the GPD location parameter x0 are EA for E
(Cr = −1.00), the second time-derivative of EA for Hp (Cr = −1.32) and D (Cr = 1.40), and NAO for
Tp (Cr = 1.00). The ratio between the wave-storm component and the climate index is approximately
50 in the case of E, 13 in the case of Hp, 1 in the case of Tp, and 140 in the case of D.
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Figure 7. Location parameter x0 of the GPD that models (a) E, (b) Hp, (c) Tp, and (d) D at selected
nodes, under the RCP8.5 scenario. The second time-derivative of EA was used in the VGAM to predict
the location parameter x0 of Hp. The NAO was used in the VGAM to predict the location parameter x0

of Tp. The location parameter x0 of E and D are not affected by the selected climate indices. The time
series are approximated by a straight line, which helps to see the trend of the location parameters x0 at
each case.

The temporal evolution of the scale parameter β is shown in Figure 8, where the scale parameters
β show similar trends to their corresponding location parameters x0. The averaged value at nodes
13 and 29 of the variance of E, Hp, Tp, and D are 6.4 m2/h, 1.1 m, 1.0 s, and 5.5 h. The assumption
in Equation (5) is fulfilled, as the shape parameter ξ is negative. The most influential covariates
on the GPD scale parameter β are the second time-derivative of EA for E (Cr = −1.23), SC for Hp

(Cr = −1.03), EA for Tp (Cr = 1.04), and the first time-derivative of SC for D (Cr = 1.05). The ratio
between the wave-storm component and the climate index is approximately 800 in the case of E, 1 in
the case of Hp and Tp, and 35 in the case of D.
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Figure 8. Scale parameter β of the GPD that models (a) E, (b) Hp, (c) Tp, and (d) D at selected nodes,
under the RCP8.5 scenario. The SC was used in the VGAM to predict the scale parameter β of Hp. The
EA was used in the VGAM to predict the scale parameter β Tp. The first time-derivative of SC was
used in the VGAM to predict the scale parameter β of D. The scale parameter β of E is not affected by
the selected climate indices. The time series are approximated by a straight line, which helps to see the
trend of the scale parameter β at each case.

The Gumbel-type HAC is suitable for the proposed statistical model under RCP8.5. It has
significantly good graphical fit between empirical and theoretical HAC, while κ2 is over 0.90 at each
level of the HAC. The null hypothesis of stationarity of the θs cannot be rejected in 1.0% of the
cases, in each HAC, according to the KPSS test. Therefore, the use of pseudo-non-stationary HACs is
suitable. The values of Kendall’s τ are shown in Figure 9. τroot ranges between 0.45 and 0.65, and has a
positive trend at all nodes. τ(E,D) ranges between 0.82 and 0.86, and presents cyclical fluctuations. The
non-stationary statistical model is validated for 1979–2016, as both the Aitchison and Kullback–Leibler
measures (Equations 6 and 7) are below 1.0.
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Figure 9. The dependence-parameter τ of (a) all the storm components and (b) the subset E-D, under
the RCP8.5 scenario. Selected nodes serve to represent the results. Note that the scales for τ are different
for (a,b).

5. Discussion

This section is organized as follows. For both emission scenarios, it addresses: (a) the
process-based modelling chain; and (b) a comparison of the stationary and the non-stationary approach
to the statistical model. For each emission scenario, it addresses: (i) bounding of the uncertainty of
the GCM; (ii) value of wave-storminess and its relationship to the selected climate indices; (iii) values
of location parameters x0 of GPDs and their relationship to the selected climate indices; (iv) values
of scale parameters β of GPDs and their relationship to the selected climate indices; and (v) values
of the parameters in the dependence structure. As a final remark, the applicability of this research is
envisaged for both emission scenarios.

Present and future wave conditions under two climate change projections (RCP4.5 and RCP8.5)
were modelled with SWAN in the Black Sea, providing possibly the first future extreme wave climate
projections in the area. These wave projections are a gapless dataset of long temporal coverage (from
1950 to 2100). Their spatial resolution is enough to represent the main wave generation and propagation
phenomena, with an affordable computational cost. Their generation required a computational time
of two and a half months, using two four-core workstations. For the control period, the results agree
with former works at the Black Sea [4,28,31]. Additionally, the model validation shows that the SWAN
outputs agree with the ERA-interim reanalysis for 1979–2016.

Similar agreement between the ALADIN52-RCM and ERA-INTERIM atmospheric fields has been
reported in the state-of-the-art [41,88–90]. Additionally, the performance of the GCM-RCM modelling
chain (CNRM-CM5 and ALADIN) has recently been compared with other pairs of GCM and RCM,
under the same RCP 4.5 and 8.5 scenarios. For example, changes in Mistral and Tramontane wind
patterns in the northwestern Mediterranean Sea have been analysed by [89] for the same time interval
as this study. Their results noted that there would be fewer Tramontane events under the RCP8.5
scenario than those under the RCP4.5. However, small frequency changes were found for the Mistral
at both RCPs. On the other hand, [90] estimated an increase in extreme precipitation event intensity
for the Lez, Aude (France), and Muga (Spain) basins. These works reinforce the usefulness of the
CNRM-CM5 GCM-RCM dataset for assessing changes in extreme weather.

