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1 Introduction

Determining whether a quintic polynomial is solvable by radicals and assessing the con-
structibility of regular polygons by a straightedge and compass are questions Galois theory
can answer. Galois theory associates groups to certain algebraic field extensions establish-
ing a correspondence between subgroups and subextensions. In this thesis we examine a
particular case of the converse linkage. It is an open problem if every finite group has a cor-
responding field extension over the rationals, known as Galois’ inverse problem. Some cases
are known, in the undergraduate’s subject on Galois theory we already saw that abelian
groups occur as Galois groups over the rationals. In 1937 Arnold Scholz and Hans Reichardt
proved that for odd p-groups the answer is affirmative as well. This is the theorem we will
prove. As a consequence any nilpotent group of odd order is in fact realizable as a Galois
group over the rationals and taking some results for granted we will see that every solvable
group has indeed a corresponding field too.

Our approach will strongly rely on the ease with which we can construct composition series
of p-groups. We will filter our p-group in a tower with simple cyclic quotients and follow an
inductive procedure. At every step we will consider a particular group extension and solve
an embedding problem, concepts that will be timely introduced. Not only will we associate
a field to the current group but we will also have to guarantee that we can keep doing the
same. To ensure the latter, we will impose a condition on the pursued field named after
Scholz himself.

As some of the deployed techniques lie beyond the scope of the regular undergraduate’s
curriculum we have chosen to structure this work as follows. First we introduce a set of
preliminary concepts for this thesis to be as self contained as possible. Then a section on
the Galois embedding problem is presented due to its relevance in the accomplishment of
the proof. With these tools in hand the main body of the thesis arises, the proof of Scholz-
Reichardt’s theorem. After the proof some remarks and particular examples are provided to
better portray the far reaching consequences of the theorem.

Scholz-Reichardt’s discovery not only helped the works of succeeding mathematicians but
also solved the simplest type of a large family of problems that is today a topic of research
and discussion. The solvability of embedding problems with a prescribed kernel.

Before going any further I would like to place on record my deepest sense of gratitude to
professor Jordi Quer. Not only for guiding me through the field lattice to finally encounter L̃
but also for the three magnificent subjects I have had the pleasure to have him as a professor
for during the bachelor’s degree.
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2 Contextualization within Galois’ inverse problem

It is nowadays customary to teach polynomial arithmetic at a high school level. This
widespread habit has its roots in the relevance polynomials play in modern era society
rather than on their aesthetic beauty. Justifying the fact that they appear naturally with
the two basic operations or that they are the easiest way to enlarge rings or other algebraic
structures would be a failed attempt to explain their existence. The notion of what is natural
and what is not is highly biased by our backgrounds. One could argue that if someone were
raised with no contact with society whatsoever then those constructions would not strike to
him as rare. This last assertion is unfortunately just that, an assertion. Going back to our
initial concern, we present a brief note on the history of the most related polynomial dis-
coveries and let the reader draw his own conclusions with regards to the “naturality” of it all.

Even if the first instance in which polynomials appeared in literature is not clear we can
say that they were the most fashionable topic in 16th century mathematics. In the Italian
Renaissance figures like Cardano, Tartaglia and Ferrari were avidly publishing on the topic
and participating in root-finding competitions. Some attribute the discovery of the formu-
lae to compute cubic polynomial roots to Niccolò Fontana thanks to a competition held in
Bologna in 1535, character who would later be remembered as Tartaglia for a war injury that
severely damaged his speaking capacity. Coetaneous to him there were many more eager
mathematicians in what some depict as a cut-throat environment. Among them Gerolamo
Cardano stood out, a true renaissance man who published 131 books and had expertise in
many fields such as medicine and set the grounds for what would later be probability theory.
Student of whom Lodovico Ferrari was, Ferrari is accredited with finding the generic solution
for quartic equations in 1540. Later on other authors analyzed the interplay of the roots
through permutations like Lagrange’s work in 1770 or the acclaimed theorem due to Abel
and Ruffini in 1799 in response to Gauss’ 1798’ conjecture on the non existence of a gen-
eral quintic solution by radicals. Their importance relative to this work is not in that they
invented anything but rather that they set up a common ground, asked a set of questions
and established a notation that would later evolve into what is nowadays used. Taking a
step forward, in 1830 Évariste Galois wrote 3 papers, one on number theory another one on
root-finding and another one on what would later be named Galois theory. He received no
recognition during his life despite submitting his findings to names like Cauchy or Fourier
and went on to live a very intricate life and die at the age of 20. Among other breakthroughs
Galois totally classified 5th degree polynomials according to their solvability by radicals.
Some years after the concept of Galois theory was established relevant mathematicians took
a shot at the inverse Galois problem:

Given a finite group G and a field K, find an extension E/K whose Galois group is G

We will restrict ourselves to the classic and still most common case, that of K = Q, but other
base fields have been analyzed as well with great detail. It is known that the Galois inverse
problem is always solvable over both C(t) and Q(t). The analysis on those base fields gave
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rise to the so called rigidity method which consists on imposing conditions on the conjugacy
classes and if satisfied searching in Q(t) instead of Q since if a given group occurs as a Galois
group over the field of functions then it naturally occurs over the rationals. More on this
topic can be found in [SAI]. This famous result is a consequence of:

Theorem 1. (Hilbert’s irreducibility theorem): Let {fi(X1,⋯,Xr, Y1,⋯, Ys)}i be a family of
irreducible polynomials in Q[X1,⋯,Xr, Y1,⋯, Ys] then there exists some (a1,⋯, ar) ∈ Qr for
which {fi(a1,⋯, ar, Y1,⋯, Ys)}i are irreducible over Q[Y1,⋯, Ys].

Proof. A proof which begins from the two variable case and argues by induction can be
found in [ADA] p.104.

Several attempts and progress in the rational base case have been successfully made. Those
range from the early discovery, which some attribute to Hilbert, that any abelian group
occurs as a Galois group over the rationals to the celebrated and somewhat polemic Sha-
farevich theorem which states that for any solvable group we have a positive answer as well.
Now some attempts at providing insights in the general case consist of realizing the already
classified finite simple groups as Galois groups. If one could only do both, associate a field
to every finite simple group and solve every possible associated embedding problem then
Galois’ inverse problem would be solved in this case by brute force. This approach even if
structured does not seem feasible as of today. Not only are we far from knowing whether
every finite simple group is realizable as a Galois group but the amount of associated em-
bedding problems is massive.

Even if this is a far from exhaustive and miscellaneous presentation of the time-line leading
up to and from Scholz and Reichardt’s discovery, for a more detailed reference on Galois’
inverse problem see [VOL] and [VIL].
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3 Preliminaries

In order for this work to be as intended, namely intuitive and self-contained, some prior
definitions are needed before delving into the real tasks this problem entails.

3.1 Groups

Even if Scholz-Reichardt’s proof is for groups of odd prime power order, as a consequence
we will have the same result for all nilpotent groups of odd order. This is the most general
case we can accomplish without invoking other results. Henceforth building an intuition and
analyzing the interplay between p-groups and nilpotent ones is a must.

Definition 1. A group G is said to be nilpotent if all of its Sylow subgroups are normal.

Lemma 1. The following are equivalent.

1. G is nilpotent

2. G has no proper self-normalizing subgroup

3. Every maximal subgroup is normal

4. G is the direct product of its Sylow subgroups

5. G allows a central series {1} = A0 ◁A1 ◁⋯◁An = G such that [G,Ai+1] ⊆Ai

By a central series in the last equivalence we refer to the fact that Ai+1/Ai is in Z(G/Ai).
The length of the shortest central series G allows is called the nilpotency degree. From the
same equivalence we see that we are strengthening the solvability condition. As it is the
case, every p-group is nilpotent and every nilpotent group is solvable. And even though the
converse is definitely not true, the rigidity of nilpotent groups often allows us to establish
results over p-groups and extend them naturally for all nilpotent ones.

Definition 2. The Frattini subgroup Φ(G) of a group G is the intersection of all maximal
subgroups of G.

A particular case of interest is that of a p-group, if G is a p-group then Φ(G) = Gp ∗ G′.
Frattini subgroups appear in our work as a tool to establish a more general result. The next
properties on the Frattini subgroup are borrowed from p.170 of [NEU].

Proposition 1. If a group G is generated by X and Φ(G) then X generates G itself.

Proof. If the subgroup generated by X is proper, the maximal subgroup it is contained into
contains both Φ(G) and X yielding the impossibility for the two to span the entire G.

Proposition 2. Let P ⊆H ◁G where P is a p-Sylow of H and let N be P ’s normalizer in
G. Then NH = G.

Corollary 1. The Frattini subgroup of a finite group G is nilpotent.
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Proposition 3. If Φ(G) ⊆H ◁G and H/Φ(G) is nilpotent then H is also nilpotent.

Definition 3. The exponent of a group is the least common multiple of the orders of all
elements of the group. Should this number be ill-defined, it is taken to be infinity.

Definition 4. The rank of a group is defined as rank(G) = min{∣X ∣ s.t. X ⊆ G and ⟨X⟩ = G}.

If P is a p-group rank(P ) = dim(P /Φ(P )) seen as a vector space over Fp.

Definition 5. A group G is said to be supersolvable if there exists a normal series {1} =
A0◁A1◁⋯◁An = G such that each quotient Ai+1/Ai is cyclic and each Ai is normal in G.

Some groups that occur as combination of others are a topic of discussion in this work as
well. The main two will be a particular case of the fibre product and the semidirect product
of groups. There is a broad definition of fibre products over any category together with its
underlying theory but here we describe a particular kind of product since it is the only one
we will require throughout the proof.1

Definition 6. Given three groups G, H, K and two group homomorphisms f ∶ G → K and
g ∶H →K then G ×K H ∶= {(x, y) ∈ G ×H ∶ f(x) = g(y)}.

And the notion of semidirect product extends that of direct product by allowing some inter-
play. If G has N and H as subgroups, N is normal, N∩H = 1 and NH = G then we say that G
is a semidirect product of N and H. More particularly, the semidirect product is isomorphic
to the Cartesian product together with the inner operation (n,h)(n′, h′) ∶= (nψh(n′), hh′)
where:

ψ ∶H Ð→Aut(N)

hz→(nz→ hnh−1)

3.2 Algebraic number theory

Some instruments our toolkit has to unavoidably feature are borrowed from algebraic number
theory. More particularly, we are interested in understanding the primes of fields over Q. Not
only because we are dealing with p-groups and we would like to have the intuitive notion
of how the rational primes are carried to other fields but because the Galois group of an
extension of number fields is very underpinned to how the primes of the base field behave in
the larger one.

