Trabajo Final de Grado

Grado en Ingeniería Química

Síntesis y caracterización de nanocelulosas de orígenes diversos

ANEXO

Autor: Borja Muñoz Bartolomé
Director: Jordi Bou Serra
Convocatoria: Febrero 2018

Escuela Técnica Superior de Ingeniería Industrial de Barcelona
Índice

1. IMÁGENES ADICIONALES DEL SEM
 1.1. MCC .. 3
 1.2. CNF .. 6
 1.3. CNC .. 9
 1.4. Exilva .. 12
 1.5. Síntesis biotecnológica: primera réplica .. 15
 1.6. Síntesis biotecnológica: segunda réplica ... 18
 1.7. Nata de coco NaOH y ácido .. 20
 1.8. Síntesis química de muestra sonicada ... 23
 1.9. Síntesis química de muestra no sonicada 25

2. ALGORITMOS DE MATLAB ... 28
 2.1. Algoritmo de Matlab para calcular el diámetro de fibra 28
 2.2. Algoritmo para calcular el área por el método de trapezios 28
1. Imágenes adicionales del SEM

1.1. MCC

Figura 1. Representación mediante SEM de MCC (A) x250 (B) x250
Figura 2. Representación mediante SEM de MCC (A) x1000 (B) x1000
Figura 3. Representación mediante SEM de MCC (A) x5000 (B) x5000
1.2. CNF

Figura 4. Representación mediante SEM de CNF (A) x1000 (B) x5000
Síntesis y caracterización de nanocelulosas de orígenes diversos

Figura 5. Representación mediante SEM de CNF (A) x15000 (B) x15000
Figura 6. Representación mediante SEM de CNF (A) x30000 (B) x70000
1.3. CNC

Figura 7. Representación mediante SEM de CNC (A) x250 (B) x5000
Figura 8. Representación mediante SEM de CNC (A) x5000 (B) x15000
Figura 9. Representación mediante SEM de CNC (A) x15000 (B) x30000
1.4. Exilva

Figura 10. Representación mediante SEM de Exilva (A) x1000 (B) x5000
Figura 11. Representación mediante SEM de Exilva (A) x5000 (B) x15000
Figura 12. Representación mediante SEM de Exilva (A) x30000 (B) x70000
1.5. Síntesis biotecnológica: primera réplica

Figura 13. Representación mediante SEM de celulosa bacteriana en la primera réplica (A) x250 (B) x5000
Figura 14. Representación mediante SEM de celulosa bacteriana en la primera réplica (A) x5000 (B) x5000
Figura 15. Representación mediante SEM de celulosa bacteriana en la primera réplica (A) x5000 (B) x15000
1.6. Síntesis biotecnológica: segunda réplica

Figura 16. Representación mediante SEM de celulosa bacteriana en la segunda réplica (A) x5000 (B) x30000
Figura 17. Representación mediante SEM de celulosa bacteriana en la primera réplica (A) x50000 (B) x50000
1.7. Nata de coco NaOH y ácido

Figura 18. Representación mediante SEM de nata de coco NaOH y ácido (A) x1000 (B) x1000
Figura 19. Representación mediante SEM de nata de coco NaOH y ácido (A) x15000 (B) x30000
Figura 20. Representación mediante SEM de nata de coco NaOH y ácido (A) x70000 (B) x70000
1.8. Síntesis química de muestra sonicada

Figura 21. Representación mediante SEM de síntesis química con sonicación (A) x5000 (B) x30000
Figura 22. Representación mediante SEM de síntesis química con sonicación (A) x50000
(B) x100000
1.9. Síntesis química de muestra no sonicada

![Figura 23. Representación mediante SEM de síntesis química sin sonicación (A) x1000 (B) x5000](image-url)
Figura 24. Representación mediante SEM de síntesis química sin sonoración (A) x15000 (B) x15000
Figura 25. Representación mediante SEM de síntesis química sin sonicación (A) x30000
(B) x100000
2. Algoritmos de Matlab

2.1. Algoritmo de Matlab para calcular el diámetro de fibra

A=imread('%nombre archivo');
valorEscala=2; %en micras
imshow(A);
hold on;
disp('Primero selecciona la escala');
 [x,y]=ginput(2);
 escalaPixels=abs(sqrt((x(1)-x(2))^2+(y(1)-y(2))^2));
 plot(x,y,'m');

numMedidas=2; % Aquí se anotan el número total de medidas que se quieren
mes=[];
for i=1:numMedidas
 [xx,yy]=ginput(2);
 mes=[mes; xx,yy];
 plot(xx,yy,'b');
 text(xx(2)+1,yy(2)-0.5,['id=',
num2str(i)],'Color','b','FontSize',10);
% Color k= black, y=yellow, m=magenta, r=red, g=green, b=blue.....
drawnow;
end

dist=[];
for i=1:2:2*numMedidas
 dist=[dist; norm(mes(i,:)-mes(i+1,:))*valorEscala/escalaPixels];
end
dist

% Numerical Factory 2018
% (c) Toni Susín
%

2.2. Algoritmo para calcular el área por el método de trapecios

[numData,txt,rawData] = xlsread('%nombre archivo');
Data=numData(2:end,:);
x=Data(:,1);
y=Data(:,2);
plot(x,y)
integTrapezis=trapz(x,y)
% Numerical Factory 2018
% (c) Toni Susin