Apart from the main non-stationary statistical model, the stationary statistical model in the side
analysis provides its own GPD estimation. The parameters of the GPD of the stationary statistical model
are similar to the parameters of the GPD of the non-stationary statistical one in this study. Therefore,
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this assures that the initial values for the parameters of the GPD of the non-stationary statistical model
should be maintained. The mean values and the variances from the GPD (see Equations 4 and 5) in both
RCP scenarios coincide in order of magnitude with the statistics of the input wave-storm components.
Then, the GPDs reflect the characterized wave-storm components correctly. Additionally, in agreement
with Equations (4) and (5), parameters of the non-stationary GPDs can represent mean values and
variances of wave-storm components. The Gumbel-type HAC structure from the stationary statistical
model proves suitable according to the related goodness-of-fit test. Another important advantage is
that the non-stationary statistical model characterized the SWAN data without having to cluster the
wave-storms into time-windows. A clustering would certainly lead to excessively dependent results in
the chosen time-window. Below, the outcomes of the non-stationary statistical model for each emission
scenario are discussed in detail (see a summary in Table 2).

Table 2. Summary table of the Discussion section. d (·) and d2 (·) are the first and second time-derivatives, respectively.

Variable or Test Parameter RCP4.5 RCP8.5
Main Covariate

Estimated storminess 27–35 storms/year 23–32 storms/year

Storminess x0 None None

Wave-storm threshold x0 dSC + d2SC d2EA

E x0 EA None
β None None

Hp
x0 dNAO d2EA
β EA SC

Tp
x0 SC NAO
β dEA EA

D x0 EA None
β EA dSC

τroot 0.55–0.65 0.45–0.65

τ(E,D) 0.82–0.87 0.82–0.86

HAC is non-stationary? Yes Yes

Validated for 1979–2016? Yes Yes

5.1. RCP4.5

The CNRM-CM5 GCM provides similar E and D to the rest of the GCMs. However, the selection
of this model affects the outcomes in Hp and Tp. As the maximum discordance between GCMs
corresponds to a PACF-based distance of 2, a distance of 0.3 is still relatively small. However,
an explanation for this production of different Hp and Tp might be that some GCMs, like the ones
from the MIROC branch (MIROC-ESM, MIROC-ESM-CHEM and MIROC5) and the GFDL branch
(GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M), are centred on areas away from the European Continent.

The number of storms in the area should range between 15 and 20 [31]. An estimated average
of 27 storms/year might be due to the fact that a non-stationary threshold was significantly lower at
some points than the initial values, so more events were qualified as extreme. However, the minimum
time-interval between storms chosen (72 h) has helped prevent the consideration of replicating storms
as independent ones, thus reducing the modelled storminess to a reasonable quantity. There is a
relatively higher storminess at nodes 17–34 (see Figure 1) compared to nodes 1–16, which might be
due to more frequent extreme winds in this area. However, storminess is constant under the effects
of climate change in the case of RCP4.5. Despite this, the first and the second time-derivatives of
SC present special relevance to the storm-thresholds in the northwestern Black Sea. The sensitivity
of storm-threshold to SC means that SC does affect the combination of storminess and intensity of
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wave-storms. The lack of relationship between storminess and climate patterns is not common in the
present [91] or future climates. For instance, storminess is significantly related to negative NAO in the
Catalan Coast, another micro-tidal environment in the northwestern Mediterranean Sea [11].

The mean of Hp and Tp remain constant in 1950–2100, whereas E and D rise under the effects of
climate change (See Figure 4). D seems sensible to the temperature energetic input into the atmosphere
by climate change, as well as being the only contributor to the rise in E in the second half of the
21st century. A higher E, combined with an equally higher D, is often related to greater destructive
forces, whether on the natural environment or urban areas. A constant mean Tp is related to a constant
fetch, following the stationarity of the wave-storm mean wave-directions. Additionally, a constant
mean Hp means that during this century the joint effect of sea-level-rise and Hp would not worsen
in the form of, for instance, more flooding. The location parameters x0 of E, Hp, Tp, and D are
significantly influenced by EA, the first time-derivative of NAO, SC, and EA, respectively. According
to the regression coefficients Cr of the VGAM used to obtain the location parameters x0, it seems
plausible that EA > 0 contributed to higher mean of E and D. The location parameter x0 of Hp is in
turn significantly influenced by a fast increase of negative NAO. The effect of NAO on wave-height
under extreme wave-climate could be of concern, considering that this relationship was also observed
by [92] in a hindcasted model from the Liverpool Bay. The location parameter x0 of Tp is significantly
influenced by a negative SC.

Figure 5 shows that the variances of E, Hp, Tp, and D increase in the 1950–2100. The figure
also reflects how greater mean values are followed by greater variances, which is common in field
observation. There seems to be a peak of scale parameter β in the period 2001–2025, which would
explain that in the northern Aegean Sea, very near to the Black Sea [93], extreme wave-heights were
higher during 2001–2050. The scenario considered in [93] is the A1B scenario of the Assessment Report
4 of the Intergovernmental Panel on Climate Change 2007. It is equivalent to RCP6.0 of the Assessment
Report 5 of the Intergovernmental Panel on Climate Change 2013 [94]. The variabilities of Hp, Tp, and
D are strongly dependent on EA, the second time-derivative of EA, and EA, respectively. The variance
of E is not especially sensible to any climate index, nor their accelerations. However, the variabilities
of Hp and D increase with high values of negative and positive EA, respectively. Additionally, the
variability of Tp increases with a fast approach towards negative EA.

As for the joint statistical structure of the storm components at the northwestern Black Sea (see
Figures 3b and 6), there is a lower dependence between the Hp and the E-D, unlike in the Catalan
Coast [11]. The maximum value of τroot is approximately 0.67, so the dependence among Hp, Tp, E,
and D are not especially strong and wave-storms with extreme values of all of these components are
not probable. This is corroborated by historical wave-storms observations, where it is common to
have extreme conditions in wave-height, but a combination of extreme wave-height, wave-period,
wave-storm duration, and energy is extremely rare. Nevertheless, the increasing trend in τroot suggests
that all four storm components present a greater common semi-dependence with time. τ(E,D) takes
values of approximately 0.85, so there is a strong association of E and D. This should be true, by
the definition of E (see Equation 2), but here the relatively lower role of Hp in E is verified. This
also implies that a wave-storm of maximum E and D is more feasible in this century. Note that this
semi-dependence is lower in the period 2000–2050 than during the rest of the century.