Definition 7. Let E/Q be a number field. The ring of integers OE is defined as the set of
algebraic elements of E/Q whose minimal polynomial is monic.

Just like when we say a rational prime we mean an integer prime, when we say a prime in E,
p is really a prime ideal in OE. A more general type of rings in which the rings of integers
we will see belong are Dedekind domains.

Lemma 2. Every number ring OE is a free abelian group of finite rank equal to the degree
of the field extension [E ∶ Q].

1Even if some sources ask for additional behaviour for the maps f and g, any homomorphism will do.
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Definition 8. A Dedekind domain is an integral domain R in which:

• Every ideal is finitely generated (Noetherian)

• Every nonzero prime ideal is maximal

• R is integrally closed in its field of fractions

A crucial characterization of Dedekind domains that is often taken as the definition itself
is the fact that every nonzero ideal I of a Dedekind domain can be uniquely written as
I =∏

g
i=1 P

ei
i with Pi being prime.

Lemma 3. Every number ring is a Dedekind domain.

Proof. Thanks to the fact that every number ring is a free abelian group of finite rank, any
ideal is also a free abelian group of finite rank and hence finitely generated.
If R is our number ring, to see that every nonzero prime ideal is maximal it suffices to see
that R/P is finite for P prime. As if R/P is finite then it will immediately be a field and
hence P will be maximal as desired. Take a nonzero α ∈ P and let m ∶= ∏σ σ(α) = βα β is
an algebraic integer which means that both β and m lie in P . Now R/(m) is finite hence
R/P is finite. To see the last condition, suppose that α is a root of a monic polynomial over
R, f(x) = a0 + ⋯ + an−1xn + xn. Then Z[a0,⋯, an−1, α] is finitely generated and hence R is
integrally closed.

From now on E/K will denote a number field extension with [E ∶ K] = n and p being a
prime ideal of OK whose factorization in OE is ∏

g
j=1 Pj.

Definition 9. For every j we can consider φ ∶ OK/p → OE/Pj and fj ∶= [OE/Pj ∶ OK/p] is
the inertia or residual degree of Pj over p.

Proposition 4. If E/K is Galois then for every prime of OK: ei = ej, fi = fj ∀i, j. And as
a consequence efg = n.

Proof. Since one has pOE =Pe1
1 ⋯P

eg
g and Gal(E/K) acts transitively on the Pi there is no

option but for the ei’s and fi’s to be equal.

According to how the indices e, f and g are we will call p differently.

Definition 10. With the previous notation:

• If e > 1, p is said to ramify and e is the ramification index.

• If f = g = 1, p is said to be totally ramified, i.e. p =Pn.

• If e = f = 1, p is said to split completely, i.e. p =P1⋯Pn.

• If e = g = 1, p is said to be inert, i.e. p =P.

• If (eP/p, char(OK/p)) = 1, E/K is said to be tamely ramified.
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Lemma 4. Both the ramification indices and residual degrees have a multiplicative nature.
That is, if we have E/L/K and p, p, P primes one above the other of K, L and E respectively,
then eP/p = eP/pep/p and fP/p = fP/pfp/p.

Definition 11. If p is a prime of OK and P a prime of OE over p, then the decomposition
group of P is DP ∶= {σ ∈ Gal(E/K) ∶ σ(P) =P}. σ ∈DP induces an automorphism of OE/P
in itself, σ̃. The inertia subgroup IP ⊆ DP is IP ∶= {σ ∈ DP ∶ σ̃(α) = α ∀α ∈ OE/P} = {σ ∈
DP ∶ σ(α) ≡ α (mod P) ∀α ∈ OE}.

Two equivalent conditions of a tame ramification that are often used are the fact that
∀P∣p char(OK/p) ∤∣ IP/p ∣ which happens to be in turn equivalent to having that ∀P∣p
char(OK/p) ∤ [L ∶KU]2. The motivating relation we introduced between the decomposition
of primes in a Galois extension and the respective Galois group is evidenced with the inertia
and decomposition subgroups of the Galois group.

Proposition 5. ∣DP∣ = ef , ∣IP∣ = e.

Proof. The Galois group acts transitively on the set of prime ideals over p and hence there is
a relation between the group’s order and that of a particular stabilizer, DP, ∣DP∣ = n/g = ef .
Though not necessary, it is easy to see that they are all conjugates, that is for any i, j
there exists a σ ∈ Gal(E/K) with DPi = σDPjσ

−1. The argument is analogous for the
inertia subgroup, one can either argue that it fixes a set of elements in the group or that
I(P/p) = ker(D(P/p)→ Gal(OE/P/OK/p))

Phrased like this one may lose connection with the meaning of the decomposition and inertia
subgroups. To get a good grasp they are often regarded as follows.

Lemma 5. Let E/K be a finite extension of number fields, p a prime in K and consider the
tower E/EI/ED/K. Then p splits completely in ED, any prime in ED above p is inert in
EI and any prime in EI above p is totally ramified in E.

Essentially this goes to say that they provide a tool to see which part of an extension splits
completely and which is totally ramified. An exact sequence that relates the two and is often
used is the following.

1Ð→ Ip Ð→Dp Ð→ Gal(OE/P/OK/p)Ð→ 1

Proposition 6. Let E/Q be finite, then E = Q(α) for some α ∈ OE.

Proof. Suppose E = Q(β) and Irr(β,Q;X) = a0 + a1x + ⋯ + anxn. Then we know that
a0an−1

n + a1an−1
n β +⋯+ annβ

n = 0 and setting α ∶= anβ we have an isomorphic extension whose
minimal polynomial over Z is monic.

Proposition 7. Let E/K be a number field extension then the prime p of OK ramifies in
OE if and only if ∆OE/OK ⊆ p.

Proof. A proof that first examines the case where the ring of integers allows a power basis
and then attacks the general one can be found in [CON3].

2KU stands for the maximal unramified extension of K.
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As a consequence there is a finite amount of ramified primes. Moreover, there are always
ramified primes in OL/Q since ∆Z(OK) is never a unit of Z. This often referred to as
Minkowski’s theorem is a consequence of the celebrated lower bound on the discriminant a
certain field extension can take.

Theorem 2. (Minkowski’s bound): Let r1 and r2 be the number of real and complex
embeddings of K respectively and n = [K ∶ Q], then one has:

∣DK/Q∣ ≥ (
π

4
)

2r2

(
nn

n!
)

2

And hence yielding the impossibility for a number field over the rationals to take values ±1
for its discriminant. A neat proof of the previous theorem can be found in [SUT].
The factorization of prime ideals over larger number rings will be a topic of interest through-
out this paper and in the broader sense it is a challenging to characterize behaviour, that
of distinguishing which type of ramification they have. The following result helps to better
comprehend the relation between the degrees of a certain prime with those of the factors of
the minimal polynomial generating the extension.

Proposition 8. Let E/K be a finite field extension with OE = OK[α] for some α ∈ OE and
f(x) = Irr(α,K;X), then if f(x) = ∏ gi(x)ei (mod p), where gi are monic and irreducible
modulo p, and p ∤∆ then ei are precisely the ramification degrees above p.

Proof. We have an isomorphism from OK[X]/(f(x)) to OE which naturally induces an
isomorphism from (OK/p)[X]/(f̃(X)) to OE/pOE by reducing modulo p. If we take the
ideals (g̃i) which lie inside of (f̃) those naturally correspond to ideals of OE/pOE of the form
(gi(α)) + pOK and this correspond to Pi = (p, gi(α)) in OE. Since those are all containing
pOE and we can go back with this procedure we have the correspondence of the degrees not
only for e(P,p) = e((p, gi(α)),p) but we have that e(Pi,p) = deg(g̃i(x))

For the sake of simplicity this has only been proved for the case OE = OK[α] nevertheless
this constitutes no loss of generality as reducing it to the local case and then checking the
factorization there will eventually yield the total factorization. And for the local case the
ring of integers always allows a power basis. The following result constitutes a stepping stone
in the non split case of the proof.

Proposition 9. Let E/Q be a finite field extension, then there are infinitely many primes
that split completely over E.

Proof. Since it suffices to prove the statement for a larger extension, let L be E’s Galoisian
closure over the rationals. Then L = Q(α) for some α and f(x) = Irr(α,L,X) ∈ Z[X]. A
prime p will split completely if p does not divide ∆(f) and there is a prime P of degree 1
above p which is the same as saying that p∣f(n) for some n ∈ Z. Let now P be the set of
such primes together with those that ramify over E and suppose P to be finite to hopefully
reach a contradiction. Let t be such that ordp(t) > ordp(f(0)) ∀p ∈ P then ∀m f(mt) ≡ f(0)
(mod t) Ô⇒ ordp(f(mt)) = ordp(f(0)) ∀p ∈ P nevertheless f(mt) → ∞ as m → ∞ which
implies that there must be some factor outside of P contradicting its finiteness.
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Proposition 10. A prime p splits completely in L and K if and only if it splits completely
in LK.

Proof. One direction is immediate, if it splits completely in LK, by the multiplicative nature
of the indices, it will split completely in both L and K. Now let E be a galoisian closure
of LK and P be a prime above p, then pK = K ∩ P has trivial indices e and f if and
only if the decomposition DP/p ⊆ Gal(E/K), the same holds for L. As this is the case by
assumption, we have that for any prime of the shape pK in K, respectively in L, the result
holds. But the primes above p in those fields always happen to be the intersection of P with
the intermediate field.

The behaviour of primes also provides useful information as to how certain field extensions
differ. The clearest example is when the ramification is completely different.

Proposition 11. Let K/Q and F /Q be field extensions where p is unramified and totally
ramified respectively. Then K and F are disjoint over the rationals.

Proof. Consider the intersection L =K∩F , then by the multiplicative nature of the ramifica-
tion indices p is both totally ramified and unramified in L forcing L to be the rationals.

Some contextualization about cyclotomic fields should as well be given since we will strongly
rely on them to construct our extensions. That is, in most of the cases we will restrict
ourselves to fixed subfields by the Galois action over a larger cyclotomic field and hence
seeing how they behave on a general scenario is a must. A theorem we will refer to and we
present without proof is the famous Kronecker-Weber result.

Theorem 3. (Kronecker-Weber) Every finite abelian extension of Q is a subfield of a
cyclotomic field.

Proof. An instructive proof that attacks the problem from different viewpoints can be found
in [CUL].

As we have seen, an important tool to describe a field’s behaviour is to analyze its ring of
integers. Computing such a ring renders a hard task in the general case but for cyclotomic
fields we have a huge simplification.

Proposition 12. Let K = Q(ζm) for some m, then OK = Z[ζm].

And just as simplified the computation of its Galois group is.

Proposition 13. Let K = Q(ζm) for some m, then Gal(K/Q) ≅ (Z/mZ)∗.

This rigidity provides the necessary tools to impose some conditions over the decomposition
of primes in those fields which is ultimately what we are interested in.

Proposition 14. Ramifying primes in Q(ζm) are precisely those dividing m.

Proof. As cyclotomic fields of relatively prime order are disjoint the proof reduces to the
computation of the discriminant for cyclotomic fields of prime power roots of the unity. Let
ζ be a primitive pr-th root of the unity, as detailed in [MAT4250], the discriminant of Q(ζ)
is (−1)φ(p

r)/2pp
r−1(pr−r−1). In the same document the general case is also computed and the

result we are interested in comes as corollary.
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Furthermore,

Proposition 15. Let K = Q(ζm) for some m and p a prime not dividing m, then p splits
into ϕ(m)/fp3 primes in Q(ζm).

The previous claim may look like a triviality given the analysis on the possible values e,
f and g could take. Nevertheless it allows us to establish a result we will deploy in many
instances. Namely the fact that a prime splits completely in the m-th cyclotomic field if and
only if it is congruent with 1 modulo m. The next result was presented in the Galois theory
course and will be used in the proof.

Proposition 16. Given n ∈N, there are infinitely many primes p ≡ 1 (mod n).

Besides some basic ramification theory and its properties over cyclotomic fields we cannot
escape from providing an introduction and a set of properties concerning p-adic numbers for
they will play a major role in our conclusion drawing.

Definition 12. Given a field K, an absolute value in K is a map ∣·∣∶ K → R+ such that
∀a, b ∈K:

• ∣ab∣= ∣a∣∣b∣

• ∣a + b∣≤ ∣a∣+∣b∣

• ∣a∣= 0 ⇐⇒ a = 0

An absolute value is said to be non-archimedian if the right hand side of the triangle in-
equality can be replaced with max(∣a∣, ∣b∣).
Just as we define extensions over fields and extensions of morphisms in Galois’ theory con-
text, an extension of an absolute value is another map that lives in a larger field whose
restriction is the same as the below absolute value. We say that a certain field K is complete
with respect to an absolute value if every Cauchy sequence converges to an element in K.
A possible way to regard the way in which p-adic numbers arise is by asking whether one
can extend Q to be complete other than under the trivial absolute value, i.e. constructing
R. It turns out that with the previous constraints one can define the p-adic absolute value
of a = pnb/c ∈ Q to be p−n and 0 if a = 0. And Qp is simply the completion of Q under
this absolute value. A strong result guarantees that there are no further completions of the
rational numbers.

Theorem 4. (Ostrowski): Every non-trivial absolute value in Q is either equivalent to the
ordinary absolute value or the p-adic one for some prime p.

Proof. A brief yet complete proof can be found in [CON2].

3We relax the notation when the Galois conditions for a certain extension are granted and hence all
primes above p share the same indices.
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To deal with p-adic equations and extract particular results other equivalent presentations
come in as handy tools other than this somewhat cumbersome previous presentation. An
explicit construction which requires no algebraic background consists of saying that a p-adic
integer is a sequence (a0, a1,⋯) such that ∀n:

an ∈ Z/pn+1Z and an+1 ≡ an (mod pn)

Then construct the field Qp as the field of fractions of all p-adic integers.
Another construction that will be deployed is that of the inverse limit of the rings Z/nZ or
the profinite completition of Z, Ẑ. Ẑ ≅ ∏pZp. A result that only after the introduction of
the p-adics is mentioned is one that will briefly be used during the proof but is of capital
importance.

Proposition 17. Let F be a p-adic number field. Then for each n there is a unique, up-to-
isomorphism, unramified extension E of F of degree n.

Proof. It comes as a corollary of the conducted construction of the ramification section in
page 36 of [STE].
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3.3 Group extensions

Definition 13. A group extension is a way to describe a group G from a normal subgroup
N and its quotient Q making use of a short exact sequence of homomorphisms.

1 N G Q 1i π

The extension is central if N is abelian and Im(N) is contained in the center of G. The
sequence is said to be an extension of Q by N4. In case an isomorphism exists that makes
the following diagram commutative we say that G and G′ define equivalent extensions of Q
by N .

1 N G Q 1

1 N G′ Q 1

β

Additionally, we say that a given extension is split if any of the three following equivalent
conditions is satisfied.

• There exists a subgroup of G which contains exactly one element from each coset of G
modulo N .

• There exists a morphism θ ∶ Q→ G such that π(θ) = idQ.

• There is a commutative diagram:

G

1 N Q 1

H

πi

ĩ

≅

π̃

Where we denote by H an arbitrary semidirect product of Q by N . The distinction of
whether or not a particular group extension is split will play a major role in the proof. It
basically “splits” it in two directions. Having this definition in hand, we can see why this
will help us deal with arbitrary p-groups.

Lemma 6. Every p-group can be regarded as a series of central extensions of degree p.

Proof. Since we can filter a p-group G as {1} = G0 ◁G1 ◁⋯◁Gn = G with [Gi+1 ∶ Gi] = p,
freely choosing a way πi to project Gi+1 onto Gi we have a central extension of degree p
1Ð→ Cp Ð→ G/Gi Ð→ G/Gi+1 Ð→ 1 thanks to the nontriviality of p-group’s center.

4Here an abuse of notation is made since the extension itself is the short exact sequence rather than the
group. Some texts use the order of Q by N or N by Q interchangeably nevertheless it is more common to
find: an extension of Q by N .

13



It turns out that classes of group extensions under the previous equivalence form a group
when N is abelian. A way to assign a sum to the set of classes of extensions of G by
N is by letting the sum of G̃1, G̃2 (two extensions of G by N) be the last short exact
sequence of the diagram that follows.5 Where X = {(g1, g2) ∈ G̃1 × G̃2 ∶ π1(g1) = π2(g2)} and
Y =X/{(n,−n) ∶ n ∈ N}.

1 N ×N G̃1 × G̃2 G ×G 1

1 N ×N X G 1

1 N Y G 1

id

(π1π2)

+ id

diag

Even if visually appealing, the last construction lacks good properties to do computations.
A group which happens to be isomorphic to the one just described is the second cohomology
group H2(G,N). Before analyzing what this equivalence exactly means a definition of the
second cohomology group is in order. The classic definition of the cohomology groups would
yield that H2 is the group formed by the 2-cocycles modulo the 2-coboundaries. Given an
action of G upon N , i.e. a map ϕ ∶ G → Aut(N), the 2-cocycles are maps f ∶ G ×G → N
satisfying ϕ(g1)(f(g2, g3)) + f(g1, g2g3) = f(g1g2, g3) + f(g1, g2) ∀g1, g2, g3 ∈ G. While the
2-coboundaries are functions f ∶ G→ N for which there exists a function φ ∶ G→ N such that
f(g1, g2) = g1φ(g2) − φ(g1g2) + φ(g). More on the classical construction of the cohomology
groups can be found in [AKH]. Even if it lies beyond the scope of this work to discuss the
classical construction further, there is a constructive way to address the second cohomology
group description following which all the elements are presented sequentially. More precisely,
fix a group extension of G by N6 and consider the action of G upon N as the map ψ ∶ G →
Aut(N) defined as ψg(n) ∶= egne−1

g . Where eg is a pre-image of g in G̃:

1Ð→ N Ð→ G̃Ð→ GÐ→ 1

eg z→ g

Even if eg need not be unique ψg is well defined, does not depend on the choice of eg, thanks
to the commutativity of N . Furhtermore, let f be a particular map of the following shape.

f ∶ G ×GÐ→ N

(g, h)z→ egehe
−1
gh

Then not only does this match the above description of a 2-cocycle but given G, K, ψ and
f we can define an extension of G by N letting G̃ be the group whose elements lie in the
direct product together with the operation (a, g)(b, h) ∶= (aψg(b)f(g, h), gh). Nevertheless
f is not uniquely defined and here naturally appears the necessity of the coboundaries.

5More on this is found in this introduction to the cohomology of groups.
6We will only consider extensions whose kernel is abelian, i.e. N is commutative from now on.
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Theorem 5. If ψ ∶ G → Aut(N) is an homomorphism and N is an abelian group then
there is a bijective correspondence between elements of H2(G,N) and equivalence classes of
extensions of G by N .

Proof. Most of what’s to prove has been done in the constructive procedure. For a given
group extension we can assign a cocycle f just as before, since equivalent extensions yield the
same action and the same cocycle class the assignment is well defined. Surjectivity follows
from the fact that an extension taking f as a fixed cocycle can be explicitly built. On the
other hand, it is injective because if we had two extensions with the same cocycle f then
the two extensions are necesarily equivalent. That is if G̃ and G̃′ are extensions of f(g, h) =
egehe−1

gh = e
′
ge

′
he

−1
gh
′ then we could build a τ ∶ G̃→ G̃′ such that π′(τ(neg)) = g = π(neg):

1 N G̃′ G 1

N G ×G

1 N G̃ G 1

i′ π′

f

i π

Some technical details have been omitted since a thorough discussion on group extensions
lies beyond the scope of this work. More particularly, we will only be interested in central
extensions with simple cyclic kernel, a particular case in which the theory of group extensions
is considerably simplified. A broader picture like the crash introduction presented up until
here cannot damage. A proposition that will be useful later on is the following:

Proposition 18. A group extension of G by N is split if and only if the extended group is
isomorphic to the semidirect product of G and N .

Since we will be dealing only with central extensions and the action of conjugation in those
cases is trivial we will have the trivial case of the semidirect product when the extension is
split, i.e. the direct product.
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4 Embedding problem

Definition 14. Given two epimorphisms π ∶ G̃→ G and φ ∶H → G we say that the embedding
problem for the pair (π,φ) consists in finding φ̃ such that π ○ φ̃ = φ. We say that a solution
is proper if φ̃ is surjective as well.

Phrased as it is, this definition may look like a purely group theoretic matter. It is not the
case. Recall that Galois’ inverse problem focuses on finding a field over Q with a prescribed
Galois group. Determining a number field with Galois group G is equivalent up to isomor-
phism to defining an epimorphism from Gal (Q/Q) toG. Indeed, if we had ρ ∶ Gal (Q/Q)↠ G

then taking Q
ker(ρ)

we would be done. Knowing this and foreseeing that we will follow a
step-wise path towards the desired field we can frame the embedding problem in a much more
convenient way. We will say that the embedding problem for L (a finite Galois extension of
Q) and G̃ (the group in-between an extension of G by another group N) consists in finding
L̃ such that Gal(L̃/Q) ≅ G̃ and the following diagram commutes.