5.2. RCP8.5

The CNRM-CM5 GCM presents higher PACF-based distances in the RCP8.5, compared to the
RCP4.5 scenario. The wave-storm components E and D are still the most coincident wave-storm
components between GCMs. Additionally, as in the RCP4.5 scenario, the selection of the GCM affects
the outcomes of Hp and Tp, mainly the models from the GFDL, IPSL, and MIROC branches, in
comparison to the CNRM branch. Therefore, while the PACF-based distances in these GCMs are
still relatively small, like in the RCP4.5 scenario, a selection of the models from the GFDL, IPSL, and
MIROC branches would project slightly different wave-storms.
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Estimated storminess is similar between the RCP8.5 scenario and the RCP4.5 scenario, presenting
more estimated storminess at nodes 17–34 (see Figure 1). Again, the estimated average number of
storms exceeds the usual 15–20 storms/year. This is possibly for the same reasons as in the RCP4.5
scenario. However, the minimum time-interval between storms of 72 h has prevented replicants of the
same storm from mistakenly elevating storminess. Additionally, similar to the RCP4.5 scenario, climate
change does not affect storminess, as the latter stays constant during 1950–2100 and is unaffected by
climate patterns. EA, the second time-derivative of which is the most influential on the wave-storm
threshold, is mostly active between the months of December and February, as the winter average EA
brings a low surface pressure anomaly centre over the Caspian region, east of the Black Sea. In the
positive phase of EA, associated with the anticyclonic activity over the Caspian Sea, the Black Sea
region is exposed to cold and dry air masses from the northeast-to-northwest sector. On the contrary,
in its negative phase associated with the anticyclonic activity over the Caspian Sea, the Black Sea
region is affected by air masses flowing from the southwest to the southeast [95]. The sensitivity of the
storm-threshold to the second time-derivative of EA indicates that a sudden appearance of EA during
a winter season foreshadows a worsening of the sea state during that period.

The location parameters x0 of Hp show a constant trend in 1950–2100 (see Figure 7), but decrease
slightly. This phenomenon coincides with [77], which stated that under the RCP8.5 scenario, the
maximum wave-height in the Black Sea decreases in the period comprising 2080–2099. The mean
value of D has a constant trend in 1950–2100, and it is not higher for the more severe emission scenario
RCP8.5. The trend of the mean value of E should be constant, as in the cases of Hp and D. However, the
presence of different trends at each node suggests that it depends on the relative dominance of Hp or D
at each node. The location parameter x0 of Tp is constant over the 21st century, so the statistical mean
of this storm component might be constant over time, like under RCP4.5. According to the regression
parameters Cr of the VGAMs used to predict the storm components from the corresponding climate
indices, the mean values of E and D are not significantly influenced by any climate index. However,
the mean value of Hp is strongly influenced by the second time-derivative of EA. The regression
parameter Cr of a VGAM that predicts the location parameter x0 of Hp from EA shows no strong
relationship between the location parameter x0 of Hp and EA, so it can be inferred from the results
that the mean Hp can be produced by an acceleration towards negative EA. Tp is strongly influenced
by NAO, and it increases with a positive phase of this climate pattern.

Additionally, like in the RCP4.5 scenario, the trend of the scale parameters β for each storm
component (see Figure 8) reflects the trends in the location parameter x0 of the respective storm
components (see Figure 7). That is, the degree of variability parallels the mean value of each storm
component. A possible explanation is that a greater mean value of each storm component was related
to a greater variance of the storm component. The variability of Hp, Tp, and D are significantly
influenced by the respective climate indices, while the variability of E is not sensible to any climate
index. From the results, it can be deduced that the variability of Hp increases with negative SC, the
variability of Tp increases with positive EA, whereas the variability of D increases with a rapid increase
of positive SC. At this point, it should be noted that EA has a relatively greater influence on the GPD
parameters than the other two selected climate-patterns. All the EA climate-index and its first and
second time-derivatives have this effect. Therefore, EA can be crucial in future mean values and
variabilities of wave-storm components.

As for the joint probability of occurrence of different storm components, there is also a lower
dependence between the Hp and the E-D than in the Catalan Coast [11]. The maximum τroot is 0.65
(see Figure 9), similar to the RCP4.5 scenario (see Figure 6). It denotes similar moderate general
dependence among wave-storm components. However, there is again a positive trend for this
semi-dependence among the four storm components. The mean τ(E,D) is 0.83, similar to the RCP4.5
scenario, meaning that wave-storms of maximum E and D are possible in this century. This high
dependence between E-D is also present in the also micro-tidal environment of the Catalan Coast, under
the RCP8.5 scenario [11]. Like in the RCP4.5 scenario, there is also a period of lower semi-dependence
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among E and D, this time from 1980 to 2015 and from 2040 to 2070. It should be noted that τ are
generally 2 centesimals lower in the RCP8.5 scenario than in the RCP4.5 scenario. This suggests a
lower dependence among wave-storm components in higher emission scenarios, possibly due to the
presence of extremes of single wave-storm components during wave-storms.