1 N G̃ G 1

1 Gal (L̃/L) Gal (L̃/K) Gal (L/K) 1

i π
≅

Which is equivalent to finding a surjective φ̃ for which the following diagram commutes.

Gal (Q/Q)

1 N = Gal (L̃/L) G̃ = Gal (L̃/Q) Gal (L/Q) 1

φ
φ̃

Similar presentations are adopted in nearly any paper that tries to deal with Galois’ inverse
problem. We will focus in a particular type of embedding problems. The case when N
is cyclic of prime order and injected into G̃’s center. In short, a cyclic central extension.
A less particular viewpoint is presented in [SON] where the nonsolvability of the groups
considered forces a more general approach. In the same paper a step-wise path towards G is
also taken, meaning Gn = {1} ⊆ Gn−1 ⊆ ⋯ ⊆ G0 = G and the embedding problem is rephrased
as follows. Suppose Ki/k is Galois and γi ∶ Gal(Ki/k)→ G/Gi is an isomorphism. Then the
embedding problem consists in finding Ki+1/k Galois for which an isomorphism γi+1 exists
and the following diagram commutes:

Gal (Ki+1/k) Gal (Ki/k)

G/Gi+1 G/Gi

res

γi+1 γi

π

Our main concern during the proof will be to assert whether under some conditions a proper
solution φ̃ for a given embedding problem exists. At the end of the proof some examples of
embedding problems without solution are presented to see that our analysis is not empty.
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As we anticipated and we will elaborate upon later, the distinction of whether or not the
group extension considered splits is of capital importance. Note that in our case, since N = Cp
for some p, if the extension doesn’t split then any nontrivial φ̃ is necessarily surjective. As
if it didn’t fill G̃ entirely Im(φ̃) = G and a splitting would exist. Moreover, given a solution
φ̃ of a particular central embedding problem, any solution is obtained by twisting it.

Definition 15. A twist of a solution φ̃ of the central embedding problem

H

1 N G̃ G 1

φ
φ̃

i π

is an homomorphism χ ∶H → N . We say that the twisted solution is χ ⋅ φ̃.

Note that this does not denote the composition nor the concatenation of paths but rather
the plain product. The new lift consists of taking an element σ ∈ H and sending it to
φ̃ ⋅ i(χ)(σ) = φ̃(σ) ⋅ i(χ(σ)). In general this need not be well defined but as i(N) is in G̃’s
center, everything behaves appropriately.

Lemma 7. Let φ̃ denote a solution to a central embedding problem. Then any solution of
the embedding problem is a twist of φ̃.

Observe that the embedding problem with trivial group G is simply Galois’ inverse problem.
Setting G to be an intermediate quotient of our desired group gives us a structured path
towards finding an extension for the end group. This among others is the reason why
we disseminate our group into pieces the solvability of which is feasible. This comes at
the expense of having to “paste” the partial solutions which in itself is a challenge and is
thoroughly discussed in the proof. A nice result that relies on the classification of finitely
generated abelian groups shows why restricting ourselves to p-groups does not carry that big
a loss in generality.

Proposition 19. The solvability of an embedding problem with abelian kernel is equivalent
to the solvability of all the respective embedding problems with p-group kernel in which the
abelian kernel factors with disjoint solutions.

In the definition we do not care to specify whether the fields considered are local or global.
In the proof we will see that by localizing, i.e. completing the fields with respect to a given
prime and augmenting the maps of the embedding problem yields a new embedding problem.
The relations between those two will be a concern of ours during the proof.

The somewhat unreasonable motif by which so much is accomplished, i.e. the proof of the
theorem, with apparently so little is in part due to the ease with which abelian group exten-
sions are classified. Nonetheless the embedding problems, as seen in [SON] are a widespread
tool in many fields.
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5 Scholz-Reichardt’s proof

As detailed above, our intention is to present a self-contained proof of the following theorem.

Theorem 6. Every p-group (p ≠ 2) can be seen as a Galois group over Q.

The most natural approach would go along the lines of analyzing the subgroup lattice and
associate a sequence of fields strongly relying on Galois’ correspondence to end up finding
a field over Q whose group is the entire G. This procedure is nevertheless doomed to
fail since not all paths lead to the final desired field extension. At the end of the proof,
motivating examples justifying the necessity of the stringent conditions are presented to
better contextualize our approach. Since it is preferred to use p as default, when a prime is
initially fixed it is often denoted by ` to have p at our disposal later on. In order for us to
later ensure that we can “keep climbing along the tree”, we introduce the following condition
on the intermediate extensions.

Definition 16. A field extension E/Q whose Galois group is an `-group is said to have the
property SN if every ramified prime p satisfies:

• p ≡ 1 (mod `N)

• For every p∣p we have Ip =Dp

Proposition 20. The second condition is equivalent to saying that Lp/Qp is totally ramified.

Proof. This means that the ramification index of p in L/Q is equal to [Lp ∶ Qp] and hence
fp is 1 and the decomposition and inertia subgroups coincide. Conversely, if they coincide
since they carry up to the completions we would have that the residue extension is trivial
meaning that fp = 1 in Lp/Qp.

Naively the proof can be thought of as an inductive procedure. We begin from an explicit
description of the structure of G in terms of some of its subgroups as follows.

{1} = G0 ◁G1 ◁⋯◁Gn−1 ◁Gn = G

{1}→ C` ↪ G/Gi↠ G/Gi+1 → {1}

The base case if one wishes, is basically saying that there are Galois extensions over Q with
group C` for all ` satisfying SN ’s condition. And the inductive step is to find a Galois
extension of the corresponding field of Gi = Gal(L/K), L̃ whose corresponding group is
precisely G̃ and for which the following diagram commutes and SN ’s condition holds. Finding
such an L̃ is precisely solving the embedding problem.

1 C` G̃ G 1

1 Gal (L̃/L) Gal (L̃/Q) Gal (L/Q) 1

i

≅

π

≅ ≅
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Proposition 21. For every prime ` there exists a Galois extension E/Q with Galois group
C` and verifying SN ’s condition.

Proof. As seen in the preliminaries, we can freely chose a prime p ≡ 1 (mod `N) and consider
the cyclotomic field Q(ζp) over the rationals. A C` field will exist in-between immediately
satisfying the first condition by construction, recall that the only prime ramifying will be p,
and since we will have that for all v above p ev/pfv/pgp = ` and ev/p>1 we get that the inertia
and decomposition groups coincide.

From now on the main concern will be assessing the truthfulness of the next result which
ensures the existence of a path along the field lattice provided Scholz’s condition is satisfied
at every step.

Theorem 7. Let L/Q be Galois with group G, assume that L has the property SN and that
`N is a multiple of the exponent of G̃. Then the embedding problem for L and G̃ has a
solution L̃ which satisfies SN .

Additionally, as we will see across the proof, this constructed extension is tuned in such a
way that L̃ is ramified at at most one more prime than L.

5.1 Split case: G̃ ≅ G ×C`

Having such an explicit expression of the next group in our list, G̃, enables us to take a very
intuitive approach when tackling the embedding problem in this particular setup. The basic

idea is to find a prime q that behaves well enough so that we can define λ ∶ (Z/qZ)
∗
↠ C`,

Mλ = Q(ζq)ker(λ) and ensure that the following conditions are satisfied.

• Mλ only ramifies at q

• Mλ is disjoint from L

• LMλ satisfies SN ’s condition

In this case we will have L̃ = LMλ as desired:

LMλ = L̃ Q(ζq)

L Mλ

Q

G̃

G

C`

Let p1,⋯, pm be the ramified primes over L, assume that L has the property SN and that
exp(G̃) ∣ `N then we wish to pick a prime q satisfying the following conditions.
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• q ≡ 1 (mod `N)

• q splits completely over L

• pi are all `-th powers in Fq

Proposition 22. The latter set of properties is equivalent to saying that q splits completely
over not only L but also over L(ζ`N ,

√̀
p1,⋯,

√̀
pm).

The relevance of this equivalence is very significant in our understanding of the problem
since it enables us to claim the existence of such a prime q, strongly relying on the infinity
of totally split primes in number fields. This apparently flawless procedure does not come
exempt of intricacies. To prove the equivalence we borrow the guideline presented in [MAS]
(p.25).

Proposition 23. A prime q ∤ `N splits completely in Q(ζ`N ) if and only if q ≡ 1 (mod `N)

Proof. Since it does not divide `N we already know that q will be unramified and the fact
that f(Q/q) = 1 for all Q above q is a consequence of the next lemma.

Lemma 8. If q is a prime not dividing `N its residual degree in Q(ζ`N )/Q is equal to the
least integer f such that qf ≡ 1 (mod `N).

Proof. By definition the residual degree is the order of the group (Q(ζ`N )/pQ(ζ`N ))/(Z/qZ)
for any prime p above q. And in the other hand the least integer f satisfying the condition
happens to be the exponent of the group. We want to prove that they coincide provided
that q ∤ `N . Because of the uniqueness of unramified extensions of Qq of a certain degree
it is possible to deduce that Qq(ζ`N ) is minimal with the property that it has as residue
class field Fqf . Now deploying the correspondence between the localized and non localized
extensions we can say that q is unramified in Q(ζ`N ) and will have residue class degree the
same f .

As a consequence, since q ∤ `N by hypothesis, q will split completely in Q(ζ`N )

Lemma 9. Suppose we have the following diagram, if pfi is the least power of pi such that

pfi ≡ x
` (mod Q) is solvable, then f is precisely f(v/Q)

Q(ζ`N ,
√̀
pi) v

Q(ζ`N ) Q

Q q

Proof. This result comes as an immediate consequence if one constructs Kummer theory as
it was done in [FRO]. For a detailed proof see the page 91 of the previous reference.
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And as a consequence of this lemma, since every pi is an `-th power modulo q and hence an
`-th power modulo Q, the residual degree f(v/Q) = 1 and q will split completely in the larger
field if it does in the cyclotomic one, for which we already saw it did. Now using one of the
propositions presented in the preliminaries, according to which a prime splits in a composi-
tum of fields if and only if it does in every one separately we get the much desired equivalence.