5.3. Applicability of the Results

Water infrastructure tends to be designed with pre-defined loads that aims to fulfill a particular
need (i.e., water storage and distribution, ocean wave sheltering, storm flooding, etc.) Climate change
adds a further layer of complexity: (i) the stationary assumption of the loads cannot be assumed;
and (ii) there is a relevant uncertainty in how extreme climate forcings will change [96]. An option
for bounding this uncertainty is to analyse GCMs’ climate projections derived from IPCC climate
scenarios [25], such as RCP 8.5 or 4.5. Dynamical downscaling (the first step in our methodology)
joint with non-stationary multivariate statistics (second step) provides an affordable solution, without
requiring prohibitive computational cost. Once the statistical model is fitted with process-based
model outputs and after establishing relationships between the loads and related climate indices
[21,97,98], uncertainty can be bounded by comparing climate indices from several publicly available
GCMs (fourth step).

These statistical models can deal with level 3 (probabilistic) designs, considering random
simulation of the loads, while presenting a pre-defined dependence structure (for example,
via Archimedean copulas). Recent methodologies for coastal infrastructure design consider the
joint action of wave-height, wave-period, and storm-duration [16,99]. Beach management could
also benefit from the additional robustness, due to consistency in climatic co-factors. For instance,
stakeholders could thus pro-actively protect a beach for a cruder winter season which has much more
destructive waves or more unpredictable wave-storms [29,100] than other projected milder winters.
More lives could be saved if preparedness campaigns were made for people to avoid navigation
under high probability of especially hazardous wave-storms. These improvements can be extended to
other fields, such as river hydrology or the preservation of coastal biosphere. In any of these fields,
predictability is strongly linked to variability and joint probability-structure of extreme components.
Hence, stakeholders can benefit from these hybrid methodologies for disaster risk management.

6. Conclusions

Present and future wave conditions under two climate change projections (RCP4.5 and RCP8.5)
have been modelled with SWAN in the Black Sea. These projections have been characterized
with a multivariate non-stationary statistical model that deals with the storm components and the
semi-dependence among them. The individual probability of the storm components are characterized
by non-stationary GPD functions. The parameters of such GPDs have been estimated through
VGAM, where climate indices derived from the CNRM-CM5 general circulation model (NAO, EA,
and SC) have been employed as covariates. The joint probability structure is characterized by a
pseudo-non-stationary HAC.

The proposed hybrid methodology shows the following features. Similar trends are found when
using climate indices derived from other GCMs as predictors. Hence, loads due to future extreme
climate have been characterized in the statistical model. Estimated storminess is affected by neither
time nor climate indices, in any RCP scenario. The wave-storm threshold, however, is strongly
influenced by the first and second time-derivatives of SC in the RCP4.5 scenario, and by the second
time-derivative of EA in the RCP8.5 scenario. Under both RCP scenarios, the mean values of Hp and
Tp remain fairly constant over the 21st century. The mean value of E is more markedly increasing in
the RCP4.5 scenario than in the RCP8.5 scenario. The mean value of D is increasing in the RCP4.5
scenario, as opposed to the constant trend in the RCP8.5 scenario. The variability of each storm
component increases with increasing mean values, under both RCP scenarios. All three climate indices
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can influence the mean values and variances of the wave-storm components, but EA and its dynamics
play a special role.

Under both scenarios, wave-storms of maximum E, Hp, Tp, and D are not excessively common, but
wave-storms of concurrent extreme E and D can be expected. A positive trend in the semi-dependence
among all wave-storm components can be observed in both scenarios. There are also periods of
lower semi-dependence among E and D; e.g., 2000–2050 in the RCP4.5 scenario, and 1980–2015 and
2040–2070 in the RCP8.5 scenario. Additionally, the more severe emission scenario of RCP8.5 presents
lower dependence among wave-storm components. The joint knowledge of the effects of climate
indices, the trend of each storm component in this century, and the probability of joint occurrence can
help to improve performance in the design of coastal infrastructure and the management of natural
and urban resources.
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Abbreviations

The following abbreviations are used in this manuscript:

D total wave-storm duration
E total wave-storm energy
EA East Atlantic Pattern
GCM general (atmospheric) circulation model
GPD generalized Pareto distribution
HAC hierarchical Archimedean copula
Hp significant wave-height at the peak of the wave-storm
NAO North Atlantic Oscillation
PACF partial autocorrelation function
RCM regional (atmospheric) circulation model
SC Scandinavian Pattern
SWAN Simulating WAves Nearshore (spectral wave-model)
Tp peak wave-period at the peak of the wave-storm
VGAM vectorial generalized additive model
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8. General results and discussion
This chapter first exposes and discusses (sec. 8.1) the main results from the two
study areas in this compendium.
The stationary characterization of wave-storm variables in the Catalan Coast
(sec. 8.1.1.1) adresses: i) the wave storminess, ii) the storm shape, iii) the growth-
decay rates, iv) the joint probability structure and the values of its parameters and
v) the wave-directionality at the peak of the wave-storm, θ∗p.
The non-stationary characterization of wave-storm intensity variables in the Catalan
Coast (sec. 8.1.1.2) addresses: i) the bounding of the uncertainty coming from the
GCM, ii) the wave-storm threshold and its relationship to climate-indices, iii) the
wave-storminess and its relationship to climate-indices, iv) the wave-storm inten-
sity variables and their relationship to climate-indices and v) the joint probability
structure and the values of its parameters.
The issues addressed in the non-stationary characterization of wave-storm intensity
variables in the northwestern Black Sea (sec. 8.1.2) is the same as in sec. 8.1.1.2,
only that the θ∗p is discussed before the item iv). Hereafter, sec. 8.2 addresses: a)
relationship between the papers, b) limitations of the models, c) main similarities
and differences, d) improvement that this new methodology provides, e) specific
improvements and new knowledge derived from this dissertation and f) applicability
of the results of the thesis.