With the previous construction we ensured the existence of such an L̃ above, neverthe-
less to finish the split case we have to verify that this step does not violate SN ’s condition.
As Mλ and L are linearly disjoint over Q the ramification can be examined separately. Since
Mλ was constructed as a subfield of the q-th cyclotomic field, it only ramifies in q and q
verifies again by construction Scholz’s first condition. Since all pi’s ramifying in L verified
SN by the inductive step we have that the first condition immediately holds. To display how
the inertia and decomposition groups of the ramifying primes coincide we will consider the
two families separately.
For the second condition to hold at q it would suffice to have fv/q = 1 for v ∈MλL which in
turn is equivalent to having fv/q = 1 for v ∈ (MλL)v. It is coherent to factor f as the total
local field happens to factor itself. The next diagram will serve as a guide to prove that
fv/q = 1.

(MλL)v

(L)q1 (Mλ)q2

Qq

e3f3

e4f4

e2f2

e1f1

Because of the multiplicative nature of the indices, describing the total ramification can be
done in a step-wise maneer. e1 = f1 = 1 since q was chosen to split completely in L while
e2 = ` and f2 = 1 as q is totally ramified in (Mλ).

Proposition 24. Let L/Qp and M/Qp be Galois extensions, then eML/L ≤ eM/Qp.

As the last proposition is symmetric on the extensions above Qp, one has two immediate
results, ev/q = e3e1 = e3 ≤ e2 = ` and e4 ≤ e1 = 1 Ô⇒ e4 = 1. And as ` must divide ev/q since
e2 = `, we have that ev/q = ` and the only remaining unknowns from the diagram are f3 and
f4. The next lemma will shed some light.

Lemma 10. Let K/Q be a finite Galois extension, then for every prime q ∈ Q and v above

one has [Kv ∶ Qq] =
[K ∶Q]
gv

.

Henceforth, [(MλL)v ∶ Q] = [MλL∶Q]
gv

= `. Implying that e2f2e4f4 must be ` forcing f4 to be
trivial and then fv/q = f2f4 = 1 as desired yielding Iv =Dv for any v above q.
Having checked both conditions for q we proceed to examine the second condition for the
primes that already ramified in L. First off, note that by the congruences we imposed the
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pi’s to satisfy, if pi is ramified in L it immediately splits completely in Mλ. With that in
mind we can already describe the behaviour through the next diagram.

MλL

L Mλ

Q

C`

e3f3g3 e4f4g4

C`

e2f2g2e1f1g1

And we know that f1 = 1 since SN held in the previous iteration, e2 = f2 = 1 as pi splits com-
pletely in Mλ and since the restriction map resMλ

is an isomorphism that sends a generator
of Gal(MλL/L) to one of Gal(Mλ/Q) we have that f3 = 1. Summing up, we wanted to see
how the decomposition and inertia subgroups of Gal(MλL/Q) were equal for all pi and they
differ by fP/pi which in turn is equal to f1f3 = 1 yielding the equality.

5.2 Non split case

Having seen how to solve the embedding problem when the structure of the next group G̃
is as simple as the cartesian product of the previous by a C`, we wish to tackle the non
split case. Notice how we do not refer to this as the “general case” as it is by no means
a generalization of the previous one, the arguments used here do not apply for the direct
product as we will shortly notice. In what follows the underlying assumption is that there
is some interplay between the elements of the groups we are considering the extension by.

The proof to ensure the solvavility of every step will basically be a pipeline consisting of
three steps:

• Finding an extension L̃ which solves the embedding problem

• Changing the previously found extension so that it ramifies only where L ramifies

• Modifying again L̃ so that it verifies SN ’s condition at the expense of ramifying at at
most one more prime

5.2.1 Step I: Finding L̃

As we have L, G and apparently no further information regarding G̃’s structure, it is natural
to take a general approach and consider the map φ induced by L as a subfield of the algebraic
closure of Q, Q, defined as:

φ ∶ Gal (Q/Q)Ð→ Gal (L/Q)

σ z→ φ(σ) = σ∣L
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Note that due to normality, the restriction map φ is a well defined surjective morphism as
there are no maps from L falling outside of it regarding it as a subfield of an algebraic closure.
As we saw in the embedding problem section, finding L̃ is the same as finding a surjective

lift of φ, for which the following diagram commutes since L̃ = Q
Gal(Q/L̃)

= Q
ker(φ̃)

.

GQ = Gal (Q/Q)

1 C` ≅ Gal (L̃/L) G̃ ≅ Gal (L̃/Q) G ≅ Gal (L/Q) 1

φφ̃

i π

Here φ̃ will always be surjective. Should φ̃ not fill G̃ entirely, then a split would exist as
ord(Im(φ̃)) = ord(G) contradicting our non-split hypothesis. Now thanks to our previous
discussion on group extensions we can take for granted the correspondence between elements
of H2(GQ,C`) and classes of group extensions of GQ by C`. In particular, let ξ be the class
of our extension, that is ξ ∈ H2(G,C`), and consider the group homomorphism obtained by
composing φ with the aforemention correspondence:

φ∗ ∶H2(G,C`)→H2(GQ,C`)

This naturally yields a group extension of GQ by C`, namely the one corresponding to φ∗(ξ).

1 C`
˜̃G Gal (Q/Q) 1

1 C` ≅ Gal (L̃/L) G̃ ≅ Gal (L̃/Q) G ≅ Gal (L/Q) 1

i2

π3

π2

φ

i1 π1

This may all look a bit artificial but thanks to the following result we can infer some properties
on our extension of interest.

Proposition 25. A group extension 1 → N → G̃ → G → 1 splits if and only if the element
corresponding to its class in H2(G,N) is trivial.

Proof. Thanks to the correspondence theorem and the construction of the associated el-
ement of the extension in previous’ sections we see that if the corresponding element is
trivial then the extension is equivalent to that generated by the trivial cocycle, not only
the class of the cocycle, f = 1. Hence the inner operation on the group G̃ is (a, g)(b, h) =
(aψg(b)f(g, h), gh) = (aψg(b), gh) which is precisely the relation of the semidirect product
of N ×ψ G, yielding that the extension is split.
Conversely, if the extension is split, relying again on the construction we see how there is no
other choice for f but to be trivial and hence the extension corresponds to the trivial class
in H2(G,N).
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Proposition 26. (Höchsmann) The existence of φ̃ is equivalent to the vanishing of φ∗(ξ),
i.e. φ∗(ξ) = 0.

Proof. If φ̃ exists we can without loss of generality set the up until now generic ˜̃G to be a
particular group:

1 C` G̃ ×G GQ GQ 1

1 C` G̃ G 1

i2

π3

π2

φ
φ̃

τ

i1 π1

And then we define δ to be the splitting morphism of the extension above, i.e. δ(a) ∶=
(φ̃(a), a) and since π2(δ) = idGQ we reach the desired implication.
Conversely, if φ∗(ξ) = 0 by the previous proposition we know the extension on top splits and
hence exists some τ such that π2(τ) = idGQ , take φ̃ to be π3 ○ τ and we are done.

Because of the common appearance of H2(GQ,C`) some authors relax the notation and refer
to it as H2(Q,C`) instead. From now on we will use this convention as well.

As we will later explain, this path choice is not coincidental. Very often when trying to
extract global results one restricts himself to the local problems. This becomes apparent
when the inverse problem is constrained to having a certain set of primes ramifying and
not all are allowed. For now we will believe the following theorem which basically acts as a
bridge for φ∗(ξ) between Q and Qp.

Theorem 8. The restriction map R ∶H2(Q,C`)→∏
p

H2(Qp,C`) is injective.

The fact that the previous map is injective tells us that whenever a zero is found in the image,
it necessarily comes from the trivial element. Henceforth reducing the problem to Qp. That
is, the triviality of φ∗(ξ) not only implies the triviality of R(φ∗(ξ)) but they are equivalent,
and the triviality of the latter occurs only when projecting in the p-th component the result
is zero as well. Summing up we have that the existence of such a desired φ̃ is equivalent to
the embedding problem being solvable locally at all primes p.
Note that we have yet to prove the existence of L̃ but with all of these consecutive reductions
we have seen that its existence is equivalent to the solvability of the following embedding
problem for all p.

GQp = Gal (Qp/Qp)

1 C` G̃p = Gal (L̃P/Qp) Gp = Gal (LP/Qp) 1

φp
φ̃p

In [ROQ] instead of defining a new embedding problem they refer to this as the localized
embedding problem of the initial one and they are treated as pairs. We say that the local-
global-principle, LGP in short, holds if the solvability of all the localized embedding problems
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implies that the global embedding problem is solvable.
Having discussed the equivalences we go on to see that the localized embedding problem is
always solvable. We first examine the case when p does not ramify in L. If p is unramified
in L then e = 1 and as a consequence its inertia group IP ⊆ G = Gal(L/Q) will be trivial
for all P above p. And Gp ≅ DP because g = 1, simply because of the fact that it is a local
extension, i.e. only a maximal ideal can lie above p. In the other hand using again that the
inertia is trivial we have that DP ≅ Gal(OL/P/Z/pZ) and since any extension of finite fields
is cyclic, Gp will be cyclic. The following diagram depicts what is happening and introduces
QUp

7.

Qp

QUp L̃P

LP L̃

Qp L

Q

Gp

G̃p

GQp

G̃

G

For any v ∈ Qp above P we have thatGQp/Iv = GQp/IP ≅ Gal(QUp /Qp) ≅ Ẑ. If ψ is the previous

isomorphism then we have an induced morphism Ẑ GQp/Ip GQp Gp
ψ−1 π−1 φp

.

And finding an appropriate φ̃p is the same as finding a lift of one of the previous shape, i.e.

parting from Ẑ. Recalling that Gp is cyclic and that the extension is central there are only
two possibilities. G̃p can only be isomorphic to the direct product or to an enlarged cyclic

group. In either case we can associate the generator of Ẑ to any preimage of a generator of
Gp within G̃p and that ultimately defines φ̃p itself.