8.1. The two study areas

8.1.1. The Catalan Coast

8.1.1.1. The stationary approach

The stationary characterization of wave-storms in the Catalan Coast deals with
a fetch-limited, micro-tidal environment, in the present climate (years 1996-2013).
The statistical model employed to do this characterization is divided into three
sub-models: wave-storm intensity, wave directionality and intra-time distribution.
In the wave-storm intensity sub-model, the wave-storm intensity variables E, Eu,
Tp and D are characterized through GPDs. Their joint probability structure is fit
by a stationary HAC. In the wave directionality sub-model, the θ∗p is fitted to a
movMF, and then related to E, Tp and D through a multinomial logistic model. In
the intra-time distribution sub-model, D is related to the growth-decay rates of the
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wave-storm through a third-degree polynomial. The whole model is validated with
Puertos del Estado buoy records from the same period of time.
The wave storminess in the Catalan Coast, in the present wave-climate, is of around
1− 15storms/year, which is what can be expected in this study area. The most ap-
propriate geometric figure to describe the evolution of the wave-height is an irregular-
trapezoid. This shape is considerably versatile in modelling wave-storms, since it
includes the triangular types of wave-storms. For D over 100h, the peak of the
wave-storm is located farther from the start of the wave-storm than from the end.
Hence, it can be deduced that wave-storms grow slowly and fall sharply after the
height of the wave-storm.
Two types of HAC structures are considered in the stationary characterization of
wave-storms in the Catalan Coast. The configuration of such HAC structures can
be seen in Fig. 8.1. Type A HAC-structures shows more dependence of Eu to E
and D. In the present and future wave-climate of the Catalan Coast and the future
wave-climate of northwestern Black Sea, wave-storms not always present maximum
values of all the wave-storm variables. However, the probability of extreme wave-
storm energy and duration can often be considerably high. The principal θ∗p on the
northern Catalan coast are North and East, whereas eastern and southern directions
are predominant in central and southern Catalan coast. The intensity of eastern
waves is corroborated by Bolaños et al. (2009). The θ∗p depends on the directionality
of the waves that are energetic enough to be part of a wave-storm. In the northern
Catalan Coast, Tramuntana winds are prone to create large waves that end up
forming part of a wave-storm. Also, in the central and southern Catalan Coast,
wave-storms are mainly originated in the east, due to larger fetch from this direction.

8.1.1.2. The non-stationary approach

The non-stationary characterization of wave-storms in the Catalan Coast uses a
WAM wave projection for the years 1950-2100, considering a RCP8.5 greenhouse gas
emission scenario for the projection. The target wave-storm intensity variables are
E, Hp, Tp and D. The parameters of the non-stationary GPDs, used to characterize
these variables, are estimated through VGAM. Their joint dependence structure is
characterized through a pseudo-non-stationary HAC. The non-stationary statistical
model establishes the relationship between the wave-storm threshold, the wave-
storminess, the wave-storm intensity variables and the climate-indices NAO, EA
and SC, as well as the first two time-derivatives of these climate-indices. This
relationship is newly introduced in the non-stationary models. The statistical model
is validated with Puertos del Estado buoy records and SIMAR hincast in the period
1996-2013.
In the Catalan Coast, different GCMs have been compared to the CMCC-CM GCM.
This can help bound the uncertanty coming from GCMs. In this study area, all
GCMs provide similar wave-storm conditions. Thus, this uncertainty is small. The
Catalan Coast might be related to little uncertainty coming from the GCMs because
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Figure 8.1.: Examples of HAC structures that appear in the three papers. The vari-
able Eu is substituted by Hp in the non-stationary models. Both HAC-structure
types are present in the stationary model. Type A HAC-structure (a) is rep-
resentative of the non-stationary HAC-structure in the Catalan Coast. type B
HAC-structure (b) is representative of the non-stationary HAC-structure in the
northwestern Black Sea.

of the following reasons. First, the Catalan coast is located in Europe, thus it might
be modelled the same way in all the European centred GCMs. Second, it is at the
same distance from the United States than from central Europe, thus it might be
modelled by the GFDL in a similar way than the European centred GCMs. The
MIROC branch of the GCMs does not present significantly more uncertainty. What
is more, the elements in this branch are relatively few in number, compared to
all the GCM that present similar wave-climate results to the CMCC-CM GCM.
Therefore, it can be said that the uncertainty coming from the CMCC-CM GCM
was considerably limited.
In 21st century wave-climate of the Catalan Coast, the wave-storm threshold is
mostly influenced by NAO, the second time-derivative of EA and SC. The wave
storminess is 5−25storms/year. It is boosted by negative NAO, which might create
temperature changes in a favourable way to originate stronger winds. This, in turn,
can generate energetic waves that finally increased the wave storminess in the area.
However, it is not certan to what extend this was related to natural variablity of
atmospheric climate-patterns and how it was affected by the antrhopogenic footprint
(Trenberth et al. (2015)). The mean values of all the wave-storm intensity variables
decrease in time, except for D at the northern part of the Catalan coast. The decline
in the mean values of E, Hp and Tp means milder wave conditions in the future.
It could be possible in the Mediterranean Sea, which is much more sheltered than
the major oceans such as the Atlantic or the Pacific Oceans (Hemer et al. (2013)).
However, the increase in D may have a relevant impact on harbours, which would
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require adaptive engineering (Burcharth et al. (2014); Sánchez-Arcilla et al. (2016)).
The mean and variance of the storm variables in the Catalan Coast depend mainly
on the dynamics of the climate-indices, such as the second time-derivative of EA
and SC. Usually, what used to be discussed was the effect of the nominal value of
the climate-indices. The relevance of the time-derivatives is evaluated in sub-section
sec. 8.2.
The selected non-stationary HAC structure is the type A HAC-structure (see Fig. 8.1).
The reason is a strong dependence of Hp to E and D. The HACs of the wave-storms
present an increasingly strong dependence between E and D over 1950-2100. As the
mean values of E and D are approximately constant in this period of time, there
seems to be a fixed configuration of the energy and the duration of the wave-storms.

8.1.2. The non-stationary approach in the northwestern Black
Sea

The northwestern Black Sea is also fetch-limited and micro-tidal. A process-based
approach provide data for the statistical characterization. These wave-data projec-
tions were made for the greenhouse gas emission scenarios RCP4.5 and RCP8.5,
in the years 1950-2100. The non-stationary characterization of wave-storms in the
northwestern Black Sea uses the same methodology as in the Catalan Coast.
The uncertainty due to the GCMs is small. However, unlike in the Catalan Coast,
some GCMs show different wave-storm conditions. They are the GCMs from the
MIROC and the GFDL branches. The reason might be that these GCMs were
not centred over Europe, where the northwestern Black Sea is located. What is
more, unlinke in the Catalan Coast, The MIROC GFDL branch of GCM might not
produce the same atmospheric climate conditions as the European centred GCMs.
The non-stationary wave-storm threshold in the northwestern Black Sea is mostly
influenced by the first and the second time-derivatives of SC (in RCP4.5) and
the second time-derivative of EA (in RCP8.5). The wave-storminess is of around
27− 35storms/year and is not affected by any one of the proposed climate-pattern.
Therefore, the wave-storminess in the northwestern Black Sea is more independent
from the proposed climate patterns, despite the sensitivity of the wave-storm thresh-
old to them. It is possible that the wave-storm threshold depended mildly on them,
but that the final wave-storminess did not.
In the northwestern Black Sea, one of the main forcings for waves are winds. The
extreme winds are highly influenced by orographic effects and atmospheric climate
patterns. Besides, despite that Climate Change leads to important modifications
in the variability and intensity of winds, it seems that the wave-direction should
not change significantly. The movMF that are fitted to the wave-directions present
constant mean and the variance. Thus, only wave conditions are modelled.
The detailed evolution of the mean values and the variance of the wave-storm in-
tensity variables are diverse, showing different trends. The mean Hp and Tp remain
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fairly constant over the 21st century, in both RCP scenarios. The average E is more
markedly increasing in the RCP4.5 scenario than in the RCP8.5 scenario. The mean
D increases in the RCP4.5 scenario, opposed to being constant under the RCP8.5
scenario. As for the variances of the four wave-storm variables, they show the same
behaviour for both RCP scenarios: the rising average values induce an increase in
the variances.
In both emission scenarios, the mean of the wave-storm variables have a more pos-
itive trend than in the Catalan Coast. The Black Sea has a similar fetch to the
northwestern Mediterranean Sea. What is a more positive trend is actually a more
constant mean value of the wave-storm variables. Considering also the indepen-
dence of wave-storminess to climate-patterns, it could be suggested that the effects
of Climate Change were milder in the northwestern Black Sea than in the north-
western Mediterranean Sea. The mean and variance of the storm variables in the
northwestern Black Sea depend on all three climate-patterns: NAO, EA and SC,
but they are most strongly influenced by the EA. The importance of each one of the
climate-pattern on the parameters of the GDPs are different for the Catalan Coast
and the northwtestern Black Sea. This might be due to the different effect that each
climate-pattern has for distinct parts of the Planet.
The non-stationary HAC structure in the northwestern Black Sea is represented
by the type B HAC-structure (see Fig. 8.1). This HAC structure denotes a weaker
dependence of Hp to E and D. In both RCP scenario, the general dependence
among the wave-storm intensity variables increase with time. It should be noted
that in the Catalan Coast there is not such an upward general trend among the
wave-storm intensity variables. It seems that, despite a HAC structure that reflects
a weaker dependence of Hp to E and D, this dependence was recovered during
the 21st century. Therefore, the wave-storms in the northwestern Black Sea might
present a similar joint probability structure to the wave-storms in the Catalan Coast,
later in this century.

8.2. Integrated discussion

In comparison, the SIMAR wave hindcasts characterized in the stationary approach
to the Catalan Coast only spans years 1996-2013, whereas the wave-projections are
for 1950-2100. The statistical significance of wave-storms in the non-stationary ap-
proaches is much higher. This advantage has been profitted precisely by considering
non-stationarity. In any case, in the presence of the Climate Change, the assump-
tion of stationarity of the wave-climate would not have been realistic, since one of
the basic assumptions of Climate Change is that the climatic trend would vary.
The wave-storm threshold does have one limitation. Wave-storminess seems to be
systematically higher in non-stationary models. The wave-storm threshold in the
non-stationary approach can be lower at some moments in time, thus providing a
lower threshold for events to be classified as storms. This does not happen to the