If p happens to ramify in L we proceed as follows. From the fact that the first Scholz
condition still holds we have that p ≡ 1 (mod `N), in particular ` ∤ p and hence LP/Qp is
tamely ramified ((ep, char(Zp/pZp)) = 1). Arguing now by the second condition we have
equality of Ip and Dp and hence IP =DP and by properties of the ramification groups we get
to see that those are cyclic. Bear in mind that here whenever we have localized g is trivial.
Now recall that our purpose is to find a lift of φp ∶ GQp → Gp. We define E to be the maximal
abelian tame extension of Qp with exponent dividing `N . To build our interpretability, E
can be built from scratch E = RS. Where R is the unique unramified extension of Qp of

7Some properties between the inertia/decomposition subgroups and the maximal unramified extensions
are given in the preliminaries and used here without further explanation.
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degree `N whose group can be seen that is Z/`NZ. And S is the totally ramified extension
S = Qp( `N

√
p)/Qp whose group is Z/`NZ that happens to be Kummer. By their definitions it

can be seen that they are disjoint and as a consequence Gal(E/Qp) = Z/`NZ×Z/`NZ and it
is projective in the category of abelian groups of exponent dividing `N . For an element P to
be projective within a certain category it means that for any A, B, α ∶ A→ B and β ∶ P → B
there is a morphism γ ∶ P → A such that β = γα. Choosing at our convenience the elements
A, B and α of the definition we can get the desired result. That is, by letting:

P = Gal(E/Qp)

1 C` A = G̃p B = Gp 1

β=φp
γ=φ̃p

Saying that Z/`NZ×Z/`NZ is projective in this particular category is a fancy way to phrase
the fact that if we have two maps β ∶ Z/`NZ×Z/`NZÐ→ B and α ∶ AÐ→ B we can associate
the two generators of Z/`NZ×Z/`NZ to elements of A defining γ. This is possible thanks to
the classification of finitely generated abelian groups. We can factor A and B into products
of cyclic subgroups with exponent dividing `N and then the correspondence is obvious.
For all, the local embedding problem is solvable for all p and by the previous equivalence
of the local-global-principle provided by the injectivity of the map φ∗ we get that in the
non-split case as a whole, the embedding problem is solvable. Now we have constructed a
field extension L̃, if we had been on our penultimate step we could leave it here nevertheless
for this to be an inductive procedure we have to verify that we will be able to repeat what
was done up until here.

5.2.2 Step II: Ensuring low ramification

As said, we have to restrict the ramified primes in our constructed extension. Our goal
from here onward is to make the extension L̃ depicted in the last section verify SN yet the
more primes ramifying the tougher it will be for the condition to hold. This control was
feasible and easy to deal with in the split case when the constructions where explicit, in its
counterpart, the non-split case, it is not constructive since we had to incur to the local-global-
principle and appeal to existence arguments. Nevertheless an analog exists again relying on
local-global ideas.
We will say that a group homomorphism ϕ ∶ Gal(E/K) → H is unramified if Eker(ϕ) is un-
ramified. An immediate yet important result is that a map is unramified if and only if its
restriction to the inertia group is trivial. Indeed, if ϕ(Ip) = 1 then Ip ⊆ ker(ϕ) which implies
that Eker(ϕ) ⊆ EIp = EUp (maximal field unramified at p). And conversely, if ϕ is unramified
then for every p Ip will be trivial and the restriction map as well.

Lemma 11. For every prime p consider a continuous homomorphism εp ∶ Gal (Qp/Q) → C
where C is a finite abelian group. Suppose that all but a finite amount of εp’s are unramified.
Then there exists a unique ε ∶ Gal (Q/Q)→ C such that for all p ε(Ip) = εp(Ip).

Proof. If we had a field E with some desired properties, by defining ε ∶ GQ Ð→ Gal(E/Q)Ð→
C we would be done. The main restriction is the fact that we have an infinite amount of
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εp’s. We will show that by sticking only with a finite amount of them the loss of information
does not prevent us from defining ε. For every εp consider the map ε′p ∶= ρ ○ rp∣Zp :

GQp C

Q∗
p Z∗

p Gab
Qp

π

εp

rp

rp∣Zp

ρ

Where rp is the reciprocity map. With this construction, bridging through the abelian
subgroup of the diagram, the association is ensured not to be ill defined. Now consider the
map ε′ ∶ ∏Z∗

p Ð→ C where ε′(up) ∶= ∏ ε′p(up). Now we claim that ε′p(up) is trivial when p
is unramified. Indeed, as it can be shown that rp(Z∗

p) ≅ Gal(Qabp /QUp ) ≅ Ip as the inertia
degree is multiplicative and over the unramified subextension it is trivial, the result follows
immediately. Then our ε′ is a finite product of nontrivial p-adic integers for p ramified and
hence finite. We will check that ε′(∏p ramified(1 + p

mpZ∗
p)) is trivial where mp is the smallest

integer n such that 1 + pnZp ⊆ ker(ε′p). Once this fact is established, our previously defined
ε′ can be regarded as a map from ∏Z/pmp Z Ð→ C. And as mentioned in the beggining,
the field E will in particular be the cyclotomic field whose Galois group over the rationals
is Z/pmpZ and it will naturally induce a morphism ε that satisfies εp(Ip) = ε(Ip) for all p.
Some details of the proof have been omitted, some of which are crucial to see that there is
no loss of generality at every step taken but incur to class field theory. For a detailed proof,
a sketch of whose this one is, refer to [MAS] p.36.

The next result could easily be called a corollary of the previous lemma, nevertheless because
of its importance in this section the term proposition is preferred.

Proposition 27. Consider the following diagram:

GQ

1 C Φ̃ Φ 1

GQp

φ
ψ

φ̃

i π

φp
φ̃p

Where φ is a continuous homomorphism, φp = φ∣Dp and the maps φ̃p are all but a finite

amount unramified. Then, under these hypotheses, there exists a unique lifting φ̃ ∶ GQ → Φ̃
such that for every p φ̃(Ip) = φ̃p(Ip).

Proof. In the statement the morphisms from GQp are taken to be the restriction of the ones
parting from GQ and so are the associated liftings. Now consider another homomorphism
ϕp ∶ GQp → Φ̃ which is another lifting of the restriction of φ localized, we take it to be

unramified for all but a finite amount of p. That is, πϕp = φp = πφ̃p. As mentioned, there is
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a strong relation with the preceding lemma and thereby we would want to construct a map
from Φ̃ to C. Note that C ≃ i(C) = ker(π) and ϕp − φ̃p ∈ ker(π). Then defining εp as:

εp ∶ Φ̃Ð→ C

σ z→ εp(σ) = ϕp(σ) − φ̃p(σ)

we have that by construction all but a finite amount of these homomorphisms are unramified
and then by the lemma there exists a unique ε for which ε(Ip) = εp(Ip). As we want φ̃(Ip) =
φ̃p(Ip) and we have φ̃p∣Ip = εp∣Ip + ϕp∣Ip = ε∣Ip + ψ∣Ip , by ε’s uniqueness, there is a unique φ̃,

φ̃ = ε + ψ that coincides with the localized φ̃p in the inertia groups for all p.

Corollary 2. With the same hypotheses, a lifting φ̃ can be chosen unramified at every prime
where φ is unramified.

Proof. The local version of this result was used in the first step where we chose a lifting φ̃p
of φ unramified where φ was. Now using the recently presented results, we can find a φ̃ such
that φ̃(Ip) = φ̃p(Ip) and since the behaviour over the inertia group totally determines where
the maps ramify we get that φ and φ̃ are ramified at the same places.

It was a must for us to control the amount of ramified primes in the constructed extension
L̃ since checking Scholz’s condition would have rendered impossible otherwise. At this point
we have an extension L̃ of L whose Galois group over Q is G̃, for which the diagram of the
statement is commutative and ramified at the same places as L, nevertheless it will often
fail to satisfy Scholz’s condition.

5.2.3 Step III: Satisfying Scholz’s condition

In the previous section we managed to tune L̃ in such a maneer that we could guarantee
that the ramified primes were the same as those in L. Since L by the inductive hypothesis
satisfies SN we have that the first condition is immediately satisfied everywhere, i.e. for every
ramified prime p in L̃ p ≡ 1 (mod `N). What is left to check is Scholz’s second condition.
Letting p be a ramified prime in L̃ a priori the relation between the inertia and decomposition
subgroups of the in-between group of the extension of G by C` satisfy:

1 C` G̃ G 1

I ′p = π
−1(Ip) Dp

D̃p Ip

Ĩp

i π
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Where the chain of inclusions is Ĩp ⊆ D̃p ⊆ I ′p and Ip = Dp. The equality is again thanks to
the fact that SN is satisfied in L. Using this fact again we can claim that Ip is cyclic since
` ∤ p and as a consequence p is tamely ramified. We observe that I ′p is an extension of Ip
by either 1 or C`. In the first case the preimage of Ip and Dp coincide and as a consequence
the inclusions become equality and D̃p = Ĩp while in the second there are two more cases to
examine. Since I ′p is an extension of Ip by C` it can either split or not split.

If it does not split and the order of I ′p is the same as that of Ip we again have a chain
of equality as desired. Otherwise, if I ′p is a jump of degree `, then we argue by the counter-

reciprocal supposing that Ĩp ⊊ D̃p. In that case i(C`) ∩ Ĩp = ∅ and π(i(C`) × Ĩp) ⊆ Ip and
hence i(C`)× Ĩp ⊆ I ′p and by cardinality the last expression is an equality yielding that I ′p is a

split extension of Ip by C` which is a contradiction coming from the assumption that Ĩp ⊊ D̃p

hence the second Scholz condition for L̃ holds if the extension does not split. Further has
been seen here, namely if the ` jump occurs from Ip to Ĩp the second condition immediately
holds. Thereby without loss of generality we will from now assume that Ip ≅ Ĩp.

Should it split, we would have that I ′p = Ĩp × C`. Consider now S = {p ∈ ram(L/Q) ∶ I ′p =

Ĩp × C`}. We would like to show that D̃p/Ĩp can be trivial. If it is trivial already we are
done. Otherwise, since at most the degree [D̃p ∶ Ĩp] is ` we consider it to be a C` and we can
associate Frobp ∈ D̃p/Ĩp to a generator cp of the C` of the group extension.

1Ð→C` Ð→I
′
p ≅ C` × Ĩp ≅ D̃p/Ĩp × Ĩp Ð→Ip Ð→1

cp ↤ Frobp

It suffices to prove that by modifying the extensions the cp can be trivial for all p ∈ S since
then the Frobenius will be trivial as well. Suppose now that there are some cp’s that are
not trivial, then we need to further modify our extension. As was thoroughly discussed in
the last section, talking about a particular extension is the same as restricting ourselves to
a lift φ̃. We thereby intend to modify φ̃ in such a way that all cp are 1. This procedure is
very similar to the one followed in the construction of Mλ in the split case. We want to find
a certain prime q satisfying a set of properties, we will see how these properties translate in
terms of the associated fields and then we will argue by the same principle that was used
before that such a prime q always exists. More particularly, we would like to find a prime q

for which a map χ ∶ (Z/qZ)
∗
↠ C` satisfying the following conditions exists.