135



General results and discussion

stationary model in the Catalan Coast, which has a constant wave-storm threshold
for the whole time-frame, and thus should be kept in mind.
A main similarity between the two study areas is that the E and D, have a high
dependence. Is is so because of the definition of E. Another similarity is that there is
a mild general dependence of the wave-storm intensity variables. A main divergence
is that the average value of the wave-storm intensity variables seem to have a more
negative trend in the Catalan coast than in the northwestern Black Sea.
θ∗p has been modelled in the two study areas because the wave-storm intensity might
depend on the directionality of the wave-storm at its peak. Nevertheless, this has
not been of concern in the northwestern Black Sea, where there has not been a need
to model θ∗p, as it stays constant from 1950 to 2100.
There are a series of discoveries in this thesis that might help improve knowledge
on Coastal Engineering. For instance, there is a larger effect of the dynamics of
the climate-patterns on the wave-storm variables in the Catalan Coast. This shows
how the dynamics of the climate-patterns can also have a significant effect on the
wave climate in one such region. This phenomenon might be extensible to other
ocean environments and it poses a certain risk. There might be periods of time
where a region presented similar characteristics of the atmosphere, but this part
of the atmosphere might be accelerating to other configurations. According to the
discovery above, the regional wave-storms might acquire new characteristics under
these circumstances. A second possible new discovery is that the configuration of E
and D in a wave-storm in the Catalan Coast is increasingly fixed in the 21st century.
Similarly, the configuration of all the wave-storm intensity variables is increasingly
fixed in the northwestern Black Sea, in the 21st century. This simplify matters as
the future configurations of wave-storms are expected to be similar to the ones at
the beginning of the century.
These statistical models have an applicability into Civil Engineering. Specifically,
the stationary statistical model can serve to generate data of synthetic wave-storms.
This data can be used for several purposes, one of which is as input for numerical
models to simulate wave conditions in a given coastal area. Alternatively, the non-
stationary approaches provides statistical information on wave-storm variables and
their joint probability structure. This can enhance Level 3 structure designs (Martín-
Hidalgo et al. (2014)), a level of design that consider the uncertain nature of the
hydrodynamic forcings with probabilistic distributions. Pre-defining a dependence
structure among the wave-storm variables avoids to model unfeasible or extremely
rare combinations of the wave-storm intensity variables (for instance, those with high
E, Hp, Tp andD at the same time). Moreover, it can help stakeholders take decisions
involving risk management, by knowing better the most probable combinations of
wave-storm characteristics, how these evolve in time, and how they relate to NAO,
EA and SC.
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9. Conclusions

9.1. Main goals and summary of the methodology

Wave-storms are responsible for major changes in the coast. The probability of
occurrence of certain configurations of a wave-storm, like extreme Hp and D, has
been a growing concern in Coastal Engineering. Moreover, Climate Change can lead
to non-stationarity of the wave-storm intensity variables. Also, atmospheric climate-
patterns might present a connection to wave-storm characteristics. It is expected
that research on these aspects would help avoid an inappropriate risk assessment of
the wave-storms.

The first aim of this thesis is to characterize the dependence structure of the wave-
storm intensity variables in a fetch-limited, micro-tidal enviroment. Hence, a sta-
tionary approach is to characterize wave-storms variables in the present climate of
the Catalan Coast. The proposed stationary model is formed by three sub-models:
wave-storm intensity, wave directionality and intra-time. A stationary wave-storm
threshold is used to define wave-storms. Stationary GPDs are used to characterize
the wave-storm intensity variables of E, Eu, Tp and D. Stationary HACs are em-
ployed to characterize the joint probability structure of these variables. The θ∗p is
modelled with movMF and related to E, Tp and D through a multinomial logistic
model. Growth-decay rates are related to D through a third-degree polynomial. A
geometric shape is proposed to describe the time-series of the wave-height during
wave-storms. This figure can be either a triangle or an irregular-trapezoid.

The second aim is to incorporate the non-stationarity, caused by Climate Change,
in the characterization. The same methodology for a non-stationary approach is
applied to the Catalan Coast and the northwestern Black Sea. The E, Hp, Tp and
D of wave-projects in the years 1950-2100 are characterized. The projections are
for the RCP8.5 emission scenario, in the Catalan Coast, whereas it is for both the
RCP4.5 and the RCP8.5 scenarios, for the northwestern Black Sea. Furthermore,
the relationship of the wave-storm intensity variables to the climate-indices NAO,
EA, SC and their first two time-derivatives is established. A non-stationary wave-
storm threshold and non-stationary GPDs are employed. A series of HACs for short
time periods of 15 years provide time-dependent parameters of HAC. The temporal
evolution of θ∗p is fitted to movMF and evaluated. The uncertainty from the GCMs
that are used in each study area is bound.
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9.2. Summary of the results

This section concludes the main results from the two study areas in this com-
pendium. For Lin-Ye et al. (2016), chapter 4 adresses: i) the wave storminess, ii) the
intra-time sub-model, iii) the wave directionality sub-model and iv) the wave-storm
intensity sub-model. For Lin-Ye et al. (2017), chapter 5 addresses: i) the bounding
of the uncertainty from the GCMs, ii) the wave-storm threshold and its relationship
to climate-indices, iii) the wave-storminess and its relationship to climate-indices,
iv) the wave-storm intensity variables and their relationship to climate-indices and
v) the joint probability structure and the values of its parameters. For Lin-Ye et al.
(2018) (chapter 7), the issues addressed are the same as for chapter 5, only that the
θ∗p is discussed before the item iv).
The stationary approach shows a wave-storminess in the Catalan Coast of approxi-
mately 1−15storms/year. The joint probability structure of the wave-storm intensity
variables (E, Eu, Tp and D) can be characterized by two types of HAC structures.
The dependence of Eu to E and D is stronger in one type of HAC structure than in
the other one. In both the Catalan Coast and the northwestern Black Sea, extreme
events with maximum values of all the storm variables is unlikely, while the prob-
ability of storms of extreme storm energy and duration is considerably high. The
principal wave directions on the northern Catalan coast are North and East, whereas
eastern and southern directions are predominant in the central and southern Cata-
lan coast. The most appropriate geometric figure to describe the evolution of the
wave-height is a irregular-trapezoid. For D over 100h, the peak of the wave-storm
is located farther from the start of the wave-storm than from the end.
In the non-stationary characterization of wave-storm intensity variables of the Cata-
lan Coast, the wave-storm threshold is mostly influenced by NAO, the second time-
derivative of EA and SC. The wave-storminess is 5− 25storms/year. It is boosted
by negative NAO. All storm variables (E, Hp, Tp and D) decrease in time, except
for the storm duration at the northern part of the Catalan coast. The mean and
variance of the storm variables in the Catalan Coast depend mainly on the dynamics
of the climate-indices, such as the second derivative of EA and SC. The selected
HAC structure presents a stronger dependence of Hp with E and D, while the wave-
storms have an increasingly strong dependence between E and D. The uncertainty
due to the GCM is small, as all GCMs provide similar wave-storm conditions in this
region.
In the non-stationary approach on the northwestern Black Sea, the non-stationary
wave-storm threshold in the northwestern Black Sea is mostly affected by the first
and the second time-derivatives of SC (RCP4.5) and the second time-derivative of
EA (RCP8.5). The wave-storminess approximately 27 − 35storms/year and is not
affected by any of the proposed climate-pattern. The wave directionality stays the
same during 1950-2100. Thus, only wave conditions are modelled. The uncertainty
due to the GCM is small. The only GCMs that show different wave-storm conditions
are the ones from the MIROC and the GFDL branches.
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At the northwestern Black Sea, under RCP4.5 and RCP8.5 scenario, the mean Hp