• q ≡ 1 (mod `N)

• ∀p ∈ S χ(p) = cp

• q splits completely in L/Q

The motivation behind these properties is that if we were able to pick such a prime q,

then defining χ(x) ∶= x
q−1
` we would get an additional solution to the embedding problem,

coexisting with φ̃ with preferable and more suitable properties. Namely the equality of the
inertia and decomposition subgroups at all ramifying primes. This lift is portrayed below.
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Gal(Q(ζq)/Q) GQ

1 C` G̃ G 1

χ

φ̃⋅i(χ−1π)

π

φ
φ̃

i

Having seen the end goal, the left to prove facts are that this construction is always possible,
much like in the previous’ section fashion, establish that infinitely many of such q exist, and
that SN holds in this newly introduced extension. Note that as discussed in the embedding
problem section, any lift is a shift of a base one, φ in this case, provided the extension is
non-split yet this particular one need not exist a priori.

To assess the existence of such a q, we will see that q is of a particular type of unrami-
fied primes in a certain subfield compositum of E. Which will ultimately translate in its
existence.

E

L Q(ζ`N ) Q(ζ`,
√̀
p ∶ p ∈ S)

F Q(ζ`) Q(
√̀
p ∶ p ∈ S)

Q

C`−1C
`N−1

G

Where F is taken to be a `N−1 cyclic extension of Q totally ramified in `. The decomposition
of the cyclotomic field Q(ζ`N ) into this two factors is possible thanks to the decomposition
at a group level. That is, since the multiplicative group of a prime power different from
two behaves as portrayed, the fields follow the same behaviour. In particular if ` is odd,

(Z/`NZ)
∗
≅ Z/`N−1Z ×Z/(` − 1)Z and the group structure is inherited in the fields.

The next lemma in itself has no particular importance but will render useful when describing
the types of ramification q experiences over the different fields.

Lemma 12. The fields L, F and Q(ζ`,
√̀
p ∶ p ∈ S) are linearly disjoint over Q.

Proof. As we saw in the preliminaries, pairs of fields that split completely and ramified at a
given prime are necessarily disjoint over the base field, in this case Q. Take the behaviour
of ` for instance, it is totally ramified in F since F is a subfield of Q(`N) but ` is unramified
in L yielding that L and F are disjoint. Now we would like to analyze their interplay with
Q(ζ`,

√̀
p ∶ p ∈ S), knowing that L and F are disjoint, saying that the three do not intersect

is the same as saying that Q(ζ`,
√̀
p ∶ p ∈ S) does not intersect LF . Since pi is unramified

in Q(ζ`,
√̀
p ∶ p ∈ S, p ≠ pi) and pi ramifies in LF and we can do this for every i, our three

fields will be disjoint if and only if LF and Q(ζ`,
√̀
pi) are disjoint ∀i. Now note that any
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subfield of LF of degree ` over Q will be Galois since the corresponding subgroup will be
normal. Indeed, if K ⊆ LF is such that [K ∶ Q] = ` then K = LFGal(LF /K) and Gal(LF /K)
is a subgroup of Gal(LF /Q) of index the least prime dividing the order of the group hence
normal forcing Gal(LF /K) to be normal and hence K Galois over the rationals. But any
subfield of degree ` of Q(ζ`,

√̀
pi) fails to be Galois and since they can only potentially

intersect in a field of degree ` we reach the desired claim. The three initial fields are disjoint
over the rationals.

Suppose now that S = {p1,⋯, pk} is ordered in such a way that cp1 is not trivial, then since
all cpi lie in C`, a set of integers {n1,⋯, nk} exists for which cnip1 = cpi .

Field Behaviour of q x↦ xq ∈ D̃p/Ĩp
L Splits completely 1
F Splits completely 1
Q(ζ`N ) Splits completely 1
Q(ζ`,

√̀
p ∶ p ∈ S) Unramified ≠ 1

We motivated the study of the behaviour of q in these fields with the pursuit of its ex-
istence. The resemblance with the split case, even if large is not total. That is, in the
previous case we argued by saying how infinitely many completely splitting primes coex-
isted in any given number field whereas here q need not split completely in the compositum
LFQ(ζ`,

√̀
p ∶ p ∈ S). Nevertheless, thanks to the previous lemma according to which the

groups of the composition are in direct product and the analysis on the Frobenius morphism,
we can establish q’s existence using Chebotarev’s density theorem. Even if we will not delve
into too much detail, further explanation on this result is provided after the end of the
proof. Essentialy the theorem applied to this setup goes to say that the set of unramified
primes in LFQ(ζ`,

√̀
p ∶ p ∈ S) whose Frobenius conjugacy class, seen within a subset of

Gal(LFQ(ζ`,
√̀
p ∶ p ∈ S)/Q) has non-trivial density over the total number of primes. More

particularly, the density will be the ratio of the conjugacy class with respect to the total
group.

Summing up, since q is unramified in this extension, see table above, and its frobenius
map x ↦ xq uniquely defines a class in Gal(LFQ(ζ`,

√̀
p ∶ p ∈ S)/Q) we can ensure infinitely

many such q will exist in the chosen field extension.

As depicted above, letting φ̃ ⋅ χ−1 be the new lift of φ, we have that the already ramified
primes in L will still be congruent to 1 modulo `N and the inertia and decomposition groups,
whose degree of difference is controlled by cpi , will be equal by construction, i.e. χ(pi) = cpi
and considering now the associated c̃pi ∈ C`, they will all be c̃pi = cpi ⋅ c

−1
pi
= 1 yielding equality

of D̃p and Ĩp for all p. This is not exhaustive yet as new primes could potentially have added
repeated factors in L̃, i.e. the set S could have been enlarged. Thankfully only one more
prime can be added to the list by the steps taken, namely q. Since the first condition is the
same as Scholz’s only the second one is left to be proved.
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Using one of the last lemmas from the split case, the one that guaranteed the residual degree
f to be 1 provided our congruence holds, we see that ∣Dv/q ∣ = ev/P∣DP/q∣ for primes v ∈ L̃ and

P ∈ L above q. That being said, as q did not ramify in L̃ by construction, φ̃(Dv) is trivial
and then in the shifted extension one has that φ̃ ⋅χ−1(Dv) = 1 ⋅χ−1(Dv) ⊆ i(C`) and since the
congruence forces χ−1(Iv) = i(C`) then we get the much desired equality ensuring the second
Scholz’s condition to be held in every ramifying prime of the induced extension by the new
lift.
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5.3 Obviated topics

For lack of a better term we group here some of the instances in which we took something
for granted or the arguments got blurry.

One inflection point occurred when we assumed the restriction R ∶ H2(Gal(Q/Q),C`) →

∏pH
2(Gal(Qp/Qp),C`) to be injective and so effortlessly bridged from the global case to

the local one. This is in fact a deep result which involves the associated Brauer group of the
number field and then relies on the Brauer-Hasse-Noether theorem.

Another non-trivial result we failed to provide a detailed proof for was the Chebotarev
density theorem. To modify the lift that later defined our extension so that it satisfied
Scholz’s conditions, we wished to encounter a particular prime q whose existence happened
to be tightly underpinned to its stability, or the stability of the subgroup generated by its
Frobenius map in the Galois group of a number field. This tightness yielded the use of Cheb-
otarev necessary. Formally, and not vaguely as it was explained in the proof, the theorem
states that:

Theorem 9. Let L/K be a Galois extension over a number field with Gal(L/K) = G then
the unramified primes whose Frobeniuses belong to a certain conjugation class C ⊆ G have
density ∣C∣

∣G∣ .

A paper in which both the classical proof due to Chebotarev, a more recent one by Lagarias
and Odlyzko and applications of this theorem are presented can be found in [TRI]. The
density the statement refers to is:

Definition 17. If A is a subset of the prime numbers of a larger set then the Dirichlet

density of A is defined as δ(A) ∶= lims→1+
∑p∈A 1

ps

∑p 1
ps

.

The density in the theorem can be thought of as the natural density as a semi-equivalence
between the two exists. Besides the infiniteness of the splitting primes which was used during
the proof, an important consequence of the theorem is that classifying Galois extensions of a
fixed number field is the same as describing the splitting of the primes. We had a glimpse of
this result previously where we handcrafted a proof to see that if a prime p had a particular
different behaviour in L/K and in L′/K then L ≇ L′. More particularly Chebotarev has as
a corolary that any extension of a fixed number field is uniquely determined by the primes
that split completely8.

We also anticipated and believed that saying that a particular embedding problem had
a positive solution was not an empty statement. For ` = 2 there is already a very simple
instance in which the embedding problem may not have a solution.

Proposition 28. The embedding problem for Z/4Z ↠ Gal(Q(
√
a)/Q) has solution if and

only if a is the sum of two squares in Z.

8Corollary VII.13.10 in [NEU1].
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The previous result was seen in the Galois theory course and interestingly enough it is men-
tioned in the very second page of [SCH]. They say that: “although we did not put local
conditions, there might be a global arithmetic obstruction to the existence of our embedding
problem”.

Besides some obvious obstructions we drew attention to during the proof, the case ` = 2
is of particularly greater difficulty, as in many number theoretic topics, since in this case
the `-th roots are in Q. Arguments like the construction of E in the last step to check the
existence of q wouldn’t have been feasible, lemma 12 fails to hold if ` is allowed to be 2.
In [MIC] groups of order 32 are realized as Galois groups using embedding problems with
kernels of order 2 and 4. Even if it does not directly relate to our work, it can help to get
rid of the preconceived fear towards ` = 2.

Finally, in the beginning of the non-split case we stressed that it was not a generaliza-
tion of the split one. Indeed, among others, when we were solving the local embedding
problem and said that no generator of the C` we were considering the extension by was a
generator of G̃p we were implicitly using the fact that the extension was non-split. This was
a key moment as we could then use Frattini properties not available in the split case to solve
the local embedding problem.
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6 Consequences

The main aftermath of this theorem is not the mere veracity of its statement. The method
presented here has given birth to many approaches both in considering general groups and
to realize particular ones as Galois groups. We anticipated that Scholz-Reichardt could be
used to regard any nilpotent odd group as a Galois group. Indeed, by one of the first equiv-
alences regarding nilpotent groups, any nilpotent group G is the direct product of its Sylow
subgroups, i.e. G ≅K1×⋯×Kr where the Ki’s are p-groups with different p’s. If additionally
they are all odd we can apply Scholz-Reichardt to each and every one of them associating
Li/Q to Ki and finally Gal(L1⋯Lr/Q) ≅ G since they are all disjoint.