and Tp remain fairly constant over the 21st century. The average storm energy rise
more steadily in the RCP4.5 scenario than in the RCP8.5 scenario. The mean D
increases in the RCP4.5 scenario. On the contrary, it is constant under the RCP8.5
scenario. The variance of the four wave-storm variables increase with increasing
average values, under both RCP scenarios.
In comparison, the average value of the wave-storm variables seem to have a more
positive trend in the northwestern Black Sea than in the Catalan Coast. The mean
and variance of the storm variables in the northwestern Black Sea depend on the
three climate-patterns (NAO, EA and SC), but they are most frequently influenced
by the EA. The pseudo-non-stationary HAC structure in the northwestern Black
Sea shows a weaker dependence of Hp with E and D. Under both RCP scenario,
the dependence among E, Hp, Tp and D increase with time.

9.3. Applicability of the results
The characterization of wave-storm intensity, directionality and intra-time variables,
their joint probability structure and the effect of atmospheric climate-patterns on
them have an applicability in Civil Engineering. They provide statistical information
about the ocean environment, which can enhance Level 3 structure designs, a level
of design that considers the uncertain nature of the hydrodynamic forcings with
probabilistic distributions. Pre-defining a dependence structure among the wave-
storm variables avoids to model unfeasible or extremely rare combinations of wave-
storm intensity variables. Also, this characterization can help stakeholders take
decisions involving risk management.
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10. Future works

(A) Evaluate the uncertainty in the future projections via Bayesian statistics

One of the reviewers of “Multivariate statistical modelling of future marine storms”
suggested to evaluate the uncertainty of the future projections in the Catalan coast.
The uncertainty from the GCM has been evaluated and the one from other sources
could be tackled in future works.

(B) Introducing asymmetric copulas in the storm-model

In “Multivariate statistical modelling of future marine storms”, we have been sug-
gested by one of the reviewers to use the asymmetric copulas detailed in Vanem
(2016). Vanem argues that the copula structure does not have a symmetric tail, a
symmetric relationship between the extreme values. That is, Gumbel, Frank, Joe,
and all the common Archimedean copulas do not seem suitable to him to model
the joint probability structure of wave-storm intensity variables. Vanem proposes
the Marshal-Olkin copula, which is a parametric copula that is asymmetric. The
further complication in this approach is to integrate an asymmetric copula to a non-
stationary model. Therefore, the non-stationary model has been first built with a
symmetric copula. The asymmetric copula awaits to be introduced in future works.

(C) Fully non-stationary model

The HAC structure used in the non-stationary models are chains of stationary HACs.
A fully non-stationary model, with a non-stationary copula structure, could be bi-
variate first. Then, it could include more variables, if possible.

(D) Relate the growth-decay rates to the storm energy, duration,
wave-height, and wave-period

The growth-decay rates have been related to D in the stationary model, via a poly-
nomial. A skewed normal bi-variate probability distribution function has been sug-
gested, later. However, it has not yet been possible to implement it, as the method-
ology to build a non-stationary storm model had to be consolidated, before looking
for a joint probability structure that included the growth-decay rates.
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Future work

(E) Partition of wind and swell waves

Several attempts have been made to separate wind and swell waves into different
subsets. One statistical model could be proposed for each one of these two types
of waves. Then, it would be possible to compare the wave-storm intensity variables
and their joint probability structures, for the different types of waves.

(F) Neural networks, deep learning and other techniques

Some hot topics right now in science are neural networks and deep learning. These
might improve the knowledge in fields like remote sensing data analysis of wave-
storm intensity variables. Also, they can help improve our non-stationary models.
The proposed ideas for future work are generally not dramatically different from the
work introduced in this thesis. They are small improvements to the existing statisti-
cal models. If possible, several decades of research work should help improve many
other aspects of ocean physical sciences, which integrated with advanced mathe-
matics and computer sciences, should help existing methods of Civil Engineering to
evolve.
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A. Errata
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A.1. A multivariate statistical model of extreme
events: an application to the Catalan coast

Fig. 7a shows the 95th quantile, not the 59th.

A.2. Multivariate statistical modelling of future
marine storms

Eq. 8 should be written as
∣∣∣ln x(1−y)

y(1−x)

∣∣∣. This has first been pointed out, after publi-
cation, by Prof. J.J. Egozcue.
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