Even if the celebrated Shafarevich theorem that we mentioned in the beginning uses a dif-
ferent set of tools, there is a nice way to reach such a powerful result. Should this theorem
hold for the prime ` = 2, (which we know for a fact it does but we haven’t proved) then
the concatenation of three results can lead to the realization of arbitrary solvable groups as
Galois groups over Q. Namely applying Scholz-Reichardt, Ore and a result from Ishanov.
In what follows we will briefly discuss those. Interestingly enough a mistake was comitted
regarding the prime ` = 2 in Ishanov’s case as well. A consequence of our previous work on
the Frattini subgroups allows us to establish the next theorem.

Theorem 10. For a finite solvable group G there exists a nilpotent normal subgroup H and
a proper subgroup M such that G =HM .

Proof. A detailed proof can be found in p.170 of [NEU]. If π ∶ G → G/Φ(G) and K is a
normal nilpotent subgroup of G/Φ(G)9. Then letting H be π−1(K) and M be a maximal
subgroup that does not contain H we are done.

The theorem by Ishanov states that the semidirect product N ⋊G where G is a Galois group
and N is a nilpotent group upon which G acts also happens to occur as Galois over any
prescribed number field. A proof can be found in p.20 of [SCH]. This result is very strong, in
particular setting G to be trivial it says that every nilpotent group occurs as a Galois group
over the rationals, the conclusion of Scholz-Reichardt’s theorem. As announced, we are now
in conditions to formulate and provide a proof taking for granted the ` = 2 case for the much
celebrated Shafarevich theorem.

Theorem 11. For any finite solvable group G there exists a field E such that Gal(E/Q) ≅ G.

Proof. As anticipated, a detailed proof can only be accomplished (by the means of this
procedure) demonstrating the veracity for ` = 2 as in [SHA] or [SCH]. Nevertheless in p.134
of [NEU] a similar one to the following is presented. We will argue by induction over the
order of G. The base case being when G is trivial and immediately holds. While for the
inductive step we use the preceding theorem according to which we have a decomposition
like G = HM , H being a normal nilpotent proper subgroup and M being proper. The map
φ ∶M Ð→ Aut(H) defines an action, i.e. φ(m)(h) ∶=mhm−1 for m ∈M and h ∈H.

9The existence of which is guaranteed by the preliminaries.
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Consider now the next diagram where ν(h,m) ∶= hm

G

1 H H ⋊M M 1

ν

By the inductive hypothesis, as M is proper in G, there exists a field F /Q whose group
is M . And now arguing by the theorem which guaranteed the solvability of the semidirect
embedding problem with nilpotent kernel, there is a proper solution L. Then the field Lker(ν)

has Galois group isomorphic to G as desired.
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7 Particular examples

A good grasp of the interplay the different elements in the proof play is acquired when
looking at particular examples. We will first examine, just like in the demonstration, the
split case.
Let G = C7 × C7 be the p-group whose Galois extension over Q we want to find. Then,
as depicted in the constructive proof, after solving the base case we only have to solve the
following embedding problem:

1 C7 C7 ×C7 C7 1i π

Since 29 is prime Gal(Q(ζ29)/Q) has 28 elements and there will necessarily be a subfield
whose group over Q is C7. To find the desired cyclic subgroup of order 4 note that the map
sending ζ29 to ζ3

29 generates Gal(Q(ζ29)/Q) and consequently an element of order 4 will sim-
ply be a map sending ζ29 to ζ37

29 = ζ
12
29 . Henceforth the fixed field of Q(ζ29) by this subgroup

is Q(ζ37

29 + ζ
314

29 + ζ321

29 + ζ328

29 ) = Q(ζ12
29 + ζ

28
29 + ζ

17
29 + ζ29). Computing its minimal polynomial10

yields that, if we denote ζ12
29 + ζ

28
29 + ζ

17
29 + ζ29 by α, then Irr(α,Q;x) = x7 + x6 − 12x5 − 7x4 +

28x3+14x2−9x+1 and its discriminant is 171903939769 = 172296, nevertheless this is not the
discriminant we have been referring to but rather the polynomial’s one, the number ring dis-
criminant over Z is 594823321 = 296. To further distinguish the primes 29 and 17, we regard
Irr(α,Q;x) = (x+25)7 (mod 29) and Irr(α,Q;x) = (x+3)2(x+9)(x+11)(x+13)(x+14)(x+16)
(mod 17) yielding two completely different types of factorizations.
To check Scholz’s condition it suffices to see that 29 ≡ 1 (mod 71) and that for any prime v
over 29 Iv =Dv. The first condition is immediately satisfied and the second follows from the
fact that ev/29fv/29g29 = 7 and ev/29 > 1.

Solving the embedding problems means finding an extension of Q(ζ12
29 + ζ

28
29 + ζ

17
29 + ζ29)

with group C7 × C7 over Q satisfying SN ’s condition11. Following the steps of the proof
we wish to encounter a prime q congruent to 1 modulo 7, splitting completely over Q(α)
and being such that 29 is a 7-th power in Fq. Filtering the integers according to the
first and then applying the other conditions we see that 29 ramifies and hence cannot
split completely, most have no solution for 29 ≡ x7 (mod q) and others like 421 have so-
lutions, 202 for instance, but fail to split completely, fv/421 = 7 ∀v. A prime which satisfies
the 3 conditions is 3613 since 3613 = 516⋅7 + 1, 29 ≡ 1367 (mod 3613) and Irr(α,Q;x) =
(x + 1279)(x + 1756)(x + 2356)(x + 2830)(x + 2943)(x + 3366)(x + 3536) (mod 3613). Now

proceeding analogously to the proof, we take λ ∶ (Z/3613Z)
∗
→ C7 defined as the natural

projection and consider Mλ = Q(ζ3613)ker(λ). Since the map sending ζ3613 to ζ2
3613 generates

Gal(Q(ζ3613)/Q) we have that Mλ = Q(∑
516
n=1 ζ

27n

3613) and the field extension is as depicted, the
compositum.

10Interestingly the same one appears in this post.
11Where here N is a multiple of 1, i.e. saying nothing, since the least common multiple of the degrees of

the elements of C7 is already 7.
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Q(ζ12
29 + ζ

28
29 + ζ

17
29 + ζ29,∑

516
n=1 ζ

27n

3613) Q(ζ3613)

Q(ζ12
29 + ζ

28
29 + ζ

17
29 + ζ29) Q(∑

516
n=1 ζ

27n

3613)

Q

C7×C7

C7

C7

With mathematical software the irreducible polynomial of the previous C7 × C7 extension
has been found but for prime powers larger than two finding it would render a much more
challenging task. If we were to continue, building a C7 ×C7 ×C7 extension would consist in
finding a prime q such that q ≡ 1 (mod 7), x7 ≡ 29 (mod q) and y7 ≡ 3613 (mod q) allowed
solutions and furthermore, that it splited completely in the previously constructed field.
Since 644687 = 92098 ⋅ 7 + 1, 282127 = 29 (mod 644687), 1311527 = 3613 (mod 644687) and
the 49th degree polynomial of ζ12

29 +ζ
28
29 +ζ

17
29 +ζ29+∑

516
n=1 ζ

27n

3613 splits in 49 factors, by Kummer’s
correspondence theorem we have its complete split guaranteed. This process of finding such
primes, constructing the map and then the associated field extension can always be done
for split extensions as was portrayed in the proof. Hopefully the split case is by now fully
understood. It goes without saying that this procedure can be mimicked for any prime `
taken at first and any intermediate field extension taken as the base one.
In a general scenario to reach the desired extension the procedure will most likely involve
solving problems from both types, split and non-split. No non-split example is explained
as the constructive mechanisms cease the moment we incur the local-global principle and
consider group extensions of the global Galois group. The existence arguments allow for a
technical proof to be carried away at the expense of losing interpretability.
One should bear in mind that these are by no means the only steps we could have taken.
A first choice is made when the central series for the group is picked compounded with
the chosen representations and later some may collide because they may yield equivalent
extensions. An interesting viewpoint would be that of focusing on how many ways there are
to reach a particular group G following the steps of our proof. Arguments of counting and
pruning the “tree” described by the proof are main topics of research nowadays. One may
wish to find the extension satisfying a particular property or the number of such extensions.
By far the most discussed is the least ramified, we have used the fact that at each step one
more prime can be added to our bag of ramified primes nevertheless we do not care when or
how this occurs. More about that will be presented in the final section.
Another important thing to bear in mind is that this procedure is not very efficient if we do
not require the field extension to be buildable upon. We had to use mathematical software to
compute a C7 ×C7 group following the steps of the proof nevertheless if our goal was merely
that extension it could have been computed directly as the compositum of two mutually
disjoint restrictions of cyclotomic fields.
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8 Open problems

By now we hope the reader has gotten acquainted to both the general inverse Galois problem
and the particular case of Scholz-Reichardt. By no means this is the state of the art of the
matter, this result dates back to 1937 and major advances have been made on this field since.
Maybe the big appeal and one of the driving motifs to thoroughly examine this proof is the
fact that the general case is still a conjecture. Furthermore, simpler and more particular
group associations are still open, for instance whether the group M23

12 occurs as Galois over
Q is unknown. The beauty behind most of this problems, as in mathematics in general, re-
sides is the rather easy and simplistic way they can be formulated and yet their truthfulness
renders very challenging to demonstrate. In this last section, much like in the first, a contex-
tualization of where this thesis could lead us as a starting point looking forward is presented.

In one of the examples a note on the constraints upon the number of ramifying primes
was made. More precisely an open problem is: given a set S of prime numbers and a group
G, find a field over the rationals whose Galois group is G and ramified only at primes inside
of S. This may look like a non-relevant twist at first but apparently procedures like this
may eventually help to shed some light into the classic inverse problem. Another scenario
where one restricts himself to considering only tamely ramified extensions of the rationals
was proved for some groups in [PLA].

At the very beginning a possibility to attack the main problem with brute force was men-
tioned. In this thesis we have examined the solvability of central embedding problems with
cyclic kernel of prime order which is just one of the families of finite simple groups. An
interesting and natural continuation would go along the lines of analyzing how embedding
problems with other prefixed finite simple groups as kernel relate to this one, moreover, when
they are solvable. Hopefully this thesis works as a thorough enough gate opener to inquire
those types of questions.

12A group in S23 with 10200960 elements. The rest of sporadic groups are known to be realisable as Galois
groups, see [PAH] for instance.
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